1
|
Hartley B, Bassiouni W, Roczkowsky A, Fahlman R, Schulz R, Julien O. N-Terminomic Identification of Intracellular MMP-2 Substrates in Cardiac Tissue. J Proteome Res 2024; 23:4188-4202. [PMID: 38647137 PMCID: PMC11460328 DOI: 10.1021/acs.jproteome.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Wesam Bassiouni
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Richard Schulz
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
- Department
of Pediatrics, University of Alberta, Edmonton T6G 2S2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
2
|
Fan D, Wu R. Mechanisms of the septic heart: From inflammatory response to myocardial edema. J Mol Cell Cardiol 2024; 195:73-82. [PMID: 39142438 DOI: 10.1016/j.yjmcc.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Sepsis-induced myocardial dysfunction (SIMD), also known as sepsis-induced cardiomyopathy (SICM), is linked to significantly increased mortality. Despite its clinical importance, effective therapies for SIMD remain elusive, largely due to an incomplete understanding of its pathogenesis. Over the past five decades, research involving both animal models and human studies has highlighted several pathogenic mechanisms of SICM, yet many aspects remain unexplored. Initially thought to be primarily driven by inflammatory cytokines, current research indicates that these alone are insufficient for the development of cardiac dysfunction. Recent studies have brought attention to additional mechanisms, including excessive nitric oxide production, mitochondrial dysfunction, and disturbances in calcium homeostasis, as contributing factors in SICM. Emerging clinical evidence has highlighted the significant role of myocardial edema in the pathogenesis of SICM, particularly its association with cardiac remodeling in septic shock patients. This review synthesizes our current understanding of SIMD/SICM, focusing on myocardial edema's contribution to cardiac dysfunction and the critical role of the bradykinin receptor B1 (B1R) in altering myocardial microvascular permeability, a potential key player in myocardial edema development during sepsis. Additionally, this review briefly summarizes existing therapeutic strategies and their challenges and explores future research directions. It emphasizes the need for a deeper understanding of SICM to develop more effective treatments.
Collapse
Affiliation(s)
- Dihan Fan
- Psychiatric Genetics Group, McGill University, Canada
| | - Rongxue Wu
- Department of Medicine, Section of Cariology, Biological Sciences Division, The University of Chicago, IL, United States.
| |
Collapse
|
3
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
4
|
Thapak P, Gomez-Pinilla F. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function. Pharmacol Res 2024; 208:107389. [PMID: 39243913 DOI: 10.1016/j.phrs.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Cai J, Zhan Y, Huang K, Han S, Lin Z, Chen R, Luo Q, Li Z, Chen B, Li S. Integration of network pharmacology and proteomics analysis to identify key target pathways of Ginsenoside Re for myocardial ischemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155728. [PMID: 38853122 DOI: 10.1016/j.phymed.2024.155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Clinically, various diseases cause myocardial ischemia (MI), which further induces severe cardiac injury and leads to high mortality in patients. Ginsenoside Re, one of the major ginsenosides in ginseng, can regulate the level of oxidative stress in the injured myocardium. Thus, it may attenuate MI injury, but the related mechanism has not been comprehensively studied. PURPOSE This study aimed to investigate the anti-MI effect and comprehensively mechanisms of Ginsenoside Re. STUDY DESIGN/METHODS Oxygen-glucose deprivation (OGD), oxidative-induced cardiomyocyte injury, and isoproterenol-induced MI mice were used to explore their protective effect of Ginsenoside Re. An integrated approach of network pharmacology, molecular docking, and tandem mass tag proteomics was applied to determine the corresponding common potential targets of Ginsenoside Re against MI, such as target proteins and related pathways. The major anti-MI target proteins and related pathways were validated by immunofluorescence (IF) assay and Western blotting (WB). RESULTS Ginsenoside Re (1.32-168.93 µM) had low toxicity to normal cardiomyocytes, and increased the survival of oxidative stress-injured (OGD-induced injury or H2O2-induced injury) cardiomyocytes in this concentration range. It regulated the reactive oxygen species (ROS) level in OGD-injured cardiomyocytes; stabilized the nuclear morphology, mitochondrial membrane potential (MMP), and mitochondrial function; and reduced apoptosis. Meanwhile, Ginsenoside Re (5-20 mg/kg) alleviated cardiac injury in MI mice and maintained cardiac function. Through network pharmacology and proteomics, the relevant mechanisms revealed several key pathways of Ginsenoside Re anti-MI, including inhibition of MAPK pathway protein phosphorylation, downregulation of phosphorylated PDPK1, AKT, and STAT3, and upregulation of TGF-β3, ferroptosis pathway (upregulation of GPX4 and downregulation of phosphorylation level of MDM2) and AMPK pathway (regulating the synthesis of cholesterol in the myocardium by downregulation of HMGCR). The key proteins of these target pathways were validated by IF and/or WB. CONCLUSION Ginsenoside Re may target MAPK, AKT, ferroptosis pathways and AMPK pathway to prevent and/or treat MI injury and protect cardiomyocytes from oxidative damage.
Collapse
Affiliation(s)
- Jiasong Cai
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yuying Zhan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Kunlong Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Shengnan Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ruichan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Qiu Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhijun Li
- Center of Chemistry Experiment, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
6
|
Liu X, Meng Q, Shi S, Geng X, Wang E, Li Y, Lin F, Liang X, Xi X, Han W, Fan H, Zhou X. Cardiac-derived extracellular vesicles improve mitochondrial function to protect the heart against ischemia/reperfusion injury by delivering ATP5a1. J Nanobiotechnology 2024; 22:385. [PMID: 38951822 PMCID: PMC11218245 DOI: 10.1186/s12951-024-02618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Numerous studies have confirmed the involvement of extracellular vesicles (EVs) in various physiological processes, including cellular death and tissue damage. Recently, we reported that EVs derived from ischemia-reperfusion heart exacerbate cardiac injury. However, the role of EVs from healthy heart tissue (heart-derived EVs, or cEVs) on myocardial ischemia-reperfusion (MI/R) injury remains unclear. RESULTS Here, we demonstrated that intramyocardial administration of cEVs significantly enhanced cardiac function and reduced cardiac damage in murine MI/R injury models. cEVs treatment effectively inhibited ferroptosis and maintained mitochondrial homeostasis in cardiomyocytes subjected to ischemia-reperfusion injury. Further results revealed that cEVs can transfer ATP5a1 into cardiomyocytes, thereby suppressing mitochondrial ROS production, alleviating mitochondrial damage, and inhibiting cardiomyocyte ferroptosis. Knockdown of ATP5a1 abolished the protective effects of cEVs. Furthermore, we found that the majority of cEVs are derived from cardiomyocytes, and ATP5a1 in cEVs primarily originates from cardiomyocytes of the healthy murine heart. Moreover, we demonstrated that adipose-derived stem cells (ADSC)-derived EVs with ATP5a1 overexpression showed much better efficacy on the therapy of MI/R injury compared to control ADSC-derived EVs. CONCLUSIONS These findings emphasized the protective role of cEVs in cardiac injury and highlighted the therapeutic potential of targeting ATP5a1 as an important approach for managing myocardial damage induced by MI/R injury.
Collapse
Affiliation(s)
- Xuan Liu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shanshan Shi
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yinzhen Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoling Xi
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China.
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China.
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Xu F, He Y, Xu A, Ren L, Xu J, Shao Y, Wang M, Zhao W, Zhang Y, Lu P, Zhang L. Triphenyl phosphate induces cardiotoxicity through myocardial fibrosis mediated by apoptosis and mitophagy of cardiomyocyte in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123651. [PMID: 38408505 DOI: 10.1016/j.envpol.2024.123651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Triphenyl phosphate (TPHP) is an organophosphorus flame retardant, but its cardiac toxicity has not been adequately investigated. Therefore, in the current study, the effect of TPHP on the heart and the underlying mechanism involved was evaluated. C57BL/6 J mice were administered TPHP (0, 5, and 50 mg/kg/day) for 30 days. In addition, H9c2 cells were treated with three various concentrations (0, 50, and 150 μM) of TPHP, with and without the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine or the mitochondrial fusion promoter M1. TPHP caused cardiac fibrosis and increased the levels of CK-MB and LDH in the serum. TPHP increased the levels of ROS, malondialdehyde (MDA), and decreased the level of superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px). Furthermore, TPHP caused mitochondrial damage, and induced fusion and fission disorders that contributed to mitophagy in both the heart of C57BL/6 J mice and H9c2 cells. Transcriptome analysis showed that TPHP induced up- or down-regulated expression of various genes in myocardial tissue and revealed enriched apoptosis pathways. It was also found that TPHP could remarkably increase the expression levels of Bax, cleaved Caspase-9, cleaved Caspase-3, and decreased Bcl-2, thereby causing apoptosis in H9c2 cells. Taken together, the results suggested that TPHP promoted mitophagy through mitochondria fusion dysfunction resulting from oxidative stress, leading to fibrosis by inducing myocardial apoptosis.
Collapse
Affiliation(s)
- Feibo Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yu He
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Aili Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China
| | - Jinyu Xu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yali Shao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Minxin Wang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Peng Lu
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, China
| | - Lianshuang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
8
|
Liu G, Lv Y, Wang Y, Xu Z, Chen L, Chen S, Xie W, Feng Y, Liu J, Bai Y, He Y, Li X, Wu Q. Remote ischemic preconditioning reduces mitochondrial apoptosis mediated by calpain 1 activation in myocardial ischemia-reperfusion injury through calcium channel subunit Cacna2d3. Free Radic Biol Med 2024; 212:80-93. [PMID: 38151212 DOI: 10.1016/j.freeradbiomed.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Remote Ischemic Preconditioning (RIPC) can reduce myocardial ischemia-reperfusion injury, but its mechanism is not clear. In order to explore the mechanism of RIPC in myocardial protection, we collected myocardial specimens during cardiac surgery in children with tetralogy of Fallot for sequencing. Our study found RIPC reduces the expression of the calcium channel subunit cacna2d3, thereby impacting the function of calcium channels. As a result, calcium overload during ischemia-reperfusion is reduced, and the activation of calpain 1 is inhibited. This ultimately leads to a decrease in calpain 1 cleavage of Bax, consequently inhibiting increased mitochondrial permeability-mediated apoptosis. Notably, in both murine and human models of myocardial ischemia-reperfusion injury, RIPC inhibiting the expression of the calcium channel subunit cacna2d3 and the activation of calpain 1, improving cardiac function and histological outcomes. Overall, our findings put forth a proposed mechanism that elucidates how RIPC reduces myocardial ischemia-reperfusion injury, ultimately providing a solid theoretical foundation for the widespread clinic application of RIPC.
Collapse
Affiliation(s)
- Guoyang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yong Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhenzhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shiqiang Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yiqi Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yunxiao Bai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yuyao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
9
|
Dai S, Cao T, Shen H, Zong X, Gu W, Li H, Wei L, Huang H, Yu Y, Chen Y, Ye W, Hua F, Fan H, Shen Z. Landscape of molecular crosstalk between SARS-CoV-2 infection and cardiovascular diseases: emphasis on mitochondrial dysfunction and immune-inflammation. J Transl Med 2023; 21:915. [PMID: 38104081 PMCID: PMC10725609 DOI: 10.1186/s12967-023-04787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND SARS-CoV-2, the pathogen of COVID-19, is a worldwide threat to human health and causes a long-term burden on the cardiovascular system. Individuals with pre-existing cardiovascular diseases are at higher risk for SARS-CoV-2 infection and tend to have a worse prognosis. However, the relevance and pathogenic mechanisms between COVID-19 and cardiovascular diseases are not yet completely comprehended. METHODS Common differentially expressed genes (DEGs) were obtained in datasets of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2 and myocardial tissues from heart failure patients. Further GO and KEGG pathway analysis, protein-protein interaction (PPI) network construction, hub genes identification, immune microenvironment analysis, and drug candidate predication were performed. Then, an isoproterenol-stimulated myocardial hypertrophy cell model and a transverse aortic constriction-induced mouse heart failure model were employed to validate the expression of hub genes. RESULTS A total of 315 up-regulated and 78 down-regulated common DEGs were identified. Functional enrichment analysis revealed mitochondrial metabolic disorders and extensive immune inflammation as the most prominent shared features of COVID-19 and cardiovascular diseases. Then, hub DEGs, as well as hub immune-related and mitochondria-related DEGs, were screened. Additionally, nine potential therapeutic agents for COVID-19-related cardiovascular diseases were proposed. Furthermore, the expression patterns of most of the hub genes related to cardiovascular diseases in the validation dataset along with cellular and mouse myocardial damage models, were consistent with the findings of bioinformatics analysis. CONCLUSIONS The study unveiled the molecular networks and signaling pathways connecting COVID-19 and cardiovascular diseases, which may provide novel targets for intervention of COVID-19-related cardiovascular diseases.
Collapse
Affiliation(s)
- Shiyu Dai
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Ting Cao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Xuejing Zong
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenyu Gu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hanghang Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Lei Wei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Haoyue Huang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenxue Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
10
|
Cao T, Ni R, Ding W, Ji X, Fan GC, Zhang Z, Peng T. Nicotinamide mononucleotide as a therapeutic agent to alleviate multi-organ failure in sepsis. J Transl Med 2023; 21:883. [PMID: 38057866 PMCID: PMC10699070 DOI: 10.1186/s12967-023-04767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Sepsis-caused multi-organ failure remains the major cause of morbidity and mortality in intensive care units with limited therapeutics. Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD+), has been recently reported to be protective in sepsis; however, its therapeutic effects remain to be determined. This study sought to investigate the therapeutic effects of NMN in septic organ failure and its underlying mechanisms. METHODS Sepsis was induced by feces-injection-in-peritoneum in mice. NMN was given after an hour of sepsis onset. Cultured neutrophils, macrophages and endothelial cells were incubated with various agents. RESULTS We demonstrate that administration of NMN elevated NAD+ levels and reduced serum lactate levels, oxidative stress, inflammation, and caspase-3 activity in multiple organs of septic mice, which correlated with the attenuation of heart dysfunction, pulmonary microvascular permeability, liver injury, and kidney dysfunction, leading to lower mortality. The therapeutic effects of NMN were associated with lower bacterial burden in blood, and less ROS production in septic mice. NMN improved bacterial phagocytosis and bactericidal activity of macrophages and neutrophils while reducing the lipopolysaccharides-induced inflammatory response of macrophages. In cultured endothelial cells, NMN mitigated mitochondrial dysfunction, inflammation, apoptosis, and barrier dysfunction induced by septic conditions, all of which were offset by SIRT3 inhibition. CONCLUSION NAD+ repletion with NMN prevents mitochondrial dysfunction and restrains bacterial dissemination while limiting inflammatory damage through SIRT3 signaling in sepsis. Thus, NMN may represent a therapeutic option for sepsis.
Collapse
Affiliation(s)
- Ting Cao
- Institutes of Biology and Medical Sciences and Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, China.
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
| | - Weimin Ding
- Institutes of Biology and Medical Sciences and Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, China
| | - Xiaoyun Ji
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhuxu Zhang
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada.
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada.
| |
Collapse
|
11
|
Miyazaki T. Calpain and Cardiometabolic Diseases. Int J Mol Sci 2023; 24:16782. [PMID: 38069105 PMCID: PMC10705917 DOI: 10.3390/ijms242316782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Calpain is defined as a member of the superfamily of cysteine proteases possessing the CysPC motif within the gene. Calpain-1 and -2, which are categorized as conventional isozymes, execute limited proteolysis in a calcium-dependent fashion. Accordingly, the calpain system participates in physiological and pathological phenomena, including cell migration, apoptosis, and synaptic plasticity. Recent investigations have unveiled the contributions of both conventional and unconventional calpains to the pathogenesis of cardiometabolic disorders. In the context of atherosclerosis, overactivation of conventional calpain attenuates the barrier function of vascular endothelial cells and decreases the immunosuppressive effects attributed to lymphatic endothelial cells. In addition, calpain-6 induces aberrant mRNA splicing in macrophages, conferring atheroprone properties. In terms of diabetes, polymorphisms of the calpain-10 gene can modify insulin secretion and glucose disposal. Moreover, conventional calpain reportedly participates in amino acid production from vascular endothelial cells to induce alteration of amino acid composition in the liver microenvironment, thereby facilitating steatohepatitis. Such multifaceted functionality of calpain underscores its potential as a promising candidate for pharmaceutical targets for the treatment of cardiometabolic diseases. Consequently, the present review highlights the pivotal role of calpains in the complications of cardiometabolic diseases and embarks upon a characterization of calpains as molecular targets.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| |
Collapse
|
12
|
Lu M, Zhao F, Ran C, Xu Y, Zhang J, Wang H. Ginsenoside Rg1 attenuates diabetic vascular endothelial dysfunction by inhibiting the calpain-1/ROS/PKC-β axis. Life Sci 2023; 329:121972. [PMID: 37482213 DOI: 10.1016/j.lfs.2023.121972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
AIMS Vascular endothelial dysfunction (VED) is the onset event of cardiovascular complications in type 2 diabetes mellitus. Ginsenoside Rg1 (Rg1) can improve the cardiovascular system, but its mechanism in diabetic vascular endothelial dysfunction has received little attention. MAIN METHODS Male calpain-1-knockout and wild-type C57BL/6 J mice were intraperitoneally injected with streptozotocin and treated with Rg1 (10 and 20 mg/kg) for 8 weeks. Human aortic endothelial cells (HAECs) were incubated with high glucose (HG) and were pretreated with Rg1 (10, 20 μM), MDL-28170 (calpain-1 inhibitor), LY-333531 (PKC-β inhibitor), NAC (ROS inhibitor) and calpain-1 overexpression. Then, factors related to mitochondrial dysfunction, oxidative stress and VED were measured. KEY FINDINGS The administration of Rg1 and calpain-1 knockout ameliorated diabetic mitochondrial dysfunction, oxidative stress and VED and inhibited the calpain-1/ROS/PKC-β axis. LY-333531 and NAC treatment restored destructive endothelium-dependent vasodilation in mice with diabetes, while pyrogallol (ROS agonist), PMA (PKC-β agonist) or L-NAME (eNOS inhibitor) treatment abrogated the protective effect of Rg1 against diabetic endothelial dysfunction. The administration of Rg1, MDL-28170, LY-333531 and NAC improved mitochondrial dysfunction, oxidative stress and VED, whereas the overexpression of calpain-1 amplified mitochondrial dysfunction, oxidative stress and VED and further upregulated the expression of PKC-β in HAECs exposed to HG. Overexpression of calpain-1 abrogated the protective effect of Rg1 against HG-induced oxidative stress and VED. SIGNIFICANCE These findings reveal that Rg1 can protect against VED by suppressing the calpain-1/ROS/PKC-β axis and alleviating the development of mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Fang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Chenyang Ran
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Yu Xu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Jingliang Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
13
|
Gholam MF, Bala N, Dogan YE, Alli AA. Augmentation of Cathepsin Isoforms in Diabetic db/db Mouse Kidneys Is Associated with an Increase in Renal MARCKS Expression and Proteolysis. Int J Mol Sci 2023; 24:12484. [PMID: 37569859 PMCID: PMC10419664 DOI: 10.3390/ijms241512484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The expression of the myristoylated alanine-rich C-kinase substrate (MARCKS) family of proteins in the kidneys plays an important role in the regulation of the renal epithelial sodium channel (ENaC) and hence overall blood pressure regulation. The function of MARCKS is regulated by post-translational modifications including myristoylation, phosphorylation, and proteolysis. Proteases known to cleave both ENaC and MARCKS have been shown to contribute to the development of high blood pressure, or hypertension. Here, we investigated protein expression and proteolysis of MARCKS, protein expression of multiple protein kinase C (PKC) isoforms, and protein expression and activity of several different proteases in the kidneys of diabetic db/db mice compared to wild-type littermate mice. In addition, MARCKS protein expression was assessed in cultured mouse cortical collecting duct (mpkCCD) cells treated with normal glucose and high glucose concentrations. Western blot and densitometric analysis showed less abundance of the unprocessed form of MARCKS and increased expression of a proteolytically cleaved form of MARCKS in the kidneys of diabetic db/db mice compared to wild-type mice. The protein expression levels of PKC delta and PKC epsilon were increased, while cathepsin B, cathepsin S, and cathepsin D were augmented in diabetic db/db kidneys compared to those of wild-type mice. An increase in the cleaved form of MARCKS was observed in mpkCCD cells cultured in high glucose compared to normal glucose concentrations. Taken together, these results suggest that high glucose may contribute to an increase in the proteolysis of renal MARCKS, while the upregulation of the cathepsin proteolytic pathway positively correlates with increased proteolysis of MARCKS in diabetic kidneys, where PKC expression is augmented.
Collapse
Affiliation(s)
- Mohammed F. Gholam
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia
| | - Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yunus E. Dogan
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Abdel A. Alli
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Medicine Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Zhang RR, Zhang JL, Li Q, Zhang SM, Gu XM, Niu W, Zhou JJ, Zhou LC. SEVERE BURN-INDUCED MITOCHONDRIAL RECRUITMENT OF CALPAIN CAUSES ABERRANT MITOCHONDRIAL DYNAMICS AND HEART DYSFUNCTION. Shock 2023; 60:255-261. [PMID: 37278996 PMCID: PMC10476594 DOI: 10.1097/shk.0000000000002159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
ABSTRACT Mitochondrial damage is an important cause of heart dysfunction after severe burn injury. However, the pathophysiological process remains unclear. This study aims to examine the mitochondrial dynamics in the heart and the role of μ-calpain, a cysteine protease, in this scenario. Rats were subjected to severe burn injury treatment, and the calpain inhibitor MDL28170 was administered intravenously 1 h before or after burn injury. Rats in the burn group displayed weakened heart performance and decreased mean arterial pressure, which was accompanied by a diminishment of mitochondrial function. The animals also exhibited higher levels of calpain in mitochondria, as reflected by immunofluorescence staining and activity tests. In contrast, treatment with MDL28170 before any severe burn diminished these responses to a severe burn. Burn injury decreased the abundance of mitochondria and resulted in a lower percentage of small mitochondria and a higher percentage of large mitochondria. Furthermore, burn injury caused an increase in the fission protein DRP1 in the mitochondria and a decrease in the inner membrane fusion protein OPA1. Similarly, these alterations were also blocked by MDL28170. Of note, inhibition of calpain yielded the emergence of more elongated mitochondria along with membrane invagination in the middle of the longitude, which is an indicator of the fission process. Finally, MDL28170, administered 1 h after burn injury, preserved mitochondrial function and heart performance, and increased the survival rate. Overall, these results provided the first evidence that mitochondrial recruitment of calpain confers heart dysfunction after severe burn injury, which involves aberrant mitochondrial dynamics.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- School of Life Science, Northwest University, Xi’an, China
| | - Jing-Long Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Qiao Li
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Xi’an, China
| | - Shu-Miao Zhang
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| | - Xiao-Ming Gu
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| | - Wen Niu
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| | - Jing-Jun Zhou
- School of Life Science, Northwest University, Xi’an, China
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| | - Lyu-Chen Zhou
- School of Life Science, Northwest University, Xi’an, China
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| |
Collapse
|
15
|
Liu GY, Xie WL, Wang YT, Chen L, Xu ZZ, Lv Y, Wu QP. Calpain: the regulatory point of myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2023; 10:1194402. [PMID: 37456811 PMCID: PMC10346867 DOI: 10.3389/fcvm.2023.1194402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Calpain is a conserved cysteine protease readily expressed in several mammalian tissues, which is usually activated by Ca2+ and with maximum activity at neutral pH. The activity of calpain is tightly regulated because its aberrant activation will nonspecifically cleave various proteins in cells. Abnormally elevation of Ca2+ promotes the abnormal activation of calpain during myocardial ischemia-reperfusion, resulting in myocardial injury and cardiac dysfunction. In this paper, we mainly reviewed the effects of calpain in various programmed cell death (such as apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, and parthanatos) in myocardial ischemia-reperfusion. In addition, we also discussed the abnormal activation of calpain during myocardial ischemia-reperfusion, the effect of calpain on myocardial repair, and the possible future research directions of calpain.
Collapse
Affiliation(s)
- Guo-Yang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Wan-Li Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yan-Ting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhen-Zhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yong Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Qing-Ping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| |
Collapse
|
16
|
Peng K, Yang F, Qiu C, Yang Y, Lan C. Rosmarinic acid protects against lipopolysaccharide-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment. Clin Exp Pharmacol Physiol 2023; 50:218-227. [PMID: 36350269 DOI: 10.1111/1440-1681.13734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Sepsis-induced cardiomyopathy is a decisive factor that plays a critical role in the high mortality of septic patients in the critically ill. Mitochondrial dysfunction occurring during sepsis is a vital contributor to the pathogenesis of myocardial damage. Rosmarinic acid (RA), a natural poly-phenolic compound, has showed cardio-protective and mitochondrial protective effect. The present study was aimed to investigate the effect of RA on sepsis-induced cardiomyopathy. Adult mice were subjected to intraperitoneal injection of saline (control) or lipopolysaccharide (LPS, 5 mg/kg) to mimic sepsis-induced cardiomyopathy. Immediately after LPS challenge, vehicle or RA (100 mg/kg/day) was administrated via gavage. Cardiac function was examined with echocardiographic analyses 12 hours after LPS challenge and cumulative survival of mice was recorded for 8 days. Heart tissues were harvested 12 hours after LPS challenge to perform histological analyses and determine mitochondrial function. We found RA significantly improved cardiac function and survival of LPS-injected mice. Histologically, RA attenuated LPS-mediated cardiomyocyte damage, indicated by decreased cardiomyocyte apoptosis and improved myocardial swollen and disarrangement. Moreover, RA attenuated LPS-mediated myocardial mitochondrial dysfunction, indicated by improved mitochondrial ultrastructure, increased mitochondrial membrane potential (MMP), synthesis of adenosine triphosphate (ATP), markedly decreased reactive oxygen species (ROS) level and alleviated oxidative stress in heart tissues. RA treatment downregulated protein expression of Sirt1 and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and Sirt1 inhibition blocked protective effect of RA on LPS-induced myocardial damage and mitochondrial dysfunction. Collectively, RA attenuates LPS-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment. It may be a promising cardio-protective drug to be used for septic patients.
Collapse
Affiliation(s)
- Ke Peng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Yongjian Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
| | - Cong Lan
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,Department of Cardiology, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
17
|
Zhao Z, Wang X, Lu M, Gao Y. Rosuvastatin Improves Endothelial Dysfunction in Diabetes by Normalizing Endoplasmic Reticulum Stress via Calpain-1 Inhibition. Curr Pharm Des 2023; 29:2579-2590. [PMID: 37881071 DOI: 10.2174/0113816128250494231016065438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Rosuvastatin contributes to the improvement of vascular complications in diabetes, but the protective mechanisms remain unclear. The aim of the present study was to investigate the effect and mechanism of rosuvastatin on endothelial dysfunction induced by diabetes. METHODS Calpain-1 knockout (Capn1 EK684-/-) and C57BL/6 mice were intraperitoneally injected with STZ to induce type 1 diabetes. Human umbilical vein endothelial cells (HUVECs) were incubated with high glucose in this study. The function of isolated vascular rings, apoptosis, and endoplasmic reticulum stress (ERS) indicators were measured in this experiment. RESULTS The results showed that rosuvastatin (5 mg/kg/d) and calpain-1 knockout improved impaired vasodilation in an endothelial-dependent manner, and this effect was abolished by an ERS inducer. Rosuvastatin administration inhibited calpain-1 activation and ERS induced by high glucose, as well as apoptosis and oxidative stress both in vivo and in vitro. In addition, an ERS inducer (tunicamycin) offset the beneficial effect of rosuvastatin on endothelial dysfunction and ERS, which was accompanied by increased calpain-1 expression. The ERS inhibitor showed a similar improvement in endothelial dysfunction with rosuvastatin but could not increase the improvement in endothelial function of rosuvastatin. CONCLUSION These results suggested that rosuvastatin improves endothelial dysfunction by suppressing calpain- 1 and normalizing ERS, subsequently decreasing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Zhao Zhao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xinpeng Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Liaoning Provincial Key Laboratory of Cardiovascular Drugs, Jinzhou Medical University, Jinzhou, China
| | - Yuxia Gao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
18
|
Yi C, Chen F, Ma R, Fu Z, Song M, Zhang Z, Chen L, Tang X, Lu P, Li B, Zhang Q, Song Q, Zhu G, Wang W, Wang Q, Wang X. Serum level of calpains product as a novel biomarker of acute lung injury following cardiopulmonary bypass. Front Cardiovasc Med 2022; 9:1000761. [PMID: 36465445 PMCID: PMC9709320 DOI: 10.3389/fcvm.2022.1000761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE The aim of this study was to test the hypothesis whether serum level of calpains could become a meaningful biomarker for diagnosis of acute lung injury (ALI) in clinical after cardiac surgery using cardiopulmonary bypass (CPB) technology. METHODS AND RESULTS Seventy consecutive adults underwent cardiac surgery with CPB were included in this prospective study. Based on the American-European Consensus Criteria (AECC), these patients were divided into ALI (n = 20, 28.57%) and non-ALI (n = 50, 71.43%) groups. Serum level of calpains in terms of calpains' activity which was expressed as relative fluorescence unit (RFU) per microliter and measured at beginning of CPB (baseline), 1 h during CPB, end of CPB as well as 1, 12, and 24 h after CPB. Difference of serum level of calpains between two groups first appeared at the end of CPB and remained different at subsequent test points. Univariate and multivariate logistic regression analysis indicated that serum level of calpains 1 h after CPB was an independent predictor for postoperative ALI (OR 1.011, 95% CI 1.001, 1.021, p = 0.033) and correlated with a lower PaO2/FiO2 ratio in the first 2 days (The first day: r = -0.389, p < 0.001 and the second day: r = -0.320, p = 0.007) as well as longer mechanical ventilation time (r = 0.440, p < 0.001), intensive care unit (ICU) length of stay (LOS) (r = 0.419, p < 0.001) and hospital LOS (r = 0.297, p = 0.013). CONCLUSION Elevated serum level of calpains correlate with impaired lung function and poor clinical outcomes, indicating serum level of calpains could act as a potential biomarker for postoperative ALI following CPB in adults. CLINICAL TRIAL REGISTRATION [https://clinicaltrials.gov/show/NCT05610475], identifier [NCT05610475].
Collapse
Affiliation(s)
- Chenlong Yi
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangyu Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Dalian Medical University, Dalian, China
| | - Rongrong Ma
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhi Fu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Meijuan Song
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhuan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lingdi Chen
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xing Tang
- Department of Operating Theatre, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Peng Lu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ben Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingfen Zhang
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China
| | - Qifeng Song
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Dalian Medical University, Dalian, China
| | - Guangzheng Zhu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qiang Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaowei Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Zhao Y, Feng Y, Li J, Cui C, Wang A, Fang J, Zhang Y, Ye S, Mao Q, Wang X, Shi H. Endogenous ROS-Mediated Covalent Immobilization of Gold Nanoparticles in Mitochondria: A “Sharp Sword” in Tumor Radiotherapy. ACS Chem Biol 2022; 17:2355-2365. [DOI: 10.1021/acschembio.2c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoyan Wang
- Department of Ultrasound, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
20
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. The mitochondrial electron transport chain contributes to calpain 1 activation during ischemia-reperfusion. Biochem Biophys Res Commun 2022; 613:127-132. [PMID: 35550199 DOI: 10.1016/j.bbrc.2022.04.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Activation of calpain1 (CPN1) contributes to mitochondrial dysfunction during cardiac ischemia (ISC) - reperfusion (REP). Blockade of electron transport using amobarbital (AMO) protects mitochondria during ISC-REP, indicating that the electron transport chain (ETC) is a key source of mitochondrial injury. We asked if AMO treatment can decrease CPN1 activation as a potential mechanism of mitochondrial protection during ISC-REP. Buffer-perfused adult rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was administered for 1 min before ISC to block electron flow in the ETC. Hearts in the time control group were untreated and buffer perfused without ISC. Hearts were collected at the end of perfusion and used for mitochondrial isolation. ISC-REP increased both the cleavage of spectrin (indicating cytosolic CPN1 activation) in cytosol and the truncation of AIF (apoptosis inducing factor, indicating mitochondrial CPN1 activation) in subsarcolemmal mitochondria compared to time control. Thus, ISC-REP activated both cytosolic and mitochondrial CPN1. AMO treatment prevented the cleavage of spectrin and AIF during ISC-REP, suggesting that the transient blockade of electron transport during ISC decreases CPN1 activation. AMO treatment decreased the activation of PARP [poly(ADP-ribose) polymerase] downstream of AIF that triggers caspase-independent apoptosis. AMO treatment also decreased the release of cytochrome c from mitochondria during ISC-REP that prevented caspase 3 activation. These results support that the damaged ETC activates CPN1 in cytosol and mitochondria during ISC-REP, likely via calcium overload and oxidative stress. Thus, AMO treatment to mitigate mitochondrial-driven cardiac injury can decrease both caspase-dependent and caspase-independent programmed cell death during ISC-REP.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| |
Collapse
|
21
|
Wu Y, Yang H, Cheng M, Shi J, Zhang W, Liu S, Zhang M. Calpain Inhibitor Calpeptin Alleviates Ischemia/Reperfusion-Induced Acute Kidney Injury via Suppressing AIM2 Inflammasome and Upregulating Klotho Protein. Front Med (Lausanne) 2022; 9:811980. [PMID: 35155498 PMCID: PMC8831790 DOI: 10.3389/fmed.2022.811980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
Renal ischemia/reperfusion injury is a major contributor of acute kidney injury (AKI), leading to renal cell necrosis, apoptosis, and inflammation. Calpains, a family of Ca2+-dependent cysteine proteases, play a pivotal role in the pathogenesis of renal diseases. Several studies have reported calpain inhibitors showing remarkable reno-protective effects against proteinuria and α-klotho deficiency-induced renal aging symptoms, particularly against glomerulus injury. However, little is known about the role of the calpain inhibitor calpeptin in acute kidney injury. The present study aims to investigate the potential mechanism of downregulation of Calpain 1 and 2 activity by calpeptin in the ischemia/reperfusion (IR)-induced AKI model. Firstly, we observed that the contents of Calpain 1 and 2 were significantly increased in the renal biopsy of clinical AKI patients, especially in the diseased tubules space. To investigate the impacts of calpain activity inhibition, we further pretreated with calpeptin in both the IR mouse model and in the HK-2 cells hypoxia model. We found that the calpain inhibitor calpeptin improved renal functional deterioration, attenuated pathological structure damage, and decreased tubular cell apoptosis in the IR injury-induced AKI mice model. Mechanistically, calpeptin significantly suppressed the AIM2 (absent in melanoma 2) and NLRP3 (NOD-like receptor protein 3) inflammasome signaling pathways and increased Klotho protein levels. Furthermore, immunofluorescence assays demonstrated that the application of calpeptin effectively inhibited Calpain 1 activation and gasdermin D (GSDMD) cleavage in the renal tubules of IR mice. Taken together, our both in vivo and in vitro experiments suggest that calpeptin conveyed reno-protection in AKI might be mediated by the inhibition of AIM2 inflammasome activation and upregulation of Klotho protein. As such, we provide new evidence that Calpain 1 and 2 activation may be closely associated with the pathogenesis of clinical AKI. The calpain-mediated AIM2 inflammasome signaling pathway and distinct interaction between calpain and Klotho may provide a potential novel preventative and therapeutic target for acute kidney injury.
Collapse
|
22
|
Li L, Thompson J, Hu Y, Lesnefsky EJ, Willard B, Chen Q. Calpain-mediated protein targets in cardiac mitochondria following ischemia-reperfusion. Sci Rep 2022; 12:138. [PMID: 34997008 PMCID: PMC8741987 DOI: 10.1038/s41598-021-03947-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Calpain 1 and 2 (CPN1/2) are calcium-dependent cysteine proteases that exist in cytosol and mitochondria. Pharmacologic inhibition of CPN1/2 decreases cardiac injury during ischemia (ISC)-reperfusion (REP) by improving mitochondrial function. However, the protein targets of CPN1/2 activation during ISC-REP are unclear. CPN1/2 include a large subunit and a small regulatory subunit 1 (CPNS1). Genetic deletion of CPNS1 eliminates the activities of both CPN1 and CPN2. Conditional cardiomyocyte specific CPNS1 deletion mice were used in the present study to clarify the role of CPN1/2 activation in mitochondrial damage during ISC-REP with an emphasis on identifying the potential protein targets of CPN1/2. Isolated hearts from wild type (WT) or CPNS1 deletion mice underwent 25 min in vitro global ISC and 30 min REP. Deletion of CPNS1 led to decreased cytosolic and mitochondrial calpain 1 activation compared to WT. Cardiac injury was decreased in CPNS1 deletion mice following ISC-REP as shown by the decreased infarct size compared to WT. Compared to WT, mitochondrial function was improved in CPNS1 deletion mice following ischemia-reperfusion as shown by the improved oxidative phosphorylation and decreased susceptibility to mitochondrial permeability transition pore opening. H2O2 generation was also decreased in mitochondria from deletion mice following ISC-REP compared to WT. Deletion of CPNS1 also resulted in less cytochrome c and truncated apoptosis inducing factor (tAIF) release from mitochondria. Proteomic analysis of the isolated mitochondria showed that deletion of CPNS1 increased the content of proteins functioning in regulation of mitochondrial calcium homeostasis (paraplegin and sarcalumenin) and complex III activity. These results suggest that activation of CPN1 increases cardiac injury during ischemia-reperfusion by impairing mitochondrial function and triggering cytochrome c and tAIF release from mitochondria into cytosol.
Collapse
Affiliation(s)
- Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jeremy Thompson
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
23
|
Shan S, Liu Z, Li L, Zhang C, Kou R, Song F. Calpain-mediated cleavage of mitochondrial fusion/fission proteins in acetaminophen-induced mice liver injury. Hum Exp Toxicol 2022; 41:9603271221108321. [PMID: 35713544 DOI: 10.1177/09603271221108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondrial dysfunction was considered to be a critical event in acetaminophen (APAP) -induced hepatotoxicity. Recent studies suggest that abnormal mitochondrial dynamics contributes to mitochondrial dysfunction in APAP-induced liver injury, yet the underlying mechanisms responsible for deregulated mitochondrial dynamics remains elusive. In this study, C57BL/6 mice were used to establish a model of acute liver injury via intraperitoneal (i.p.) injection with overdose of APAP. Furthermore, calpain intervention experiments were achieved by the inhibitors ALLN or calpeptin. The activity of serum enzymes and pathological changes of APAP-treated mice were evaluated, and the critical molecules in mitochondrial dynamics and calpain degradative pathway were determined by electron microscopy, immunoblot and calpain activity kit. The results demonstrated that APAP overdose resulted in a severe liver injury, mitochondrial damage and an obvious cleavage of fusion/fission proteins. Meanwhile, the activation of calpain degradative machinery in liver were observed following APAP. By contrast, pretreatment of calpain inhibitors significantly inhibited the activation of calpains. Our further investigation found that ALLN or calpeptin administration significantly suppresses the changes of mitochondrial dynamics in APAP-treated mice and finally protected against APAP-induced hepatoxicity. Overall, these results suggest that calpain-mediated cleavage of mitochondrial dynamics proteins was involved in the pathogenic process of mitochondrial dysfunction and thus present a potential molecular coupling APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Linlin Li
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Ruirui Kou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| |
Collapse
|
24
|
Lu C, Liu L, Chen S, Niu J, Li S, Xie W, Cheng X. Azathioprine pretreatment ameliorates myocardial ischaemia reperfusion injury in diabetic rats by reducing oxidative stress, apoptosis, and inflammation. Clin Exp Pharmacol Physiol 2021; 48:1621-1632. [PMID: 34370882 PMCID: PMC9291025 DOI: 10.1111/1440-1681.13569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
This study was presented to observe the therapeutic effects of azathioprine (AZA) pretreatment on myocardial ischaemia reperfusion (I/R) damage in diabetic rats. All rats were randomly separated into control + sham operation; control +I/R; diabetes mellitus (DM) +I/R and DM +I/R + AZA groups. Diabetic rat models were established by intraperitoneally injecting 60 mg/kg streptozotocin (STZ). Diabetic rats were given 3 mg/kg AZA daily by gavage for 5 days. Then, myocardial I/R rat models were constructed. Myocardial infarction size and myocardial damage were respectively detected by TTC and H&E staining. Cardiac injury markers (CK-MB and MPO) and oxidative stress factors (SOD and MDA) were measured via ELISA. The protein expression of apoptotic markers (Caspase8, Caspase3, BAX and Bcl2), inflammatory factors (TLR4 and TNF-α) and AKT1/GSK3β in myocardial tissues was measured by western blot, immunohistochemistry or immunofluorescence. Data showed that AZA pretreatment could lessen myocardial infarction size and myocardial damage, and could down-regulate serum CK-MB, MPO, SOD and MDA levels in diabetic rats under I/R. Furthermore, AZA pretreatment decreased Caspase8, Caspase3, BAX, TLR4 and TNF-α expression, and increased Bcl2 expression in myocardial tissues of diabetic rats following I/R. Also, AZA pretreatment lowered AKT1, p-AKT1, GSK3β and p-GSK3β expression in diabetic heart after I/R. This study found that AZA may reduce myocardial injury in diabetic rats following I/R via reducing oxidative stress, cardiomyocyte apoptosis, and inflammatory response, which could be related to AKT1/GSK3β pathway inactivation.
Collapse
Affiliation(s)
- Cuijie Lu
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Ling Liu
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Shuai Chen
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Junfei Niu
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Sheng Li
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Wenxian Xie
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| | - Xiang Cheng
- Department of Basic MedicineSichuan Vocational College of Health and RehabilitationZigongChina
| |
Collapse
|
25
|
Lemoine KA, Fassas JM, Ohannesian SH, Purcell NH. On the PHLPPside: Emerging roles of PHLPP phosphatases in the heart. Cell Signal 2021; 86:110097. [PMID: 34320369 PMCID: PMC8403656 DOI: 10.1016/j.cellsig.2021.110097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
PH domain leucine-rich repeat protein phosphatase (PHLPP) is a family of enzymes made up of two isoforms (PHLPP1 and PHLPP2), whose actions modulate intracellular activity via the dephosphorylation of specific serine/threonine (Ser/Thr) residues on proteins such as Akt. Recent data generated in our lab, supported by findings from others, implicates the divergent roles of PHLPP1 and PHLPP2 in maintaining cellular homeostasis since dysregulation of these enzymes has been linked to various pathological states including cardiovascular disease, diabetes, ischemia/reperfusion injury, musculoskeletal disease, and cancer. Therefore, development of therapies to modulate specific isoforms of PHLPP could prove to be therapeutically beneficial in several diseases especially those targeting the cardiovascular system. This review is intended to provide a comprehensive summary of current literature detailing the role of the PHLPP isoforms in the development and progression of heart disease.
Collapse
Affiliation(s)
- Kellie A Lemoine
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Julianna M Fassas
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Shirag H Ohannesian
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Nicole H Purcell
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA; Cardiovascular Molecular Signaling, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| |
Collapse
|
26
|
Inhibition of calpain reduces cell apoptosis by suppressing mitochondrial fission in acute viral myocarditis. Cell Biol Toxicol 2021; 38:487-504. [PMID: 34365571 PMCID: PMC9200683 DOI: 10.1007/s10565-021-09634-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
Cardiomyocyte apoptosis is critical for the development of viral myocarditis (VMC), which is one of the leading causes of cardiac sudden death in young adults. Our previous studies have demonstrated that elevated calpain activity is involved in the pathogenesis of VMC. This study aimed to further explore the underlying mechanisms. Neonatal rat cardiomyocytes (NRCMs) and transgenic mice overexpressing calpastatin were infected with coxsackievirus B3 (CVB3) to establish a VMC model. Apoptosis was detected with flow cytometry, TUNEL staining, and western blotting. Cardiac function was measured using echocardiography. Mitochondrial function was measured using ATP assays, JC-1, and MitoSOX. Mitochondrial morphology was observed using MitoTracker staining and transmission electron microscopy. Colocalization of dynamin-related protein 1 (Drp-1) in mitochondria was examined using immunofluorescence. Phosphorylation levels of Drp-1 at Ser637 site were determined using western blotting analysis. We found that CVB3 infection impaired mitochondrial function as evidenced by increased mitochondrial ROS production, decreased ATP production and mitochondrial membrane potential, induced myocardial apoptosis and damage, and decreased myocardial function. These effects of CVB3 infection were attenuated by inhibition of calpain both by PD150606 treatment and calpastatin overexpression. Furthermore, CVB3-induced mitochondrial dysfunction was associated with the accumulation of Drp-1 in the outer membrane of mitochondria and subsequent increase in mitochondrial fission. Mechanistically, calpain cleaved and activated calcineurin A, which dephosphorylated Drp-1 at Ser637 site and promoted its accumulation in the mitochondria, leading to mitochondrial fission and dysfunction. In summary, calpain inhibition attenuated CVB3-induced myocarditis by reducing mitochondrial fission, thereby inhibiting cardiomyocyte apoptosis. Graphical abstract Calpain is activated by CVB3 infection. Activated calpain cleaves calcineurin A and converts it to active form which could dephosphorylate Drp-1 at Ser637 site. Then, the active Drp-1 translocates from the cytoplasm to mitochondria and triggers excessive mitochondrial fission. Eventually, the balance of mitochondrial dynamics is broken, and apoptosis occurs. ![]()
Collapse
|
27
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
28
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|