1
|
Khayat S, Fanaei H, Haji Bagheri KA. Social isolation during pregnancy disrupts maternal behavior and hippocampal neurochemistry in rats: A role for BDNF, corticosterone, and GABAARα1. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2025; 21:100282. [PMID: 39911146 PMCID: PMC11795554 DOI: 10.1016/j.cpnec.2025.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
This study aimed to investigate the effects of social isolation stress during pregnancy on maternal behavior and associated neurochemical changes in the hippocampus of rats. Twenty female Sprague-Dawley rats were randomly assigned to either a group housing (two rats per cage: control group) or a social isolation stress group (one rat per cage: SI group) during pregnancy. At the end of the study, we assessed the levels of BDNF, corticosterone, and GABAARα1 in the hippocampus of the maternal brain, along with evaluating the endurance, integration, and emotional aspects of maternal behavior. Results indicated that social isolation stress significantly decreased maternal endurance, integration, and emotionality (self-calming) of maternal behavior. Concurrently, blood and the hippocampal corticosterone concentration significantly increased, while BDNF concentration significantly decreased in the SI stress group compared to controls. Moreover, GABAARα1 mRNA expression was significantly decreased in the hippocampus of socially isolated rats. These findings demonstrate that social isolation stress during pregnancy profoundly impacts maternal behaviors in rats, including endurance, integration, and self-soothing. The altered concentration of corticosterone and BDNF, and GABAARα1 mRNA expression in the hippocampus of social isolation group suggests disruptions in stress response regulation and synaptic plasticity during pregnancy to form normal maternal behavior.
Collapse
Affiliation(s)
- Samira Khayat
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Midwifery, School of Nursing and Midwifery, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
2
|
Haim A, Albin-Brooks C, Brothers H, Breach M, Leuner B. Gestational stress disrupts dopamine and oxytocin signaling in the postpartum reward system of rats: implications for mood, motivation and mothering. Sci Rep 2025; 15:1450. [PMID: 39789137 PMCID: PMC11718260 DOI: 10.1038/s41598-024-84043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress. Here we employed a chronic variable stress procedure during pregnancy and evaluated behavioral measures of mood and reward along with assessments of DA and OT signaling in postpartum rats. Our results show that gestational stress induced postpartum depressive-like and anxiety-like behavior in addition to producing reward-related deficits including anhedonia, impaired maternal care, and reduced maternal motivation. Consistent with a hypodopaminergic state, histological analysis revealed reduced expression of tyrosine hydroxylase in the NAc shell and core as well as reduced expression of the dopamine transporter and dopamine D2 receptor in the NAc shell of postpartum females exposed to gestational stress. A reduction in accumbal DA content as determined by liquid chromatography-mass spectrometry was also observed in gestationally-stressed dams. Lastly, we assessed mRNA expression of OT and OT receptors (OTR) and found that gestational stress increased OT expression in the hypothalamus but reduced OTR expression in the postpartum ventral tegmental area (VTA), a target of hypothalamic OT neurons. In the VTA, a reduction in OT-immunoreactive fibers following gestational stress was also seen. Taken together, these data demonstrate that the DA and OT systems within the postpartum reward circuit are sensitive to gestational stress and suggest that mood and maternal disruptions in PPD may arise from dysfunctional oxytocinergic regulation of the dopaminergic reward system.
Collapse
Affiliation(s)
- Achikam Haim
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Christopher Albin-Brooks
- Department of Psychology, The Ohio State University, 051 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA
| | - Holly Brothers
- Department of Psychology, The Ohio State University, 051 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA
| | - Michaela Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Benedetta Leuner
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Psychology, The Ohio State University, 051 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Zoubovsky SP, Muglia LJ. Transplacental signals involved in the programming effects of prenatal psychosocial stress on neurodevelopment. Neurotoxicol Teratol 2025; 107:107424. [PMID: 39755178 DOI: 10.1016/j.ntt.2025.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/03/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Exposure to psychosocial stress during pregnancy has been associated with the emergence of neurodevelopmental and neuropsychiatric disorders in offspring. The placenta is known to orchestrate various functions that are essential for normal fetal development, including the brain. It has therefore been postulated that alterations in such functions, and downstream signaling, have the potential to dramatically affect brain developmental trajectories and contribute to adverse neurodevelopmental outcomes. This review will focus on discussing various placental functions that have been proposed to be affected by exposure to prenatal psychosocial stress and the implications of such disruptions on long-term neurodevelopmental programming.
Collapse
Affiliation(s)
- Sandra P Zoubovsky
- Department of Pediatrics, University of Colorado, Denver, CO, United States
| | - Louis J Muglia
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Office of the President, Burroughs Wellcome Fund, Research Triangle Park, Durham, NC, United States.
| |
Collapse
|
4
|
Zhou L, Wu Z, Li Y, Xiao L, Wang H, Wang G. Perinatal running training reversed postnatal anxiety and depressive-like behavior and cognitive impairment in mice following prenatal subchronic variable stress. Pharmacol Biochem Behav 2024; 245:173898. [PMID: 39489185 DOI: 10.1016/j.pbb.2024.173898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Pregnancy is a very complex and highly stressful time in women. Despite the high prevalence of postpartum depression, more than 50 % of mothers are undiagnosed or untreated, showing an urgent need to explore an effective preventive strategy. Regular physical activity has been suggested to be associated with an increased quality of life in pregnant and postpartum women. The purpose of this study was to determine whether perinatal running training can affect maternal care stress-related anxiety, depressive-like behavior, and cognitive changes in postpartum dams and to explore the possible underlying mechanism. METHODS 40 female C57BL/6J mice were divided into four groups: prenatal control (NC) and running training (EX) group (NC+EX), prenatal control and nonrunning training (RE) group (NC+RE), prenatal subchronic variable stress (SCVS) and running training group (SCVS+EX) and prenatal SCVS and non-running training group (SCVS+RE). Mice in prenatal stress groups were subjected to SCVS after pregnancy confirmed. Mice in running training groups subjected to running training throughout pregnancy and lactation. Then after the delivery, maternal behavior, cognitive changes, anxiety and depressive-like behaviors were tested. Then we measured the serum prolactin (PRL), hypothalamic-pituitary adrenal (HPA) axis activity, and adult hippocampus neurogenesis (AHN) in dams. RESULTS Compared to NC+RE, prenatal SCVS caused cognitive impairments, the decrease in maternal behavior, and anxiety and depressive-like behavior in SCVS+RE dams, accompanying increase in HPA axis activity and decreased the PRL levels and AHN in postpartum period. Then compared to SCVS+RE, perinatal running training mitigates cognitive impairments, increased maternal behavior, and alleviates anxiety and depressive-like behavior in SCVS+EX dams, accompanying the decreased HPA axis activity, and the increased PRL levels and AHN in postpartum period. CONCLUSION Overall, this study suggests that perinatal running training might improve maternal care and reverse prenatal stress-related cognitive impairment and anxiety and depressive-like behavior in postpartum dams.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430060, China
| | - Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| |
Collapse
|
5
|
Fei F, Chen Z, Tao Y, Jiang X, Xu X, Ma Y, Feng P, Wang P. Comparison of CUMS at different pregnancy stages, maternal separation, and their effects on offspring in postpartum depression mouse models. Heliyon 2024; 10:e35363. [PMID: 39166014 PMCID: PMC11334627 DOI: 10.1016/j.heliyon.2024.e35363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Due to the diversity of postpartum depression (PPD) patients and the complexity of associated pathophysiological changes, most current animal models cannot accurately simulate PPD-like symptoms. In this study, we established a reliable animal model for PPD by inducing chronic unpredictable mild stress (CUMS) at different stages (pre-pregnancy, pregnancy, or postnatal) in female mice, followed by maternal separation (MS) from day 2-21 after delivery. The results for female mice subjected to pre-pregnancy stress were not statistically significant due to a lower conception rate. However, female mice exposed to CUMS during either the gestational or postnatal stage, followed by MS, successfully exhibited PPD-like symptoms. The models were deemed effective based on observed behavioral abnormalities, impaired hippocampal neuron functioning, and reduced serum concentrations of neurotransmitters (5-HT, GABA, and NE). Additionally, mice that underwent gestational CUMS followed by MS displayed a more dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and more severe uterine inflammation. The study also investigated the impact of PPD on the behavior and neurodevelopment of adolescent offspring through behavioral tests, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, and western blotting (WB). The results indicated that adolescent offspring of mothers with PPD exhibited behavioral and neurodevelopmental disorders, with male offspring being more susceptible than females. Female mice exposed to both CUMS and MS during the postnatal period had more severe adverse effects on their offspring compared to the other model groups.
Collapse
Affiliation(s)
- Fei Fei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinliang Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinyue Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yifeng Ma
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- ZJUT-Jinhua Innovation Joint Research Institute, Jinhua, 321001, People's Republic of China
| |
Collapse
|
6
|
Zhang K, He L, Li Z, Ding R, Han X, Chen B, Cao G, Ye JH, Li T, Fu R. Bridging Neurobiological Insights and Clinical Biomarkers in Postpartum Depression: A Narrative Review. Int J Mol Sci 2024; 25:8835. [PMID: 39201521 PMCID: PMC11354679 DOI: 10.3390/ijms25168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Postpartum depression (PPD) affects 174 million women worldwide and is characterized by profound sadness, anxiety, irritability, and debilitating fatigue, which disrupt maternal caregiving and the mother-infant relationship. Limited pharmacological interventions are currently available. Our understanding of the neurobiological pathophysiology of PPD remains incomplete, potentially hindering the development of novel treatment strategies. Recent hypotheses suggest that PPD is driven by a complex interplay of hormonal changes, neurotransmitter imbalances, inflammation, genetic factors, psychosocial stressors, and hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This narrative review examines recent clinical studies on PPD within the past 15 years, emphasizing advancements in neuroimaging findings and blood biomarker detection. Additionally, we summarize recent laboratory work using animal models to mimic PPD, focusing on hormone withdrawal, HPA axis dysfunction, and perinatal stress theories. We also revisit neurobiological results from several brain regions associated with negative emotions, such as the amygdala, prefrontal cortex, hippocampus, and striatum. These insights aim to improve our understanding of PPD's neurobiological mechanisms, guiding future research for better early detection, prevention, and personalized treatment strategies for women affected by PPD and their families.
Collapse
Affiliation(s)
- Keyi Zhang
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Lingxuan He
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Zhuoen Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Xiaojiao Han
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Bingqing Chen
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Guoxin Cao
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA;
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| |
Collapse
|
7
|
Essaidi O, Laaroussi M, Malqui H, Berroug L, Anarghou H, Fetoui H, Chigr F. Prenatal restraint stress affects early neurobehavioral response and oxidative stress in mice pups. Behav Brain Res 2024; 468:115025. [PMID: 38710451 DOI: 10.1016/j.bbr.2024.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Prenatal stress (PS), in both humans and animals, presents a potential risk to the mother and her fetus throughout gestation. PS is always associated with physiological changes that alter embryonic development and predispose the individual to lifelong health problems, including susceptibility to mental illness. This study aims to identify the harmful effects of prenatal restraint stress (PRS), commonly employed to induce stress painlessly and without any lasting debilitation during gestation. This stress is applied to pregnant Swiss albino mice from E7.5 to delivery for three hours daily. Our results show that PS affects dams' weight gain during the gestational period; moreover, the PS dams prefer passive nursing, exhibit a lower percentage of licking and grooming, and impair other maternal behaviors, including nesting and pup retrieval. Concerning the offspring, this stress induces neurobehavioral impairments, including a significant increase in the time of recovery of the young stressed pups in the surface righting reflex, the latency to avoid the cliff in the cliff avoidance test, longer latencies to accomplish the task in negative geotaxis, and a lower score in swimming development. These alterations were accompanied by increased Malondialdehyde activity (MDA) at PND17 and 21 and downregulation of AchE activity in the whole brain of pups on postnatal days 7 and 9. These findings demonstrated that PS causes deleterious neurodevelopmental impairments that can alter various behaviors later in life.
Collapse
Affiliation(s)
- Oumaima Essaidi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Meriem Laaroussi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Hafsa Malqui
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco; Polydisciplinary Faculty of Khouribga, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Laila Berroug
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco
| | - Hamadi Fetoui
- Toxicology-Micorbiology and Environmental Health Laboratory, Faculty of Sciences, Sfax University, Sfax, Tunisia
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Sliman University, Beni Mellal, Morocco.
| |
Collapse
|
8
|
Cánepa ET, Berardino BG. Epigenetic mechanisms linking early-life adversities and mental health. Biochem J 2024; 481:615-642. [PMID: 38722301 DOI: 10.1042/bcj20230306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024]
Abstract
Early-life adversities, whether prenatal or postnatal exposure, have been linked to adverse mental health outcomes later in life increasing the risk of several psychiatric disorders. Research on its neurobiological consequences demonstrated an association between exposure to adversities and persistent alterations in the structure, function, and connectivity of the brain. Consistent evidence supports the idea that regulation of gene expression through epigenetic mechanisms are involved in embedding the impact of early-life experiences in the genome and mediate between social environments and later behavioral phenotypes. In addition, studies from rodent models and humans suggest that these experiences and the acquired risk factors can be transmitted through epigenetic mechanisms to offspring and the following generations potentially contributing to a cycle of disease or disease risk. However, one of the important aspects of epigenetic mechanisms, unlike genetic sequences that are fixed and unchangeable, is that although the epigenetic markings are long-lasting, they are nevertheless potentially reversible. In this review, we summarize our current understanding of the epigenetic mechanisms involved in the mental health consequences derived from early-life exposure to malnutrition, maltreatment and poverty, adversities with huge and pervasive impact on mental health. We also discuss the evidence about transgenerational epigenetic inheritance in mammals and experimental data suggesting that suitable social and pharmacological interventions could reverse adverse epigenetic modifications induced by early-life negative social experiences. In this regard, these studies must be accompanied by efforts to determine the causes that promote these adversities and that result in health inequity in the population.
Collapse
Affiliation(s)
- Eduardo T Cánepa
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Xie H, Xie Z, Luan F, Zeng J, Zhang X, Chen L, Zeng N, Liu R. Potential therapeutic effects of Chinese herbal medicine in postpartum depression: Mechanisms and future directions. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117785. [PMID: 38262525 DOI: 10.1016/j.jep.2024.117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Postpartum depression (PPD) is a common psychiatric disorder in women after childbirth. Per data from epidemiologic studies, PPD affects about 5%-26.32% of postpartum mothers worldwide. Biological factors underlying this condition are multiple and complex and have received extensive inquiries for the roles they play in PPD. Chinese herbal medicine (CHM), which is widely used as a complementary and alternative therapy for neurological disorders, possesses multi-component, multi-target, multi-access, and low side effect therapeutic characteristics. CHM has already shown efficacy in the treatment of PPD, and a lot more research exploring the mechanisms of its potential therapeutic effects is being conducted. AIM OF THE REVIEW This review provides an in-depth and comprehensive overview of the underlying mechanisms of PPD, as well as samples the progress made in researching the potential role of CHM in treating the disorder. MATERIALS AND METHODS Literature was searched comprehensively in scholarly electronic databases, including PubMed, Web of Science, Scopus, CNKI and WanFang DATA, using the search terms "postpartum depression", "genetic", "hormone", "immune", "neuroinflammation", "inflammation", "neurotransmitter", "neurogenesis", "brain-gut axis", "traditional Chinese medicine", "Chinese herbal medicine", "herb", and an assorted combination of these terms. RESULTS PPD is closely associated with genetics, as well as with the hormones, immune inflammatory, and neurotransmitter systems, neurogenesis, and gut microbes, and these biological factors often interact and work together to cause PPD. For example, inflammatory factors could suppress the production of the neurotransmitter serotonin by inducing the regulation of tryptophan-kynurenine in the direction of neurotoxicity. Many CHM constituents improve anxiety- and depression-like behaviors by interfering with the above-mentioned mechanisms and have shown decent efficacy clinically against PPD. For example, Shen-Qi-Jie-Yu-Fang invigorates the neuroendocrine system by boosting the hormone levels of hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes, regulating the imbalance of Treg/T-helper cells (Th) 17 and Th1/Th2, and modulating neurotransmitter system to play antidepressant roles. The Shenguiren Mixture interferes with the extracellular signal-regulated kinase (ERK) pathway to enhance the number, morphology and apoptosis of neurons in the hippocampus of PPD rats. Other herbal extracts and active ingredients of CHM, such as Paeoniflorin, hypericin, timosaponin B-III and more, also manage depression by remedying the neuroendocrine system and reducing neuroinflammation. CONCLUSIONS The pathogenesis of PPD is complex and diverse, with the main pathogenesis not clear. Still, CHM constituents, like Shen-Qi-Jie-Yu-Fang, the Shenguiren Mixture, Paeoniflorin, hypericin and other Chinese Medicinal Formulae, active monomers and Crude extracts, treats PPD through multifaceted interventions. Therefore, developing more CHM components for the treatment of PPD is an essential step forward.
Collapse
Affiliation(s)
- Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Zhiqiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
10
|
Kimmel MC, Verosky B, Chen HJ, Davis O, Gur TL. The Maternal Microbiome as a Map to Understanding the Impact of Prenatal Stress on Offspring Psychiatric Health. Biol Psychiatry 2024; 95:300-309. [PMID: 38042328 PMCID: PMC10884954 DOI: 10.1016/j.biopsych.2023.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
Stress and psychiatric disorders have been independently associated with disruption of the maternal and offspring microbiome and with increased risk of the offspring developing psychiatric disorders, both in clinical studies and in preclinical studies. However, the role of the microbiome in mediating the effect of prenatal stress on offspring behavior is unclear. While preclinical studies have identified several key mechanisms, clinical studies focusing on mechanisms are limited. In this review, we discuss 3 specific mechanisms by which the microbiome could mediate the effects of prenatal stress: 1) altered production of short-chain fatty acids; 2) disruptions in TH17 (T helper 17) cell differentiation, leading to maternal and fetal immune activation; and 3) perturbation of intestinal and microbial tryptophan metabolism and serotonergic signaling. Finally, we review the existing clinical literature focusing on these mechanisms and highlight the need for additional mechanistic clinical research to better understand the role of the microbiome in the context of prenatal stress.
Collapse
Affiliation(s)
- Mary C Kimmel
- University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Branden Verosky
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| | - Helen J Chen
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| | - Olivia Davis
- University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tamar L Gur
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Schalla MA, Stengel A. The role of stress in perinatal depression and anxiety - A systematic review. Front Neuroendocrinol 2024; 72:101117. [PMID: 38176543 DOI: 10.1016/j.yfrne.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/29/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Perinatal depression (PND) and anxiety affect around 20% of women, but available pharmacotherapy is not sufficiently effective in 20-60% of them, indicating a need for better understanding of these diseases. Since stress is a significant risk factor for PND, the aim was to examine the role of biological, environmental and psychological stress in PND and anxiety through a systematic literature search. Overall 210 studies were included, among which numerous rodent studies showed that perinatal stress induced depressive-like and anxious behavior, which was associated with HPA-axis alterations and morphological brain changes. Human studies indicated that the relationship between cortisol and perinatal depression/anxiety was not as clear and with many contradictions, although social and psychological stress were clearly positively associated with PND. Finally, oxytocin, synthetic neuroactive steroid and n-3 PUFA diet have been identified as potentially beneficial in the therapy of PND and anxiety, worth to be investigated in the future.
Collapse
Affiliation(s)
- M A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; Department of Gynecology and Obstetrics, Helios Clinic, Rottweil, Germany
| | - A Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; German Center für Mental Health (DZPG), Site Tübingen, Germany.
| |
Collapse
|
12
|
Mohiti Ardakani E, Mazaheri M, Ph.D., Forouzanfar M, Mojibian M, Jafarinia M. Crucial role of corticotropin-releasing hormone, corticotropin-releasing hormone -binding protein, mir-200c, and mir-181a in preterm delivery: A case-control study. Int J Reprod Biomed 2023; 21:715-722. [PMID: 37969569 PMCID: PMC10643681 DOI: 10.18502/ijrm.v21i9.14398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 11/17/2023] Open
Abstract
Background Preterm birth before 37th wk of gestation is called premature birth. Corticotropin-releasing hormone (CRH) and CRH-binding protein (BP) act on various maternal and fetal tissues during pregnancy, such as the myometrium, which regulates the transition from the dormant phase of the uterus to the active phase. Studies have shown that mir-200c and mir-181a interact with CRH and CRH-BP. Objective The present study aimed to investigate the expression of mir-200c, mir-181a, CRH, and CRH-BP in women with a history of preterm birth. Materials and Methods In this case-control study, the gene expression level of mir-200c, mir-181a, CRH, and CRH-BP in placental tissue samples obtained from 48 women with a history of preterm labor was assessed in the Mojibian hospital of Yazd, Iran, from January to March 2023. Differences between mir-200c, mir-181a CRH, and CRH-BP gene expressions among cases and controls were assessed. Results The outcomes indicated that the expression of CRH increased with going on to the regular parturition time (p < 0.001). While outcomes indicated, CRH-BP decreased with going on to the regular parturition time (p < 0.001). In addition, the results showed that the expression of mir-181a increased and mir-200c decreased with approaching the normal delivery time (p < 0.001). Conclusion In conclusion, the expressions of mir-200c, mir-181a, CRH, and CRH-BP were dissimilar in different weeks of gestation. It could be proposed to use mir-200c, mir-181a, CRH, and CRH-BP as biomarkers to weigh the exact delivery time, which could minimize the side effects of preterm labor for the mother and fetus.
Collapse
Affiliation(s)
- Ehsan Mohiti Ardakani
- Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Mohsen Forouzanfar
- Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Mojtaba Jafarinia
- Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
13
|
Gorman-Sandler E, Robertson B, Crawford J, Wood G, Ramesh A, Arishe OO, Webb RC, Hollis F. Gestational stress decreases postpartum mitochondrial respiration in the prefrontal cortex of female rats. Neurobiol Stress 2023; 26:100563. [PMID: 37654512 PMCID: PMC10466928 DOI: 10.1016/j.ynstr.2023.100563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/03/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Postpartum depression (PPD) is a major psychiatric complication of childbirth, affecting up to 20% of mothers, yet remains understudied. Mitochondria, dynamic organelles crucial for cell homeostasis and energy production, share links with many of the proposed mechanisms underlying PPD pathology. Brain mitochondrial function is affected by stress, a major risk factor for development of PPD, and is linked to anxiety-like and social behaviors. Considering the importance of mitochondria in regulating brain function and behavior, we hypothesized that mitochondrial dysfunction is associated with behavioral alterations in a chronic stress-induced rat model of PPD. Using a validated and translationally relevant chronic mild unpredictable stress paradigm during late gestation, we induced PPD-relevant behaviors in adult postpartum Wistar rats. In the mid-postpartum, we measured mitochondrial function in the prefrontal cortex (PFC) and nucleus accumbens (NAc) using high-resolution respirometry. We then measured protein expression of mitochondrial complex proteins and 4-hydroxynonenal (a marker of oxidative stress), and Th1/Th2 cytokine levels in PFC and plasma. We report novel findings that gestational stress decreased mitochondrial function in the PFC, but not the NAc of postpartum dams. However, in groups controlling for the effects of either stress or parity alone, no differences in mitochondrial respiration measured in either brain regions were observed compared to nulliparous controls. This decrease in PFC mitochondrial function in stressed dams was accompanied by negative behavioral consequences in the postpartum, complex-I specific deficits in protein expression, and increased Tumor Necrosis Factor alpha cytokine levels in plasma and PFC. Overall, we report an association between PFC mitochondrial respiration, PPD-relevant behaviors, and inflammation following gestational stress, highlighting a potential role for mitochondrial function in postpartum health.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jesseca Crawford
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Archana Ramesh
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Olufunke O. Arishe
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
- USC Institute for Cardiovascular Disease Research, Columbia, SC, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Columbia VA Health Care Systems, Columbia, SC, 29208, USA
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
- USC Institute for Cardiovascular Disease Research, Columbia, SC, USA
| |
Collapse
|
14
|
Islas-Preciado D, López-Rubalcava C, Estrada-Camarena E, de Gortari P, Castro-García M. Effect of chronic unpredictable stress in female Wistar-Kyoto rats subjected to progesterone withdrawal: Relevance for Premenstrual Dysphoric Disorder neurobiology. Psychoneuroendocrinology 2023; 155:106331. [PMID: 37437420 DOI: 10.1016/j.psyneuen.2023.106331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Premenstrual Dysphoric Disorder (PMDD) is related to an abrupt drop in progesterone and impairments in the HPA axis that cause anxiety. Suffering persons report higher daily-life stress and anxiety proneness that may contribute to developing PMDD, considered a chronic stress-related disorder. Here, we explored the effect of chronic unpredictable stress (CUS) in rats subjected to progesterone withdrawal (PW) and evaluated gene expression of HPA axis activation in the stress-vulnerable Wistar-Kyoto (WKY) rat strain that is prone to anxiety. Ovariectomized WKY rats were randomly assigned to CUS or Standard-housed conditions (SHC) for 30 days. To induce PW, animals received 2 mg/kg of progesterone on day 25th for 5 days; 24 h later, they were tested using the anxiety-like burying behavior test (BBT). After behavioral completion, rats were euthanized, and brains were extracted to measure Crh (PVN) and Nr3c1 (hippocampus) mRNA. Blood corticosterone and vasopressin levels were determined. Results showed that PW exacerbated anxiety-like behaviors through passive coping in CUS-WKY. PW decreased Crh-PVN mRNA and the Nr3c1-hippocampal mRNA expression in SHC. CUS decreased Crh-PVN mRNA compared to SHC, and no further changes were observed by PW or BBT exposure. CUS reduced Nr3c1-hippocampal gene expression compared to SHC animals, and lower Nr3c1 mRNA was detected due to BBT. The PW increased corticosterone in SHC and CUS rats; however, CUS blunted corticosterone when combined with PW+BBT and similarly occurred in vasopressin concentrations. Chronic stress blunts the response of components of the HPA axis regulation when PW and BBT (systemic and psychogenic stressors, respectively) are presented. This response may facilitate less adaptive behaviors through passive coping in stress-vulnerable subjects in a preclinical model of premenstrual anxiety.
Collapse
Affiliation(s)
- D Islas-Preciado
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - C López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados IPN (Cinvestav-IPN), Mexico
| | - E Estrada-Camarena
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico.
| | - P de Gortari
- Lab. de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - M Castro-García
- Lab de Etología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| |
Collapse
|
15
|
Xu F, Wu H, Xie L, Chen Q, Xu Q, Sun L, Li H, Xie J, Chen X. Epigallocatechin-3-gallate alleviates gestational stress-induced postpartum anxiety and depression-like behaviors in mice by downregulating semaphorin3A and promoting GSK3β phosphorylation in the hippocampus. Front Mol Neurosci 2023; 15:1109458. [PMID: 36776771 PMCID: PMC9909483 DOI: 10.3389/fnmol.2022.1109458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Postpartum depression (PPD) is a common neuropsychiatric disorder characterized by depression and comorbid anxiety during the postpartum period. PPD is difficult to treat because of its elusive mechanisms. Epigallocatechin-3-gallate (EGCG), a component of tea polyphenols, is reported to exert neuroprotective effects in emotional disorders by reducing inflammation and apoptosis. However, the effect of EGCG on PPD and the underlying mechanism are unknown. Methods We used a mouse model of PPD established by exposing pregnant mice to gestational stress. Open field, forced swimming and tail suspension tests were performed to investigate the anxiety and depression-like behaviors. Immunohistochemical staining was used to measure the c-fos positive cells. The transcriptional levels of hippocampal semaphorin3A(sema3A), (glycogen synthase kinase 3-beta)GSK3β and collapsin response mediator protein 2(CRMP2) were assessed by RT-PCR. Alterations in protein expression of Sema3A, GSK3β, p-GSK3β, CRMP2 and p-CRMP2 were quantified by western blotting. EGCG was administrated to analyze its effect on PPD mice. Results Gestational stress induced anxiety and depression-like behaviors during the postpartum period, increasing Sema3A expression while decreasing that of phosphorylated GSK3β as well as c-Fos in the hippocampus. These effects were reversed by systemic administration of EGCG. Conclusions Thus, EGCG may alleviate anxiety and depression-like behaviors in mice by downregulating Sema3A and increasing GSK3β phosphorylation in the hippocampus, and has potential application in the treatment of PPD.
Collapse
|
16
|
Urocortin-3 neurons in the perifornical area are critical mediators of chronic stress on female infant-directed behavior. Mol Psychiatry 2023; 28:483-496. [PMID: 36476733 PMCID: PMC9847478 DOI: 10.1038/s41380-022-01902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Infant avoidance and aggression are promoted by activation of the Urocortin-3 expressing neurons of the perifornical area of hypothalamus (PeFAUcn3) in male and female mice. PeFAUcn3 neurons have been implicated in stress, and stress is known to reduce maternal behavior. We asked how chronic restraint stress (CRS) affects infant-directed behavior in virgin and lactating females and what role PeFAUcn3 neurons play in this process. Here we show that infant-directed behavior increases activity in the PeFAUcn3 neurons in virgin and lactating females. Chemogenetic inhibition of PeFAUcn3 neurons facilitates pup retrieval in virgin females. CRS reduces pup retrieval in virgin females and increases activity of PeFAUcn3 neurons, while CRS does not affect maternal behavior in lactating females. Inhibition of PeFAUcn3 neurons blocks stress-induced deficits in pup-directed behavior in virgin females. Together, these data illustrate the critical role for PeFAUcn3 neuronal activity in mediating the impact of chronic stress on female infant-directed behavior.
Collapse
|
17
|
Serafini G, Costanza A, Aguglia A, Amerio A, Trabucco A, Escelsior A, Sher L, Amore M. The Role of Inflammation in the Pathophysiology of Depression and Suicidal Behavior: Implications for Treatment. Med Clin North Am 2023; 107:1-29. [PMID: 36402492 DOI: 10.1016/j.mcna.2022.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Depression and suicidal behavior are 2 complex psychiatric conditions of significant public health concerns due to their debilitating nature. The need to enhance contemporary treatments and preventative approaches for these illnesses not only calls for distillation of current views on their pathogenesis but also provides an impetus for further elucidation of their novel etiological determinants. In this regard, inflammation has recently been recognized as a potentially important contributor to the development of depression and suicidal behavior. This review highlights key evidence that supports the presence of dysregulated neurometabolic and immunologic signaling and abnormal interaction with microbial species as putative etiological hallmarks of inflammation in depression as well as their contribution to the development of suicidal behavior. Furthermore, therapeutic insights addressing candidate mechanisms of pathological inflammation in these disorders are proposed.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy.
| | - Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland; Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), Lugano, Switzerland
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Alice Trabucco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Leo Sher
- James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, New York, NY, USA
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| |
Collapse
|
18
|
Moreira LKS, Moreira CVL, Custódio CHX, Dias MLP, Rosa DA, Ferreira-Neto ML, Colombari E, Costa EA, Fajemiroye JO, Pedrino GR. Post-partum depression: From clinical understanding to preclinical assessments. Front Psychiatry 2023; 14:1173635. [PMID: 37143780 PMCID: PMC10151489 DOI: 10.3389/fpsyt.2023.1173635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Post-partum depression (PPD) with varying clinical manifestations affecting new parents remains underdiagnosed and poorly treated. This minireview revisits the pharmacotherapy, and relevant etiological basis, capable of advancing preclinical research frameworks. Maternal tasks accompanied by numerous behavioral readouts demand modeling different paradigms that reflect the complex and heterogenous nature of PPD. Hence, effective PPD-like characterization in animals towards the discovery of pharmacological intervention demands research that deepens our understanding of the roles of hormonal and non-hormonal components and mediators of this psychiatric disorder.
Collapse
Affiliation(s)
| | | | | | - Matheus L. P. Dias
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Daniel A. Rosa
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Marcos L. Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Elson A. Costa
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - James O. Fajemiroye
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
- Graduate Program in Pharmaceutical Sciences, Campus Arthur Wesley Archibald, Evangelical University of Goiás, Anápolis, Brazil
- *Correspondence: James O. Fajemiroye,
| | - Gustavo R. Pedrino
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| |
Collapse
|
19
|
Comparison of the chronic unpredictable mild stress and the maternal separation in mice postpartum depression modeling. Biochem Biophys Res Commun 2022; 632:24-31. [DOI: 10.1016/j.bbrc.2022.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
20
|
Luft C, da Costa MS, Antunes GL, de Oliveira JR, Donadio MVF. The role of maternal exercise on placental, behavioral and genetic alterations induced by prenatal stress. Neurochem Int 2022; 158:105384. [PMID: 35787396 DOI: 10.1016/j.neuint.2022.105384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022]
Abstract
The present study aimed to evaluate the effects of treadmill maternal exercise on alterations induced by prenatal stress in neonatal mice. Female and male Balb/c mice were divided into five groups: control (CON), prenatal restraint stress (PNS), prenatal restraint stress and physical exercise before pregnancy (PNS + EX1), prenatal restraint stress and physical exercise during pregnancy (PNS + EX2), and prenatal restraint stress and physical exercise before and during pregnancy (PNS + EX3). Exercise was performed using a treadmill, at a speed of 10 m/min, for 60 minutes, 5 days a week. Maternal behavior was assessed on days 3, 4 and 5 postpartum (PPD). Placental gene expression of glucocorticoid receptor (GR), 11-β-hydroxysteroid dehydrogenase 2 (11β-HSD2), 5-hydroxytryptamine receptor 1A (5HT1AR), and corticotropin releasing hormone receptor 1 (CRHR1) were analyzed. In neonatal mice, the gene expression of GR, mineralocorticoid receptor (MR), CRHR1, 5HTr1, oxytocin Receptor 1 (OXTr1), tropomyosin related kinase B (TRκB), brain-derived neurotrophic factor exon I (BDNF I), and BDNF IV was analyzed in the brain (PND0) and hippocampus (PND10). Maternal exercise improved (p < 0.05) maternal care. In the placenta, maternal exercise prevented (p < 0.01) the increase in GR expression caused by PNS. In the brain from PND0, exercise before pregnancy prevented (p = 0.002) the decreased CRHR1 expression promoted by PNS. In the hippocampus of PND10 males, PNS decreased (p = 0.0005) GR expression, and exercise before pregnancy prevented (p = 0.003) this effect. In PND10 females, maternal exercise prevented (p < 0.05) the PNS-induced increase in MR expression. PNS + EX2 males showed increased (p < 0.01) BDNF I gene expression and PNS + EX1 females demonstrated increased (p = 0.03) BDNF IV expression. In conclusion, maternal physical exercise may play a role in modulating maternal-fetal health and may contribute to preventing neurodevelopmental changes induced by prenatal stress.
Collapse
Affiliation(s)
- Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Géssica Luana Antunes
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Department of Physiotherapy, Facultad de Medicina y Ciencias de la Salud, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
| |
Collapse
|
21
|
Díaz-Hung ML, Hetz C. Proteostasis and resilience: on the interphase between individual's and intracellular stress. Trends Endocrinol Metab 2022; 33:305-317. [PMID: 35337729 DOI: 10.1016/j.tem.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
A long proportion of the population is resilient to the negative consequences of stress. Glucocorticoids resulting from endocrine responses to stress are essential adaptive mediators, but also drive alterations to brain function, negatively impacting neuronal connectivity, synaptic plasticity, and memory-related processes. Recent evidence has indicated that organelle function and cellular stress responses are relevant determinant of vulnerability and resistance to environmental stress. At the molecular level, a fundamental mechanism of cellular stress adaptation is the maintenance of proteostasis, which also have key roles in sustaining basal neuronal function. Here, we discuss recent evidence suggesting that proteostasis unbalance at the level of the endoplasmic reticulum, the main site for protein folding in the cell, represents a possible mechanistic link between individuals and cellular stress.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
22
|
Hu S, Luo L, Zeng L. Tea combats circadian rhythm disorder syndrome via the gut-liver-brain axis: potential mechanisms speculated. Crit Rev Food Sci Nutr 2022; 63:7126-7147. [PMID: 35187990 DOI: 10.1080/10408398.2022.2040945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian rhythm is an intrinsic mechanism developed by organisms to adapt to external environmental signals. Nowadays, owing to the job and after-work entertainment, staying up late - Circadian rhythm disorders (CRD) are common. CRD is linked to the development of fatty liver, type 2 diabetes, and chronic gastroenteritis, which affecting the body's metabolic and inflammatory responses via multi-organ crosstalk (gut-liver-brain axis, etc.). However, studies on the mechanisms of multi-organ interactions by CRD are still weak. Current studies on therapeutic agents for CRD remain inadequate, and phytochemicals have been shown to alleviate CRD-induced syndromes that may be used for CRD-therapy in the future. Tea, a popular phytochemical-rich beverage, reduces glucolipid metabolism and inflammation. But it is immature and unclear in the mechanisms of alleviation of CRD-mediated syndrome. Here, we have analyzed the threat of CRD to hosts and their offspring' health from the perspective of the "gut-liver-brain" axis. The potential mechanisms of tea in alleviating CRD were further explored. It might be by interfering with bile acid metabolism, tryptophan metabolism, and G protein-coupled receptors, with FXR, AHR, and GPCR as potential targets. We hope to provide new perspectives on the role of tea in the prevention and mitigation of CRD.HighlightsThe review highlights the health challenges of CRD via the gut-liver-brain axis.CRD research should focus on the health effects on healthy models and its offspring.Tea may prevent CRD by regulating bile acid, tryptophan, and GPCR.Potential targets for tea prevention and mitigation of CRD include FXR, AHR and GPCR.A comprehensive assessment mechanism for tea in improving CRD should be established.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| |
Collapse
|
23
|
Zoubovsky SP, Williams MT, Hoseus S, Tumukuntala S, Riesenberg A, Schulkin J, Vorhees CV, Campbell K, Lim HW, Muglia LJ. Neurobehavioral abnormalities following prenatal psychosocial stress are differentially modulated by maternal environment. Transl Psychiatry 2022; 12:22. [PMID: 35039487 PMCID: PMC8764031 DOI: 10.1038/s41398-022-01785-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Prenatal stress (PS) is associated with increased vulnerability to affective disorders. Transplacental glucocorticoid passage and stress-induced maternal environment alterations are recognized as potential routes of transmission that can fundamentally alter neurodevelopment. However, molecular mechanisms underlying aberrant emotional outcomes or the individual contributions intrauterine stress versus maternal environment play in shaping these mechanisms remain unknown. Here, we report anxiogenic behaviors, anhedonia, and female hypothalamic-pituitary-adrenal axis hyperactivity as a consequence of psychosocial PS in mice. Evidence of fetal amygdala programming precedes these abnormalities. In adult offspring, we observe amygdalar transcriptional changes demonstrating sex-specific dysfunction in synaptic transmission and neurotransmitter systems. We find these abnormalities are primarily driven by in-utero stress exposure. Importantly, maternal care changes postnatally reverse anxiety-related behaviors and partially rescue gene alterations associated with neurotransmission. Our data demonstrate the influence maternal environment exerts in shaping offspring emotional development despite deleterious effects of intrauterine stress.
Collapse
Affiliation(s)
- Sandra P. Zoubovsky
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Michael T. Williams
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Sarah Hoseus
- grid.239573.90000 0000 9025 8099Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Shivani Tumukuntala
- grid.239573.90000 0000 9025 8099Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Amy Riesenberg
- grid.239573.90000 0000 9025 8099Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Jay Schulkin
- grid.213910.80000 0001 1955 1644Department of Neuroscience, Georgetown University, Washington, DC USA ,grid.34477.330000000122986657Department of Obstetrics and Gynecology, University of Washington, Seattle, WA USA
| | - Charles V. Vorhees
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Kenneth Campbell
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Hee-Woong Lim
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Louis J. Muglia
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.427464.70000 0000 8727 8697Office of the President, Burroughs Wellcome Fund, Research Triangle Park, NC USA
| |
Collapse
|
24
|
A novel mouse model of postpartum depression using emotional stress as evaluated by nesting behavior. Sci Rep 2021; 11:22615. [PMID: 34799651 PMCID: PMC8604943 DOI: 10.1038/s41598-021-02004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Postpartum depression is an important mental health issue not only for the mother but also for the child’s development, other family members, and the society. An appropriate animal model is desired to elucidate the pathogenesis of postpartum depression. However, methods for stress loading during pregnancy have not been established. Behavioral experiments to investigate postpartum depression-like behaviors should be conducted without stress because behavioral tests affect rearing behaviors such as lactation. Therefore, we developed a new mouse model of postpartum depression using a psychological stress method. Mating partners were made to witness their partners experiencing social defeat stress and then listen to their cries. Emotional stress loading during pregnancy significantly increased postpartum depression-like behaviors. Postpartum depression also affected nurturing behaviors and caused disturbances in pup care. Furthermore, nesting behavior was impaired in the stressed group, suggesting that the observation of nesting behavior may be useful for assessing social dysfunction in postpartum depression. These results demonstrate the utility of this new mouse model of postpartum depression.
Collapse
|
25
|
Luft C, Wearick-Silva LE, da Costa MS, Pedrazza L, Antunes GL, Grassi-Oliveira R, de Oliveira JR, Donadio MVF. Gestational stress alters maternal behavior and inflammatory markers in the olfactory bulb of lactating mice. Int J Dev Neurosci 2021; 82:180-187. [PMID: 34734422 DOI: 10.1002/jdn.10156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/31/2021] [Indexed: 11/08/2022] Open
Abstract
Inflammatory markers represent important candidates responsible for the altered behavior and physiology observed after stressful experiences. In the maternal brain, the olfactory bulb (OB) is a key constituent of the neural circuit that mediates the reciprocal interaction between mother and infant. This study aimed to investigate the effects of stress during pregnancy on maternal behavior and inflammatory changes in the olfactory bulb of lactating mice. Female Balb/c mice were divided into two groups: control (CT) and restraint stress (RS). Maternal behavior was performed during the first 8 days of life of the offspring. On the 10th day after parturition, corticosterone, gene, and protein expression were assessed. Stress during pregnancy decreased the maternal index at postnatal day 4 and the nuclear factor-κB 1 (NFκB1) gene expression in the OB. Moreover, females from the RS group showed increased interleukin (IL-1β) protein expression. In contrast, stressed females exhibited a decreased tumor necrosis factor (TNF-α) protein expression in the OB. In conclusion, exposure to stress during pregnancy was able to induce specific postnatal effects on maternal behavior and balance of inflammatory mediators in the OB.
Collapse
Affiliation(s)
- Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Laboratory (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Pedrazza
- Laboratory of Ubiquitination and Celular Signalization, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Géssica Luana Antunes
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Laboratory (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Department of Physiotherapy, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| |
Collapse
|
26
|
Mikulska J, Juszczyk G, Gawrońska-Grzywacz M, Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci 2021; 11:1298. [PMID: 34679364 PMCID: PMC8533829 DOI: 10.3390/brainsci11101298] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is involved in the pathophysiology of many neuropsychiatric disorders. Increased HPA axis activity can be observed during chronic stress, which plays a key role in the pathophysiology of depression. Overactivity of the HPA axis occurs in major depressive disorder (MDD), leading to cognitive dysfunction and reduced mood. There is also a correlation between the HPA axis activation and gut microbiota, which has a significant impact on the development of MDD. It is believed that the gut microbiota can influence the HPA axis function through the activity of cytokines, prostaglandins, or bacterial antigens of various microbial species. The activity of the HPA axis in schizophrenia varies and depends mainly on the severity of the disease. This review summarizes the involvement of the HPA axis in the pathogenesis of neuropsychiatric disorders, focusing on major depression and schizophrenia, and highlights a possible correlation between these conditions. Although many effective antidepressants are available, a large proportion of patients do not respond to initial treatment. This review also discusses new therapeutic strategies that affect the HPA axis, such as glucocorticoid receptor (GR) antagonists, vasopressin V1B receptor antagonists and non-psychoactive CB1 receptor agonists in depression and/or schizophrenia.
Collapse
Affiliation(s)
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland; (J.M.); (G.J.); (M.H.)
| | | |
Collapse
|
27
|
Alhassen S, Chen S, Alhassen L, Phan A, Khoudari M, De Silva A, Barhoosh H, Wang Z, Parrocha C, Shapiro E, Henrich C, Wang Z, Mutesa L, Baldi P, Abbott GW, Alachkar A. Intergenerational trauma transmission is associated with brain metabotranscriptome remodeling and mitochondrial dysfunction. Commun Biol 2021; 4:783. [PMID: 34168265 PMCID: PMC8225861 DOI: 10.1038/s42003-021-02255-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Intergenerational trauma increases lifetime susceptibility to depression and other psychiatric disorders. Whether intergenerational trauma transmission is a consequence of in-utero neurodevelopmental disruptions versus early-life mother–infant interaction is unknown. Here, we demonstrate that trauma exposure during pregnancy induces in mouse offspring social deficits and depressive-like behavior. Normal pups raised by traumatized mothers exhibited similar behavioral deficits to those induced in pups raised by their biological traumatized mothers. Good caregiving by normal mothers did not reverse prenatal trauma-induced behaviors, indicating a two-hit stress mechanism comprising both in-utero abnormalities and early-life poor parenting. The behavioral deficits were associated with profound changes in the brain metabotranscriptome. Striking increases in the mitochondrial hypoxia marker and epigenetic modifier 2-hydroxyglutaric acid in the brains of neonates and adults exposed prenatally to trauma indicated mitochondrial dysfunction and epigenetic mechanisms. Bioinformatic analyses revealed stress- and hypoxia-response metabolic pathways in the neonates, which produced long-lasting alterations in mitochondrial energy metabolism and epigenetic processes (DNA and chromatin modifications). Most strikingly, early pharmacological interventions with acetyl-L-carnitine (ALCAR) supplementation produced long-lasting protection against intergenerational trauma-induced depression. Sammy Alhassen, Siwei Chen, et al. use mouse models to examine the effects of prenatal and postnatal stress on metabolomic and transcriptomic pathways in the brain. Their results suggest that altered mitochondrial metabolism may underlie trauma-induced behavioral deficits, and that correcting metabolism with ALCAR supplementation may protect against intergenerational transmission of traumatic stress.
Collapse
Affiliation(s)
- Sammy Alhassen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, USA.,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Lamees Alhassen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Alvin Phan
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Mohammad Khoudari
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Angele De Silva
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Huda Barhoosh
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Zitong Wang
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Chelsea Parrocha
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Emily Shapiro
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Charity Henrich
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Zicheng Wang
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, USA.,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA. .,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
Kim P. How stress can influence brain adaptations to motherhood. Front Neuroendocrinol 2021; 60:100875. [PMID: 33038383 PMCID: PMC7539902 DOI: 10.1016/j.yfrne.2020.100875] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Research shows that a woman's brain and body undergo drastic changes to support her transition to parenthood during the perinatal period. The presence of this plasticity suggests that mothers' brains may be changed by their experiences. Exposure to severe stress may disrupt adaptive changes in the maternal brain and further impact the neural circuits of stress regulation and maternal motivation. Emerging literature of human mothers provides evidence that stressful experience, whether from the past or present environment, is associated with altered responses to infant cues in brain circuits that support maternal motivation, emotion regulation, and empathy. Interventions that reduce stress levels in mothers may reverse the negative impact of stress exposure on the maternal brain. Finally, outstanding questions regarding the timing, chronicity, types, and severity of stress exposure, as well as study design to identify the causal impact of stress, and the role of race/ethnicity are discussed.
Collapse
Affiliation(s)
- Pilyoung Kim
- Department of Psychology, University of Denver, Denver, CO, United States.
| |
Collapse
|
29
|
Abstract
At least one in seven pregnant or recently postpartum women will experience a mental illness such as an anxiety disorder, depressive disorder, or substance use disorder. These mental illnesses have detrimental effects on the health of the mother, child, and family, but little is known about the hypothalamic and other neural correlates of maternal mental health concerns. The transition to parenthood alone is a time of remarkable neural plasticity, so it is perhaps not surprising that current research is showing that maternal mental illness has unique neural profiles. Furthermore, the neural systems affected by peripartum mental illness overlap and interact with the systems involved in maternal caregiving behaviors, and mother-infant interactions are, therefore, highly susceptible to disruption. This review discusses what we know about the unique neural changes occurring during peripartum mental illness and the role of the hypothalamus in these illnesses. With an improved understanding of the neural correlates of maternal mental health and disease, we will be better equipped to predict risk, develop effective treatments, and ultimately prevent suffering for millions of parents during this critical time in life.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR S 1085, Rennes, France.
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
30
|
Mescoli A, Maffei G, Pillo G, Bortone G, Marchesi S, Morandi E, Ranzi A, Rotondo F, Serra S, Vaccari M, Zauli Sajani S, Mascolo MG, Jacobs MN, Colacci A. The Secretive Liaison of Particulate Matter and SARS-CoV-2. A Hypothesis and Theory Investigation. Front Genet 2020; 11:579964. [PMID: 33240326 PMCID: PMC7680895 DOI: 10.3389/fgene.2020.579964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022] Open
Abstract
As the novel coronavirus disease sweeps across the world, there is growing speculation on the role that atmospheric factors may have played on the different distribution of SARS-CoV-2, and on the epidemiological characteristics of COVID-19. Knowing the role that environmental factors play in influenza virus outbreaks, environmental pollution and, in particular, atmospheric airborne (particulate matter, PM) has been considered as a potential key factor in the spread and mortality of COVID-19. A possible role of the PM as the virus carrier has also been debated. The role of PM in exacerbating respiratory and cardiovascular disease has been well recognized. Accumulating evidence support the hypothesis that PM can trigger inflammatory response at molecular, cellular and organ levels. On this basis, we developed the hypothesis that PM may play a role as a booster of COVID-19 rather than as a carrier of SARS-CoV-2. To support our hypothesis, we analyzed the molecular signatures detected in cells exposed to PM samples collected in one of the most affected areas by the COVID-19 outbreak, in Italy. T47D human breast adenocarcinoma cells were chosen to explore the global gene expression changes induced by the treatment with organic extracts of PM 2.5. The analysis of the KEGG's pathways showed modulation of several gene networks related to the leucocyte transendothelial migration, cytoskeleton and adhesion system. Three major biological process were identified, including coagulation, growth control and immune response. The analysis of the modulated genes gave evidence for the involvement of PM in the endothelial disease, coagulation disorders, diabetes and reproductive toxicity, supporting the hypothesis that PM, directly or through molecular interplay, affects the same molecular targets as so far known for SARS-COV-2, contributing to the cytokines storm and to the aggravation of the symptoms triggered by COVID-19. We provide evidence for a plausible cooperation of receptors and transmembrane proteins, targeted by PM and involved in COVID-19, together with new insights into the molecular interplay of chemicals and pathogens that could be of importance for sustaining public health policies and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Ada Mescoli
- Department of Experimental, Diagnostic and Specialty Medicine, Section of Cancerology, University of Bologna, Bologna, Italy
| | - Giangabriele Maffei
- Department of Experimental, Diagnostic and Specialty Medicine, Section of Cancerology, University of Bologna, Bologna, Italy
| | - Gelsomina Pillo
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Giuseppe Bortone
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Stefano Marchesi
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Elena Morandi
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Andrea Ranzi
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Francesca Rotondo
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Stefania Serra
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Monica Vaccari
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | | | | | - Miriam Naomi Jacobs
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards Public Health England, Chilton, United Kingdom
| | - Annamaria Colacci
- Department of Experimental, Diagnostic and Specialty Medicine, Section of Cancerology, University of Bologna, Bologna, Italy.,Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| |
Collapse
|