1
|
Xu Y, Qi Y, Lu Z, Tan Y, Chen D, Luo H. Navigating precision: the crucial role of next-generation sequencing recurrence risk assessment in tailoring adjuvant therapy for hormone receptor-positive, human epidermal growth factor Receptor2-negative early breast cancer. Cancer Biol Ther 2024; 25:2405060. [PMID: 39304993 PMCID: PMC11418226 DOI: 10.1080/15384047.2024.2405060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common subtype, representing over two-thirds of new diagnoses. Adjuvant therapy, which encompasses various medications and treatment durations, is the standard approach for managing early stage HR+ HER2- breast cancer. Optimizing treatment is essential to minimize unnecessary side effects while addressing the biological variability inherent in HR+/HER2- breast cancers. Incorporating biological biomarkers into treatment decisions, alongside traditional clinical factors, is vital. Gene expression assays can identify patients unlikely to benefit from adjuvant chemotherapy, thereby refining treatment strategies and improving risk assessment. This paper reviews evidence for several genomic tests, including Oncotype DX, MammaPrint, Breast Cancer Index, RucurIndex, and EndoPredict, which assist in tailoring adjuvant therapy. Additionally, we explore the role of liquid biopsies in personalizing treatment, emphasizing the importance of considering late relapse risks and potential benefits of extended systemic therapy for HR+/HER2- breast cancer patients.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Female
- Chemotherapy, Adjuvant/methods
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Risk Assessment/methods
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- High-Throughput Nucleotide Sequencing/methods
- Precision Medicine/methods
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Ying Xu
- Department of Obestetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yingxue Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Zhongyu Lu
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Yuan Tan
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Dongsheng Chen
- The Medical Department, Jiangsu Simcere Diagnostics Co. Ltd. Nanjing Simcere Medical Laboratory Science Co. Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Haijun Luo
- Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
2
|
van Duin I, Schuiveling M, ter Maat L, Veta M, van Eijs M, Verheijden R, van den Berkmortel F, Boers-Sonderen M, Hospers G, Labots M, de Groot J, Kapiteijn E, Piersma D, Vreugdenhil G, Westgeest H, Schrader A, van Diest P, Blokx W, Suijkerbuijk K. Tumor-infiltrating lymphocytes and immune-related adverse events in advanced melanoma. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100714. [PMID: 39045171 PMCID: PMC11262179 DOI: 10.1016/j.iotech.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Background The predictive value of tumor-infiltrating lymphocytes (TILs) in immune-related adverse event (irAE) development remains unknown, although an association between tumor immunogenicity and irAEs has been suggested. We investigated the association between TIL abundance in pretreatment primary and metastasis specimens and the subsequent development of severe irAEs. Patients and methods We retrospectively identified patients with advanced cutaneous melanoma who received first-line anti-programmed cell death protein 1 (PD-1) with or without anti-cytotoxic T-lymphocyte associated protein 4 (anti-CTLA-4) from 10 hospitals in the Netherlands. TILs were scored on representative hematoxylin and eosin (H&E) stains of the primary melanoma and pretreatment melanoma metastasis as 'absent', 'nonbrisk', or 'brisk'. A univariable logistic regression analysis was carried out to assess the association between the TIL scores and the development of severe irAEs. Fine and Gray subdistribution hazard models were used to estimate the cumulative incidence of severe irAEs. Results Of the 1346 eligible patients, 536 patients had primary melanoma specimens available, and 613 patients had metastasis specimens available. Severe irAEs occurred in 15% of anti-PD-1-treated patients and 49% of anti-PD-1 + anti-CTLA-4-treated patients. The presence of TILs was not associated with the occurrence of grade ≥3 irAEs in primary melanoma specimens (P = 0.70) nor pretreatment metastasis specimens (P = 0.91). In the univariable analysis, patients with brisk TILs did not have a higher chance of developing severe irAEs compared with patients with absent TILs, for both primary specimen (odds ratio 1.15, 95% confidence interval 0.60-2.18) and metastasis specimen (odds ratio 0.77, 95% confidence interval 0.37-1.59). There was also no significant difference in the lifetime risk or timing of the development of severe irAEs in patients with TILs present compared with patients with TILs absent. Conclusion There was no association between the TIL scores on H&E-stained slides from the primary melanoma or pretreatment metastasis and the development of grade 3 or higher irAEs. Additionally, no correlation was found between the presence of TILs and the timing of irAEs.
Collapse
Affiliation(s)
- I.A.J. van Duin
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - M. Schuiveling
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - L.S. ter Maat
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht
| | - M. Veta
- Medical Image Analysis, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven
| | - M.J.M. van Eijs
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - R.J. Verheijden
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht
| | | | | | - G.A.P. Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen
| | - M. Labots
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam
| | | | - E. Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre, Leiden
| | - D. Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede
| | - G. Vreugdenhil
- Department of Internal Medicine, Maxima Medical Centre, Eindhoven
| | - H. Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda
| | - A.M.R. Schrader
- Department of Pathology, Leiden University Medical Centre, Leiden
| | - P.J. van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - W.A.M. Blokx
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - K.P.M. Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht
| |
Collapse
|
3
|
Subramanian P, Sayegh S, Laphanuwat P, Devine OP, Fantecelle CH, Sikora J, Chambers ES, Karagiannis SN, Gomes DCO, Kulkarni A, Rustin MHA, Lacy KE, Akbar AN. Multiple outcomes of the germline p16 INK4a mutation affecting senescence and immunity in human skin. Aging Cell 2024:e14373. [PMID: 39420514 DOI: 10.1111/acel.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/25/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The integrated behaviour of multiple senescent cell types within a single human tissue leading to the development of malignancy is unclear. Patients with Familial Melanoma Syndrome (FMS) have heterozygous germline defects in the CDKN2A gene coding for the cyclin inhibitor p16INK4a. Melanocytes within skin biopsies from FMS patients express significantly less p16INK4a but express higher levels of the DNA-damage protein 𝛾H2AX a than fibroblastic cells. However, patient fibroblasts also exhibit defects since senescent cells do not increase in the skin during ageing and fibroblasts isolated from the skin of patients have increased replicative capacity compared to control fibroblasts in vitro, culminating in abnormal nuclear morphology. Patient derived fibroblasts also secreted less SASP than control cells. Predisposition of FMS patients to melanoma may therefore result from integrated dysregulation of senescence in multiple cell types in vivo. The inherently greater levels of DNA damage and the overdependence of melanocytes on p16 for cell cycle inhibition after DNA damage makes them exquisitely susceptible to malignant transformation. This may be accentuated by senescence-related defects in fibroblasts, in particular reduced SASP secretion that hinders recruitment of T cells in the steady state and thus reduces cutaneous immunosurveillance in vivo.
Collapse
Affiliation(s)
| | - Souraya Sayegh
- Division of Medicine, University College London, London, UK
| | - Phatthamon Laphanuwat
- Division of Medicine, University College London, London, UK
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Justyna Sikora
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emma S Chambers
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sophia N Karagiannis
- St. John's Institute for Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, UK
| | - Daniel C O Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal Do Espírito Santo, Vitória, Brazil
| | - Anjana Kulkarni
- Clinical Genetics Department, Guys and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Katie E Lacy
- St. John's Institute for Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK
| |
Collapse
|
4
|
Torri M, Sandell A, Al-Samadi A. The prognostic value of tumor-infiltrating lymphocytes in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Biomed Pharmacother 2024; 180:117544. [PMID: 39418961 DOI: 10.1016/j.biopha.2024.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is experiencing a rising incidence and mortality worldwide, emphasizing the need for reliable prognostic markers. Tumor-infiltrating lymphocytes (TILs) have emerged as a promising biomarker for predicting HNSCC prognosis, yet no systematic reviews have exclusively focused on hematoxylin and eosin (H&E)-stained formalin-fixed paraffin-embedded (FFPE) samples, which are routinely used in clinical practice. This systematic review and meta-analysis followed the PRISMA guidelines to examine the prognostic value of TILs in HNSCC using H&E-stained FFPE samples. Data were pooled from 43 studies, including 26 studies in a meta-analysis, analyzing 5037 HNSCC samples. We found that a high TIL count associated with a significantly improved overall survival (OS) (HR 0.47, 95 % CI 0.41-0.55, p < 0.0001), disease-free survival (DFS) (HR 0.55, 95 % CI 0.41-0.55, p < 0.0001), and disease-specific survival (DSS) (HR 0.58, 95 % CI 0.46-0.73, p < 0.0001). The heterogeneity was moderate for the pooled analysis (OS: I² = 40 %; DFS: I² = 39 %; DSS: I² = 51 %), but low for the subgroup analysis based on tumor site in oral, oropharyngeal, laryngeal, and nasopharyngeal cancer (OS and DFS: I² = 0-14 %). This review is the first to systematically evaluate TILs in HNSCC using H&E-stained samples, confirming their prognostic value. A high TIL count is associated with improved survival outcomes, suggesting their potential as prognostic biomarkers in clinical settings.
Collapse
Affiliation(s)
- Meri Torri
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.
| | - Adam Sandell
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland; Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
Zhao Z, Chen M, Sun K, Gu X. CD8+ T cell associated scoring model helps prognostic diagnosis and immunotherapy selection in patients with colon adenocarcinoma. Heliyon 2024; 10:e37998. [PMID: 39386801 PMCID: PMC11462492 DOI: 10.1016/j.heliyon.2024.e37998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Objective T cell-mediated immunity plays a crucial role in the immune response against tumors, with CD 8+ T cells playing a leading role in the eradication of cancer cells. Material and methods A total of 5 datasets were included in this study. Single cell transcriptome data were used to discover CD8+ T cell marker genes, and Bulk transcriptome data from TCGA and GEO were jointly analyzed to screen candidate prognostic genes. lasso regression was performed to construct prognostic models. Immunotherapy cohort (IMvigor 210 and GSE78220) was applied to validate the diagnostic power of markers. Result Single-cell transcriptome data identified 65 CD8+ T cell marker genes, highlighting their importance in T cell-mediated immune responses. Among these, 11 genes were identified as CD8+ T-associated differential genes through analysis of bulk data from TCGA and GEO. A prognostic model for 5 genes was identified based on Lasso regression, dividing colon adenocarcinoma (COAD) patients into high- and low-risk groups. This model exhibited higher prognostic accuracy compared to traditional clinicopathological characteristics (age, pathological stage, histological grading). Moreover, the risk score derived from this model successfully differentiated patient responses to immunotherapy, as validated in the IMvigor 210 and GSE78220 cohorts. Conclusion Our research introduces a novel prognostic signature based on CD8+ T cell marker genes, demonstrating significant predictive power for prognosis and immunotherapy response in COAD patients. This model offers a potential tool for improving patient stratification and personalizing treatment strategies.
Collapse
Affiliation(s)
- Zheng Zhao
- Deparment of General Surgery, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Mingkai Chen
- Deparment of Gastroenterlogy, Zhengzhou Yihe Hospital, Zhengzhou, China
| | - Kuanxue Sun
- Deparment of General Surgery, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Xinqi Gu
- Department of Gastroenterlogy, Shanghai Pudong Hospital, Pudong Medical Center of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Cheng P, Pu K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem Soc Rev 2024; 53:10171-10188. [PMID: 39229642 DOI: 10.1039/d4cs00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Optical imaging is an indispensable tool for non-invasive visualization of biomolecules in living organisms, thereby offering a sensitive approach for disease diagnosis and image-guided disease treatment. Single-lock activatable optical probes (SOPs) that specifically switch on optical signals in the presence of biomarkers-of-interest have shown both higher detection sensitivity and imaging quality as compared to conventional "always-on" optical probes. However, such SOPs can still show "false-positive" results in disease diagnosis due to non-specific biomarker expression in healthy tissues. By contrast, multi-lock activatable optical probes (MOPs) that simultaneously detect multiple biomarkers-of-interest could improve detection specificity towards certain biomolecular events or pathological conditions. In this Review, we discuss the recent advancements of enzyme-responsive MOPs, with a focus on their biomedical applications. The higher detection specificity of MOPs could in turn enhance disease diagnosis accuracy and improve treatment efficacy in image-guided disease therapy with minimal toxicity in the surrounding healthy tissues. Finally, we discuss the current challenges and suggest future applications of MOPs.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
7
|
Yu B, Ma W. Biomarker discovery in hepatocellular carcinoma (HCC) for personalized treatment and enhanced prognosis. Cytokine Growth Factor Rev 2024; 79:29-38. [PMID: 39191624 DOI: 10.1016/j.cytogfr.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading contributor to cancer-related deaths worldwide and presents significant challenges in diagnosis and treatment due to its heterogeneous nature. The discovery of biomarkers has become crucial in addressing these challenges, promising early detection, precise diagnosis, and personalized treatment plans. Key biomarkers, such as alpha fetoprotein (AFP) glypican 3 (GPC3) and des gamma carboxy prothrombin (DCP) have shown potential in improving clinical results. Progress in proteomic technologies, including next-generation sequencing (NGS), mass spectrometry, and liquid biopsies detecting circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), has deepened our understanding of HCC's molecular landscape. Immunological markers, like PD-L1 expression and tumor-infiltrating lymphocytes (TILs), also play a crucial role in guiding immunotherapy decisions. Despite these advancements, challenges remain in biomarker validation, standardization, integration into clinical practice, and cost-related barriers. Emerging technologies like single-cell sequencing and machine learning offer promising avenues for further exploration. Continued investment in research and collaboration among researchers, healthcare providers, and policymakers is vital to harness the potential of biomarkers fully, ultimately revolutionizing HCC management and improving patient outcomes through personalized treatment approaches.
Collapse
Affiliation(s)
- Baofa Yu
- Taimei Baofa Cancer Hospital, Dongping, Shandong 271500, China; Jinan Baofa Cancer Hospital, Jinan, Shandong 250000, China; Beijing Baofa Cancer Hospital, Beijing, 100010, China; Immune Oncology Systems, Inc, San Diego, CA 92102, USA.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
9
|
Zhang W, Lee A, Tiwari AK, Yang MQ. Characterizing the Tumor Microenvironment and Its Prognostic Impact in Breast Cancer. Cells 2024; 13:1518. [PMID: 39329702 PMCID: PMC11429566 DOI: 10.3390/cells13181518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer development and therapeutic response. Immunotherapy is increasingly recognized as a critical component of cancer treatment. While immunotherapies have shown efficacy in various cancers, including breast cancer, patient responses vary widely. Some patients receive significant benefits, while others experience minimal or no improvement. This disparity underscores the complexity and diversity of the immune system. In this study, we investigated the immune landscape and cell-cell communication within the TME of breast cancer through integrated analysis of bulk and single-cell RNA sequencing data. We established profiles of tumor immune infiltration that span across a broad spectrum of adaptive and innate immune cells. Our clustering analysis of immune infiltration identified three distinct patient groups: high T cell abundance, moderate infiltration, and low infiltration. Patients with low immune infiltration exhibited the poorest survival rates, while those in the moderate infiltration group showed better outcomes than those with high T cell abundance. Moreover, the high cell abundance group was associated with a greater tumor burden and higher rates of TP53 mutations, whereas the moderate infiltration group was characterized by a lower tumor burden and elevated PIK3CA mutations. Analysis of an independent single-cell RNA-seq breast cancer dataset confirmed the presence of similar infiltration patterns. Further investigation into ligand-receptor interactions within the TME unveiled significant variations in cell-cell communication patterns among these groups. Notably, we found that the signaling pathways SPP1 and EGF were exclusively active in the low immune infiltration group, suggesting their involvement in immune suppression. This work comprehensively characterizes the composition and dynamic interplay in the breast cancer TME. Our findings reveal associations between the extent of immune infiltration and clinical outcomes, providing valuable prognostic information for patient stratification. The unique mutations and signaling pathways associated with different patient groups offer insights into the mechanisms underlying diverse tumor immune infiltration and the formation of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - Alex Lee
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| |
Collapse
|
10
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
11
|
Kostlan RJ, Phoenix JT, Budreika A, Ferrari MG, Khurana N, Choi JE, Juckette K, Mahapatra S, McCollum BL, Moskal R, Mannan R, Qiao Y, Vander Griend DJ, Chinnaiyan AM, Kregel S. Clinically Relevant Humanized Mouse Models of Metastatic Prostate Cancer Facilitate Therapeutic Evaluation. Mol Cancer Res 2024; 22:826-839. [PMID: 38820127 PMCID: PMC11372372 DOI: 10.1158/1541-7786.mcr-23-0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
There is tremendous need for improved prostate cancer models. Anatomically and developmentally, the mouse prostate differs from the human prostate and does not form tumors spontaneously. Genetically engineered mouse models lack the heterogeneity of human cancer and rarely establish metastatic growth. Human xenografts are an alternative but must rely on an immunocompromised host. Therefore, we generated prostate cancer murine xenograft models with an intact human immune system (huNOG and huNOG-EXL mice) to test whether humanizing tumor-immune interactions would improve modeling of metastatic prostate cancer and the impact of androgen receptor-targeted and immunotherapies. These mice maintain multiple human immune cell lineages, including functional human T-cells and myeloid cells. Implications: To the best of our knowledge, results illustrate the first model of human prostate cancer that has an intact human immune system, metastasizes to clinically relevant locations, responds appropriately to standard-of-care hormonal therapies, and can model both an immunosuppressive and checkpoint-inhibition responsive immune microenvironment.
Collapse
Affiliation(s)
- Raymond J Kostlan
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - John T Phoenix
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Audris Budreika
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Marina G Ferrari
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Neetika Khurana
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Jae E Choi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Kristin Juckette
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Brooke L McCollum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Russell Moskal
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Steven Kregel
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
12
|
Liu Y, Yang R, Zhang M, Yang B, Du Y, Feng H, Wang W, Xue B, Niu F, He P. Multi-omics landscape of Interferon-stimulated gene OASL reveals a potential biomarker in pan-cancer: from prognosis to tumor microenvironment. Front Immunol 2024; 15:1402951. [PMID: 39286258 PMCID: PMC11402691 DOI: 10.3389/fimmu.2024.1402951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Background OASL (Oligoadenylate Synthetase-Like), an interferon-induced protein in the OAS family, plays a significant role in anti-viral response. Studies have demonstrated its association with prognosis of certain tumors. However, the mechanism through which OASL affects tumors is unclear. A systemic pan-cancer study of OASL needs to be illustrated. Methods Analysis of OASL expression across 33 tumors was conducted utilizing TCGA, GTEx and CPTAC databases. COX and Log-Rank regressions were employed to calculate the prognosis. We validated the impact of OASL on apoptosis, migration, and invasion in pancreatic cancer cell lines. Moreover, we employed seven algorithms in bulk data to investigate the association of OASL expression and immune cell infiltration within tumor immune microenvironment (TIME) and ultimately validated at single-cell transcriptome level. Results We discovered elevated expression of OASL and its genetic heterogeneity in certain tumors, which link closely to prognosis. Validation experiments were conducted in PAAD and confirmed these findings. Additionally, OASL regulates immune checkpoint ligand such as programmed death ligand 1 (PD-L1), through IFN-γ/STAT1 and IL-6/JAK/STAT3 pathways in tumor cells. Meanwhile, OASL affects macrophages infiltration in TIME. By these mechanisms OASL could cause dysfunction of cytotoxic T lymphocytes (CTLs) in tumors. Discussion Multi-omics analysis reveals OASL as a prognostic and immunological biomarker in pan-cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Runyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengyao Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bingyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Du
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjuan Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Busheng Xue
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Loap P, De Marzi L, Decroocq J, Birsen R, Johnson N, Deau Fischer B, Bouscary D, Kirova Y. Proton Therapy Reduces the Effective Dose to Immune Cells in Mediastinal Hodgkin Lymphoma Patients. Int J Part Ther 2024; 13:100110. [PMID: 39091405 PMCID: PMC11293511 DOI: 10.1016/j.ijpt.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose Effective dose to circulating immune cells (EDIC) is associated with survival in lung and esophageal cancer patients. This study aimed to evaluate the benefit of intensity-modulated proton therapy (IMPT) for EDIC reduction compared with volumetric modulated arc therapy (VMAT) in mediastinal Hodgkin lymphoma (mHL) patients. Materials and Methods Ten consecutive mHL patients treated with involved-site IMPT after frontline chemotherapy were included. The mean dose to the heart, lung, and liver and the integral dose to the body were obtained, and we calculated EDIC based on these variables. The effective dose to circulating immune cells was compared between IMPT and VMAT schedules. Results The median EDIC was reduced from 1.93 Gy (range: 1.31-3.87) with VMAT to 1.08 Gy (0.53-2.09) with IMPT (P < .01). Integral dose reduction was the main driver of EDIC reduction with IMPT, followed by lung sparing. Conclusion Intensity-modulated proton therapy significantly reduced EDIC in mHL patients undergoing consolidation involved-site radiation therapy. Integral dose reduction combined with improved lung sparing was the main driver of EDIC reduction with IMPT.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France
- Laboratoire d′Imagerie Translationnelle en Oncologie (LITO), Institut Curie, Université PSL, Université Paris-Saclay, Inserm U1288, Orsay, France
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, Paris, France
- Laboratoire d′Imagerie Translationnelle en Oncologie (LITO), Institut Curie, Université PSL, Université Paris-Saclay, Inserm U1288, Orsay, France
| | | | - Rudy Birsen
- Department of Hematology, Hopital Cochin, Paris, France
| | | | | | | | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| |
Collapse
|
14
|
van Duin IAJ, Schuiveling M, Ter Maat LS, van Amsterdam WAC, van den Berkmortel F, Boers-Sonderen M, de Groot JWB, Hospers GAP, Kapiteijn E, Labots M, Piersma D, Schrader AMR, Vreugdenhil G, Westgeest H, Veta M, Blokx WAM, van Diest PJ, Suijkerbuijk KPM. Baseline tumor-infiltrating lymphocyte patterns and response to immune checkpoint inhibition in metastatic cutaneous melanoma. Eur J Cancer 2024; 208:114190. [PMID: 38991284 DOI: 10.1016/j.ejca.2024.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION The presence of tumor-infiltrating lymphocytes (TILs) in melanoma has been linked to survival. Their predictive capability for immune checkpoint inhibition (ICI) response remains uncertain. Therefore, we investigated the association between treatment response and TILs in the largest cohort to date and analyzed if this association was independent of known clinical predictors. METHODS In this multicenter cohort study, patients who received first-line anti-PD1 ± anti-CTLA4 for advanced melanoma were identified. TILs were scored on hematoxylin and eosin (H&E) slides of primary melanoma and pre-treatment metastases using the validated TILs-WG, Clark and MIA score. The primary outcome was objective response rate (ORR), with progression free survival and overall survival being secondary outcomes. Univariable and multivariable logistic regression and Cox proportional hazard were performed, adjusting for known clinical predictors. RESULTS Metastatic melanoma specimens were available for 650 patients and primary specimens for 565 patients. No association was found in primary melanoma specimens. In metastatic specimens, a 10-point increase in the TILs-WG score was associated with a higher probability of response (aOR 1.17, 95 % CI 1.07-1.28), increased PFS (HR 0.93, 95 % CI 0.87-0.996), and OS (HR 0.94, 95 % CI 0.89-0.99). When categorized, patients in the highest tertile TILs-WG score (15-100 %) compared to the lowest tertile (0 %) had a longer median PFS (13.1 vs. 7.3 months, p = 0.04) and OS (49.4 vs. 19.5 months, p = 0.003). Similar results were noted using the MIA and Clark scores. CONCLUSION In advanced melanoma patients, TIL patterns on H&E slides of pre-treatment metastases, regardless of measurement method, are independently associated with ICI response. TILs are easily scored on readily available H&Es, facilitating the use of this biomarker in clinical practice.
Collapse
Affiliation(s)
- Isabella A J van Duin
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Mark Schuiveling
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands.
| | - Laurens S Ter Maat
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Wouter A C van Amsterdam
- Department of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Franchette van den Berkmortel
- Department of Medical Oncology, Zuyderland Medical Center Sittard, Dr. H. van der Hoffplein 1, Sittard-Geleen 6162 BG, the Netherlands
| | - Marye Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | | | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1118, Amsterdam 1081 Hz, the Netherlands
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Koningsplein 1, Enschede 7512 KZ, the Netherlands
| | - Anne M R Schrader
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, the Netherlands
| | - Gerard Vreugdenhil
- Department of Internal Medicine, Maxima Medical Center, De Run 4600, Eindhoven 5504 DB, the Netherlands
| | - Hans Westgeest
- Department of Internal Medicine, Amphia Hospital, Molengracht 21, Breda 4818 CK, the Netherlands
| | - Mitko Veta
- Medical Image Analysis, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willeke A M Blokx
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
15
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi-Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Lee M, Jung W, Kang J, Lee KH, Lee SJ, Hong SH, Kang J, Lee A. Prognostic Significance of the Immune Microenvironment in Endometrial Cancer. J Transl Med 2024; 104:102126. [PMID: 39174007 DOI: 10.1016/j.labinv.2024.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
This study used artificial intelligence (AI)-based analysis to investigate the immune microenvironment in endometrial cancer (EC). We aimed to evaluate the potential of AI-based immune metrics as prognostic biomarkers. In total, 296 cases with EC were classified into 4 molecular subtypes: polymerase epsilon ultramutated (POLEmut), mismatch repair deficiency (MMRd), p53 abnormal (p53abn), and no specific molecular profile (NSMP). AI-based methods were used to evaluate the following immune metrics: total tumor-infiltrating lymphocytes (TIL), intratumoral TIL, stromal TIL, and tumor cells using Lunit SCOPE IO, as well as CD4+, CD8+, and FOXP3+ T cells using immunohistochemistry (IHC) by QuPath. These 7 immune metrics were used to perform unsupervised clustering. PD-L1 22C3 IHC expression was also evaluated. Clustering analysis demonstrated 3 distinct immune microenvironment groups: immune active, immune desert, and tumor dominant. The immune-active group was highly prevalent in POLEmut, and it was also seen in other molecular subtypes. Although the immune-desert group was more frequent in NSMP and p53mut, it was also detected in MMRd and POLEmut. POLEmut showed the highest levels of CD4+ and CD8+ T cells, total TIL, intratumoral TIL, and stromal TIL with the lowest levels of FOXP3+/CD8+ ratio. In contrast, p53abn in the immune-active group showed higher FOXP3+/CD4+ and FOXP3+/CD8+ ratios. The immune-active group was associated with favorable overall survival and recurrence-free survival. In the NSMP subtype, a significant association was observed between immune active and better recurrence-free survival. The PD-L1 22C3 combined positive score (CPS) showed significant differences among the 3 groups, with the immune-active group having the highest median CPS and frequency of CPS ≥ 1%. The immune microenvironment of EC was variable within molecular subtypes. Within the same immune microenvironment group, significant differences in immune metrics and T cell composition were observed according to molecular subtype. AI-based immune microenvironment groups served as prognostic markers in ECs, with the immune-active group associated with favorable outcomes.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wonkyung Jung
- Department of Oncology, Lunit, Seoul, Republic of Korea
| | | | - Keun Ho Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Jong Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Hee Hong
- Division of Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Xie T, Huang A, Yan H, Ju X, Xiang L, Yuan J. Artificial intelligence: illuminating the depths of the tumor microenvironment. J Transl Med 2024; 22:799. [PMID: 39210368 PMCID: PMC11360846 DOI: 10.1186/s12967-024-05609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Artificial intelligence (AI) can acquire characteristics that are not yet known to humans through extensive learning, enabling to handle large amounts of pathology image data. Divided into machine learning and deep learning, AI has the advantage of handling large amounts of data and processing image analysis, consequently it also has a great potential in accurately assessing tumour microenvironment (TME) models. With the complex composition of the TME, in-depth study of TME contributes to new ideas for treatment, assessment of patient response to postoperative therapy and prognostic prediction. This leads to a review of the development of AI's application in TME assessment in this study, provides an overview of AI techniques applied to medicine, delves into the application of AI in analysing the quantitative and spatial location characteristics of various cells (tumour cells, immune and non-immune cells) in the TME, reveals the predictive prognostic value of TME and provides new ideas for tumour therapy, highlights the great potential for clinical applications. In addition, a discussion of its limitations and encouraging future directions for its practical clinical application is presented.
Collapse
Affiliation(s)
- Ting Xie
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Aoling Huang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Xianli Ju
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
18
|
Liu X, Zhang J, An H, Wang W, Zheng Y, Wei F. The role of lymphocyte-C-reactive protein ratio in the prognosis of gastrointestinal cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1407306. [PMID: 39267838 PMCID: PMC11390424 DOI: 10.3389/fonc.2024.1407306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Objective The lymphocyte-to-C-reactive protein (LCR) ratio, an immune-inflammatory marker, shows prognostic potential in various cancers. However, its utility in gastrointestinal malignancies remains uncertain due to inconsistent findings. This systematic review and meta-analysis synthesizes recent evidence to elucidate the association between LCR and prognosis in gastrointestinal cancer patients, aiming to clarify LCR's potential role as a prognostic biomarker. Methods We searched PubMed, Embase, Cochrane, and Web of Science databases up to May 2024 to evaluate the association between LCR and prognosis in gastrointestinal cancer patients. The main outcomes included overall survival (OS), recurrence-free survival (RFS), and disease-free survival (DFS). We also analyzed secondary parameters such as geographical region, study duration, sample size, LCR threshold, and patient characteristics (age, gender, tumor location, and TNM stage). Results This meta-analysis of 21 cohort studies (n=9,131) finds a significant association between reduced LCR levels and poor prognosis in gastrointestinal cancer. Lower LCR levels were associated with worse overall survival (HR=2.01, 95% CI=1.75-2.31, P<0.001), recurrence-free survival (HR=1.90, 95% CI=1.32-2.76, P<0.001), and disease-free survival (HR=1.76, 95% CI=1.45-2.13, P<0.001). Subgroup analyses by cancer type, timing, and LCR threshold consistently confirmed this relationship (P<0.05). Conclusion LCR may serve as a prognostic marker in gastrointestinal cancer patients, with lower LCR levels associated with poorer prognosis. However, more high-quality studies are needed to validate these findings, considering the limitations of the current evidence. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023486858.
Collapse
Affiliation(s)
- XiaoMeng Liu
- School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - JingChen Zhang
- National Population Health Data Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - HaoYu An
- School of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - WanYao Wang
- School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - YuKun Zheng
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - FengJiang Wei
- School of Basic Medicine, Tianjin Medical University, Tianjin, China
| |
Collapse
|
19
|
Meng S, Hara T, Miura Y, Ishii H. Fibroblast activation protein constitutes a novel target of chimeric antigen receptor T-cell therapy in solid tumors. Cancer Sci 2024. [PMID: 39169645 DOI: 10.1111/cas.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
With recent advances in tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success in several hematologic tumors, significantly improving patient prognosis. However, in solid tumors, the efficacy of CAR-T cell therapy is limited because of high antigen uncertainty and the extremely restrictive tumor microenvironment (TME). This challenge has led to the exploration of new targets, among which fibroblast activation protein (FAP) has gained attention for its relatively stable and specific expression in the TME of various solid tumors, making it a potential new target for CAR-T cell therapy. This study comprehensively analyzed the biological characteristics of FAP and discussed its potential application in CAR-T cell therapy, including the theoretical basis, and preclinical and clinical research progress of targeting FAP with CAR-T cell therapy for solid tumor treatment. The challenges and future optimization directions of this treatment strategy were also explored, providing new perspectives and strategies for CAR-T cell therapy in solid tumors.
Collapse
Grants
- 2024 Princess Takamatsu Cancer Research Fund
- JP23ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- JP24ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- A20H0054100 Ministry of Education, Culture, Sports, Science and Technology
- T23KK01530 Ministry of Education, Culture, Sports, Science and Technology
- T22K195590 Ministry of Education, Culture, Sports, Science and Technology
- A22H031460 Ministry of Education, Culture, Sports, Science and Technology
- T23K183130 Ministry of Education, Culture, Sports, Science and Technology
- T23K195050 Ministry of Education, Culture, Sports, Science and Technology
- T24K199920 Ministry of Education, Culture, Sports, Science and Technology
- IFO Research Communications (2024)
- Oceanic Wellness Foundation (2024)
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
20
|
Trandafir CM, Closca RM, Poenaru M, Sarau OS, Sarau CA, Rakitovan M, Baderca F, Sima LV. Morphological and Immunohistochemical Aspects with Prognostic Implications and Therapeutic Targets of Primary Sinonasal Mucosal Melanoma: A Retrospective Study. Cancers (Basel) 2024; 16:2863. [PMID: 39199634 PMCID: PMC11352549 DOI: 10.3390/cancers16162863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Sinonasal mucosal melanoma originates from melanocytes and it is a rare malignancy in the sinonasal tract. It is an aggressive melanocytic neoplasm with a very poor prognosis. The symptoms are nonspecific and the diagnosis is delayed, usually until the advanced stages of the disease. The current study performs a correlation between the histopathological aspects of sinonasal mucosal melanoma and different types of immune cells present in the microenvironment, with prognostic and therapeutic implications. The endpoint is to quantify the cellular immune microenvironment and correlate it with patient survival. This study presents nine cases of primary sinonasal mucosal melanomas diagnosed at the Emergency City Hospital Timisoara, Romania during a period of 15 years. The histopathological examination was performed in the Department of Pathology of the same hospital, using morphological hematoxylin-eosin staining. Additional immunohistochemical reactions were performed to confirm the diagnosis and evaluate the components of the tumor immune microenvironment. This study identifies eosinophils, macrophages, natural killer cells and plasma cells as favorable prognostic factors. Therefore, a CD8:CD4 ratio of more than 3 is correlated with a good response to PD-1 inhibitor therapy.
Collapse
Affiliation(s)
- Cornelia Marina Trandafir
- ENT Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (C.M.T.); (M.P.)
| | - Raluca Maria Closca
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania;
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Marioara Poenaru
- ENT Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (C.M.T.); (M.P.)
- ENT Department, Emergency City Hospital, 300254 Timisoara, Romania
| | - Oana Silvana Sarau
- Hematology Department of the Municipal Emergency Clinical Hospital, 300254 Timisoara, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Cristian Andrei Sarau
- Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
- Internal Medicine Department of the Municipal Emergency Clinical Hospital, 300254 Timisoara, Romania
| | - Marina Rakitovan
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
- Oro-Maxillo-Facial Surgery Clinic of the Emergency City Hospital, 300062 Timisoara, Romania
| | - Flavia Baderca
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania;
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Laurentiu Vasile Sima
- Department of Surgery, University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Department of Surgery, Emergency City Hospital, Gheorghe Dima Square No 5, 300254 Timisoara, Romania
| |
Collapse
|
21
|
Wang H, Gong L, Huang X, White SD, Chung HT, Vesprini D, Petchiny TN, Fokas E, He H, Kerbel RS, Liu SK. Potentiating Salvage Radiotherapy in Radiorecurrent Prostate Cancer Through Anti-CTLA4 Therapy: Implications from a Syngeneic Model. Cancers (Basel) 2024; 16:2839. [PMID: 39199612 PMCID: PMC11352774 DOI: 10.3390/cancers16162839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
High-risk prostate cancer (PCa) is a leading cause in cancer death and can elicit significant morbidity and mortality. Currently, the salvage of local disease recurrence after radiation therapy (RT) is a major clinical problem. Immune checkpoint inhibitors (ICIs), which enhance immune activation, have demonstrated clinical therapeutic promise in combination with ionizing radiation (IR) in certain advanced cancers. We generated the TRAMP-C2 HF radiorecurrent syngeneic mouse model to evaluate the therapeutic efficacy of ICIs in combination with RT. The administration of anti-PDL1 and/or anti-CTLA4 did not achieve a significant tumor growth delay compared to the control. The combination of IR and anti-PDL1 did not yield additional a growth delay compared to IR and the isotype control. Strikingly, a significant tumor growth delay and complete cure in one-third of the mice were seen with the combination of IR and anti-CTLA4. Immune cells in tumor-draining lymph nodes and tumor-infiltrating lymphocytes from mice treated with IR and anti-CTLA4 demonstrated an upregulation of genes in T-cell functions and enrichment in both CD4+ and CD8+ T-cell populations compared to mice given IR and the isotype control. Taken together, these results indicate enhancement of T-cell response in radiorecurrent PCa by IR and anti-CTLA4.
Collapse
Affiliation(s)
- Hanzhi Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Linsey Gong
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Stephanie D. White
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Hans T. Chung
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| | - Danny Vesprini
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| | - Tera N. Petchiny
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Emmanouil Fokas
- Department of Radiation Oncology, CyberKnife and Radiation Therapy, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Robert S. Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Stanley K. Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| |
Collapse
|
22
|
Langouo Fontsa M, Padonou F, Willard-Gallo K. Tumor-associated tertiary lymphoid structures in cancer: implications for immunotherapy. Expert Rev Clin Immunol 2024; 20:839-847. [PMID: 39007892 DOI: 10.1080/1744666x.2024.2380892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Tertiary lymphoid structures (TLS) arise at chronic inflammatory sites where they function as miniature lymph nodes to generate immune responses, which can be beneficial or detrimental, in diseases as diverse as autoimmunity, chronic infections and cancer. A growing number of studies show that a TLS presence in tumors from cancer patients treated with immune checkpoint inhibitors is closely linked with improved clinical outcomes. TLS may foster the generation of specific anti-tumor immune responses and immunological memory that recognizes a patient's own tumor. Due to repeated rounds of chronic inflammation, some tumor-associated TLS may be immunologically inactive, with immune checkpoint inhibitors functioning to revitalize them through pathway activation. AREAS COVERED This review summarizes work on TLS and how they mediate immune responses in human tumors. We also explore TLS as potential prognostic and predictive biomarkers for immunotherapy. EXPERT OPINION The presence of TLS in human tumors has been linked with a better clinical prognosis, response to treatment(s) and overall survival. TLS provide a structured microenvironment for the activation, expansion and maturation of immune cells at the tumor site. These activities can enhance the efficacy of immunotherapeutic treatments such as checkpoint inhibitors and cancer vaccines by revitalizing local anti-tumor immunity.
Collapse
Affiliation(s)
- Mireille Langouo Fontsa
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Francine Padonou
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
23
|
Li G, Salomonis N. RNA Isoforms as Broad Targets for Cancer Immunotherapy. DNA Cell Biol 2024; 43:363-368. [PMID: 38770618 DOI: 10.1089/dna.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
While immunotherapy is typically reserved for cancer patients with a high mutational burden, neoantigens produced from post-transcriptional regulation provide a possible untapped reservoir of common immunogenic targets for new targeted cancer therapies. In this review, we describe new and emerging technologies, unconventional molecular targets and challenges for the precision immune targeting of diverse malignancies. In particular, we focus on the unique potential of targeting alternative mRNA isoforms as a source for broadly presented neoantigens and cell surface proteins. Finally, we discuss emerging challenges for alternative isoform immune targeting, with an emphasis in silico prioritization and high-throughput target validation.
Collapse
Affiliation(s)
- Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
24
|
Goswami M, Toney NJ, Pitts SC, Celades C, Schlom J, Donahue RN. Peripheral immune biomarkers for immune checkpoint inhibition of solid tumours. Clin Transl Med 2024; 14:e1814. [PMID: 39162097 PMCID: PMC11333946 DOI: 10.1002/ctm2.1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND With the rapid adoption of immunotherapy for the treatment of cancer comes the pressing need for readily accessible biomarkers to guide immunotherapeutic strategies and offer insights into outcomes with specific treatments. Regular sampling of solid tumour tissues outside of melanoma for immune monitoring is not often feasible; conversely, routine, frequent interrogation of circulating immune biomarkers is entirely possible. As immunotherapies and immune checkpoint inhibitors, in particular, are more widely used in first-line, neoadjuvant, and metastatic settings, the discovery and validation of peripheral immune biomarkers are urgently needed across solid tumour types for improved prediction and prognostication of clinical outcomes in response to immunotherapy, as well as elucidation of mechanistic underpinnings of the intervention. Careful experimental design, encompassing both retrospective and prospective studies, is required in such biomarker identification studies, and concerted efforts are essential for their advancement into clinical settings. CONCLUSION In this review, we summarize shared immune features between the tumour microenvironment and systemic circulation, evaluate exploratory peripheral immune biomarker studies, and discuss associations between candidate biomarkers with clinical outcomes. We also consider integration of multiple peripheral immune parameters for better prediction and prognostication and discuss considerations in study design to further evaluate the clinical utility of candidate peripheral immune biomarkers for immunotherapy of solid tumours. HIGHLIGHTS Peripheral immune biomarkers are critical for improved prediction and prognostication of clinical outcomes for patients with solid tumours treated with immune checkpoint inhibition. Candidate peripheral biomarkers, such as cytokines, soluble factors, and immune cells, have potential as biomarkers to guide immunotherapy of solid tumours. Multiple peripheral immune parameters may be integrated to improve prediction and prognostication. The potential of peripheral immune biomarkers to guide immunotherapy of solid tumours requires critical work in biomarker discovery, validation, and standardization.
Collapse
Affiliation(s)
- Meghali Goswami
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Nicole J. Toney
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Stephanie C. Pitts
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Carolina Celades
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jeffrey Schlom
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Renee N. Donahue
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
25
|
Park R, Li J, Slebos RJC, Chaudhary R, Poole MI, Ferraris C, Farinhas J, Hernandez-Prera J, Kirtane K, Teer JK, Song X, Hall MS, Tasoulas J, Amelio AL, Chung CH. Phase Ib trial of IRX-2 plus durvalumab in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Oral Oncol 2024; 154:106866. [PMID: 38820888 DOI: 10.1016/j.oraloncology.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVES IRX-2 is a multi-cytokine immune-activating agent with anti-tumor activity in non-metastatic head and neck squamous cell carcinoma (HNSCC). Here, we evaluated combined IRX-2 and durvalumab in patients with recurrent and/or metastatic HNSCC. MATERIALS AND METHODS This was a phase Ib trial consisting of dose escalation and expansion. Primary endpoints were safety and biomarkers to assess the immune response in the tumor microenvironment including significant increases in PD-L1 expression and CD8 + tumor infiltrating lymphocytes (TIL) comparing pre- and on-treatment tumor biopsies. Secondary endpoints were objective response rates (ORR) and survival outcomes. RESULTS Sixteen patients were evaluable for response, and nine patients were evaluable for biomarkers. Thirteen patients (68 %) had exposure to prior anti-PD-1 therapy. No dose-limiting or grade ≥ 3 treatment-related adverse events were observed. On-treatment biopsies showed significantly increased PD-L1 (p = 0.005), CD3+ (p = 0.020), CD4+ (p = 0.022), and CD8 + T cells (p = 0.017) compared to pre-treatment. Median overall survival and progression-free survival (PFS) were 6.18 months (95 % CI, 2.66-8.61) and 2.53 months (95 % CI, 1.81-4.04), respectively. One patient had an objective response (ORR, 5.3 %) with an ongoing PFS of > 25 months. Disease control rate was 42 %. The responder harbored an ARID1A variant of unknown significance (VUS) that was predicted to bind her HLA-I alleles with a higher affinity than the reference peptide. CONCLUSIONS IRX-2 and durvalumab were safe and elicited the evidence of immune activation in the tumor microenvironment determined by increased PD-L1 expression and CD8+ TILs. CLINICAL TRIAL REGISTRATION NUMBER NCT03381183.
Collapse
Affiliation(s)
- Robin Park
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jiannong Li
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Robbert J C Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Maria I Poole
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Carina Ferraris
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA; Nova Southeastern University Medical School, Fort Lauderdale, FL, USA
| | - Joaquim Farinhas
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Kedar Kirtane
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Xiaofei Song
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - MacLean S Hall
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jason Tasoulas
- Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antonio L Amelio
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA; Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
26
|
Menon AP, Villanueva H, Meraviglia-Crivelli D, van Santen HM, Hellmeier J, Zheleva A, Nonateli F, Peters T, Wachsmann TL, Hernandez-Rueda M, Huppa JB, Schütz GJ, Sevcsik E, Moreno B, Pastor F. CD3 aptamers promote expansion and persistence of tumor-reactive T cells for adoptive T cell therapy in cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102198. [PMID: 38745854 PMCID: PMC11091522 DOI: 10.1016/j.omtn.2024.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
The CD3/T cell receptor (TCR) complex is responsible for antigen-specific pathogen recognition by T cells, and initiates the signaling cascade necessary for activation of effector functions. CD3 agonistic antibodies are commonly used to expand T lymphocytes in a wide range of clinical applications, including in adoptive T cell therapy for cancer patients. A major drawback of expanding T cell populations ex vivo using CD3 agonistic antibodies is that they expand and activate T cells independent of their TCR antigen specificity. Therapeutic agents that facilitate expansion of T cells in an antigen-specific manner and reduce their threshold of T cell activation are therefore of great interest for adoptive T cell therapy protocols. To identify CD3-specific T cell agonists, several RNA aptamers were selected against CD3 using Systematic Evolution of Ligands by EXponential enrichment combined with high-throughput sequencing. The extent and specificity of aptamer binding to target CD3 were assessed through surface plasma resonance, P32 double-filter assays, and flow cytometry. Aptamer-mediated modulation of the threshold of T cell activation was observed in vitro and in preclinical transgenic TCR mouse models. The aptamers improved efficacy and persistence of adoptive T cell therapy by low-affinity TCR-reactive T lymphocytes in melanoma-bearing mice. Thus, CD3-specific aptamers can be applied as therapeutic agents which facilitate the expansion of tumor-reactive T lymphocytes while conserving their tumor specificity. Furthermore, selected CD3 aptamers also exhibit cross-reactivity to human CD3, expanding their potential for clinical translation and application in the future.
Collapse
Affiliation(s)
- Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Hisse M. van Santen
- Immune System Development and Function Unit, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), 28049 Madrid, Spain
| | - Joschka Hellmeier
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060 Vienna, Austria
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Francesca Nonateli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Timo Peters
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology, Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Mercedes Hernandez-Rueda
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Johannes B. Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology, Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerhard J. Schütz
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060 Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060 Vienna, Austria
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
27
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Qin X, Ning W, Liu H, Liu X, Luo W, Xia N. Stepping forward: T-cell redirecting bispecific antibodies in cancer therapy. Acta Pharm Sin B 2024; 14:2361-2377. [PMID: 38828136 PMCID: PMC11143529 DOI: 10.1016/j.apsb.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens, thereby engaging with CD3 on the T cell receptor. This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells. These antibodies have emerged as one of the most promising avenues within tumor immunotherapy. However, despite success in treating hematological malignancies, significant advancements in solid tumors have yet to be explored. In this review, we aim to address the critical challenges associated with T cell-redirecting bispecific antibodies and explore novel strategies to overcome these obstacles, with the ultimate goal of expanding the application of this therapy to include solid tumors.
Collapse
Affiliation(s)
- Xiaojing Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Han Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
29
|
Islam R, Heyer J, Figura M, Wang X, Nie X, Nathaniel B, Indumathy S, Hartmann K, Pleuger C, Fijak M, Kliesch S, Dittmar F, Pilatz A, Wagenlehner F, Hedger M, Loveland B, Hotaling JH, Guo J, Loveland KL, Schuppe HC, Fietz D. T cells in testicular germ cell tumors: new evidence of fundamental contributions by rare subsets. Br J Cancer 2024; 130:1893-1903. [PMID: 38649788 PMCID: PMC11183042 DOI: 10.1038/s41416-024-02669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Immune cell infiltration is heterogeneous but common in testicular germ cell tumors (TGCT) and pre-invasive germ cell neoplasia in situ (GCNIS). Tumor-infiltrating T cells including regulatory T (Treg) and follicular helper T (Tfh) cells are found in other cancer entities, but their contributions to TGCT are unknown. METHODS Human testis specimens from independent patient cohorts were analyzed using immunohistochemistry, flow cytometry and single-cell RNA sequencing (scRNA-seq) with special emphasis on delineating T cell subtypes. RESULTS Profound changes in immune cell composition within TGCT, shifting from macrophages in normal testes to T cells plus B and dendritic cells in TGCT, were documented. In most samples (96%), the CD4+ T cell frequency exceeded that of CD8+ cells, with decreasing numbers from central to peripheral tumor areas, and to tumor-free, contralateral testes. T cells including Treg and Tfh were most abundant in seminoma compared to mixed tumors and embryonal carcinoma. CONCLUSION Despite considerable heterogeneity between patients, T cell subtypes form a key part of the TGCT microenvironment. The novel finding of rare Treg and Tfh cells in human testis suggests their involvement in TGCT pathobiology, with implications for understanding tumor progression, to assess patients' prognosis, and as putative targets for personalized immunotherapy.
Collapse
Affiliation(s)
- Rashidul Islam
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Jannis Heyer
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Miriam Figura
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Xiaoyan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Xichen Nie
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Benedict Nathaniel
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sivanjah Indumathy
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Katja Hartmann
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Christiane Pleuger
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Monika Fijak
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University of Muenster, Muenster, Germany
| | - Florian Dittmar
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Adrian Pilatz
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Florian Wagenlehner
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Mark Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | - James H Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jingtao Guo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Hans-Christian Schuppe
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Daniela Fietz
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany.
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
30
|
Langguth M, Maranou E, Koskela SA, Elenius O, Kallionpää RE, Birkman EM, Pulkkinen OI, Sundvall M, Salmi M, Figueiredo CR. TIMP-1 is an activator of MHC-I expression in myeloid dendritic cells with implications for tumor immunogenicity. Genes Immun 2024; 25:188-200. [PMID: 38777826 PMCID: PMC11178497 DOI: 10.1038/s41435-024-00274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Immune checkpoint therapies (ICT) for advanced solid tumors mark a new milestone in cancer therapy. Yet their efficacy is often limited by poor immunogenicity, attributed to inadequate priming and generation of antitumor T cells by dendritic cells (DCs). Identifying biomarkers to enhance DC functions in such tumors is thus crucial. Tissue Inhibitor of Metalloproteinases-1 (TIMP-1), recognized for its influence on immune cells, has an underexplored relationship with DCs. Our research reveals a correlation between high TIMP1 levels in metastatic melanoma and increased CD8 + T cell infiltration and survival. Network studies indicate a functional connection with HLA genes. Spatial transcriptomic analysis of a national melanoma cohort revealed that TIMP1 expression in immune compartments associates with an HLA-A/MHC-I peptide loading signature in lymph nodes. Primary human and bone-marrow-derived DCs secrete TIMP-1, which notably increases MHC-I expression in classical type 1 dendritic cells (cDC1), especially under melanoma antigen exposure. TIMP-1 affects the immunoproteasome/TAP complex, as seen by upregulated PSMB8 and TAP-1 levels of myeloid DCs. This study uncovers the role of TIMP-1 in DC-mediated immunogenicity with insights into CD8 + T cell activation, providing a foundation for mechanistic exploration and highlighting its potential as a new target for combinatorial immunotherapy to enhance ICT effectiveness.
Collapse
Affiliation(s)
- Miriam Langguth
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Eleftheria Maranou
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Saara A Koskela
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Oskar Elenius
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Roosa E Kallionpää
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | - Eva-Maria Birkman
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Otto I Pulkkinen
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, Institute of Biomedicine, and FICAN West Cancer Center Laboratory, University of Turku, and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland
- Department of Oncology, Turku University Hospital, Turku, Finland
| | - Marko Salmi
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- Cancer Research Unit, Institute of Biomedicine, and FICAN West Cancer Center Laboratory, University of Turku, and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland.
| |
Collapse
|
31
|
Kuryk L, Mathlouthi S, Wieczorek M, Gad B, Rinner B, Malfanti A, Mastrotto F, Salmaso S, Caliceti P, Garofalo M. Priming with oncolytic adenovirus followed by anti-PD-1 and paclitaxel treatment leads to improved anti-cancer efficacy in the 3D TNBC model. Eur J Pharm Biopharm 2024; 199:114300. [PMID: 38697488 DOI: 10.1016/j.ejpb.2024.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is considered one of the most incurable malignancies due to its clinical characteristics, including high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Therefore, it remains a critical unmet medical need. On the other hand, poor delivery efficiency continues to reduce the efficacy of anti-cancer therapeutics developed against solid tumours using various strategies, such as genetically engineered oncolytic vectors used as nanocarriers. The study was designed to evaluate the anti-tumour efficacy of a novel combinatorial therapy based on oncolytic adenovirus AdV5/3-D24-ICOSL-CD40L with an anti-PD-1 (pembrolizumab) and paclitaxel (PTX). Here, we first tested the antineoplastic effect in two-dimensional (2D) and three-dimensional (3D) breast cancer models in MDA-MB-231, MDA-MB-468 and MCF-7 cells. Then, to further evaluate the efficacy of combinatorial therapy, including immunological aspects, we established a three-dimensional (3D) co-culture model based on MDA-MB-231 cells with peripheral blood mononuclear cells (PBMCs) to create an integrated system that more closely mimics the complexity of the tumour microenvironment and interacts with the immune system. Treatment with OV as a priming agent, followed by pembrolizumab and then paclitaxel, was the most effective in reducing the tumour volume in TNBC co-cultured spheroids. Further, T-cell phenotyping analyses revealed significantly increased infiltration of CD8+, CD4+ T and Tregs cells. Moreover, the observed anti-tumour effects positively correlated with the level of CD4+ T cell infiltrates, suggesting the development of anti-cancer immunity. Our study demonstrated that combining different immunotherapeutic agents (virus, pembrolizumab) with PTX reduced the tumour volume of the TNBC co-cultured spheroids compared to relevant controls. Importantly, sequential administration of the investigational agents (priming with the vector) further enhanced the anti-cancer efficacy in 3D culture over other groups tested. Taken together, these results support further evaluation of the virus in combination with anti-PD-1 and PTX for the treatment of triple-negative breast cancer patients. Importantly, further studies with in vivo models should be conducted to better understand the translational aspects of tested therapy.
Collapse
Affiliation(s)
- Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH - National Research Institute, Chocimska 24, 00-791 Warsaw, Poland.
| | - Sara Mathlouthi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH - National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Beata Gad
- Department of Virology, National Institute of Public Health NIH - National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, 8036 Graz, Austria
| | - Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy.
| |
Collapse
|
32
|
Bostan IS, Mihaila M, Roman V, Radu N, Neagu MT, Bostan M, Mehedintu C. Landscape of Endometrial Cancer: Molecular Mechanisms, Biomarkers, and Target Therapy. Cancers (Basel) 2024; 16:2027. [PMID: 38893147 PMCID: PMC11171255 DOI: 10.3390/cancers16112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer is one the most prevalent gynecological cancers and, unfortunately, has a poor prognosis due to low response rates to traditional treatments. However, the progress in molecular biology and understanding the genetic mechanisms involved in tumor processes offers valuable information that has led to the current classification that describes four molecular subtypes of endometrial cancer. This review focuses on the molecular mechanisms involved in the pathogenesis of endometrial cancers, such as genetic mutations, defects in the DNA mismatch repair pathway, epigenetic changes, or dysregulation in angiogenic or hormonal signaling pathways. The preclinical genomic and molecular investigations presented allowed for the identification of some molecules that could be used as biomarkers to diagnose, predict, and monitor the progression of endometrial cancer. Besides the therapies known in clinical practice, targeted therapy is described as a new cancer treatment that involves identifying specific molecular targets in tumor cells. By selectively inhibiting these targets, key signaling pathways involved in cancer progression can be disrupted while normal cells are protected. The connection between molecular biomarkers and targeted therapy is vital in the fight against cancer. Ongoing research and clinical trials are exploring the use of standard therapy agents in combination with other treatment strategies like immunotherapy and anti-angiogenesis therapy to improve outcomes and personalize treatment for patients with endometrial cancer. This approach has the potential to transform the management of cancer patients. In conclusion, enhancing molecular tools is essential for stratifying the risk and guiding surgery, adjuvant therapy, and cancer treatment for women with endometrial cancer. In addition, the information from this review may have an essential value in the personalized therapy approach for endometrial cancer to improve the patient's life.
Collapse
Affiliation(s)
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Viviana Roman
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
| | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Monica Teodora Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania;
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania;
| | - Claudia Mehedintu
- Filantropia Clinical Hospital, 011132 Bucharest, Romania; (I.-S.B.); (C.M.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 050471 Bucharest, Romania
| |
Collapse
|
33
|
Ando F, Kashiwada T, Kuroda S, Fujii T, Takano R, Miyabe Y, Kunugi S, Sakatani T, Miyanaga A, Asatsuma-Okumura T, Hashiguchi M, Kanazawa Y, Ohashi R, Yoshida H, Seike M, Gemma A, Iwai Y. Combination of plasma MMPs and PD-1-binding soluble PD-L1 predicts recurrence in gastric cancer and the efficacy of immune checkpoint inhibitors in non-small cell lung cancer. Front Pharmacol 2024; 15:1384731. [PMID: 38774209 PMCID: PMC11106465 DOI: 10.3389/fphar.2024.1384731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Background The tumor microenvironment (TME) impacts the therapeutic efficacy of immune checkpoint inhibitors (ICIs). No liquid biomarkers are available to evaluate TME heterogeneity. Here, we investigated the clinical significance of PD-1-binding soluble PD-L1 (bsPD-L1) in gastric cancer (GC) patients and non-small cell lung cancer (NSCLC) patients treated with PD-1/PD-L1 blockade. Methods We examined bsPD-L1, matrix metalloproteinases (MMPs), and IFN-γ levels in plasma samples from GC patients (n = 117) prior to surgery and NSCLC patients (n = 72) prior to and 2 months after ICI treatment. We also examined extracellular matrix (ECM) integrity, PD-L1 expression, and T cell infiltration in tumor tissues from 25 GC patients by Elastica Masson-Goldner staining and immunohistochemical staining for PD-L1 and CD3, respectively. Results bsPD-L1 was detected in 17/117 GC patients and 16/72 NSCLC patients. bsPD-L1 showed strong or moderate correlations with plasma MMP13 or MMP3 levels, respectively, in both GC and NSCLC patients. bsPD-L1 expression in GC was associated with IFN-γ levels and intra-tumoral T cell infiltration, whereas MMP13 levels were associated with loss of ECM integrity, allowing tumor cells to access blood vessels. Plasma MMP3 and MMP13 levels were altered during ICI treatment. Combined bsPD-L1 and MMP status had higher predictive accuracy to identify two patient groups with favorable and poor prognosis than tumor PD-L1 expression: bsPD-L1+MMP13high in GC and bsPD-L1+(MMP3 and MMP13)increased in NSCLC were associated with poor prognosis, whereas bsPD-L1+MMP13low in GC and bsPD-L1+(MMP3 or MMP13)decreased in NSCLC were associated with favorable prognosis. Conclusion Plasma bsPD-L1 and MMP13 levels indicate T cell response and loss of ECM integrity, respectively, in the TME. The combination of bsPD-L1 and MMPs may represent a non-invasive tool to predict recurrence in GC and the efficacy of ICIs in NSCLC.
Collapse
Affiliation(s)
- Fumihiko Ando
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Takeru Kashiwada
- Department of Pulmonary Medicine and Oncology, Nippon Medical School, Tokyo, Japan
| | - Shoko Kuroda
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Takenori Fujii
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Ryotaro Takano
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Yoshishige Miyabe
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
- Department of Immunology and Parasitology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Takashi Sakatani
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Nippon Medical School, Tokyo, Japan
| | - Tomoko Asatsuma-Okumura
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Masaaki Hashiguchi
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yoshikazu Kanazawa
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Nippon Medical School, Tokyo, Japan
| | - Yoshiko Iwai
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
34
|
Wang C, Shi Q, Zhang G, Wu X, Yan W, Wan A, Xiong S, Yuan L, Tian H, Ma D, Jiang J, Qi X, Zhang Y. Two Hematological Markers Predicting the Efficacy and Prognosis of Neoadjuvant Chemotherapy Using Lobaplatin Against Triple-Negative Breast Cancer. Oncologist 2024; 29:e635-e642. [PMID: 38431781 PMCID: PMC11067820 DOI: 10.1093/oncolo/oyae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/11/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Our previous work indicated that the addition of lobaplatin to combined therapy with taxane and anthracycline can improve the pathological complete response rate of neoadjuvant therapy for triple-negative breast cancer (TNBC) and lengthen long-term survival significantly, but the therapeutic markers of this regimen are unclear. METHODS Eighty-three patients who met the inclusion criteria were included in this post hoc analysis. We analyzed the association between platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) before neoadjuvant chemotherapy with the efficacy and prognosis after treatment with docetaxel, epirubicin, and lobaplatin neoadjuvant chemotherapy regimen. χ2 test and Cox regression were used to analyze the association between PLR and NLR with total pathologic complete response (tpCR), as well as the association between PLR and NLR with event-free survival (EFS) and overall survival (OS), respectively. RESULTS The tpCR rate in the PLR- group was 49.0% (25/51), which was significantly higher than that in the PLR+ group (25.0% [8/32], P = .032). The tpCR rate in the NLR- group was 49.1% (26/53), which was significantly higher than that in the NLR+ group (23.3% [7/30], P = .024). The tpCR rate of the PLR-NLR- (PLR- and NLR-) group was 53.7% (22/41), which was significantly higher than that of the PLR+/NLR+ (PLR+ or/and NLR+) group (26.1% [11/42]; P = .012). EFS and OS in the NLR+ group were significantly shorter than those in the NLR- group (P = .028 for EFS; P = .047 for OS). Patients in the PLR-NLR- group had a longer EFS than those in the PLR+/NLR+ group (P = .002). CONCLUSION PLR and NLR could be used to predict the efficacy of neoadjuvant therapy with the taxane, anthracycline, and lobaplatin regimen for patients with TNBC, as patients who had lower PLR and NLR values had a higher tpCR rate and a better long-term prognosis.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qiyun Shi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Guozhi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiujuan Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wenting Yan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Siyi Xiong
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Long Yuan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dandan Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jun Jiang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
35
|
Ginefra P, Hope HC, Chiang YH, Nutten S, Blum S, Coukos G, Vannini N. Urolithin-A Promotes CD8+ T Cell-mediated Cancer Immunosurveillance via FOXO1 Activation. CANCER RESEARCH COMMUNICATIONS 2024; 4:1189-1198. [PMID: 38626334 PMCID: PMC11067828 DOI: 10.1158/2767-9764.crc-24-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Naïve T cells are key players in cancer immunosurveillance, even though their function declines during tumor progression. Thus, interventions capable of sustaining the quality and function of naïve T cells are needed to improve cancer immunoprevention.In this context, we studied the capacity of Urolithin-A (UroA), a potent mitophagy inducer, to enhance T cell-mediated cancer immunosurveillance.We discovered that UroA improved the cancer immune response by activating the transcription factor FOXO1 in CD8+ T cell. Sustained FOXO1 activation promoted the expression of the adhesion molecule L-selectin (CD62L) resulting in the expansion of the naïve T cells population. We found that UroA reduces FOXO1 phosphorylation favoring its nuclear localization and transcriptional activity. Overall, our findings determine FOXO1 as a novel molecular target of UroA in CD8+ T cells and indicate UroA as promising immunomodulator to improve cancer immunosurveillance. SIGNIFICANCE Urolithin-A, a potent mitophagy inducer, emerges as a promising tool to enhance cancer immunosurveillance by activating the FOXO1 transcription factor in CD8+ T cells. This activation promotes the expansion of naïve T cells, offering a novel avenue for improving cancer immune response and highlighting UroA as a potential immunomodulator for bolstering our body's defenses against cancer.
Collapse
Affiliation(s)
- Pierpaolo Ginefra
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Helen Carrasco Hope
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Yi-Hsuan Chiang
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | | | | | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Nicola Vannini
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Li J, Cheng C. Immune cell pair ratio captured by imaging mass cytometry has superior predictive value for prognosis of non-small cell lung cancer than cell fraction and density. Cancer Commun (Lond) 2024; 44:589-592. [PMID: 38532538 PMCID: PMC11110949 DOI: 10.1002/cac2.12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Affiliation(s)
- Jian‐Rong Li
- Institute for Clinical and Translational Research, Baylor College of MedicineHoustonTexasUSA
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of MedicineHoustonTexasUSA
- Section of Epidemiology and Population Sciences, Department of MedicineBaylor College of MedicineHoustonTexasUSA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonTexasUSA
| |
Collapse
|
37
|
Buruiană A, Gheban BA, Gheban-Roșca IA, Georgiu C, Crișan D, Crișan M. The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression. Cancers (Basel) 2024; 16:1727. [PMID: 38730679 PMCID: PMC11083853 DOI: 10.3390/cancers16091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM-specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens-promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME's potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC.
Collapse
Affiliation(s)
- Alexandra Buruiană
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Bogdan-Alexandru Gheban
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania;
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Doința Crișan
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
38
|
Chauhan SK, Dunn C, Andresen NK, Røssevold AH, Skorstad G, Sike A, Gilje B, Raj SX, Huse K, Naume B, Kyte JA. Peripheral immune cells in metastatic breast cancer patients display a systemic immunosuppressed signature consistent with chronic inflammation. NPJ Breast Cancer 2024; 10:30. [PMID: 38653982 DOI: 10.1038/s41523-024-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/13/2024] [Indexed: 04/25/2024] Open
Abstract
Immunotherapies blocking the PD-1/PD-L1 checkpoint show some efficacy in metastatic breast cancer (mBC) but are often hindered by immunosuppressive mechanisms. Understanding these mechanisms is crucial for personalized treatments, with peripheral blood monitoring representing a practical alternative to repeated biopsies. In the present study, we performed a comprehensive mass cytometry analysis of peripheral blood immune cells in 104 patients with HER2 negative mBC and 20 healthy donors (HD). We found that mBC patients had significantly elevated monocyte levels and reduced levels of CD4+ T cells and plasmacytoid dendritic cells, when compared to HD. Furthermore, mBC patients had more effector T cells and regulatory T cells, increased expression of immune checkpoints and other activation/exhaustion markers, and a shift to a Th2/Th17 phenotype. Furthermore, T-cell phenotypes identified by mass cytometry correlated with functionality as assessed by IFN-γ production. Additional analysis indicated that previous chemotherapy and CDK4/6 inhibition impacted the numbers and phenotype of immune cells. From 63 of the patients, fresh tumor samples were analyzed by flow cytometry. Paired PBMC-tumor analysis showed moderate correlations between peripheral CD4+ T and NK cells with their counterparts in tumors. Further, a CD4+ T cell cluster in PBMCs, that co-expressed multiple checkpoint receptors, was negatively associated with CD4+ T cell tumor infiltration. In conclusion, the identified systemic immune signatures indicate an immune-suppressed environment in mBC patients who had progressed/relapsed on standard treatments, and is consistent with ongoing chronic inflammation. These activated immuno-suppressive mechanisms may be investigated as therapeutic targets, and for use as biomarkers of response or treatment resistance.
Collapse
Affiliation(s)
- Sudhir Kumar Chauhan
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Claire Dunn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nikolai Kragøe Andresen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Hagen Røssevold
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gjertrud Skorstad
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Adam Sike
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Sunil Xavier Raj
- Department of Oncology, St Olav University Hospital, Trondheim, Norway
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørn Naume
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway.
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
39
|
Tian J, Quek C. Understanding the Tumor Microenvironment in Melanoma Patients with In-Transit Metastases and Its Impacts on Immune Checkpoint Immunotherapy Responses. Int J Mol Sci 2024; 25:4243. [PMID: 38673829 PMCID: PMC11050678 DOI: 10.3390/ijms25084243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the leading cause of global skin cancer-related death and currently ranks as the third most commonly diagnosed cancer in Australia. Melanoma patients with in-transit metastases (ITM), a type of locoregional metastasis located close to the primary tumor site, exhibit a high likelihood of further disease progression and poor survival outcomes. Immunotherapies, particularly immune checkpoint inhibitors (ICI), have demonstrated remarkable efficacy in ITM patients with reduced occurrence of further metastases and prolonged survival. The major challenge of immunotherapeutic efficacy lies in the limited understanding of melanoma and ITM biology, hindering our ability to identify patients who likely respond to ICIs effectively. In this review, we provided an overview of melanoma and ITM disease. We outlined the key ICI therapies and the critical immune features associated with therapy response or resistance. Lastly, we dissected the underlying biological components, including the cellular compositions and their communication networks within the tumor compartment, to enhance our understanding of the interactions between immunotherapy and melanoma, providing insights for future investigation and the development of drug targets and predictive biomarkers.
Collapse
Affiliation(s)
| | - Camelia Quek
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
40
|
Mei J, Liu X, Tian H, Chen Y, Cao Y, Zeng J, Liu Y, Chen Y, Gao Y, Yin J, Wang P. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clin Transl Med 2024; 14:e1656. [PMID: 38664597 PMCID: PMC11045561 DOI: 10.1002/ctm2.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.
Collapse
Affiliation(s)
- Jie Mei
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Hui‐Xiang Tian
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
| | - Yixuan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Cao
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Jun Zeng
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Yung‐Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yaping Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Xiangya Lung Cancer Center, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Peng‐Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| |
Collapse
|
41
|
Unger M, Kather JN. Deep learning in cancer genomics and histopathology. Genome Med 2024; 16:44. [PMID: 38539231 PMCID: PMC10976780 DOI: 10.1186/s13073-024-01315-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2024] [Indexed: 07/08/2024] Open
Abstract
Histopathology and genomic profiling are cornerstones of precision oncology and are routinely obtained for patients with cancer. Traditionally, histopathology slides are manually reviewed by highly trained pathologists. Genomic data, on the other hand, is evaluated by engineered computational pipelines. In both applications, the advent of modern artificial intelligence methods, specifically machine learning (ML) and deep learning (DL), have opened up a fundamentally new way of extracting actionable insights from raw data, which could augment and potentially replace some aspects of traditional evaluation workflows. In this review, we summarize current and emerging applications of DL in histopathology and genomics, including basic diagnostic as well as advanced prognostic tasks. Based on a growing body of evidence, we suggest that DL could be the groundwork for a new kind of workflow in oncology and cancer research. However, we also point out that DL models can have biases and other flaws that users in healthcare and research need to know about, and we propose ways to address them.
Collapse
Affiliation(s)
- Michaela Unger
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
42
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
43
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joana R Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
44
|
Dorjkhorloo G, Erkhem-Ochir B, Shiraishi T, Sohda M, Okami H, Yamaguchi A, Shioi I, Komine C, Nakazawa N, Ozawa N, Shibasaki Y, Okada T, Osone K, Sano A, Sakai M, Ogawa H, Yokobori T, Shirabe K, Saeki H. Prognostic value of a modified‑immune scoring system in patients with pathological T4 colorectal cancer. Oncol Lett 2024; 27:104. [PMID: 38298428 PMCID: PMC10829066 DOI: 10.3892/ol.2024.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024] Open
Abstract
Tumor-infiltrating immune cells, such as lymphocytes and macrophages, have been associated with tumor aggressiveness, prognosis and treatment response in colorectal cancer (CRC). An immune scoring system, Immunoscore (IS), based on tumor-infiltrating T cells in stage I-III CRC, was used to predict prognosis. An alternative immune scoring signature of immune activation (SIA) reflects the balance between anti- and pro-tumoral immune components. The present study aimed to evaluate the prognostic value of modified IS (mIS) and modified SIA (mSIA) in locally advanced pathological T4 (pT4) CRC, including stage IV CRC. Immunohistochemical staining for immune cell markers, such as CD3 (pan-T cell marker), CD8 (anti-tumoral cytotoxic T cell marker) and CD163 (tumor-supportive macrophage marker), in specimens from patients with radically resected pT4 CRC at stages II-IV was performed. mIS levels in the T4 CRC cohort were not associated with prognosis. However, low mSIA levels were associated with low survival. Furthermore, low mSIA was an independent predictor of recurrence in patients with radically resected pT4 CRC. In patients with CRC who did not receive postoperative adjuvant chemotherapy, low mSIA was a major poor prognostic factor; however, this was not observed in patients receiving adjuvant chemotherapy. Evaluation of the tumor-infiltrating immune cell population could serve as a valuable marker of recurrence and poor prognosis in patients with locally advanced CRC. mSIA assessment after radical CRC resection may be promising for identifying high-risk patients with pT4 CRC who require aggressive adjuvant chemotherapy.
Collapse
Affiliation(s)
- Gendensuren Dorjkhorloo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Bilguun Erkhem-Ochir
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Arisa Yamaguchi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Ikuma Shioi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Chika Komine
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Nobuhiro Nakazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuta Shibasaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
45
|
de Rodas ML, Wang Y, Peng G, Gu J, Mino-Kenudson M, Riess JW, Velcheti V, Hellmann M, Gainor JF, Zhao H, Schalper KA. Objective Analysis and Clinical Significance of the Spatial Tumor-Infiltrating Lymphocyte Patterns in Non-Small Cell Lung Cancer. Clin Cancer Res 2024; 30:998-1008. [PMID: 38127300 PMCID: PMC10922461 DOI: 10.1158/1078-0432.ccr-23-2457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE The spatial arrangement of lymphocytes in the tumor bed (e.g., immune infiltrated, immune excluded, immune desert) is expected to reflect distinct immune evasion mechanisms and to associate with immunotherapy outcomes. However, data supporting these associations are scant and limited by the lack of a clear definition for lymphocyte infiltration patterns and the subjective nature of pathology-based approaches. EXPERIMENTAL DESIGN We used multiplexed immunofluorescence to study major tumor-infiltrating lymphocyte (TIL) subsets with single-cell resolution in baseline whole-tissue section samples from NSCLC patients treated with immune checkpoint inhibitors (ICI). The spatial TIL patterns were analyzed using a qualitative pathologist-based approach, and an objective analysis of TIL density ratios in tumor/stromal tissues. The association of spatial patterns with outcomes was studied for different TIL markers. RESULTS The analysis of CD8+ TIL patterns using qualitative assessment identified prominent limitations including the presence of a broad spectrum of phenotypes within most tumors and limited association with outcomes. The utilization of an objective method to classify NSCLCs showed the existence of at least three subgroups with partial overlap with those defined using visual patterns. Using this strategy, a subset of cases with "immune excluded-like" tumors showed prominently worse outcomes, suggesting reduced sensitivity to ICI; however, these results need to be validated. The analysis for other TIL subsets showed different results, underscoring the relevance of the marker selected for spatial TIL pattern evaluation and opportunities for market integration. CONCLUSIONS Our results identified major challenges associated with the qualitative spatial TIL pattern evaluation. We devised a novel objective strategy to overcome some of these limitations that has strong biomarker potential.
Collapse
Affiliation(s)
| | - Yvonne Wang
- Department of Biostatistics, Yale School of Medicine, New Haven, CT, USA
| | - Gang Peng
- Department of Biostatistics, Yale School of Medicine, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Vamsidhar Velcheti
- Department of Hematology and Oncology, NYU Langone Health, New York, NY, USA
| | - Matthew Hellmann
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Justin F. Gainor
- Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Medicine, New Haven, CT, USA
| | - Kurt A. Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
46
|
Benguigui M, Cooper TJ, Kalkar P, Schif-Zuck S, Halaban R, Bacchiocchi A, Kamer I, Deo A, Manobla B, Menachem R, Haj-Shomaly J, Vorontsova A, Raviv Z, Buxbaum C, Christopoulos P, Bar J, Lotem M, Sznol M, Ariel A, Shen-Orr SS, Shaked Y. Interferon-stimulated neutrophils as a predictor of immunotherapy response. Cancer Cell 2024; 42:253-265.e12. [PMID: 38181798 PMCID: PMC10864002 DOI: 10.1016/j.ccell.2023.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/02/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Despite the remarkable success of anti-cancer immunotherapy, its effectiveness remains confined to a subset of patients-emphasizing the importance of predictive biomarkers in clinical decision-making and further mechanistic understanding of treatment response. Current biomarkers, however, lack the power required to accurately stratify patients. Here, we identify interferon-stimulated, Ly6Ehi neutrophils as a blood-borne biomarker of anti-PD1 response in mice at baseline. Ly6Ehi neutrophils are induced by tumor-intrinsic activation of the STING (stimulator of interferon genes) signaling pathway and possess the ability to directly sensitize otherwise non-responsive tumors to anti-PD1 therapy, in part through IL12b-dependent activation of cytotoxic T cells. By translating our pre-clinical findings to a cohort of patients with non-small cell lung cancer and melanoma (n = 109), and to public data (n = 1440), we demonstrate the ability of Ly6Ehi neutrophils to predict immunotherapy response in humans with high accuracy (average AUC ≈ 0.9). Overall, our study identifies a functionally active biomarker for use in both mice and humans.
Collapse
Affiliation(s)
- Madeleine Benguigui
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tim J Cooper
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel; Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Prajakta Kalkar
- Department of Human Biology, the Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sagie Schif-Zuck
- Department of Human Biology, the Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ruth Halaban
- Department of Dermatology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Antonella Bacchiocchi
- Department of Dermatology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Abhilash Deo
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Bar Manobla
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rotem Menachem
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jozafina Haj-Shomaly
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Avital Vorontsova
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ziv Raviv
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Chen Buxbaum
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany; Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Lotem
- Department of Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Mario Sznol
- Department of Medicine, Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Amiram Ariel
- Department of Human Biology, the Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shai S Shen-Orr
- Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel; Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Shaked
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Rappaport Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
47
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
48
|
Rafei-Shamsabadi D, Scholten L, Lu S, Castiglia D, Zambruno G, Volz A, Arnold A, Saleva M, Martin L, Technau-Hafsi K, Meiss F, von Bubnoff D, Has C. Epidermolysis-Bullosa-Associated Squamous Cell Carcinomas Support an Immunosuppressive Tumor Microenvironment: Prospects for Immunotherapy. Cancers (Basel) 2024; 16:471. [PMID: 38275911 PMCID: PMC10814073 DOI: 10.3390/cancers16020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Cutaneous squamous cell carcinomas (SCCs) are a major complication of some subtypes of epidermolysis bullosa (EB), with high morbidity and mortality rates and unmet therapeutic needs. The high rate of endogenous mutations and the fibrotic stroma are considered to contribute to the pathogenesis. Patients with dystrophic EB (DEB) and Kindler EB (KEB) have the highest propensity for developing SCCs. Another patient group that develops high-risk SCCs is immunosuppressed (IS) patients, especially after organ transplantation. Herein, we interrogate whether immune checkpoint proteins and immunosuppressive enzymes are dysregulated in EB-associated SCCs as an immune resistance mechanism and compare the expression patterns with those in SCCs from IS patients, who frequently develop high-risk tumors and sporadic SCCs, and immunocompetent (IC) individuals. The expression of indoleamine 2,3-dioxygenase (IDO), programmed cell death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), T cell immunoglobulin and mucin-domain-containing protein-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), and inflammatory infiltrates (CD4, CD8, and CD68) was assessed via immunohistochemistry and semi-quantitative analysis in 30 DEB-SCCs, 22 KEB-SCCs, 106 IS-SCCs, and 100 sporadic IC-SCCs. DEB-SCCs expressed significantly higher levels of IDO and PD-L1 in tumor cells and PD-1 in the tumor microenvironment (TME) compared with SCCs from IC and IS individuals. The number of CD4-positive T cells per mm2 was significantly lower in DEB-SCCs compared with IC-SCCs. KEB-SCCs showed the lowest expression of the exhaustion markers TIM-3 and LAG-3 compared with all other groups. These findings identify IDO, PD-1, and PD-L1 to be increased in EB-SCCs and candidate targets for combinatory treatments, especially in DEB-SCCs.
Collapse
Affiliation(s)
- David Rafei-Shamsabadi
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Lena Scholten
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Sisi Lu
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Via Monti di Creta 104, 00167 Rome, Italy;
| | - Giovanna Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy;
| | - Andreas Volz
- Dermatologie am Rhein, 4051 Basel, Switzerland (A.A.)
| | | | - Mina Saleva
- Department of Dermatology and Venereology, University Hospital “Alexandrovska”, Faculty of Medicine, Sofia University of Medicine, 1431 Sofia, Bulgaria;
| | - Ludovic Martin
- MAGEC Nord Reference Center for Rare Skin Diseases, Department of Dermatology, Angers University Hospital, 49933 Angers, France;
| | - Kristin Technau-Hafsi
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Frank Meiss
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Dagmar von Bubnoff
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
| | - Cristina Has
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| |
Collapse
|
49
|
Liu CC, Wolf M, Ortego R, Grencewicz D, Sadler T, Eng C. Characterization of immunomodulating agents from Staphylococcus aureus for priming immunotherapy in triple-negative breast cancers. Sci Rep 2024; 14:756. [PMID: 38191648 PMCID: PMC10774339 DOI: 10.1038/s41598-024-51361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Immunotherapy, specifically immune checkpoint blockade (ICB), has revolutionized the treatment paradigm of triple-negative breast cancers (TNBCs). However, a subset of TNBCs devoid of tumor-infiltrating T cells (TILs) or PD-L1 expression generally has a poor response to immunotherapy. In this study, we aimed to sensitize TNBCs to ICB by harnessing the immunomodulating potential of S. aureus, a breast-resident bacterium. We show that intratumoral injection of spent culture media from S. aureus recruits TILs and suppresses tumor growth in a preclinical TNBC model. We further demonstrate that α-hemolysin (HLA), an S. aureus-produced molecule, increases the levels of CD8+ T cells and PD-L1 expression in tumors, delays tumor growth, and triggers tumor necrosis. Mechanistically, while tumor cells treated with HLA display Gasdermin E (GSDME) cleavage and a cellular phenotype resembling pyroptosis, splenic T cells incubated with HLA lead to selective expansion of CD8+ T cells. Notably, intratumoral HLA injection prior to ICB augments the therapeutic efficacy compared to ICB alone. This study uncovers novel immunomodulatory properties of HLA and suggests that intratumoral administration of HLA could be a potential priming strategy to expand the population of TNBC patients who may respond to ICB.
Collapse
Affiliation(s)
- Chin-Chih Liu
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Matthew Wolf
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Ruth Ortego
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Dennis Grencewicz
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Tammy Sadler
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Charis Eng
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
50
|
Kang JY, Yang J, Lee H, Park S, Gil M, Kim KE. Systematic Multiomic Analysis of PKHD1L1 Gene Expression and Its Role as a Predicting Biomarker for Immune Cell Infiltration in Skin Cutaneous Melanoma and Lung Adenocarcinoma. Int J Mol Sci 2023; 25:359. [PMID: 38203530 PMCID: PMC10778817 DOI: 10.3390/ijms25010359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The identification of genetic factors that regulate the cancer immune microenvironment is important for understanding the mechanism of tumor progression and establishing an effective treatment strategy. Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is a large transmembrane protein that is highly expressed in immune cells; however, its association with tumor progression remains unclear. Here, we systematically analyzed the clinical relevance of PKHD1L1 in the tumor microenvironment in multiple cancer types using various bioinformatic tools. We found that the PKHD1L1 mRNA expression levels were significantly lower in skin cutaneous melanoma (SKCM) and lung adenocarcinoma (LUAD) than in normal tissues. The decreased expression of PKHD1L1 was significantly associated with unfavorable overall survival (OS) in SKCM and LUAD. Additionally, PKHD1L1 expression was positively correlated with the levels of infiltrating B cells, cluster of differentiation (CD)-8+ T cells, and natural killer (NK) cells, suggesting that the infiltration of immune cells could be associated with a good prognosis due to increased PKHD1L1 expression. Gene ontology (GO) analysis also revealed the relationship between PKHD1L1-co-altered genes and the activation of lymphocytes, including B and T cells. Collectively, this study shows that PKHD1L1 expression is positively correlated with a good prognosis via the induction of immune infiltration, suggesting that PKHD1L1 has potential prognostic value in SKCM and LUAD.
Collapse
Affiliation(s)
- Ji Young Kang
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
| | - Jisun Yang
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.L.); (S.P.)
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.L.); (S.P.)
| | - Minchan Gil
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
| | - Kyung Eun Kim
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| |
Collapse
|