1
|
Maniram J, Oosthuizen F, Karrim SBS. An Overview of Pharmacotherapy in the Management of Children with Autism Spectrum Disorder at a Public Hospital in KwaZulu-Natal. Child Psychiatry Hum Dev 2024; 55:1655-1663. [PMID: 36944778 PMCID: PMC11485179 DOI: 10.1007/s10578-023-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
This study presents an overview of prescribing patterns and provides insight into the current management practice for the core symptoms and comorbidities of ASD in children. A quantitative retrospective study was conducted at a public hospital in KwaZulu-Natal, South Africa by reviewing patient files of children diagnosed with ASD and meeting the inclusion criteria for the study. A descriptive analysis of data was done to identify treatment trends and patient therapeutic outcomes. A total of 181 children met the inclusion criteria of the study. Risperidone was the most frequently prescribed drug (88%) for the management of comorbidities and/or core symptoms of ASD. Drugs prescribed to manage ASD comorbidities included methylphenidate, melatonin, sodium valproate, risperidone, oxybutynin, carbamazepine, and others. Except for risperidone, there were no additional drugs that targeted the core symptoms of ASD. Non-pharmacological therapies were often used collaboratively with medication to manage ASD symptoms. In 41% of patients, there were improvements in their symptoms.
Collapse
Affiliation(s)
- Jennal Maniram
- School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Frasia Oosthuizen
- School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saira B S Karrim
- School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Tan P, Shen X, Zeng L, Weng X, Geng H. Pharmacotherapy for the core symptoms of autism spectrum disorder. J Zhejiang Univ Sci B 2024; 25:956-971. [PMID: 39626879 PMCID: PMC11634452 DOI: 10.1631/jzus.b2300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/09/2024] [Indexed: 12/13/2024]
Abstract
Autism spectrum disorder (ASD) is a range of neurodevelopmental diseases characterized by social dysfunction and stereotypic behaviors. The etiology of ASD remains largely unexplored, resulting in a diverse array of described clinical manifestations and varying degrees of severity. Currently, there are no drugs approved by a supervisory organization that can effectively treat the core symptoms of ASD. Childhood and adolescence are crucial stages for making significant achievements in ASD treatment, necessitating the development of drugs specifically for these periods. Based on the drug targets and mechanisms of action, it can be found that atypical psychotropic medications, anti-inflammatory and antioxidant medications, hormonal medications, ion channel medications, and gastrointestinal medications have shown significant improvement in treating the core symptoms of ASD in both children and adolescents. In addition, comparisons of drugs within the same category regarding efficacy and safety have been made to identify better alternatives and promote drug development. While further evaluation of the effectiveness and safety of these medications is needed, they hold great potential for widespread application in the clinical treatment of the principal symptoms of ASD.
Collapse
Affiliation(s)
- Peiying Tan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Shen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Lizhang Zeng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xuchu Weng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Hongyan Geng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou 510631, China.
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Souza AJ, Freitas ÍS, Sharmin D, Cook JM, Guimarães FS, Gomes FV. An alpha 5-GABA A receptor positive allosteric modulator attenuates social and cognitive deficits without changing dopamine system hyperactivity in rats exposed to valproic acid in utero. Autism Res 2024; 17:1534-1544. [PMID: 39169698 PMCID: PMC11343091 DOI: 10.1002/aur.3178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/03/2024] [Indexed: 08/23/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABAA receptors (α5-GABAARs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in rats exposed to valproic acid (VPA) in utero, an established risk factor for autism. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. SH-053-2'F-R-CH3 was administered intraperitoneally 30 min before each behavioral test and electrophysiology. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Adult male and female VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate that α5-GABAARs positive allosteric modulators may effectively attenuate some core ASD symptoms.
Collapse
Affiliation(s)
- Adriana Jesus Souza
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ícaro Silva Freitas
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - James M. Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Egilmez CB, Pazarlar BA, Erdogan MA, Uyanikgil Y, Erbas O. Choline chloride shows gender-dependent positive effects on social deficits, learning/memory impairments, neuronal loss and neuroinflammation in the lipopolysaccharide-induced rat model of autism. Int J Dev Neurosci 2024; 84:392-405. [PMID: 38721665 DOI: 10.1002/jdn.10335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 08/06/2024] Open
Abstract
The neuroprotective effects of choline chloride, an essential nutrient, a precursor for the acetylcholine and synthesis of membrane phospholipids, have been associated with neurological and neurodegenerative diseases. Its contribution to autism spectrum disorder, a neurodevelopmental disorder, remains unknown. Thus, we aimed to evaluate the effects of choline chloride on social behaviours, and histopathological and biochemical changes in a rat autism model. The autism model was induced by administration of 100 μg/kg lipopolysaccharide (LPS) on the 10th day of gestation. Choline chloride treatment (100 mg/kg/day) was commenced on PN5 and maintained until PN50. Social deficits were assessed by three-chamber sociability, open field, and passive avoidance learning tests. Tumour necrosis factor alpha (TNF-α), interleukin-2 (IL) and IL-17, nerve growth factor (NGF), and glutamate decarboxylase 67 (GAD67) levels were measured to assess neuroinflammatory responses. In addition, the number of hippocampal and cerebellar neurons and glial fibrillary acidic protein (GFAP) expression were evaluated. Social novelty and passive avoidance learning tests revealed significant differences in choline chloride-treated male rats compared with saline-treated groups. TNF-α, IL-2, and IL-17 were significantly decreased after choline chloride treatment in both males and females. NGF and GAD67 levels were unchanged in females, while there were significant differences in males. Histologically, significant changes in terms of gliosis were detected in hippocampal CA1 and CA3 regions and cerebellum in choline chloride-treated groups. The presence of ameliorative effects of choline chloride treatment on social behaviour and neuroinflammation through neuroinflammatory, neurotrophic, and neurotransmission pathways in a sex-dependent rat model of LPS-induced autism was demonstrated.
Collapse
Affiliation(s)
- Cansu Bilister Egilmez
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Burcu Azak Pazarlar
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Yiğit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Bilim University, Istanbul, Turkey
| |
Collapse
|
5
|
Thomson AR, Pasanta D, Arichi T, Puts NA. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105728. [PMID: 38796123 PMCID: PMC11602446 DOI: 10.1016/j.neubiorev.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK.
| |
Collapse
|
6
|
Chen Z, Wang X, Zhang S, Han F. Neuroplasticity of children in autism spectrum disorder. Front Psychiatry 2024; 15:1362288. [PMID: 38726381 PMCID: PMC11079289 DOI: 10.3389/fpsyt.2024.1362288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that encompasses a range of symptoms including difficulties in verbal communication, social interaction, limited interests, and repetitive behaviors. Neuroplasticity refers to the structural and functional changes that occur in the nervous system to adapt and respond to changes in the external environment. In simpler terms, it is the brain's ability to learn and adapt to new environments. However, individuals with ASD exhibit abnormal neuroplasticity, which impacts information processing, sensory processing, and social cognition, leading to the manifestation of corresponding symptoms. This paper aims to review the current research progress on ASD neuroplasticity, focusing on genetics, environment, neural pathways, neuroinflammation, and immunity. The findings will provide a theoretical foundation and insights for intervention and treatment in pediatric fields related to ASD.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Xu Wang
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Si Zhang
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Fei Han
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Zhang L, Ren T, He H, Huang L, Huang R, Xu Y, Zhou L, Tan H, Chen J, Wu D, Yang H, Zhang H, Yu J, Du X, Dai Y, Pu Y, Li C, Wang X, Shi S, Sahakian BJ, Luo Q, Li F. Protective factors for children with autism spectrum disorder during COVID-19-related strict lockdowns: a Shanghai autism early developmental cohort study. Psychol Med 2024; 54:1102-1112. [PMID: 37997447 DOI: 10.1017/s0033291723002908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
BACKGROUND COVID-19 lockdowns increased the risk of mental health problems, especially for children with autism spectrum disorder (ASD). However, despite its importance, little is known about the protective factors for ASD children during the lockdowns. METHODS Based on the Shanghai Autism Early Developmental Cohort, 188 ASD children with two visits before and after the strict Omicron lockdown were included; 85 children were lockdown-free, while 52 and 51 children were under the longer and the shorter durations of strict lockdown, respectively. We tested the association of the lockdown group with the clinical improvement and also the modulation effects of parent/family-related factors on this association by linear regression/mixed-effect models. Within the social brain structures, we examined the voxel-wise interaction between the grey matter volume and the identified modulation effects. RESULTS Compared with the lockdown-free group, the ASD children experienced the longer duration of strict lockdown had less clinical improvement (β = 0.49, 95% confidence interval (CI) [0.19-0.79], p = 0.001) and this difference was greatest for social cognition (2.62 [0.94-4.30], p = 0.002). We found that this association was modulated by parental agreeableness in a protective way (-0.11 [-0.17 to -0.05], p = 0.002). This protective effect was enhanced in the ASD children with larger grey matter volumes in the brain's mentalizing network, including the temporal pole, the medial superior frontal gyrus, and the superior temporal gyrus. CONCLUSIONS This longitudinal neuroimaging cohort study identified that the parental agreeableness interacting with the ASD children's social brain development reduced the negative impact on clinical symptoms during the strict lockdown.
Collapse
Affiliation(s)
- Lingli Zhang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tai Ren
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua He
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Like Huang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runqi Huang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixiang Xu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Hangyu Tan
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Chen
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danping Wu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanshu Yang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haotian Zhang
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juehua Yu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiujuan Du
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Dai
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Pu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenxun Shi
- Psychiatry Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Barbara J Sahakian
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institutes of Brain Science and Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
van Andel DM, Sprengers JJ, Königs M, de Jonge MV, Bruining H. Effects of Bumetanide on Neurocognitive Functioning in Children with Autism Spectrum Disorder: Secondary Analysis of a Randomized Placebo-Controlled Trial. J Autism Dev Disord 2024; 54:894-904. [PMID: 36626004 PMCID: PMC10907457 DOI: 10.1007/s10803-022-05841-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 01/11/2023]
Abstract
We present the secondary-analysis of neurocognitive tests in the 'Bumetanide in Autism Medication and Biomarker' (BAMBI;EUDRA-CT-2014-001560-35) study, a randomized double-blind placebo-controlled (1:1) trial testing 3-months bumetanide treatment (≤ 1 mg twice-daily) in unmedicated children 7-15 years with ASD. Children with IQ ≥ 70 were analyzed for baseline deficits and treatment-effects on the intention-to-treat-population with generalized-linear-models, principal component analysis and network analysis. Ninety-two children were allocated to treatment and 83 eligible for analyses. Heterogeneous neurocognitive impairments were found that were unaffected by bumetanide treatment. Network analysis showed higher modularity after treatment (mean difference:-0.165, 95%CI:-0.317 to - 0.013,p = .034) and changes in the relative importance of response inhibition in the neurocognitive network (mean difference:-0.037, 95%CI:-0.073 to - 0.001,p = .042). This study offers perspectives to include neurocognitive tests in ASD trials.
Collapse
Affiliation(s)
- Dorinde M van Andel
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jan J Sprengers
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marsh Königs
- Department of Paediatrics, Emma Neuroscience Group, Amsterdam UMC Emma Children's Hospital, Amsterdam, The Netherlands
| | - Maretha V de Jonge
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department Education and Child Studies, Faculty of Social and Behavioral Sciences, Leiden University, Leiden, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands.
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands.
- Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, Netherlands.
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
10
|
Weng G, Slotboom J, Schucht P, Ermiş E, Wiest R, Klöppel S, Peter J, Zubak I, Radojewski P. Simultaneous multi-region detection of GABA+ and Glx using 3D spatially resolved SLOW-editing and EPSI-readout at 7T. Neuroimage 2024; 286:120511. [PMID: 38184158 DOI: 10.1016/j.neuroimage.2024.120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
GABA+ and Glx (glutamate and glutamine) are widely studied metabolites, yet the commonly used magnetic resonance spectroscopy (MRS) techniques have significant limitations, including sensitivity to B0 and B1+-inhomogeneities, limited bandwidth of MEGA-pulses, high SAR which is accentuated at 7T. To address these limitations, we propose SLOW-EPSI method, employing a large 3D MRSI coverage and achieving a high resolution down to 0.26 ml. Simulation results demonstrate the robustness of SLOW-editing for both GABA+ and Glx against B0 and B1+-inhomogeneities within the range of [-0.3, +0.3] ppm and [40 %, 250 %], respectively. Two protocols, both utilizing a 70 mm thick FOV slab, were employed to target distinct brain regions in vivo, differentiated by their orientation: transverse and tilted. Protocol 1 (n = 11) encompassed 5 locations (cortical gray matter, white matter, frontal lobe, parietal lobe, and cingulate gyrus). Protocol 2 (n = 5) involved 9 locations (cortical gray matter, white matter, frontal lobe, occipital lobe, cingulate gyrus, caudate nucleus, hippocampus, putamen, and inferior thalamus). Quantitative analysis of GABA+ and Glx was conducted in a stepwise manner. First, B1+/B1--inhomogeneities were corrected using water reference data. Next, GABA+ and Glx values were calculated employing spectral fitting. Finally, the GABA+ level for each selected region was compared to the global Glx within the same subject, generating the GABA+/Glx_global ratio. Our findings from two protocols indicate that the GABA+/Glx_global level in cortical gray matter was approximately 16 % higher than in white matter. Elevated GABA+/Glx_global levels acquired with protocol 2 were observed in specific regions such as the caudate nucleus (0.118±0.067), putamen (0.108±0.023), thalamus (0.092±0.036), and occipital cortex (0.091±0.010), when compared to the cortical gray matter (0.079±0.012). Overall, our results highlight the effectiveness of SLOW-EPSI as a robust and efficient technique for accurate measurements of GABA+ and Glx at 7T. In contrast to previous SVS and 2D-MRSI based editing sequences with which only one or a limited number of brain regions can be measured simultaneously, the method presented here measures GABA+ and Glx from any brain area and any arbitrarily shaped volume that can be flexibly selected after the examination. Quantification of GABA+ and Glx across multiple brain regions through spectral fitting is achievable with a 9-minute acquisition. Additionally, acquisition times of 18-27 min (GABA+) and 9-18 min (Glx) are required to generate 3D maps, which are constructed using Gaussian fitting and peak integration.
Collapse
Affiliation(s)
- Guodong Weng
- Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital and University of Bern, Switzerland; Translational Imaging Center, sitem-insel, Bern, Switzerland.
| | - Johannes Slotboom
- Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital and University of Bern, Switzerland; Translational Imaging Center, sitem-insel, Bern, Switzerland
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital, University Hospital and University of Bern, Switzerland
| | - Ekin Ermiş
- Department of Radiation Oncology, Inselspital, University Hospital and University of Bern, Switzerland
| | - Roland Wiest
- Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital and University of Bern, Switzerland; Translational Imaging Center, sitem-insel, Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jessica Peter
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Irena Zubak
- Department of Neurosurgery, Inselspital, University Hospital and University of Bern, Switzerland
| | - Piotr Radojewski
- Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital and University of Bern, Switzerland; Translational Imaging Center, sitem-insel, Bern, Switzerland
| |
Collapse
|
11
|
Sprengers JJ, Geertjens L, Bruining H. Mechanism-based interventions for ASD cannot be implemented using conventional trial designs. Autism Res 2024; 17:202-203. [PMID: 38197172 DOI: 10.1002/aur.3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Affiliation(s)
- Jan J Sprengers
- UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lisa Geertjens
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilgo Bruining
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
- Child and Adolescent Psychiatry, Levvel, Amsterdam, The Netherlands
| |
Collapse
|
12
|
McArdle CJ, Arnone AA, Heaney CF, Raab-Graham KF. A paradoxical switch: the implications of excitatory GABAergic signaling in neurological disorders. Front Psychiatry 2024; 14:1296527. [PMID: 38268565 PMCID: PMC10805837 DOI: 10.3389/fpsyt.2023.1296527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. In the mature brain, inhibitory GABAergic signaling is critical in maintaining neuronal homeostasis and vital human behaviors such as cognition, emotion, and motivation. While classically known to inhibit neuronal function under physiological conditions, previous research indicates a paradoxical switch from inhibitory to excitatory GABAergic signaling that is implicated in several neurological disorders. Various mechanisms have been proposed to contribute to the excitatory switch such as chloride ion dyshomeostasis, alterations in inhibitory receptor expression, and modifications in GABAergic synaptic plasticity. Of note, the hypothesized mechanisms underlying excitatory GABAergic signaling are highlighted in a number of neurodevelopmental, substance use, stress, and neurodegenerative disorders. Herein, we present an updated review discussing the presence of excitatory GABAergic signaling in various neurological disorders, and their potential contributions towards disease pathology.
Collapse
Affiliation(s)
- Colin J. McArdle
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Alana A. Arnone
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chelcie F. Heaney
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
13
|
Shaker E, El Agami O, Salamah A. Bumetanide, a Diuretic That Can Help Children with Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:536-542. [PMID: 37021422 DOI: 10.2174/1871527322666230404114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a common child neurodevelopmental disorder, whose pathogenesis is not completely understood. Until now, there is no proven treatment for the core symptoms of ASD. However, some evidence indicates a crucial link between this disorder and GABAergic signals which are altered in ASD. Bumetanide is a diuretic that reduces chloride, shifts gamma-amino-butyric acid (GABA) from excitation to inhibition, and may play a significant role in the treatment of ASD. OBJECTIVE The objective of this study is to assess the safety and efficacy of bumetanide as a treatment for ASD. METHODS Eighty children, aged 3-12 years, with ASD diagnosed by Childhood Autism Rating Scale (CARS), ⩾ 30 were included in this double-blind, randomized, and controlled study. Group 1 received Bumetanide, Group 2 received a placebo for 6 months. Follow-up by CARS rating scale was performed before and after 1, 3, and 6 months of treatment. RESULTS The use of bumetanide in group 1 improved the core symptoms of ASD in a shorter time with minimal and tolerable adverse effects. There was a statistically significant decrease in CARS and most of its fifteen items in group 1 versus group 2 after 6 months of treatment (p-value <0.001). CONCLUSION Bumetanide has an important role in the treatment of core symptoms of ASD.
Collapse
Affiliation(s)
- Esraa Shaker
- Department of Pediatrics, Faculty of Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Osama El Agami
- Department of Pediatrics, Faculty of Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Abeer Salamah
- Department of Pediatrics, Faculty of Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
14
|
Johnson AJ, Shankland E, Richards T, Corrigan N, Shusterman D, Edden R, Estes A, St John T, Dager S, Kleinhans NM. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111745. [PMID: 37956467 PMCID: PMC10841920 DOI: 10.1016/j.pscychresns.2023.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Theories of altered inhibitory/excitatory signaling in autism spectrum disorder (ASD) suggest that gamma amino butyric acid (GABA) and glutamate (Glu) abnormalities may underlie social and sensory challenges in ASD. Magnetic resonance spectroscopy was used to measure Glu and GABA+ levels in the amygdala-hippocampus region and cerebellum in autistic children (n = 30), a clinical control group with sensory abnormalities (SA) but not ASD (n = 30), and children with typical development (n = 37). All participants were clinically assessed using the Autism Diagnostic Interview-Revised, the Autism Diagnostic Observation Scale-2, and the Child Sensory Profile-2. The Social Responsiveness Scale-2, Sniffin Sticks Threshold Test, and the University of Pennsylvania Smell Identification Test were administered to assess social impairment and olfactory processing. Overall, autistic children showed increased cerebellar Glu levels compared to TYP children. Evidence for altered excitatory/inhibitory signaling in the cerebellum was more clear-cut when analyses were restricted to male participants. Further, lower cerebellar GABA+/Glu ratios were correlated to more severe social impairment in both autistic and SA males, suggesting that the cerebellum may play a transdiagnostic role in social impairment. Future studies of inhibitory/excitatory neural markers, powered to investigate the role of sex, may aid in parsing out disorder-specific neurochemical profiles.
Collapse
Affiliation(s)
- Allegra J Johnson
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Todd Richards
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Neva Corrigan
- Institute on Human Development and Disability (IHDD), University of Washington, USA
| | - Dennis Shusterman
- Department of Medicine, University of California, San Francisco, USA
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, USA
| | - Annette Estes
- Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Speech and Hearing Sciences, University of Washington, USA; University of Washington Autism Center, USA
| | - Tanya St John
- University of Washington Autism Center, USA; Department of Medicine, University of California, San Francisco, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Biomedical Engineering, University of Washington, USA
| | - Natalia M Kleinhans
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA.
| |
Collapse
|
15
|
Jiang M, Chen G. Investigation of LncRNA PVT1 and MiR-21-5p Expression as Promising Novel Biomarkers for Autism Spectrum Disorder. J Mol Neurosci 2023; 73:865-873. [PMID: 37828403 DOI: 10.1007/s12031-023-02161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The characteristics of ncRNA in children with autism spectrum disorder (ASD) were observed to disclose a theoretical basis for further research on molecular markers for early warning of ASD. Children with ASD and normal control children were recruited to collect peripheral blood RNA samples. The concentration of PVT1 and miR-21-5p was quantitatively analyzed by qRT-PCR. Pearson correlation coefficient method was used to evaluate the link between PVT1 level and miR-21-5p level of the children. Receiver operating characteristic (ROC) curves were applied to reckon the predictive value of PVT1, miR-21-5p, and their combination in ASD. The interconnection of PVT1 with miR-21-5p was represented by luciferase reporter assay. The targeted genes of miR-21-5p were predicted. The enrichment and protein interaction analysis of these genes was carried out to find the important core genes and analyze their value in ASD. In the disease group, the level of PVT1 was downregulated, while the content of miR-21-5p was upregulated. The expression level of serum miR-21-5p was negatively correlated with the level of PVT1. Luciferase reporter gene assay documented that PVT1 directly targeted miR-21-5p. ROC curve showed that PVT1, miR-21-5p, and their combination showed clinical value for disease diagnosis. The functional enrichment analysis showed that the targets of miR-21-5p participated in ASD by regulating related functions and pathways. Reduced expression of PVT1 and raised miR-21-5p were good diagnostic markers for ASD, which would provide a basis for effective prevention, early diagnosis, and early intervention of ASD.
Collapse
Affiliation(s)
- Mingjun Jiang
- Shenzhen Polytechnic University, No.7098 Liuxian Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China.
| | - Guanwen Chen
- Guangdong Nantian Institute of Forensic Science, No.5003 Binhe Road, Futian District, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
16
|
Georgoula C, Ferrin M, Pietraszczyk-Kedziora B, Hervas A, Marret S, Oliveira G, Rosier A, Crutel V, Besse E, Severo CA, Ravel D, Fuentes J. A Phase III Study of Bumetanide Oral Liquid Formulation for the Treatment of Children and Adolescents Aged Between 7 and 17 Years with Autism Spectrum Disorder (SIGN 1 Trial): Participant Baseline Characteristics. Child Psychiatry Hum Dev 2023; 54:1360-1372. [PMID: 35292925 DOI: 10.1007/s10578-022-01328-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/22/2021] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
The efficacy of bumetanide (oral liquid formulation 0.5 mg bid) as a treatment for the core symptoms of autism spectrum disorders in children and adolescents aged 7-17 years is being investigated in an international, randomised, double-blind, placebo-controlled phase III study. The primary endpoint is the change in Childhood Autism Rating Scale 2 (CARS2) total raw score after 6 months of treatment. At baseline, the 211 participants analysed are broadly representative of autistic subjects in this age range: mean (SD) age, 10.4 (3.0) years; 82.5% male; 47.7% with intelligence quotient ≥ 70. Mean CARS2 score was 40.1 (4.9) and mean Social Responsiveness Scale score was 116.7 (23.4). Final study results will provide data on efficacy and safety of bumetanide in autistic children and adolescents.
Collapse
Affiliation(s)
| | | | - Bozena Pietraszczyk-Kedziora
- Child and Adolescent Psychiatry Unit, Niepubliczny Zakład Opieki Zdrowotnej Gdańskie Centrum Zdrowia, Gdańsk, Poland
| | - Amaia Hervas
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, and Global Institute of Neurodevelopment Integrated Care (IGAIN), Barcelona, Spain
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital and INSERM U 1245 Team 4 Neovasc, School of Medicine, Normandy University, Rouen, France
| | - Guiomar Oliveira
- Neurodevelopmental and Autism Unit From Child Developmental Center and Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics, University of Coimbra, Coimbra, Portugal
| | - Antoine Rosier
- Department of Neonatal Pediatrics, CHU de Rouen and CHU le Rouvray, Sotteville les Rouen, France
| | - Véronique Crutel
- Neuro Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes CEDEX, France
| | - Emmanuelle Besse
- Neuro Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes CEDEX, France
| | - Cristina Albarrán Severo
- Neuro Inflammation Therapeutic Area, Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes CEDEX, France.
| | | | - Joaquin Fuentes
- Child & Adolescent Psychiatry Service, Policlínica Gipuzkoa and Gipuzkoa Autism Society (GAUTENA), Donostia/San Sebastián, Spain
| |
Collapse
|
17
|
Souza AJ, Sharmin D, Cook JM, Guimarães FS, Gomes FV. An alpha 5-GABAa receptor positive allosteric modulator attenuates social and cognitive deficits without changing dopamine system hyperactivity in an animal model for autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554679. [PMID: 37662217 PMCID: PMC10473734 DOI: 10.1101/2023.08.24.554679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Autism Spectrum Disorders (ASD) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABA A receptors (α5-GABA A Rs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in a rat model for autism based on in utero VPA exposure. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Male and female adult VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate α5-GABA A Rs positive allosteric modulators may effectively attenuate some core ASD symptoms.
Collapse
|
18
|
van van Hugte EJH, Schubert D, Nadif Kasri N. Excitatory/inhibitory balance in epilepsies and neurodevelopmental disorders: Depolarizing γ-aminobutyric acid as a common mechanism. Epilepsia 2023; 64:1975-1990. [PMID: 37195166 DOI: 10.1111/epi.17651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although many factors contribute to epileptogenesis, seizure generation is mostly linked to hyperexcitability due to alterations in excitatory/inhibitory (E/I) balance. The common hypothesis is that reduced inhibition, increased excitation, or both contribute to the etiology of epilepsy. Increasing evidence shows that this view is oversimplistic, and that increased inhibition through depolarizing γ-aminobutyric acid (GABA) similarly contributes to epileptogenisis. In early development, GABA signaling is depolarizing, inducing outward Cl- currents due to high intracellular Cl- concentrations. During maturation, the mechanisms of GABA action shift from depolarizing to hyperpolarizing, a critical event during brain development. Altered timing of this shift is associated with both neurodevelopmental disorders and epilepsy. Here, we consider the different ways that depolarizing GABA contributes to altered E/I balance and epileptogenesis, and discuss that alterations in depolarizing GABA could be a common denominator underlying seizure generation in neurodevelopmental disorders and epilepsies.
Collapse
Affiliation(s)
- Eline J H van van Hugte
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Epileptology, Academic Centre for Epileptology (ACE) Kempenhaeghe, Heeze, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Epileptology, Academic Centre for Epileptology (ACE) Kempenhaeghe, Heeze, the Netherlands
| |
Collapse
|
19
|
Juarez-Martinez EL, Sprengers JJ, Cristian G, Oranje B, van Andel DM, Avramiea AE, Simpraga S, Houtman SJ, Hardstone R, Gerver C, Jan van der Wilt G, Mansvelder HD, Eijkemans MJC, Linkenkaer-Hansen K, Bruining H. Prediction of Behavioral Improvement Through Resting-State Electroencephalography and Clinical Severity in a Randomized Controlled Trial Testing Bumetanide in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:251-261. [PMID: 34506972 DOI: 10.1016/j.bpsc.2021.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mechanism-based treatments such as bumetanide are being repurposed for autism spectrum disorder. We recently reported beneficial effects on repetitive behavioral symptoms that might be related to regulating excitation-inhibition (E/I) balance in the brain. Here, we tested the neurophysiological effects of bumetanide and the relationship to clinical outcome variability and investigated the potential for machine learning-based predictions of meaningful clinical improvement. METHODS Using modified linear mixed models applied to intention-to-treat population, we analyzed E/I-sensitive electroencephalography (EEG) measures before and after 91 days of treatment in the double-blind, randomized, placebo-controlled Bumetanide in Autism Medication and Biomarker study. Resting-state EEG of 82 subjects out of 92 participants (7-15 years) were available. Alpha frequency band absolute and relative power, central frequency, long-range temporal correlations, and functional E/I ratio treatment effects were related to the Repetitive Behavior Scale-Revised (RBS-R) and the Social Responsiveness Scale 2 as clinical outcomes. RESULTS We observed superior bumetanide effects on EEG, reflected in increased absolute and relative alpha power and functional E/I ratio and in decreased central frequency. Associations between EEG and clinical outcome change were restricted to subgroups with medium to high RBS-R improvement. Using machine learning, medium and high RBS-R improvement could be predicted by baseline RBS-R score and EEG measures with 80% and 92% accuracy, respectively. CONCLUSIONS Bumetanide exerts neurophysiological effects related to clinical changes in more responsive subsets, in whom prediction of improvement was feasible through EEG and clinical measures.
Collapse
Affiliation(s)
- Erika L Juarez-Martinez
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands; NBT Analytics BV, Amsterdam, The Netherlands; Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan J Sprengers
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Gianina Cristian
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bob Oranje
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dorinde M van Andel
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Arthur-Ervin Avramiea
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sonja Simpraga
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands; NBT Analytics BV, Amsterdam, The Netherlands
| | - Simon J Houtman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Richard Hardstone
- Neuroscience Institute, New York University School of Medicine, New York, New York
| | - Cathalijn Gerver
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands; N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gert Jan van der Wilt
- Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marinus J C Eijkemans
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands; Department of Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Hilgo Bruining
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, The Netherlands; N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, The Netherlands; Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Boksha IS, Prokhorova TA, Tereshkina EB, Savushkina OK, Burbaeva GS. Differentiated Approach to Pharmacotherapy of Autism Spectrum Disorders: Biochemical Aspects. BIOCHEMISTRY (MOSCOW) 2023; 88:303-318. [PMID: 37076279 DOI: 10.1134/s0006297923030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Autism Spectrum Disorders (ASD) are highly heterogeneous neurodevelopmental disorders caused by a complex interaction of numerous genetic and environmental factors and leading to deviations in the nervous system formation at the very early developmental stages. Currently, there are no accepted pharmacological treatments for the so-called core symptoms of ASD, such as social communication disorders and restricted and repetitive behavior patterns. Lack of knowledge about biological basis of ASD, absence of the clinically significant biochemical parameters reflecting abnormalities in the signaling cascades controlling the nervous system development and functioning, and lack of methods for selection of clinically and biologically homogeneous subgroups are considered as causes for the failure of clinical trials of ASD pharmacotherapy. This review considers the possibilities of applying differentiated clinical and biological approaches to the targeted search for ASD pharmacotherapy with emphasis on biochemical markers associated with ASD and attempts to stratify patients by biochemical parameters. The use of such approach as "the target-oriented therapy and assessment of the target status before and during the treatment to identify patients with a positive response to treatment" is discussed using the published results of clinical trials as examples. It is concluded that identification of biochemical parameters for selection of the distinct subgroups among the ASD patients requires research on large samples reflecting clinical and biological diversity of the patients with ASD, and use of unified approaches for such studies. An integrated approach, including clinical observation, clinical-psychological assessment of the patient behavior, study of medical history and description of individual molecular profiles should become a new strategy for stratifying patients with ASD for clinical pharmacotherapeutic trials, as well as for evaluating their efficiency.
Collapse
|
21
|
Lam P, Newland J, Faull RLM, Kwakowsky A. Cation-Chloride Cotransporters KCC2 and NKCC1 as Therapeutic Targets in Neurological and Neuropsychiatric Disorders. Molecules 2023; 28:1344. [PMID: 36771011 PMCID: PMC9920462 DOI: 10.3390/molecules28031344] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Neurological diseases including Alzheimer's, Huntington's disease, Parkinson's disease, Down syndrome and epilepsy, and neuropsychiatric disorders such as schizophrenia, are conditions that affect not only individuals but societies on a global scale. Current therapies offer a means for small symptomatic relief, but recently there has been increasing demand for therapeutic alternatives. The γ-aminobutyric acid (GABA)ergic signaling system has been investigated for developing new therapies as it has been noted that any dysfunction or changes to this system can contribute to disease progression. Expression of the K-Cl-2 (KCC2) and N-K-C1-1 (NKCC1) cation-chloride cotransporters (CCCs) has recently been linked to the disruption of GABAergic activity by affecting the polarity of GABAA receptor signaling. KCC2 and NKCC1 play a part in multiple neurological and neuropsychiatric disorders, making them a target of interest for potential therapies. This review explores current research suggesting the pathophysiological role and therapeutic importance of KCC2 and NKCC1 in neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Patricia Lam
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Julia Newland
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
22
|
Wang L, Wang B, Wu C, Wang J, Sun M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int J Mol Sci 2023; 24:ijms24031819. [PMID: 36768153 PMCID: PMC9915249 DOI: 10.3390/ijms24031819] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioral pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signaling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Collapse
|
23
|
Huang H, Jin Z, He C, Guo S, Zhang Y, Quan M. Chronic Exercise for Core Symptoms and Executive Functions in ADHD: A Meta-analysis. Pediatrics 2023; 151:190271. [PMID: 36510746 DOI: 10.1542/peds.2022-057745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The effects of chronic exercise interventions (CEIs) on core symptoms and executive functions (EFs) of attention-deficit/hyperactivity disorder (ADHD) and how different characteristics of CEIs could modify the effect remain unclear. We synthesized the current evidence on the effects of CEIs on core symptoms and EFs in children and adolescents with ADHD. METHODS Data sources include PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure from database inception to July 31, 2022. Study selection includes randomized controlled trials that reported on the effects of CEIs on core symptoms and/or EFs in ADHD aged 6 to 18 years. RESULTS Twenty-two randomized controlled trials were included. CEIs had a small beneficial effect on overall core symptoms (standardized mean difference [SMD] = -0.39, 95% confidence interval [CI]: -0.64 to -0.14), as well as inattention (SMD = -0.32, 95% CI: -0.63 to -0.004) among children and adolescents with ADHD. Closed-skill exercise showed a large improvement in core symptoms (SMD = -0.83, 95% CI: -1.30 to -0.35), whereas open-skill exercise did not. Additionally, CEIs had a moderately beneficial effect on overall EFs (SMD = -0.68, 95% CI: -0.91 to -0.45) and a moderate-to-large effect on the specific domains of EFs. The pooled effects on overall core symptoms and EFs were not significantly modified by study population (children or adolescents), exercise session duration (≤50 or >50 minutes per session, median), or total exercise sessions (<24 or ≥24 sessions, median). CONCLUSIONS CEIs have small-to-moderate beneficial effects on overall core symptoms and EFs in children and adolescents with ADHD.
Collapse
Affiliation(s)
| | - Zhijuan Jin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | - Yiwen Zhang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Minghui Quan
- School of Exercise and Health.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
24
|
Zhang X, Liu S, Liu X, Wang J. Inhibiting silence information regulator 2 and glutaminase in the amygdala can improve social behavior in autistic rats. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:707-715. [PMID: 36915976 PMCID: PMC10262010 DOI: 10.3724/zdxbyxb-2022-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the underlying molecular mechanisms by which silence information regulator (SIRT) 2 and glutaminase (GLS) in the amygdala regulate social behaviors in autistic rats. METHODS Rat models of autism were established by maternal sodium valproic acid (VPA) exposure in wild-type rats and SIRT2-knockout ( SIRT2 -/-) rats. Glutamate (Glu) content, brain weight, and expression levels of SIRT2, GLS proteins and apoptosis-associated proteins in rat amygdala at different developmental stages were examined, and the social behaviors of VPA rats were assessed by a three-chamber test. Then, lentiviral overexpression or interference vectors of GLS were injected into the amygdala of VPA rats. Brain weight, Glu content and expression level of GLS protein were measured, and the social behaviors assessed. RESULTS Brain weight, amygdala Glu content and the levels of SIRT2, GLS protein and pro-apoptotic protein caspase-3 in the amygdala were increased in VPA rats, while the level of anti-apoptotic protein Bcl-2 was decreased (all P<0.01). Compared with the wild-type rats, SIRT2 -/- rats displayed decreased expression of SIRT2 and GLS proteins in the amygdala, reduced Glu content, and improved social dysfunction (all P<0.01). Overexpression of GLS increased brain weight and Glu content, and aggravated social dysfunction in VPA rats (all P<0.01). Knockdown of GLS decreased brain weight and Glu content, and improved social dysfunction in VPA rats (all P<0.01). CONCLUSIONS The glutamate circulatory system in the amygdala of VPA induced autistic rats is abnormal. This is associated with the upregulation of SIRT2 expression and its induced increase of GLS production; knocking out SIRT2 gene or inhibiting the expression of GLS is helpful in maintaining the balanced glutamate cycle and in improving the social behavior disorder of rats.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- 1. Children's Hospital, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Shizhang Liu
- 2. Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiaomei Liu
- 3. Nursing Department, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jieying Wang
- 1. Children's Hospital, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
25
|
Ma B, Shan X, Yu J, Zhu T, Li R, Lv H, Cheng H, Zhang T, Wang L, Wei F, Meng B, Yuan X, Mei B, Zhang XY, Li WG, Li F. Social deficits via dysregulated Rac1-dependent excitability control of prefrontal cortical neurons and increased GABA/glutamate ratios. Cell Rep 2022; 41:111722. [PMID: 36450249 DOI: 10.1016/j.celrep.2022.111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/26/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Identifying symptom-specific convergent mechanisms for neurodevelopmental disorders is a promising strategy in advancing therapies. Here, we show that bidirectional dysregulation of Rac1 activity in the medial prefrontal cortex (mPFC) dictates shared social deficits in mice. Selective upregulation or downregulation of Rac1 activity in glutamatergic or fast-spiking GABAergic neurons results in excessive or inadequate control of excitability combined with a decrease in glutamate or an increase in GABA concentrations and an increase in the GABA/glutamate ratio, which is responsible for social deficits. Notably, the autism model of Shank3B knockout mice exhibits aberrantly enhanced Rac1 activity, reduced glutamate concentrations, and pyramidal neuron excitability in mPFC accompanied with social deficits, which were corrected by either excitatory-neuron-specific downregulation of Rac1 activity or upregulation of neuronal excitability. Thus, this work shows a convergence between genetic autism risk factors, dysregulation of Rac1 signaling, and excitation-inhibition imbalance, enabling mechanism-based stratification of patients with social deficits.
Collapse
Affiliation(s)
- Bingke Ma
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China; Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Xingyue Shan
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China; Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Juehua Yu
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China; Center for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Tailin Zhu
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Ren Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education - Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Hui Lv
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Haidi Cheng
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China; Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Tiantian Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China; Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Lihua Wang
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Feiyang Wei
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China
| | - Bo Meng
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Xiaobing Yuan
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Bing Mei
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education - Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Fei Li
- Developmental and Behavioral Pediatric Department, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education - Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Developmental and Behavioral Pediatric Department, Shanghai Xinhua Children's Hospital, Shanghai 200092, China.
| |
Collapse
|
26
|
Garg S, Williams S, Jung J, Pobric G, Nandi T, Lim B, Vassallo G, Green J, Evans DG, Stagg CJ, Parkes LM, Stivaros S. Non-invasive brain stimulation modulates GABAergic activity in neurofibromatosis 1. Sci Rep 2022; 12:18297. [PMID: 36316421 PMCID: PMC9622815 DOI: 10.1038/s41598-022-21907-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Neurofibromatosis 1 (NF1) is a single-gene disorder associated with cognitive phenotypes common to neurodevelopmental conditions such as autism. GABAergic dysregulation underlies working memory impairments seen in NF1. This mechanistic experimental study investigates whether application of anodal transcranial direct current stimulation (atDCS) can modulate GABA and working memory in NF1. Thirty-one NF1 adolescents 11-18 years, were recruited to this single-blind sham-controlled cross-over randomized trial. AtDCS or sham stimulation was applied to the left Dorsolateral Prefrontal Cortex (DLPFC) and MR Spectroscopy was collected before and after intervention in the left DLPFC and occipital cortex. Task-related functional MRI was collected before, during, and after stimulation. Higher baseline GABA+ in the left DLPFC was associated with faster response times on baseline working memory measures. AtDCS was seen to significantly reduced GABA+ and increase brain activation in the left DLPFC as compared to sham stimulation. Task performance was worse in the aTDCS group during stimulation but no group differences in behavioural outcomes were observed at the end of stimulation. Although our study suggests aTDCS modulates inhibitory activity in the DLPFC, further work is needed to determine whether repeated sessions of atDCS and strategies such as alternating current stimulation offer a better therapeutic approach.
Collapse
Affiliation(s)
- Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.
| | - Steve Williams
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - JeYoung Jung
- School of Psychology, Precision Imaging Beacon, University of Nottingham, Nottingham, UK
| | - Gorana Pobric
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tulika Nandi
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ben Lim
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Grace Vassallo
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Child and Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Stavros Stivaros
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
27
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
28
|
Bin-Khattaf RM, Alonazi MA, Al-Dbass AM, Almnaizel AT, Aloudah HS, Soliman DA, El-Ansary AK. Probiotic Ameliorating Effects of Altered GABA/Glutamate Signaling in a Rodent Model of Autism. Metabolites 2022; 12:metabo12080720. [PMID: 36005593 PMCID: PMC9416367 DOI: 10.3390/metabo12080720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 12/10/2022] Open
Abstract
Autism spectrum disorders (ASDs) comprise a heterogeneous group of pathological conditions, mainly of genetic origin, characterized by stereotyped behavior, such as marked impairment in verbal and nonverbal communication, social skills, and cognition. Excitatory/inhibitory (E/I) imbalances have been recorded as an etiological mechanism of ASD. Furthermore, GABA, the main inhibitory neurotransmitter in adult life, is known to be much lower in both patients and rodent models of ASD. We propose correcting GABA signaling as a therapeutic strategy for ASD. In this study, 40 young male western Albino rats, 3−4 weeks in age, weighing about 60−70 g, were used. The animals were randomly assigned into six experimental groups, each including eight rats. Group I served as the control group and was orally administered phosphate-buffered saline. Groups II and III served as rodent models of ASD and were orally administered a neurotoxic dose of propionic acid (PPA). The rats in the three therapeutic groups (IV, V, and IV) received the same doses of PPA, followed by 0.2 g/kg body weight of pure Bifidobacterium infantis, a probiotic mixture of ProtexinR, and pure Lactobacillus bulgaricus, respectively, for 3 weeks. Selected variables related to oxidative stress, glutamate excitotoxicity, and gut bacteria were measured in the six groups. Both pure and mixed Lactobacillus and Bifidobacterium were effective in ameliorating glutamate excitotoxicity as an autistic feature developed in the PPA-induced rodent model. Their therapeutic effects mostly involved the correction of oxidative stress, restoration of depleted GABA, and up-regulation of GABA receptor gene expression. Pure Bifidobacterium was the most effective, followed by the mixture of probiotics and finally lactobacillus. In conclusion, Bifidobacteria and lactobacilli can be used independently or in combination as psychobiotics to ameliorate oxidative stress and glutamate excitotoxicity as two confirmed etiological mechanisms through the gut−brain axis.
Collapse
Affiliation(s)
- Rawan M. Bin-Khattaf
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mona A. Alonazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abeer M. Al-Dbass
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ahmad T. Almnaizel
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Hisham S. Aloudah
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Dina A. Soliman
- Department of Botany and Microbiology, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Afaf K. El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: ; Tel.: +966-508462529; Fax: +966-4683579
| |
Collapse
|
29
|
Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS, Pompilio G, Vantaggiato C, Clementi E, Pozzi M. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2022; 119:647-667. [PMID: 35895876 PMCID: PMC10153433 DOI: 10.1093/cvr/cvac110] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart axis: cellular and molecular mechanisms - Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine - Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
30
|
Bogdanova OV, Bogdanov VB, Pizano A, Bouvard M, Cazalets JR, Mellen N, Amestoy A. The Current View on the Paradox of Pain in Autism Spectrum Disorders. Front Psychiatry 2022; 13:910824. [PMID: 35935443 PMCID: PMC9352888 DOI: 10.3389/fpsyt.2022.910824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which affects 1 in 44 children and may cause severe disabilities. Besides socio-communicational difficulties and repetitive behaviors, ASD also presents as atypical sensorimotor function and pain reactivity. While chronic pain is a frequent co-morbidity in autism, pain management in this population is often insufficient because of difficulties in pain evaluation, worsening their prognosis and perhaps driving higher mortality rates. Previous observations have tended to oversimplify the experience of pain in autism as being insensitive to painful stimuli. Various findings in the past 15 years have challenged and complicated this dogma. However, a relatively small number of studies investigates the physiological correlates of pain reactivity in ASD. We explore the possibility that atypical pain perception in people with ASD is mediated by alterations in pain perception, transmission, expression and modulation, and through interactions between these processes. These complex interactions may account for the great variability and sometimes contradictory findings from the studies. A growing body of evidence is challenging the idea of alterations in pain processing in ASD due to a single factor, and calls for an integrative view. We propose a model of the pain cycle that includes the interplay between the molecular and neurophysiological pathways of pain processing and it conscious appraisal that may interfere with pain reactivity and coping in autism. The role of social factors in pain-induced response is also discussed. Pain assessment in clinical care is mostly based on subjective rather than objective measures. This review clarifies the strong need for a consistent methodology, and describes innovative tools to cope with the heterogeneity of pain expression in ASD, enabling individualized assessment. Multiple measures, including self-reporting, informant reporting, clinician-assessed, and purely physiological metrics may provide more consistent results. An integrative view on the regulation of the pain cycle offers a more robust framework to characterize the experience of pain in autism.
Collapse
Affiliation(s)
- Olena V. Bogdanova
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Volodymyr B. Bogdanov
- Laboratoire EA 4136 – Handicap Activité Cognition Santé HACS, Collège Science de la Sante, Institut Universitaire des Sciences de la Réadaptation, Université de Bordeaux, Bordeaux, France
| | - Adrien Pizano
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Bordeaux, France
| | - Manuel Bouvard
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Bordeaux, France
| | - Jean-Rene Cazalets
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Nicholas Mellen
- Department of Neurology, University of Louisville, Louisville, KY, United States
| | - Anouck Amestoy
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Bordeaux, France
| |
Collapse
|
31
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
32
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
33
|
Single-case experimental designs for bumetanide across neurodevelopmental disorders: BUDDI protocol. BMC Psychiatry 2022; 22:452. [PMID: 35799144 PMCID: PMC9260985 DOI: 10.1186/s12888-022-04033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bumetanide is a selective NKCC1 chloride importer antagonist which is being repurposed as a mechanism-based treatment for neurodevelopmental disorders (NDDs). Due to their specific actions, these kinds of interventions will only be effective in particular subsets of patients. To anticipate stratified application, we recently completed three bumetanide trials each focusing on different stratification strategies with the additional objective of deriving the most optimal endpoints. Here we publish the protocol of the post-trial access combined cohort study to confirm previous effects and stratification strategies in the trial cohorts and in new participants. METHOD/DESIGN Participants of the three previous cohorts and a new cohort will be subjected to 6 months bumetanide treatment using multiple baseline Single Case Experimental Designs. The primary outcome is the change, relative to baseline, in a set of patient reported outcome measures focused on direct and indirect effects of sensory processing difficulties. Secondary outcome measures include the conventional questionnaires 'social responsiveness scale', 'repetitive behavior scale', 'sensory profile' and 'aberrant behavior scale'. Resting-state EEG measurements will be performed at several time-points including at Tmax after the first administration. Assessment of cognitive endpoints will be conducted using the novel Emma Tool box, an in-house designed battery of computerized tests to measure neurocognitive functions in children. DISCUSSION This study aims to replicate previously shown effects of bumetanide in NDD subpopulations, validate a recently proposed treatment prediction effect methodology and refine endpoint measurements. TRIAL REGISTRATION EudraCT: 2020-002196-35, registered 16 November 2020, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002196-35/NL.
Collapse
|
34
|
Li Q, Zhang L, Shan H, Yu J, Dai Y, He H, Li WG, Langley C, Sahakian BJ, Yao Y, Luo Q, Li F. The immuno-behavioural covariation associated with the treatment response to bumetanide in young children with autism spectrum disorder. Transl Psychiatry 2022; 12:228. [PMID: 35660740 PMCID: PMC9166783 DOI: 10.1038/s41398-022-01987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Bumetanide, a drug being studied in autism spectrum disorder (ASD) may act to restore gamma-aminobutyric acid (GABA) function, which may be modulated by the immune system. However, the interaction between bumetanide and the immune system remains unclear. Seventy-nine children with ASD were analysed from a longitudinal sample for a 3-month treatment of bumetanide. The covariation between symptom improvements and cytokine changes was calculated and validated by sparse canonical correlation analysis. Response patterns to bumetanide were revealed by clustering analysis. Five classifiers were used to test whether including the baseline information of cytokines could improve the prediction of the response patterns using an independent test sample. An immuno-behavioural covariation was identified between symptom improvements in the Childhood Autism Rating Scale (CARS) and the cytokine changes among interferon (IFN)-γ, monokine induced by gamma interferon and IFN-α2. Using this covariation, three groups with distinct response patterns to bumetanide were detected, including the best (21.5%, n = 17; Hedge's g of improvement in CARS = 2.16), the least (22.8%, n = 18; g = 1.02) and the medium (55.7%, n = 44; g = 1.42) responding groups. Including the cytokine levels significantly improved the prediction of the best responding group before treatment (the best area under the curve, AUC = 0.832) compared with the model without the cytokine levels (95% confidence interval of the improvement in AUC was [0.287, 0.319]). Cytokine measurements can help in identifying possible responders to bumetanide in ASD children, suggesting that immune responses may interact with the mechanism of action of bumetanide to enhance the GABA function in ASD.
Collapse
Affiliation(s)
- Qingyang Li
- Department of Computational Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Lingli Zhang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Haidi Shan
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Juehua Yu
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
- Center for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Yuan Dai
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Hua He
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Wei-Guang Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Christelle Langley
- Department of Psychiatry and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB21TN, UK
| | - Barbara J Sahakian
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
- Department of Psychiatry and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB21TN, UK
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433, Shanghai, China
| | - Yin Yao
- Department of Computational Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- Human Phenome Institute, Fudan University, 201203, Shanghai, China
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433, Shanghai, China.
- Human Phenome Institute, Fudan University, 201203, Shanghai, China.
- Center for Computational Psychiatry, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired, Research Institute of Intelligent Complex Systems, Fudan University, 200040, Shanghai, China.
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| |
Collapse
|
35
|
Lv H, Gu X, Shan X, Zhu T, Ma B, Zhang HT, Bambini-Junior V, Zhang T, Li WG, Gao X, Li F. Nanoformulated Bumetanide Ameliorates Social Deficiency in BTBR Mice Model of Autism Spectrum Disorder. Front Immunol 2022; 13:870577. [PMID: 35693812 PMCID: PMC9179025 DOI: 10.3389/fimmu.2022.870577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with few medication options. Bumetanide, an FDA-approved diuretic, has been proposed as a viable candidate to treat core symptoms of ASD, however, neither the brain region related to its effect nor the cell-specific mechanism(s) is clear. The availability of nanoparticles provides a viable way to identify pharmacological mechanisms for use in ASD. Here, we found that treatment with bumetanide, in a systemic and medial prefrontal cortex (mPFC) region-specific way, attenuated social deficits in BTBR mice. Furthermore, using poly (ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles [NP(bumetanide)], we showed that the administration of NP(bumetanide) in a mPFC region-specific way also alleviated the social deficits of BTBR mice. Mechanistically, the behavioral effect of NP(bumetanide) was dependent on selective microglia-specific targeting in the mPFC. Pharmacological depletion of microglia significantly reduced the effect of nanoencapsulation and depletion of microglia alone did not improve the social deficits in BTBR mice. These findings suggest the potential therapeutic capabilities of nanotechnology for ASD, as well as the relevant link between bumetanide and immune cells.
Collapse
Affiliation(s)
- Hui Lv
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyue Shan
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Tailin Zhu
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingke Ma
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao-Tian Zhang
- Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education (MOE)-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Victorio Bambini-Junior
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Tiantian Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Juarez-Martinez EL, van Andel DM, Sprengers JJ, Avramiea AE, Oranje B, Scheepers FE, Jansen FE, Mansvelder HD, Linkenkaer-Hansen K, Bruining H. Bumetanide Effects on Resting-State EEG in Tuberous Sclerosis Complex in Relation to Clinical Outcome: An Open-Label Study. Front Neurosci 2022; 16:879451. [PMID: 35645706 PMCID: PMC9134117 DOI: 10.3389/fnins.2022.879451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/15/2022] [Indexed: 12/05/2022] Open
Abstract
Neuronal excitation-inhibition (E/I) imbalances are considered an important pathophysiological mechanism in neurodevelopmental disorders. Preclinical studies on tuberous sclerosis complex (TSC), suggest that altered chloride homeostasis may impair GABAergic inhibition and thereby E/I-balance regulation. Correction of chloride homeostasis may thus constitute a treatment target to alleviate behavioral symptoms. Recently, we showed that bumetanide-a chloride-regulating agent-improved behavioral symptoms in the open-label study Bumetanide to Ameliorate Tuberous Sclerosis Complex Hyperexcitable Behaviors trial (BATSCH trial; Eudra-CT: 2016-002408-13). Here, we present resting-state EEG as secondary analysis of BATSCH to investigate associations between EEG measures sensitive to network-level changes in E/I balance and clinical response to bumetanide. EEGs of 10 participants with TSC (aged 8-21 years) were available. Spectral power, long-range temporal correlations (LRTC), and functional E/I ratio (fE/I) in the alpha-frequency band were compared before and after 91 days of treatment. Pre-treatment measures were compared against 29 typically developing children (TDC). EEG measures were correlated with the Aberrant Behavioral Checklist-Irritability subscale (ABC-I), the Social Responsiveness Scale-2 (SRS-2), and the Repetitive Behavior Scale-Revised (RBS-R). At baseline, TSC showed lower alpha-band absolute power and fE/I than TDC. Absolute power increased through bumetanide treatment, which showed a moderate, albeit non-significant, correlation with improvement in RBS-R. Interestingly, correlations between baseline EEG measures and clinical outcomes suggest that most responsiveness might be expected in children with network characteristics around the E/I balance point. In sum, E/I imbalances pointing toward an inhibition-dominated network are present in TSC. We established neurophysiological effects of bumetanide although with an inconclusive relationship with clinical improvement. Nonetheless, our results further indicate that baseline network characteristics might influence treatment response. These findings highlight the possible utility of E/I-sensitive EEG measures to accompany new treatment interventions for TSC. Clinical Trial Registration EU Clinical Trial Register, EudraCT 2016-002408-13 (www.clinicaltrialsregister.eu/ctr-search/trial/2016-002408-13/NL). Registered 25 July 2016.
Collapse
Affiliation(s)
- Erika L. Juarez-Martinez
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dorinde M. van Andel
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan J. Sprengers
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Arthur-Ervin Avramiea
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Bob Oranje
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Floortje E. Scheepers
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Floor E. Jansen
- Department of Pediatric Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands
| | - Hilgo Bruining
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands
- Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, Netherlands
| |
Collapse
|
37
|
Caruso A, Ricceri L, Caruso A, Nicoletti F, Gaetano A, Scaccianoce S. Postweaning social isolation and autism-like phenotype: a biochemical and behavioral comparative analysis. Behav Brain Res 2022; 428:113891. [PMID: 35421428 DOI: 10.1016/j.bbr.2022.113891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
Adolescence is a critical period for brain development. In most mammalian species, disturbances experienced during adolescence constitute a risk factor for several neuropsychiatric disorders. In this study, we compared the biochemical and behavioral profile induced by postweaning social isolation (PWSI) in inbred C57BL/6N mice with that of BTBR mice, a rodent model of autism spectrum disorders. Male C57BL/6N mice were either housed in groups of four or isolated from weaning (postnatal day 21) for four weeks before experimental analyses. After weaning, male BTBR mice were housed four per cage and analyzed at 48 days of age. PWSI reduced hippocampal levels of type 2 metabotropic glutamate (mGlu2) receptors, and glucocorticoid and mineralocorticoid receptors. A similar reduction was seen in group-housed BTBR mice. Plasma corticosterone levels in basal conditions were not influenced by PWSI, but were increased in BTBR mice. Social investigation (total and head sniffing) and the number of ultrasonic vocalizations were reduced in both PWSI mice and age-matched group-housed BTBR mice, indicating a lower social responsiveness in both groups of mice. These results suggest that absence of social stimuli during adolescence induces an endophenotype with social deficit features, which mimics the phenotype of a mouse model of autism spectrum disorders.
Collapse
Affiliation(s)
- Alessandra Caruso
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy.
| | - Laura Ricceri
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy.
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | - Alessandra Gaetano
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy.
| | - Sergio Scaccianoce
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Italy.
| |
Collapse
|
38
|
Langley C, Cirstea BI, Cuzzolin F, Sahakian BJ. Theory of Mind and Preference Learning at the Interface of Cognitive Science, Neuroscience, and AI: A Review. Front Artif Intell 2022; 5:778852. [PMID: 35493614 PMCID: PMC9038841 DOI: 10.3389/frai.2022.778852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Theory of Mind (ToM)-the ability of the human mind to attribute mental states to others-is a key component of human cognition. In order to understand other people's mental states or viewpoint and to have successful interactions with others within social and occupational environments, this form of social cognition is essential. The same capability of inferring human mental states is a prerequisite for artificial intelligence (AI) to be integrated into society, for example in healthcare and the motoring industry. Autonomous cars will need to be able to infer the mental states of human drivers and pedestrians to predict their behavior. In the literature, there has been an increasing understanding of ToM, specifically with increasing cognitive science studies in children and in individuals with Autism Spectrum Disorder. Similarly, with neuroimaging studies there is now a better understanding of the neural mechanisms that underlie ToM. In addition, new AI algorithms for inferring human mental states have been proposed with more complex applications and better generalisability. In this review, we synthesize the existing understanding of ToM in cognitive and neurosciences and the AI computational models that have been proposed. We focus on preference learning as an area of particular interest and the most recent neurocognitive and computational ToM models. We also discuss the limitations of existing models and hint at potential approaches to allow ToM models to fully express the complexity of the human mind in all its aspects, including values and preferences.
Collapse
Affiliation(s)
- Christelle Langley
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Bogdan Ionut Cirstea
- School of Engineering, Computing and Mathematics, Oxford Brookes University, Oxford, United Kingdom
| | - Fabio Cuzzolin
- School of Engineering, Computing and Mathematics, Oxford Brookes University, Oxford, United Kingdom
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW There are currently no approved medications for the core symptoms of autism spectrum disorder (ASD), and only limited data on the management of co-occurring mental health and behavioural symptoms. The purpose of this review is to synthesize recent trials on novel treatments in ASD, with a focus on research trends in the past 2 years. RECENT FINDINGS No new pharmacologic agents received regulatory approval for use in ASD. Several large randomized controlled trials (RCTs) had negative or ambiguous results (e.g. fluoxetine, oxytocin). A cross-over RCT of an oral cannabinoid suggested possible benefits for disruptive behaviours. Two large-scale multicentre trials of bumetanide were terminated early for lack of efficacy. Multicenter trials using repetitive transcranial magnetic stimulation are underway. Recent meta-analyses indicate that specific behavioural and psychological interventions can support social communication and treat anxiety. Numerous novel treatment targets informed by biological mechanisms are under investigation. SUMMARY Recent data support the use of behavioural and psychological interventions for social communication and anxiety in ASD; data are more limited regarding pharmacotherapy for core and associated symptoms. Next steps include replication of early findings, trials of new molecular targets, and the identification of novel biomarkers, including genetic predictors, of treatment response.
Collapse
Affiliation(s)
- Danielle Baribeau
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Jacob Vorstman
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Zhao H, Mao X, Zhu C, Zou X, Peng F, Yang W, Li B, Li G, Ge T, Cui R. GABAergic System Dysfunction in Autism Spectrum Disorders. Front Cell Dev Biol 2022; 9:781327. [PMID: 35198562 PMCID: PMC8858939 DOI: 10.3389/fcell.2021.781327] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a series of neurodevelopmental diseases characterized by two hallmark symptoms, social communication deficits and repetitive behaviors. Gamma-aminobutyric acid (GABA) is one of the most important inhibitory neurotransmitters in the central nervous system (CNS). GABAergic inhibitory neurotransmission is critical for the regulation of brain rhythm and spontaneous neuronal activities during neurodevelopment. Genetic evidence has identified some variations of genes associated with the GABA system, indicating an abnormal excitatory/inhibitory (E/I) neurotransmission ratio implicated in the pathogenesis of ASD. However, the specific molecular mechanism by which GABA and GABAergic synaptic transmission affect ASD remains unclear. Transgenic technology enables translating genetic variations into rodent models to further investigate the structural and functional synaptic dysregulation related to ASD. In this review, we summarized evidence from human neuroimaging, postmortem, and genetic and pharmacological studies, and put emphasis on the GABAergic synaptic dysregulation and consequent E/I imbalance. We attempt to illuminate the pathophysiological role of structural and functional synaptic dysregulation in ASD and provide insights for future investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ranji Cui
- *Correspondence: Tongtong Ge, ; Ranji Cui,
| |
Collapse
|
41
|
Ben-Ari Y, Cherubini E. The GABA Polarity Shift and Bumetanide Treatment: Making Sense Requires Unbiased and Undogmatic Analysis. Cells 2022; 11:396. [PMID: 35159205 PMCID: PMC8834580 DOI: 10.3390/cells11030396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
GABA depolarizes and often excites immature neurons in all animal species and brain structures investigated due to a developmentally regulated reduction in intracellular chloride concentration ([Cl-]i) levels. The control of [Cl-]i levels is mediated by the chloride cotransporters NKCC1 and KCC2, the former usually importing chloride and the latter exporting it. The GABA polarity shift has been extensively validated in several experimental conditions using often the NKCC1 chloride importer antagonist bumetanide. In spite of an intrinsic heterogeneity, this shift is abolished in many experimental conditions associated with developmental disorders including autism, Rett syndrome, fragile X syndrome, or maternal immune activation. Using bumetanide, an EMA- and FDA-approved agent, many clinical trials have shown promising results with the expected side effects. Kaila et al. have repeatedly challenged these experimental and clinical observations. Here, we reply to the recent reviews by Kaila et al. stressing that the GABA polarity shift is solidly accepted by the scientific community as a major discovery to understand brain development and that bumetanide has shown promising effects in clinical trials.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Neurochlore, Batiment Beret Delaage, Campus Scientifique de Luminy, 13009 Marseille, France
| | - Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, 00161 Roma, Italy;
| |
Collapse
|
42
|
Yu H, Qu H, Chen A, Du Y, Liu Z, Wang W. Alteration of Effective Connectivity in the Default Mode Network of Autism After an Intervention. Front Neurosci 2022; 15:796437. [PMID: 35002608 PMCID: PMC8727456 DOI: 10.3389/fnins.2021.796437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Neuroimaging has revealed numerous atypical functional connectivity of default mode network (DMN) dedicated to social communications (SC) in autism spectrum disorder (ASD), yet their nature and directionality remain unclear. Here, preschoolers with autism received physical intervention from a 12-week mini-basketball training program (12W-MBTP). Therefore, the directionality and nature of regional interactions within the DMN after the intervention are evaluated while assessing the impact of an intervention on SC. Based on the results of independent component analysis (ICA), we applied spectral dynamic causal modeling (DCM) for participants aged 3–6 years (experimental group, N = 17, control group, N = 14) to characterize the longitudinal changes following intervention in intrinsic and extrinsic effective connectivity (EC) between core regions of the DMN. Then, we analyzed the correlation between the changes in EC and SRS-2 scores to establish symptom-based validation. We found that after the 12W-MBTP intervention, the SRS-2 score of preschoolers with ASD in the experimental group was decreased. Concurrently, the inhibitory directional connections were observed between the core regions of the DMN, including increased self-inhibition in the medial prefrontal cortex (mPFC), and the changes of EC in mPFC were significantly correlated with change in the social responsiveness scale-2 (SRS-2) score. These new findings shed light on DMN as a potential intervention target, as the inhibitory information transmission between its core regions may play a positive role in improving SC behavior in preschoolers with ASD, which may be a reliable neuroimaging biomarker for future studies. Clinical Trial Registration: This study registered with the Chinese Clinical Trial Registry (ChiCTR1900024973) on August 05, 2019.
Collapse
Affiliation(s)
- Han Yu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hang Qu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Yifan Du
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhimei Liu
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Wei Wang
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance. Front Cell Neurosci 2022; 15:813441. [PMID: 35069119 PMCID: PMC8766311 DOI: 10.3389/fncel.2021.813441] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl−]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Roma, Italy
- *Correspondence: Enrico Cherubini
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal and CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology and Neurosurgery and of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
van Andel DM, Sprengers JJ, Keijzer-Veen MG, Schulp AJA, Lillien MR, Scheepers FE, Bruining H. Bumetanide for Irritability in Children With Sensory Processing Problems Across Neurodevelopmental Disorders: A Pilot Randomized Controlled Trial. Front Psychiatry 2022; 13:780281. [PMID: 35211042 PMCID: PMC8861379 DOI: 10.3389/fpsyt.2022.780281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment development for neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) is impeded by heterogeneity in clinical manifestation and underlying etiologies. Symptom traits such as aberrant sensory reactivity are present across NDDs and might reflect common mechanistic pathways. Here, we test the effectiveness of repurposing a drug candidate, bumetanide, on irritable behavior in a cross-disorder neurodevelopmental cohort defined by the presence of sensory reactivity problems. METHODS Participants, aged 5-15 years and IQ ≥ 55, with ASD, ADHD, and/or epilepsy and proven aberrant sensory reactivity according to deviant Sensory Profile scores were included. Participants were randomly allocated (1:1) to bumetanide (max 1 mg twice daily) or placebo tablets for 91 days followed by a 28-day wash-out period using permuted block design and minimization. Participants, parents, healthcare providers, and outcome assessors were blinded for treatment allocation. Primary outcome was the differences in ABC-irritability at day 91. Secondary outcomes were differences in SRS-2, RBS-R, SP-NL, BRIEF parent, BRIEF teacher at D91. Differences were analyzed in a modified intention-to-treat sample with linear mixed models and side effects in the intention-to-treat population. RESULTS A total of 38 participants (10.1 [SD 3.1] years) were enrolled between June 2017 and June 2019 in the Netherlands. Nineteen children were allocated to bumetanide and nineteen to placebo. Five patients discontinued (n = 3 bumetanide). Bumetanide was superior to placebo on the ABC-irritability [mean difference (MD) -4.78, 95%CI: -8.43 to -1.13, p = 0.0125]. No effects were found on secondary endpoints. No wash-out effects were found. Side effects were as expected: hypokalemia (p = 0.046) and increased diuresis (p = 0.020). CONCLUSION Despite the results being underpowered, this study raises important recommendations for future cross-diagnostic trial designs.
Collapse
Affiliation(s)
- Dorinde M van Andel
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan J Sprengers
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mandy G Keijzer-Veen
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annelien J A Schulp
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc R Lillien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floortje E Scheepers
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hilgo Bruining
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
45
|
Raeisy H, Bayati P, Noorbakhsh F, Hakim Shooshtari M, Eftekhar Ardebili M, Shekarabi M, Mojtabavi N. C1q/TNF-related protein-1: Potential biomarker for early diagnosis of autism spectrum disorder. Int J Immunopathol Pharmacol 2022; 36:3946320221079471. [PMID: 35202556 PMCID: PMC8883289 DOI: 10.1177/03946320221079471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Autism spectrum disorders (ASDs) are neurodevelopmental diseases characterized by communication inabilities, social interaction impairment, repetitive behavior, as well as learning problems. Although the exact mechanism underlying this disease is still obscure, researchers believe that several factors play a significant role in its development and pathogenesis. Some authors have reported an association between adipokines family and autism. C1q/TNF-related protein-1 (CTRP1) is a member of the adipokines family, and we hypothesized that this adipokine might have an influential role in the pathogenesis of ASDs. Since there is no specific marker for screening the disease, we evaluated CTRP1 as a potential marker for achieving this purpose. METHODS Blood samples were collected from 82 (41 ASDs boys, 41 healthy boys as controls) children aged 5-7 years old. CTRP1 gene expression and CTRP1 serum level were measured by quantitative realtime-PCR and enzyme-linked immunosorbent assay methods, respectively. RESULTS It was found that CTRP1 is significantly elevated in autistic children in comparison to healthy controls, both at the gene expression level, as well as at the serum level; demonstrating a good diagnostic value with a good range of sensitivity and specificity for detecting ASDs. CONCLUSION CTRP1 expression is elevated in ASDs boys aged 5-7 years old, suggesting a role for this adipokine in ASDs pathophysiology. Also, receiver operating characteristic curve analyses revealed that this adipokine could be utilized as a diagnostic biomarker for differentiating ASDs patients from healthy individuals along with other recently proposed biomarkers.
Collapse
Affiliation(s)
- Hamed Raeisy
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Hakim Shooshtari
- Department of Psychiatry, School of Behavioral Sciences and Mental Health, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Eftekhar Ardebili
- Mental Health Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Riemersma IW, Havekes R, Kas MJH. Spatial and Temporal Gene Function Studies in Rodents: Towards Gene-Based Therapies for Autism Spectrum Disorder. Genes (Basel) 2021; 13:28. [PMID: 35052369 PMCID: PMC8774890 DOI: 10.3390/genes13010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by differences in social interaction, repetitive behaviors, restricted interests, and sensory differences beginning early in life. Especially sensory symptoms are highly correlated with the severity of other behavioral differences. ASD is a highly heterogeneous condition on multiple levels, including clinical presentation, genetics, and developmental trajectories. Over a thousand genes have been implicated in ASD. This has facilitated the generation of more than two hundred genetic mouse models that are contributing to understanding the biological underpinnings of ASD. Since the first symptoms already arise during early life, it is especially important to identify both spatial and temporal gene functions in relation to the ASD phenotype. To further decompose the heterogeneity, ASD-related genes can be divided into different subgroups based on common functions, such as genes involved in synaptic function. Furthermore, finding common biological processes that are modulated by this subgroup of genes is essential for possible patient stratification and the development of personalized early treatments. Here, we review the current knowledge on behavioral rodent models of synaptic dysfunction by focusing on behavioral phenotypes, spatial and temporal gene function, and molecular targets that could lead to new targeted gene-based therapy.
Collapse
Affiliation(s)
| | | | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (I.W.R.); (R.H.)
| |
Collapse
|
47
|
A Next Generation Sequencing-Based Protocol for Screening of Variants of Concern in Autism Spectrum Disorder. Cells 2021; 11:cells11010010. [PMID: 35011571 PMCID: PMC8750892 DOI: 10.3390/cells11010010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with strong genetic influences. There is an increasing demand for ASD genetic testing beyond the traditionally recommended microarray and syndromic autism testing; however, the current whole genome sequencing (WGS) and whole exome sequencing (WES) methods are lacking an academic standard for WGS variant annotation, reporting, and interpretation, tailored towards patients with ASD and offer very limited interpretation for clinical significance. Using WGS data from six family trios, we demonstrate the clinical feasibility and technical implementation of an evidence-based, fully transparent bioinformatics pipeline and report framework for an ASD-focused WGS genetic report. We confirmed a portion of the key variants with Sanger sequencing and provided interpretation with consideration of patients’ clinical symptoms and detailed literature review. Furthermore, we showed that identification of the genetic contributions of ASD core symptoms and comorbidities may promote a better understanding of the ASD pathophysiology, lead to early detection of associated comorbidities, and facilitate pharmacologic intervention based on pathological pathways inferred from the genetic information. We will make the bioinformatics pipeline and interpretation framework publicly available, in an easily accessible format, after validation with a larger cohort. We hope that the present proposed protocol can serve as a starting point to invite discourse and debate to further improve approaches in WGS-based genetic consultation for patients with ASD.
Collapse
|
48
|
Wang T, Shan L, Miao C, Xu Z, Jia F. Treatment Effect of Bumetanide in Children With Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Front Psychiatry 2021; 12:751575. [PMID: 34867539 PMCID: PMC8634163 DOI: 10.3389/fpsyt.2021.751575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The therapeutic effect of bumetanide on autism spectrum disorder (ASD) seems to be controversial. To obtain better evidence on the efficacy of bumetanide, a systematic review and meta-analysis were performed. Methods: Randomized, placebo-controlled trials (RCTs) of bumetanide treatment in children with ASD were identified through systematic review from database inception to January 17, 2021. Subsequently, a meta-analysis was carried out to examine the effect of bumetanide on the severity of symptoms of ASD as assessed by the Childhood Autism Rating Scale (CARS) and Social Responsive Scale (SRS); core symptoms according to criteria of the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 of the American Psychiatric Association [social affect (SA), restricted, repetitive patterns of behavior, interests, or activities (RRB) and sensory symptoms]; and the therapeutic effect as assessed by Clinical Global Impressions-Efficacy (CGI-E). Results: In total, six RCTs involving 496 participants with ASD were identified in our study. The results showed that bumetanide could significantly improve the severity of the ASD symptoms measured by CARS and SRS. There was also evidence that bumetanide had positive effect on the core symptoms of ASD such as the SA and RRB, but there was no statistically significant effect on sensory symptoms. A significant positive effect on CGI-E scores in ASD patients was also observed. Conclusion: Our meta-analysis provided some support that bumetanide could improve the symptoms of children with ASD. However, additional large-scale longitudinal studies that provide clearer information and better control for confounding factors are needed to confirm our findings.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ling Shan
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chunyue Miao
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhida Xu
- Department of Psychiatry, GGz Centraal, Amersfoort, Netherlands
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
49
|
Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021; 42:1009-1034. [PMID: 34620512 DOI: 10.1016/j.tips.2021.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The chloride importer NKCC1 and the chloride exporter KCC2 are key regulators of neuronal chloride concentration. A defective NKCC1/KCC2 expression ratio is associated with several brain disorders. Preclinical/clinical studies have shown that NKCC1 inhibition by the United States FDA-approved diuretic bumetanide is a potential therapeutic strategy in preclinical/clinical studies of multiple neurological conditions. However, bumetanide has poor brain penetration and causes unwanted diuresis by inhibiting NKCC2 in the kidney. To overcome these issues, a growing number of studies have reported more brain-penetrating and/or selective bumetanide prodrugs, analogs, and new molecular entities. Here, we review the evidence for NKCC1 pharmacological inhibition as an effective strategy to manage neurological disorders. We also discuss the advantages and limitations of bumetanide repurposing and the benefits and risks of new NKCC1 inhibitors as therapeutic agents for brain disorders.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy; Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
50
|
Henneberry E, Lamy M, Dominick KC, Erickson CA. Decades of Progress in the Psychopharmacology of Autism Spectrum Disorder. J Autism Dev Disord 2021; 51:4370-4394. [PMID: 34491511 DOI: 10.1007/s10803-021-05237-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2021] [Indexed: 12/14/2022]
Abstract
Recent decades have been marked by a wave drug treatment research in autism spectrum disorder (ASD). This work has resulted in improved ability to treat commonly occurring behavioral challenges associated with ASD including most prominently irritability marked by aggression, self-injurious behavior, and severe tantrums. While treatment of interfering behavior has progressed in our field, there remain several areas of unmet medical need including most prominently a lack of any approved drug therapies for the core, defining symptoms of autism. We outline the progress to date in the field of autism drug treatment while taking a future look forward into how decades of work can inform better future steps in this field.
Collapse
Affiliation(s)
- Erin Henneberry
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
| | - Martine Lamy
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA. .,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, USA.
| |
Collapse
|