1
|
Xia Y, Jin J, Sun Y, Kong X, Shen Z, Yan R, Huang R, Liu X, Xia W, Ma J, Zhu X, Li Q, Ma J. Tirzepatide's role in targeting adipose tissue macrophages to reduce obesity-related inflammation and improve insulin resistance. Int Immunopharmacol 2024; 143:113499. [PMID: 39471690 DOI: 10.1016/j.intimp.2024.113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes mellitus (T2DM) are significant global health challenges, with adipose tissue inflammation being a pivotal contributor to metabolic dysfunction. The involvement of adipose tissue macrophages (ATMs) in obesity-associated inflammation is well recognized, yet the therapeutic strategies specifically targeting ATM-mediated inflammation remain limited. OBJECTIVE This study aims to explore the effects of tirzepatide, a novel dual GLP-1 and GIP receptor agonist, on ATMs, adipose tissue inflammation, and insulin resistance in the context of obesity. METHODS Obese mouse models were established through high-fat diet feeding and subsequently treated with tirzepatide at a dose of 1.2 mg/kg twice weekly for 12 weeks. The study assessed the impact on ATM phenotype, inflammatory markers, and key metabolic indicators. RESULTS Tirzepatide treatment significantly mitigated the infiltration of pro-inflammatory M1 ATMs within adipose tissue and concurrently reduced levels of inflammatory cytokines, thereby enhancing insulin sensitivity. Tirzepatide demonstrated therapeutic efficacy through its modulation of the ERK signaling pathway and promotion of M1-type macrophage apoptosis. CONCLUSION Tirzepatide's potential as a therapeutic strategy for addressing metabolic diseases associated with obesity and T2DM by targeting ATM activity and mitigating obesity-associated inflammation.
Collapse
Affiliation(s)
- Yin Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jing Jin
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yaqin Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Rengna Yan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Rong Huang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaomei Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingjing Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
2
|
Patel J, Deng J, Kambala A, Lee KK, Cornman HL, Parthasarathy V, Pritchard T, Chen S, Hernandez AG, Shin S, Oladipo OO, Kwatra MM, Ho WJ, Kwatra SG. Spatial Mass Cytometry-Based Single-Cell Imaging Reveals a Disrupted Epithelial-Immune Axis in Prurigo Nodularis. J Invest Dermatol 2024; 144:2501-2512.e4. [PMID: 38522569 DOI: 10.1016/j.jid.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 03/26/2024]
Abstract
Prurigo nodularis (PN) is a chronic, inflammatory skin condition that disproportionately affects African Americans and features intensely pruritic, hyperkeratotic nodules on the extremities and trunk. PN is understudied compared with other inflammatory skin diseases, with the spatial organization of the cutaneous infiltrate in PN yet to be characterized. In this work, we employ spatial imaging mass cytometry to visualize PN lesional skin inflammation and architecture with single-cell resolution through an unbiased machine learning approach. PN lesional skin has increased expression of caspase 3, NF-kB, and phosphorylated signal transducer and activator of transcription 3 compared with healthy skin. Keratinocytes in lesional skin are subdivided into CD14+CD33+, CD11c+, CD63+, and caspase 3-positive innate subpopulations. CD14+ macrophage populations expressing phosphorylated extracellular signal-regulated kinase 1/2 correlate positively with patient-reported itch (P = .006). Hierarchical clustering reveals a cluster of patients with PN with greater atopy, increased NF-kB+ signal transducer and activator of transcription 3-positive phosphorylated extracellular signal-regulated kinase 1/2-positive monocyte-derived myeloid dendritic cells, and increased vimentin expression (P < .05). Neighborhood analysis finds interactions between CD14+ macrophages, CD3+ T cells, monocyte-derived myeloid dendritic cells, and keratinocytes expressing innate immune markers. These findings highlight phosphorylated extracellular signal-regulated kinase-positive CD14+ macrophages as contributors to itch and suggest an epithelial-immune axis in PN pathogenesis.
Collapse
Affiliation(s)
- Jay Patel
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Rochester, Rochester, New York, USA
| | - Junwen Deng
- Department of Dermatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anusha Kambala
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kevin K Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah L Cornman
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Pritchard
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shihua Chen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexei G Hernandez
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah Shin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olusola O Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Convergence Institute, Johns Hopkins University, Baltimore, Maryland, USA; Mass Cytometry Facility, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shawn G Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Kim S, Chaudhary PK, Kim S. Molecular and Genetics Perspectives on Primary Adrenocortical Hyperfunction Disorders. Int J Mol Sci 2024; 25:11341. [PMID: 39518893 PMCID: PMC11545009 DOI: 10.3390/ijms252111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Adrenocortical disorders encompass a broad spectrum of conditions ranging from benign hyperplasia to malignant tumors, significantly disrupting hormone balance and causing a variety of clinical manifestations. By leveraging next-generation sequencing and in silico analyses, recent studies have uncovered the genetic and molecular pathways implicated in these transitions. In this review, we explored the molecular and genetic alterations in adrenocortical disorders, with a particular focus on the transitions from normal adrenal function to hyperfunction. The insights gained are intended to enhance diagnostic and therapeutic strategies, offering up-to-date knowledge for managing these complex conditions effectively.
Collapse
Affiliation(s)
| | | | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (P.K.C.)
| |
Collapse
|
4
|
Smith HL, Goodlett BL, Navaneethabalakrishnan S, Mitchell BM. Elevated Salt or Angiotensin II Levels Induce CD38+ Innate Immune Cells in the Presence of Granulocyte-Macrophage Colony Stimulating Factor. Cells 2024; 13:1302. [PMID: 39120331 PMCID: PMC11311366 DOI: 10.3390/cells13151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Hypertension (HTN) impacts almost half of adults, predisposing them to cardiovascular disease and renal damage. Salt-sensitive HTN (SSHTN) and angiotensin II (A2)-induced HTN (A2HTN) both involve immune system activation and renal innate immune cell infiltration. Subpopulations of activated [Cluster of differentiation 38 (CD38)] innate immune cells, such as macrophages and dendritic cells (DCs), play distinct roles in modulating renal function and blood pressure. It is unknown how these cells become CD38+ or which subtypes are pro-hypertensive. When bone marrow-derived monocytes (BMDMs) were grown in granulocyte-macrophage colony stimulating factor (GM-CSF) and treated with salt or A2, CD38+ macrophages and CD38+ DCs increased. The adoptive transfer of GM-CSF-primed BMDMs into mice with either SSHTN or A2HTN increased renal CD38+ macrophages and CD38+ DCs. Flow cytometry revealed increased renal M1 macrophages and type-2 conventional DCs (cDC2s), along with their CD38+ counterparts, in mice with either SSHTN or A2HTN. These results were replicable in vitro. Either salt or A2 treatment of GM-CSF-primed BMDMs significantly increased bone marrow-derived (BMD)-M1 macrophages, CD38+ BMD-M1 macrophages, BMD-cDC2s, and CD38+ BMD-cDC2s. Overall, these data suggest that GM-CSF is necessary for the salt or A2 induction of CD38+ innate immune cells, and that CD38 distinguishes pro-hypertensive immune cells. Further investigation of CD38+ M1 macrophages and CD38+ cDC2s could provide new therapeutic targets for both SSHTN and A2HTN.
Collapse
Affiliation(s)
| | | | | | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX 77807, USA; (H.L.S.)
| |
Collapse
|
5
|
Lettieri S, Bonella F, Marando VA, Franciosi AN, Corsico AG, Campo I. Pathogenesis-driven treatment of primary pulmonary alveolar proteinosis. Eur Respir Rev 2024; 33:240064. [PMID: 39142709 PMCID: PMC11322829 DOI: 10.1183/16000617.0064-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome that results from the accumulation of lipoproteinaceous material in the alveolar space. According to the underlying pathogenetic mechanisms, three different forms have been identified, namely primary, secondary and congenital. Primary PAP is caused by disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling due to the presence of neutralising autoantibodies (autoimmune PAP) or GM-CSF receptor genetic defects (hereditary PAP), which results in dysfunctional alveolar macrophages with reduced phagocytic clearance of particles, cholesterol and surfactant. The serum level of GM-CSF autoantibody is the only disease-specific biomarker of autoimmune PAP, although it does not correlate with disease severity. In PAP patients with normal serum GM-CSF autoantibody levels, elevated serum GM-CSF levels is highly suspicious for hereditary PAP. Several biomarkers have been correlated with disease severity, although they are not specific for PAP. These include lactate dehydrogenase, cytokeratin 19 fragment 21.1, carcinoembryonic antigen, neuron-specific enolase, surfactant proteins, Krebs von Lungen 6, chitinase-3-like protein 1 and monocyte chemotactic proteins. Finally, increased awareness of the disease mechanisms has led to the development of pathogenesis-based treatments, such as GM-CSF augmentation and cholesterol-targeting therapies.
Collapse
Affiliation(s)
- Sara Lettieri
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Francesco Bonella
- Center for interstitial and rare lung diseases, Ruhrlandklinik, University of Essen, Essen, Germany
| | | | | | - Angelo Guido Corsico
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|
6
|
Burch MA, Keshishian A, Wittmann C, Nehrbass D, Thompson K, Arens D, Richards RG, Mdingi V, Chitto M, Morgenstern M, Moriarty TF, Eijer H. Impact of Perioperative Dexamethasone Administration on Infection and Implant Osseointegration in a Preclinical Model of Orthopedic Device-Related Infection. Microorganisms 2024; 12:1134. [PMID: 38930516 PMCID: PMC11205448 DOI: 10.3390/microorganisms12061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Glucocorticoids may be given prior to major orthopedic surgery to decrease postoperative nausea, vomiting, and pain. Additionally, many orthopedic patients may be on chronic glucocorticoid therapy. The aim of our study was to investigate whether glucocorticoid administration influences Orthopedic-Device-Related Infection (ODRI) in a rat model. Screws colonized with Staphylococcus epidermidis were implanted in the tibia of skeletally mature female Wistar rats. The treated groups received either a single shot of dexamethasone in a short-term risk study, or a daily dose of dexamethasone in a longer-term interference study. In both phases, bone changes in the vicinity of the implant were monitored with microCT. There were no statistically significant differences in bacteriological outcome with or without dexamethasone. In the interference study, new bone formation was statistically higher in the dexamethasone-treated group (p = 0.0005) as revealed by CT and histopathological analysis, although with relatively low direct osseointegration of the implant. In conclusion, dexamethasone does not increase the risk of developing periprosthetic osteolysis or infection in a pre-clinical model of ODRI. Long-term administration of dexamethasone seemed to offer a benefit in terms of new bone formation around the implant, but with low osseointegration.
Collapse
Affiliation(s)
- Marc-Antoine Burch
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.-A.B.)
- Klinik für Orthopädie und Traumatologie, Universitätsspital Basel, 4031 Basel, Switzerland
| | - Aron Keshishian
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.-A.B.)
- Spital Emmental, 3400 Burgdorf, Switzerland
| | | | - Dirk Nehrbass
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.-A.B.)
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.-A.B.)
| | - Daniel Arens
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.-A.B.)
| | | | - Vuysa Mdingi
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.-A.B.)
- Department of Orthopaedic Surgery, Dr Pixley Ka Isaka Seme Memorial Hospital, School of Clinical Medicine, University of KwaZulu Natal, Durban 4041, South Africa
| | - Marco Chitto
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.-A.B.)
| | - Mario Morgenstern
- Klinik für Orthopädie und Traumatologie, Universitätsspital Basel, 4031 Basel, Switzerland
- Center for Muskuloskeletal Infections (ZMSI), University Hospital Basel, 4031 Basel, Switzerland
| | - T. Fintan Moriarty
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.-A.B.)
- Center for Muskuloskeletal Infections (ZMSI), University Hospital Basel, 4031 Basel, Switzerland
| | - Henk Eijer
- Spital Emmental, 3400 Burgdorf, Switzerland
| |
Collapse
|
7
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Aghajanshakeri S, Ataee R, Karami M, Aghajanshakeri S, Shokrzadeh M. Cytomodulatory characteristics of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) against cypermethrin on skin fibroblast cells (HFF-1). Toxicology 2023; 499:153655. [PMID: 37871686 DOI: 10.1016/j.tox.2023.153655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The hematopoietic factor granulocyte macrophage-colony stimulating factor (GM-CSF) has been identified via its capacity to promote bone marrow progenitors' development and differentiation into granulocytes and macrophages. Extensive pre-clinical research has established its promise as a critical therapeutic target in an assortment of inflammatory and autoimmune disorders. Despite the broad literature on GM-CSF as hematopoietic of stem cells, the cyto/geno protective aspects remain unknown. This study aimed to assess the cyto/geno protective possessions of GM-CSF on cypermethrin-induced cellular toxicity on HFF-1 cells as an in vitro model. In pre-treatment culture, cells were exposed to various GM-CSF concentrations (5, 10, 20, and 40 ng/mL) with cypermethrin at IC50 (5.13 ng/mL). Cytotoxicity, apoptotic rates, and genotoxicity were measured using the MTT, Annexin V-FITC/PI staining via flow-cytometry, and the comet assay. Cypermethrin at 5.13 ng/mL revealed cytotoxicity, apoptosis, oxidative stress, and genotoxicity while highlighting GM-CSF's protective properties on HFF-1. GM-CSF markedly attenuated cypermethrin-induced apoptotic cell death (early and late apoptotic rates). GM-CSF considerably regulated oxidative stress and genotoxicity by reducing the ROS and LPO levels, maintaining the status of GSH and activity of SOD, and suppressing genotoxicity in the comet assay parameters. Therefore, GM-CSF could be promising as an antioxidant, anti-apoptotic, genoprotective and cytomodulating agent.
Collapse
Affiliation(s)
- Shaghayegh Aghajanshakeri
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ramin Ataee
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahin Aghajanshakeri
- Biological Oncology Department, Orchid Pharmed, CinnaGen Pharmaceutical Company, Tehran, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Khosravi M, MoriBazofti H, Mohammadian B, Rashno M. The effects of the differentiated macrophages by dexamethasone on the immune responses. Int Immunopharmacol 2023; 124:110826. [PMID: 37607463 DOI: 10.1016/j.intimp.2023.110826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
The characteristics of M2 macrophages suggest immunotherapeutic approaches for inducing immunological tolerance. The current study aimed to evaluate the effect of Dexamethasone (Dex) treatment on monocytes polarization and its impact on immune responses. The monocytes were extracted from the rat's blood samples. The effects of Dex concentration and treatment duration on monocyte viability, phagocytosis of rabbit red blood cell (RRBC) antigens, and cytokine gene expression were evaluated using MTT, ELISA, and Real-Time PCR analysis, respectively. The monocytes treated with Dex were injected into the rats as an autograft. The effects of the grafted cells were assessed on immune responses, monocyte differentiation, and pathological lesions, in comparison to the control groups. Treatment of monocytes with 10-5 M of Dex for 48 h increased the expression of IL-10 and TGF-β genes, while reducing the expression of TNF-α and IL-1 genes. The monocytes treated with antigen and Dex showed higher CD206 gene expression compared to CD80. The cells that were treated with Dex had the highest concentration of antigens after five days. Administration of the grafted cells to the animals has some significant effects on innate immune responses and no impact on pathological lesions. The group that received cells treated with Dex and antigen experienced a significant decrease in anti-RBC antibody titers. Additionally, there was a significant difference in the expression of cytokine genes and M2 differentiation markers among the groups that were evaluated. The effects of Dex on the viability and differentiation of monocytes depend on the dosage, timing, and duration of the treatment.
Collapse
Affiliation(s)
- Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Hadis MoriBazofti
- D.V.M. Graduate Student, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Babak Mohammadian
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Rashno
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Lupancu TJ, Lee KM, Eivazitork M, Hor C, Fleetwood AJ, Cook AD, Olshansky M, Turner SJ, de Steiger R, Lim K, Hamilton JA, Achuthan AA. Epigenetic and transcriptional regulation of CCL17 production by glucocorticoids in arthritis. iScience 2023; 26:108079. [PMID: 37860753 PMCID: PMC10583050 DOI: 10.1016/j.isci.2023.108079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory agents and are broadly used in treating rheumatoid arthritis (RA) patients, albeit with adverse side effects associated with long-term usage. The negative consequences of GC therapy provide an impetus for research into gaining insights into the molecular mechanisms of GC action. We have previously reported that granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced CCL17 has a non-redundant role in inflammatory arthritis. Here, we provide molecular evidence that GCs can suppress GM-CSF-mediated upregulation of IRF4 and CCL17 expression via downregulating JMJD3 expression and activity. In mouse models of inflammatory arthritis, GC treatment inhibited CCL17 expression and ameliorated arthritic pain-like behavior and disease. Significantly, GC treatment of RA patient peripheral blood mononuclear cells ex vivo resulted in decreased CCL17 production. This delineated pathway potentially provides new therapeutic options for the treatment of many inflammatory conditions, where GCs are used as an anti-inflammatory drug but without the associated adverse side effects.
Collapse
Affiliation(s)
- Tanya J. Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kevin M.C. Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Cecil Hor
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
| | - Andrew J. Fleetwood
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Andrew D. Cook
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Moshe Olshansky
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Stephen J. Turner
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Richard de Steiger
- Department of Surgery, Epworth HealthCare, The University of Melbourne, Richmond, VIC 3121, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Belousova O, Lopatina A, Kuzmina U, Melnikov M. The role of biogenic amines in the modulation of monocytes in autoimmune neuroinflammation. Mult Scler Relat Disord 2023; 78:104920. [PMID: 37536214 DOI: 10.1016/j.msard.2023.104920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Multiple sclerosis (MS) is inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with autoimmune mechanism of development. The study of the neuroimmune interactions is one of the most developing directions in the research of the pathogenesis of MS. The influence of biogenic amines on the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and MS was shown by the modulation of subsets of T-helper cells and B-cells, which plays a crucial role in the autoimmunity of the CNS. However, along with T- and B-cells the critical involvement of mononuclear phagocytes such as dendritic cells, macrophages, and monocytes in the development of neuroinflammation also was shown. It was demonstrated that the activation of microglial cells (resident macrophages of the CNS) could initiate the neuroinflammation in the EAE, suggesting their role at an early stage of the disease. In contrast, monocytes, which migrate from the periphery into the CNS through the blood-brain barrier, mediate the effector phase of the disease and cause neurological disability in EAE. In addition, the clinical efficacy of the therapy with depletion of the monocytes in EAE was shown, suggesting their crucial role in the autoimmunity of the CNS. Biogenic amines, such as epinephrine, norepinephrine, dopamine, and serotonin are direct mediators of the neuroimmune interaction and may affect the pathogenesis of EAE and MS by modulating the immune cell activity and cytokine production. The anti-inflammatory effect of targeting the biogenic amines receptors on the pathogenesis of EAE and MS by suppression of Th17- and Th1-cells, which are critical for the CNS autoimmunity, was shown. However, the latest data showed the potential ability of biogenic amines to affect the functions of the mononuclear phagocytes and their involvement in the modulation of neuroinflammation. This article reviews the literature data on the role of monocytes in the pathogenesis of EAE and MS. The data on the effect of targeting of biogenic amine receptors on the function of monocytes are presented.
Collapse
Affiliation(s)
- Olga Belousova
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Lopatina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Ulyana Kuzmina
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Laboratory of Molecular Pharmacology and Immunology, Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Science, Ufa, Russia
| | - Mikhail Melnikov
- Laboratory of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia; Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.
| |
Collapse
|
12
|
Farzam-Kia N, Moratalla AC, Lemaître F, Levert A, Da Cal S, Margarido C, Carpentier Solorio Y, Arbour N. GM-CSF distinctly impacts human monocytes and macrophages via ERK1/2-dependent pathways. Immunol Lett 2023; 261:47-55. [PMID: 37516253 DOI: 10.1016/j.imlet.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Human monocytes and macrophages are two major myeloid cell subsets with similar and distinct functions in tissue homeostasis and immune responses. GM-CSF plays a fundamental role in myeloid cell differentiation and activation. Hence, we compared the effects of GM-CSF on the expression of several immune mediators by human monocytes and monocyte-derived macrophages obtained from healthy donors. We report that GM-CSF similarly elevated the expression of CD80 and ICAM-1 and reduced HLA-DR levels on both myeloid cell subsets. However, GM-CSF increased the percentage of macrophages expressing surface IL-15 but reduced the proportion of monocytes carrying surface IL-15. Moreover, GM-CSF significantly increased the secretion of IL-4, IL-6, TNF, CXCL10, and IL-27 by macrophages while reducing the secretion of IL-4 and CXCL10 by monocytes. We show that GM-CSF triggered ERK1/2, STAT3, STAT5, and SAPK/JNK pathways in both myeloid subsets. Using a pharmacological inhibitor (U0126) preventing ERK phosphorylation, we demonstrated that this pathway was involved in both the GM-CSF-induced increase and decrease of the percentage of IL-15+ macrophages and monocytes, respectively. Moreover, ERK1/2 contributed to GM-CSF-triggered secretion of IL-4, IL-6, TNF, IL-27 and CXCL10 by macrophages. However, the ERK1/2 pathway exhibited different roles in monocytes and macrophages for the GM-CSF-mediated impact on surface makers (CD80, HLA-DR, and ICAM-1). Our data demonstrate that GM-CSF stimulation induces differential responses by human monocytes and monocyte-derived macrophages and that some but not all of these effects are ERK-dependent.
Collapse
Affiliation(s)
- Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Annie Levert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Clara Margarido
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
13
|
Dharra R, Kumar Sharma A, Datta S. Emerging aspects of cytokine storm in COVID-19: The role of proinflammatory cytokines and therapeutic prospects. Cytokine 2023; 169:156287. [PMID: 37402337 PMCID: PMC10291296 DOI: 10.1016/j.cyto.2023.156287] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
COVID-19 has claimed millions of lives during the last 3 years since initial cases were reported in Wuhan, China, in 2019. Patients with COVID-19 suffer from severe pneumonia, high fever, acute respiratory distress syndrome (ARDS), and multiple-organ dysfunction, which may also result in fatality in extreme cases. Cytokine storm (CS) is hyperactivation of the immune system, wherein the dysregulated production of proinflammatory cytokines could result in excessive immune cell infiltrations in the pulmonary tissues, resulting in tissue damage. The immune cell infiltration could also occur in other tissues and organs and result in multiple organs' dysfunction. The key cytokines implicated in the onset of disease severity include TNF-α, IFN-γ, IL-6, IL-1β, GM-CSF, and G-CSF. Controlling the CS is critical in treating COVID-19 disease. Therefore, different strategies are employed to mitigate the effects of CS. These include using monoclonal antibodies directed against soluble cytokines or the cytokine receptors, combination therapies, mesenchymal stem cell therapy, therapeutic plasma exchange, and some non-conventional treatment methods to improve patient immunity. The current review describes the role/s of critical cytokines in COVID-19-mediated CS and the respective treatment modalities.
Collapse
Affiliation(s)
- Renu Dharra
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Anil Kumar Sharma
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Sonal Datta
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
| |
Collapse
|
14
|
Rao Z, Brunner E, Giszas B, Iyer-Bierhoff A, Gerstmeier J, Börner F, Jordan PM, Pace S, Meyer KPL, Hofstetter RK, Merk D, Paulenz C, Heinzel T, Grunert PC, Stallmach A, Serhan CN, Werner M, Werz O. Glucocorticoids regulate lipid mediator networks by reciprocal modulation of 15-lipoxygenase isoforms affecting inflammation resolution. Proc Natl Acad Sci U S A 2023; 120:e2302070120. [PMID: 37603745 PMCID: PMC10469032 DOI: 10.1073/pnas.2302070120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Glucocorticoids (GC) are potent anti-inflammatory agents, broadly used to treat acute and chronic inflammatory diseases, e.g., critically ill COVID-19 patients or patients with chronic inflammatory bowel diseases. GC not only limit inflammation but also promote its resolution although the underlying mechanisms are obscure. Here, we reveal reciprocal regulation of 15-lipoxygenase (LOX) isoform expression in human monocyte/macrophage lineages by GC with respective consequences for the biosynthesis of specialized proresolving mediators (SPM) and their 15-LOX-derived monohydroxylated precursors (mono-15-OH). Dexamethasone robustly up-regulated pre-mRNA, mRNA, and protein levels of ALOX15B/15-LOX-2 in blood monocyte-derived macrophage (MDM) phenotypes, causing elevated SPM and mono-15-OH production in inflammatory cell types. In sharp contrast, dexamethasone blocked ALOX15/15-LOX-1 expression and impaired SPM formation in proresolving M2-MDM. These dexamethasone actions were mimicked by prednisolone and hydrocortisone but not by progesterone, and they were counteracted by the GC receptor (GR) antagonist RU486. Chromatin immunoprecipitation (ChIP) assays revealed robust GR recruitment to a putative enhancer region within intron 3 of the ALOX15B gene but not to the transcription start site. Knockdown of 15-LOX-2 in M1-MDM abolished GC-induced SPM formation and mono-15-OH production. Finally, ALOX15B/15-LOX-2 upregulation was evident in human monocytes from patients with GC-treated COVID-19 or patients with IBD. Our findings may explain the proresolving GC actions and offer opportunities for optimizing GC pharmacotherapy and proresolving mediator production.
Collapse
Affiliation(s)
- Zhigang Rao
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Elena Brunner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Benjamin Giszas
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena07747, Germany
| | - Aishwarya Iyer-Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University of Jena, Jena07745, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Katharina P. L. Meyer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Robert K. Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilian-Universität München, Munich81377, Germany
| | | | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University of Jena, Jena07745, Germany
| | - Philip C. Grunert
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena07747, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena07747, Germany
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| |
Collapse
|
15
|
Chen Y, Li F, Hua M, Liang M, Song C. Role of GM-CSF in lung balance and disease. Front Immunol 2023; 14:1158859. [PMID: 37081870 PMCID: PMC10111008 DOI: 10.3389/fimmu.2023.1158859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor originally identified as a stimulus that induces the differentiation of bone marrow progenitor cells into granulocytes and macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to promoting the metabolism of pulmonary surfactant and the maturation and differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial lung disease, allergic lung disease, alcoholic lung disease, and pulmonary bacterial, fungal, and viral infections. This article reviews the latest knowledge on the relationship between GM-CSF and lung balance and lung disease, and indicates that there is much more to GM-CSF than its name suggests.
Collapse
Affiliation(s)
- Yingzi Chen
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Fan Li
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Mengqing Hua
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| |
Collapse
|
16
|
Yoon SH, Song MK, Kim DI, Lee JK, Jung JW, Lee JW, Lee K. Comparative study of lung toxicity of E-cigarette ingredients to investigate E-cigarette or vaping product associated lung injury. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130454. [PMID: 37055947 DOI: 10.1016/j.jhazmat.2022.130454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/19/2023]
Abstract
No comparative study has yet been performed on the respiratory effects of individual E-cigarette ingredients. Here, lung toxicity of individual ingredients of E-cigarette products containing nicotine or tetrahydrocannabinol was investigated. Mice were intratracheally administered propylene glycol (PG), vegetable glycerin (VG), vitamin E acetate (VEA), or nicotine individually for two weeks. Cytological and histological changes were noticed in PG- and VEA-treated mice that exhibited pathophysiological changes which were associated with symptoms seen in patients with symptoms of E-cigarette or Vaping Use-Associated Lung Injuries (EVALI) or E-cigarette users. Compared to potential human exposure situations, while the VEA exposure condition was similar to the dose equivalent of VEA content in E-cigarettes, the PG condition was about 47-137 times higher than the dose equivalent of the daily PG intake of E-cigarette users. These results reveal that VEA exposure is much more likely to cause problems related to EVALI in humans than PG. Transcriptomic analysis revealed that PG exposure was associated with fibrotic lung injury via the AKT signaling pathway and M2 macrophage polarization, and VEA exposure was associated with asthmatic airway inflammation via the mitogen-activated protein kinase signaling pathway. This study provides novel insights into the pathophysiological effects of individual ingredients of E-cigarettes.
Collapse
Affiliation(s)
- Sung-Hoon Yoon
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Mi-Kyung Song
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Dong Im Kim
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Jeom-Kyu Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ji-Won Jung
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
17
|
Barnes CC, Yee KT, Vetter DE. Conditional Ablation of Glucocorticoid and Mineralocorticoid Receptors from Cochlear Supporting Cells Reveals Their Differential Roles for Hearing Sensitivity and Dynamics of Recovery from Noise-Induced Hearing Loss. Int J Mol Sci 2023; 24:3320. [PMID: 36834731 PMCID: PMC9961551 DOI: 10.3390/ijms24043320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Endogenous glucocorticoids (GC) are known to modulate basic elements of cochlear physiology. These include both noise-induced injury and circadian rhythms. While GC signaling in the cochlea can directly influence auditory transduction via actions on hair cells and spiral ganglion neurons, evidence also indicates that GC signaling exerts effects via tissue homeostatic processes that can include effects on cochlear immunomodulation. GCs act at both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Most cell types in the cochlea express both receptors sensitive to GCs. The GR is associated with acquired sensorineural hearing loss (SNHL) through its effects on both gene expression and immunomodulatory programs. The MR has been associated with age-related hearing loss through dysfunction of ionic homeostatic balance. Cochlear supporting cells maintain local homeostatic requirements, are sensitive to perturbation, and participate in inflammatory signaling. Here, we have used conditional gene manipulation techniques to target Nr3c1 (GR) or Nr3c2 (MR) for tamoxifen-induced gene ablation in Sox9-expressing cochlear supporting cells of adult mice to investigate whether either of the receptors sensitive to GCs plays a role in protecting against (or exacerbating) noise-induced cochlear damage. We have selected mild intensity noise exposure to examine the role of these receptors related to more commonly experienced noise levels. Our results reveal distinct roles of these GC receptors for both basal auditory thresholds prior to noise exposure and during recovery from mild noise exposure. Prior to noise exposure, auditory brainstem responses (ABRs) were measured in mice carrying the floxed allele of interest and the Cre recombinase transgene, but not receiving tamoxifen injections (defined as control (no tamoxifen treatment), versus conditional knockout (cKO) mice, defined as mice having received tamoxifen injections. Results revealed hypersensitive thresholds to mid- to low-frequencies after tamoxifen-induced GR ablation from Sox9-expressing cochlear supporting cells compared to control (no tamoxifen) mice. GR ablation from Sox9-expressing cochlear supporting cells resulted in a permanent threshold shift in mid-basal cochlear frequency regions after mild noise exposure that produced only a temporary threshold shift in both control (no tamoxifen) f/fGR:Sox9iCre+ and heterozygous f/+GR:Sox9iCre+ tamoxifen-treated mice. A similar comparison of basal ABRs measured in control (no tamoxifen) and tamoxifen-treated, floxed MR mice prior to noise exposure indicated no difference in baseline thresholds. After mild noise exposure, MR ablation was initially associated with a complete threshold recovery at 22.6 kHz by 3 days post-noise. Threshold continued to shift to higher sensitivity over time such that by 30 days post-noise exposure the 22.6 kHz ABR threshold was 10 dB more sensitive than baseline. Further, MR ablation produced a temporary reduction in peak 1 neural amplitude one day post-noise. While supporting cell GR ablation trended towards reducing numbers of ribbon synapses, MR ablation reduced ribbon synapse counts but did not exacerbate noise-induced damage including synapse loss at the experimental endpoint. GR ablation from the targeted supporting cells increased the basal resting number of Iba1-positive (innate) immune cells (no noise exposure) and decreased the number of Iba1-positive cells seven days following noise exposure. MR ablation did not alter innate immune cell numbers at seven days post-noise exposure. Taken together, these findings support differential roles of cochlear supporting cell MR and GR expression at basal, resting conditions and especially during recovery from noise exposure.
Collapse
Affiliation(s)
- Charles C. Barnes
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kathleen T. Yee
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas E. Vetter
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
18
|
Kalkar P, Cohen G, Tamari T, Schif-Zuck S, Zigdon-Giladi H, Ariel A. IFN-β mediates the anti-osteoclastic effect of bisphosphonates and dexamethasone. Front Pharmacol 2022; 13:1002550. [PMID: 36386129 PMCID: PMC9648992 DOI: 10.3389/fphar.2022.1002550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 07/06/2024] Open
Abstract
Zoledronic acid (Zol) is a potent bisphosphonate that inhibits the differentiation of monocytes into osteoclasts. It is often used in combination with dexamethasone (Dex), a glucocorticoid that promotes the resolution of inflammation, to treat malignant diseases, such as multiple myeloma. This treatment can result in bone pathologies, namely medication related osteonecrosis of the jaw, with a poor understanding of the molecular mechanism on monocyte differentiation. IFN-β is a pro-resolving cytokine well-known as an osteoclast differentiation inhibitor. Here, we explored whether Zol and/or Dex regulate macrophage osteoclastic differentiation via IFN-β. RAW 264.7 and peritoneal macrophages were treated with Zol and/or Dex for 4-24 h, and IFN-β secretion was examined by ELISA, while the IFN stimulated gene (ISG) 15 expression was evaluated by Western blotting. RANKL-induced osteoclastogenesis of RAW 264.7 cells was determined by TRAP staining following treatment with Zol+Dex or IFN-β and anti-IFN-β antibodies. We found only the combination of Zol and Dex increased IFN-β secretion by RAW 264.7 macrophages at 4 h and, correspondingly, ISG15 expression in these cells at 24 h. Moreover, Zol+Dex blocked osteoclast differentiation to a similar extent as recombinant IFN-β. Neutralizing anti-IFN-β antibodies reversed the effect of Zol+Dex on ISG15 expression and partially recovered osteoclastic differentiation induced by each drug alone or in combination. Finally, we found Zol+Dex also induced IFN-β expression in peritoneal resolution phase macrophages, suggesting these drugs might be used to enhance the resolution of acute inflammation. Altogether, our findings suggest Zol+Dex block the differentiation of osteoclasts through the expression of IFN-β. Revealing the molecular pathway behind this regulation may lead to the development of IFN-β-based therapy to inhibit osteoclastogenesis in multiple myeloma patients.
Collapse
Affiliation(s)
- Prajakta Kalkar
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Gal Cohen
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Sagie Schif-Zuck
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Amiram Ariel
- Departments of Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Xiong L, Cao J, Yang X, Chen S, Wu M, Wang C, Xu H, Chen Y, Zhang R, Hu X, Chen T, Tang J, Deng Q, Li D, Yang Z, Xiao G, Zhang X. Exploring the mechanism of action of Xuanfei Baidu granule (XFBD) in the treatment of COVID-19 based on molecular docking and molecular dynamics. Front Cell Infect Microbiol 2022; 12:965273. [PMID: 36034710 PMCID: PMC9399524 DOI: 10.3389/fcimb.2022.965273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe Corona Virus Disease 2019 (COVID-19) pandemic has become a challenge of world. The latest research has proved that Xuanfei Baidu granule (XFBD) significantly improved patient’s clinical symptoms, the compound drug improves immunity by increasing the number of white blood cells and lymphocytes, and exerts anti-inflammatory effects. However, the analysis of the effective monomer components of XFBD and its mechanism of action in the treatment of COVID-19 is currently lacking. Therefore, this study used computer simulation to study the effective monomer components of XFBD and its therapeutic mechanism.MethodsWe screened out the key active ingredients in XFBD through TCMSP database. Besides GeneCards database was used to search disease gene targets and screen intersection gene targets. The intersection gene targets were analyzed by GO and KEGG. The disease-core gene target-drug network was analyzed and molecular docking was used for verification. Molecular dynamics simulation verification was carried out to combine the active ingredient and the target with a stable combination. The supercomputer platform was used to measure and analyze the number of hydrogen bonds, the binding free energy, the stability of protein target at the residue level, the solvent accessible surface area, and the radius of gyration.ResultsXFBD had 1308 gene targets, COVID-19 had 4600 gene targets, the intersection gene targets were 548. GO and KEGG analysis showed that XFBD played a vital role by the signaling pathways of immune response and inflammation. Molecular docking showed that I-SPD, Pachypodol and Vestitol in XFBD played a role in treating COVID-19 by acting on NLRP3, CSF2, and relieve the clinical symptoms of SARS-CoV-2 infection. Molecular dynamics was used to prove the binding stability of active ingredients and protein targets, CSF2/I-SPD combination has the strongest binding energy.ConclusionFor the first time, it was found that the important active chemical components in XFBD, such as I-SPD, Pachypodol and Vestitol, reduce inflammatory response and apoptosis by inhibiting the activation of NLRP3, and reduce the production of inflammatory factors and chemotaxis of inflammatory cells by inhibiting the activation of CSF2. Therefore, XFBD can effectively alleviate the clinical symptoms of COVID-19 through NLRP3 and CSF2.
Collapse
Affiliation(s)
- Li Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Junfeng Cao
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xingyu Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Shengyan Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chaochao Wang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Hengxiang Xu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yijun Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ruijiao Zhang
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | - Xiaosong Hu
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | - Tian Chen
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | - Jing Tang
- Department of Infectious Diseases, First People’s Hospital of Ziyang, Ziyang, China
| | - Qin Deng
- Department of Infectious Diseases, First People’s Hospital of Ziyang, Ziyang, China
| | - Dong Li
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zheng Yang
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
- *Correspondence: Xiao Zhang, ; Guibao Xiao, ; Zheng Yang,
| | - Guibao Xiao
- Department of Infectious Diseases, First People’s Hospital of Ziyang, Ziyang, China
- *Correspondence: Xiao Zhang, ; Guibao Xiao, ; Zheng Yang,
| | - Xiao Zhang
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
- *Correspondence: Xiao Zhang, ; Guibao Xiao, ; Zheng Yang,
| |
Collapse
|
20
|
Lin DW, Chang CC, Hsu YC, Lin CL. New Insights into the Treatment of Glomerular Diseases: When Mechanisms Become Vivid. Int J Mol Sci 2022; 23:3525. [PMID: 35408886 PMCID: PMC8998908 DOI: 10.3390/ijms23073525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Treatment for glomerular diseases has been extrapolated from the experience of other autoimmune disorders while the underlying pathogenic mechanisms were still not well understood. As the classification of glomerular diseases was based on patterns of juries instead of mechanisms, treatments were typically the art of try and error. With the advancement of molecular biology, the role of the immune agent in glomerular diseases is becoming more evident. The four-hit theory based on the discovery of gd-IgA1 gives a more transparent outline of the pathogenesis of IgA nephropathy (IgAN), and dysregulation of Treg plays a crucial role in the pathogenesis of minimal change disease (MCD). An epoch-making breakthrough is the discovery of PLA2R antibodies in the primary membranous nephropathy (pMN). This is the first biomarker applied for precision medicine in kidney disease. Understanding the immune system's role in glomerular diseases allows the use of various immunosuppressants or other novel treatments, such as complement inhibitors, to treat glomerular diseases more reasonable. In this era of advocating personalized medicine, it is inevitable to develop precision medicine with mechanism-based novel biomarkers and novel therapies in kidney disease.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi 60069, Taiwan;
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 613016, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 613016, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833253, Taiwan
| |
Collapse
|
21
|
Han NR, Ko SG, Moon PD, Park HJ. Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway. J Ginseng Res 2021; 45:610-616. [PMID: 34803431 PMCID: PMC8587510 DOI: 10.1016/j.jgr.2021.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses. Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the inflammatory responses remains poorly understood. Methods We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and hypoxia-inducible factor 1α (HIF1α) expression levels were detected using Western blot analysis. Results Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation. The HIF1α expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3 inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and HIF1α expression levels in the ear tissue homogenate were suppressed by Rg3. Conclusion Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1α pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the treatment of skin inflammatory diseases.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
23
|
Anisul M, Shilts J, Schwartzentruber J, Hayhurst J, Buniello A, Shaikho Elhaj Mohammed E, Zheng J, Holmes M, Ochoa D, Carmona M, Maranville J, Gaunt TR, Emilsson V, Gudnason V, McDonagh EM, Wright GJ, Ghoussaini M, Dunham I. A proteome-wide genetic investigation identifies several SARS-CoV-2-exploited host targets of clinical relevance. eLife 2021; 10:e69719. [PMID: 34402426 PMCID: PMC8457835 DOI: 10.7554/elife.69719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background The virus SARS-CoV-2 can exploit biological vulnerabilities (e.g. host proteins) in susceptible hosts that predispose to the development of severe COVID-19. Methods To identify host proteins that may contribute to the risk of severe COVID-19, we undertook proteome-wide genetic colocalisation tests, and polygenic (pan) and cis-Mendelian randomisation analyses leveraging publicly available protein and COVID-19 datasets. Results Our analytic approach identified several known targets (e.g. ABO, OAS1), but also nominated new proteins such as soluble Fas (colocalisation probability >0.9, p=1 × 10-4), implicating Fas-mediated apoptosis as a potential target for COVID-19 risk. The polygenic (pan) and cis-Mendelian randomisation analyses showed consistent associations of genetically predicted ABO protein with several COVID-19 phenotypes. The ABO signal is highly pleiotropic, and a look-up of proteins associated with the ABO signal revealed that the strongest association was with soluble CD209. We demonstrated experimentally that CD209 directly interacts with the spike protein of SARS-CoV-2, suggesting a mechanism that could explain the ABO association with COVID-19. Conclusions Our work provides a prioritised list of host targets potentially exploited by SARS-CoV-2 and is a precursor for further research on CD209 and FAS as therapeutically tractable targets for COVID-19. Funding MAK, JSc, JH, AB, DO, MC, EMM, MG, ID were funded by Open Targets. J.Z. and T.R.G were funded by the UK Medical Research Council Integrative Epidemiology Unit (MC_UU_00011/4). JSh and GJW were funded by the Wellcome Trust Grant 206194. This research was funded in part by the Wellcome Trust [Grant 206194]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.
Collapse
Affiliation(s)
- Mohd Anisul
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Open Targets, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Jarrod Shilts
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Jeremy Schwartzentruber
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Open Targets, Wellcome Genome CampusHinxtonUnited Kingdom
| | - James Hayhurst
- Open Targets, Wellcome Genome CampusHinxtonUnited Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusCambridgeUnited Kingdom
| | - Annalisa Buniello
- Open Targets, Wellcome Genome CampusHinxtonUnited Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusCambridgeUnited Kingdom
| | | | - Jie Zheng
- Medical Research Council (MRC) Integrative Epidemiology Unit, Department of Population Health Sciences, University of BristolBristolUnited Kingdom
| | - Michael Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - David Ochoa
- Open Targets, Wellcome Genome CampusHinxtonUnited Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusCambridgeUnited Kingdom
| | - Miguel Carmona
- Open Targets, Wellcome Genome CampusHinxtonUnited Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusCambridgeUnited Kingdom
| | | | - Tom R Gaunt
- Medical Research Council (MRC) Integrative Epidemiology Unit, Department of Population Health Sciences, University of BristolBristolUnited Kingdom
| | - Valur Emilsson
- Icelandic Heart AssociationKopavogurIceland
- Faculty of Medicine, University of IcelandReykjavikIceland
| | - Vilmundur Gudnason
- Icelandic Heart AssociationKopavogurIceland
- Faculty of Medicine, University of IcelandReykjavikIceland
| | - Ellen M McDonagh
- Open Targets, Wellcome Genome CampusHinxtonUnited Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusCambridgeUnited Kingdom
| | - Gavin J Wright
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Department of Biology, York Biomedical Research Institute, Hull York Medical School, University of YorkYorkUnited Kingdom
| | - Maya Ghoussaini
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Open Targets, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Ian Dunham
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Open Targets, Wellcome Genome CampusHinxtonUnited Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome CampusCambridgeUnited Kingdom
| |
Collapse
|
24
|
Deng JW, Yang Q, Cai XP, Zhou JM, E WG, An YD, Zheng QX, Hong M, Ren YL, Guan J, Wang G, Lai SJ, Chen Z. Early use of dexamethasone increases Nr4a1 in Kupffer cells ameliorating acute liver failure in mice in a glucocorticoid receptor-dependent manner. J Zhejiang Univ Sci B 2021; 21:727-739. [PMID: 32893529 DOI: 10.1631/jzus.b2000249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Acute liver failure (ALF) is a type of disease with high mortality and rapid progression with no specific treatment methods currently available. Glucocorticoids exert beneficial clinical effects on therapy for ALF. However, the mechanism of this effect remains unclear and when to use glucocorticoids in patients with ALF is difficult to determine. The purpose of this study was to investigate the specific immunological mechanism of dexamethasone (Dex) on treatment of ALF induced by lipopolysaccharide (LPS)/D-galactosamine (D-GaIN) in mice. METHODS Male C57BL/6 mice were given LPS and D-GaIN by intraperitoneal injection to establish an animal model of ALF. Dex was administrated to these mice and its therapeutic effect was observed. Hematoxylin and eosin (H&E) staining was used to determine liver pathology. Multicolor flow cytometry, cytometric bead array (CBA) method, and next-generation sequencing were performed to detect changes of messenger RNA (mRNA) in immune cells, cytokines, and Kupffer cells, respectively. RESULTS A mouse model of ALF can be constructed successfully using LPS/D-GaIN, which causes a cytokine storm in early disease progression. Innate immune cells change markedly with progression of liver failure. Earlier use of Dex, at 0 h rather than 1 h, could significantly improve the progression of ALF induced by LPS/D-GaIN in mice. Numbers of innate immune cells, especially Kupffer cells and neutrophils, increased significantly in the Dex-treated group. In vivo experiments indicated that the therapeutic effect of Dex is exerted mainly via the glucocorticoid receptor (Gr). Sequencing of Kupffer cells revealed that Dex could increase mRNA transcription level of nuclear receptor subfamily 4 group A member 1 (Nr4a1), and that this effect disappeared after Gr inhibition. CONCLUSIONS In LPS/D-GaIN-induced ALF mice, early administration of Dex improved ALF by increasing the numbers of innate immune cells, especially Kupffer cells and neutrophils. Gr-dependent Nr4a1 upregulation in Kupffer cells may be an important ALF effect regulated by Dex in this process.
Collapse
Affiliation(s)
- Jing-Wen Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qin Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiao-Peng Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jia-Ming Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wei-Gao E
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yan-Dong An
- Becton, Dickinson and Company, Shanghai 200126, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yan-Li Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Gang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shu-Jing Lai
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
25
|
An Q, Zhou Z, Xie Y, Sun Y, Zhang H, Cao Y. Knockdown of long non-coding RNA NEAT1 relieves the inflammatory response of spinal cord injury through targeting miR-211-5p/MAPK1 axis. Bioengineered 2021; 12:2702-2712. [PMID: 34151707 PMCID: PMC8806627 DOI: 10.1080/21655979.2021.1930925] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spinal cord injury (SCI) is a refractory disease often accompanied by inflammation. Long non-coding RNA NEAT1 (lncRNA NEAT1) was reported to be involved in the expression of the inflammasomes, while the regulatory effect of NEAT1 on SCI was poorly investigated. Herein, we carried out further studies on the pathogenesis of SCI. PC-12 cells were incubated with lipopolysaccharide (LPS) to induce inflammation. Western blotting assay was used to measure the protein expression levels. RNA expression levels were analyzed using RT-qPCR. Cell counting kit 8 and flow cytometry assays were used to separately determine the cell viability and apoptosis rate. The targeted relationships were verified by luciferase reporter and RNA pull-down assays. It was found that LPS induced inflammation in the PC-12 cells, leading to significantly higher cell apoptosis rate and lower viability, and the expression level of NEAT1 was elevated by LPS. However, knockdown of NEAT1 partially reversed the effects of LPS. Subsequently, the potential interaction between NEAT1 and miR-211-5p was validated and miR-211-5p inhibitor was further confirmed to antagonize the effects of NEAT knockdown. The downstream target gene of miR-211-5p was predicted and verified to be MAPK1. In addition, overexpression of MAPK1 was proved to antagonize the effects of NEAT1 knockdown. Taken together, the knockdown of NEAT1 remarkably alleviated the inflammation of SCI via miR-211-5p/MAPK1 axis.
Collapse
Affiliation(s)
- Qing An
- Department of Medicine, Soochow university, China.,Hand Surgery Department, The First Affiliated Hospital of JinZhou Medical University, China
| | - Zipeng Zhou
- Department of Medicine, Soochow university, China
| | - Yi Xie
- Department of Medicine, Soochow university, China
| | - Yu Sun
- Bone Trauma Department, The First Affiliated Hospital of JinZhou Medical University, China
| | - Haixiang Zhang
- Bone Trauma Department, The First Affiliated Hospital of JinZhou Medical University, China
| | - Yang Cao
- Department of Medicine, Soochow university, China.,Bone Trauma Department, The First Affiliated Hospital of JinZhou Medical University, China
| |
Collapse
|
26
|
Gu J, Huang W, Zhang J, Wang X, Tao T, Yang L, Zheng Y, Liu S, Yang J, Zhu L, Wang H, Fan Y. TMPRSS4 Promotes Cell Proliferation and Inhibits Apoptosis in Pancreatic Ductal Adenocarcinoma by Activating ERK1/2 Signaling Pathway. Front Oncol 2021; 11:628353. [PMID: 33816264 PMCID: PMC8012900 DOI: 10.3389/fonc.2021.628353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Transmembrane protease serine 4 (TMPRSS4) is upregulated in various kinds of human cancers, including pancreatic cancer. However, its biological function in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the current study, real-time qPCR, immunohistochemical staining, Western blotting, and database (Cancer Genome Atlas and Gene Expression) analysis revealed remarkable overexpression of TMPRSS4 in PDAC tissue as compared to non-tumor tissue. The TMPRSS4 overexpression was associated with poor prognosis of PDAC patients. Moreover, multivariate analysis revealed that TMPRSS4 serves as an independent risk factor in PDAC. We performed gain-and loss-of-function analysis and found that TMPRSS4 promotes cellular proliferation and inhibits apoptosis of PDAC cells both in vitro and in vivo. Furthermore, we showed that TMPRSS4 might promote cell proliferation and inhibit apoptosis through activating ERK1/2 signaling pathway in pancreatic cancer cells. These findings were validated by using ERK1/2 phosphorylation inhibitor SCH772984 both in vitro and in vivo. Taken together, this study suggests that TMPRSS4 is a proto-oncogene, which promotes initiation and progression of PDAC by controlling cell proliferation and apoptosis. Our findings indicate that TMPRSS4 could be a promising prognostic biomarker and a therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jianyou Gu
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Wenjie Huang
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Tian Tao
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ludi Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yao Zheng
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Songsong Liu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Liwei Zhu
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yingfang Fan
- Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Wong E, Xu F, Joffre J, Nguyen N, Wilhelmsen K, Hellman J. ERK1/2 Has Divergent Roles in LPS-Induced Microvascular Endothelial Cell Cytokine Production and Permeability. Shock 2021; 55:349-356. [PMID: 32826812 PMCID: PMC8139579 DOI: 10.1097/shk.0000000000001639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Endothelial cells play a major role in inflammatory responses to infection and sterile injury. Endothelial cells express Toll-like receptor 4 (TLR4) and are activated by LPS to express inflammatory cytokines/chemokines, and to undergo functional changes, including increased permeability. The extracellular signal-regulated kinase 1/2 (ERK1/2) mediates pro-inflammatory signaling in monocytes and macrophages, but the role of ERK1/2 in LPS-induced activation of microvascular endothelial cells has not been defined. We therefore studied the role of ERK1/2 in LPS-induced inflammatory activation and permeability of primary human lung microvascular endothelial cells (HMVEC). Inhibition of ERK1/2 augmented LPS-induced IL-6 and vascular cell adhesion protein (VCAM-1) production by HMVEC. ERK1/2 siRNA knockdown also augmented IL-6 production by LPS-treated HMVEC. Conversely, ERK1/2 inhibition abrogated permeability and restored cell-cell junctions of LPS-treated HMVEC. Consistent with the previously described pro-inflammatory role for ERK1/2 in leukocytes, inhibition of ERK1/2 reduced LPS-induced cytokine/chemokine production by primary human monocytes. Our study identifies a complex role for ERK1/2 in TLR4-activation of HMVEC, independent of myeloid differentiation primary response gene (MyD88) and TIR domain-containing adaptor inducing IFN-β (TRIF) signaling pathways. The activation of ERK1/2 limits LPS-induced IL-6 production by HMVEC, while at the same time promoting HMVEC permeability. Conversely, ERK1/2 activation promotes IL-6 production by human monocytes. Our results suggest that ERK1/2 may play an important role in the nuanced regulation of endothelial cell inflammation and vascular permeability in sepsis and injury.
Collapse
Affiliation(s)
- Erika Wong
- Department of Pediatrics, Division of Critical Care, UCSF Benioff Children’s Hospital, San Francisco, California, 94143
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Jérémie Joffre
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75571 Paris cedex 12, France
| | - Nina Nguyen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, 94143
| |
Collapse
|
28
|
Shilovskiy IP, Nikolskii AA, Kurbacheva OM, Khaitov MR. Modern View of Neutrophilic Asthma Molecular Mechanisms and Therapy. BIOCHEMISTRY (MOSCOW) 2021; 85:854-868. [PMID: 33045947 DOI: 10.1134/s0006297920080027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For a long time asthma was commonly considered as a homogeneous disease. However, recent studies provide increasing evidence of its heterogeneity and existence of different phenotypes of the disease. Currently, classification of asthma into several phenotypes is based on clinical and physiological features, anamnesis, and response to therapy. This review describes five most frequently identified asthma phenotypes. Neutrophilic asthma (NA) deserves special attention, since neutrophilic inflammation of the lungs is closely associated with severity of the disease and with the resistance to conventional corticosteroid therapy. This review focuses on molecular mechanisms of neutrophilic asthma pathogenesis and on the role of Th1- and Th17-cells in the development of this type of asthma. In addition, this review presents current knowledge of neutrophil biology. It has been established that human neutrophils are represented by at least three subpopulations with different biological functions. Therefore, total elimination of neutrophils from the lungs can result in negative consequences. Based on the new knowledge of NA pathogenesis and biology of neutrophils, the review summarizes current approaches for treatment of neutrophilic asthma and suggests new promising ways to treat this type of asthma that could be developed in future.
Collapse
Affiliation(s)
- I P Shilovskiy
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia.
| | - A A Nikolskii
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - O M Kurbacheva
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - M R Khaitov
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| |
Collapse
|
29
|
Petrina M, Martin J, Basta S. Granulocyte macrophage colony-stimulating factor has come of age: From a vaccine adjuvant to antiviral immunotherapy. Cytokine Growth Factor Rev 2021; 59:101-110. [PMID: 33593661 PMCID: PMC8064670 DOI: 10.1016/j.cytogfr.2021.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
GM-CSF acts as a pro-inflammatory cytokine and a key growth factor produced by several immune cells such as macrophages and activated T cells. In this review, we discuss recent studies that point to the crucial role of GM-CSF in the immune response against infections. Upon induction, GM-CSF activates four main signalling networks including the JAK/STAT, PI3K, MAPK, and NFκB pathways. Many of these transduction pathways such as JAK/STAT signal via proteins commonly activated with other antiviral signalling cascades, such as those induced by IFNs. GM-CSF also helps defend against respiratory infections by regulating alveolar macrophage differentiation and enhancing innate immunity in the lungs. Here, we also summarize the numerous clinical trials that have taken advantage of GM-CSF's mechanistic attributes in immunotherapy. Moreover, we discuss how GM-CSF is used as an adjuvant in vaccines and how its activity is interfered with to reduce inflammation such as in the case of COVID-19. This review brings forth the current knowledge on the antiviral actions of GM-CSF, the associated signalling cascades, and its application in immunotherapy.
Collapse
Affiliation(s)
- Maria Petrina
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Jacqueline Martin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
30
|
Zhang L, Li X, Ying T, Wang T, Fu F. The Use of Herbal Medicines for the Prevention of Glucocorticoid-Induced Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:744647. [PMID: 34867788 PMCID: PMC8633877 DOI: 10.3389/fendo.2021.744647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids are drugs that are widely used to suppress inflammation and the activation of the immune system. However, the prolonged use or at high doses of glucocorticoid can result in adverse side effects including osteoporosis, bone loss, and an increased risk of fracture. A number of compounds derived from natural plant sources have been reported to exert anti-inflammatory activity by interacting with the glucocorticoid receptor (GR), likely owing to their chemical similarity to glucocorticoids, or by regulating GR, without a concomitant risk of treatment-related side effects such as osteoporosis. Other herbal compounds can counteract the pathogenic processes underlying glucocorticoid-induced osteoporosis (GIOP) by regulating homeostatic bone metabolic processes. Herein, we systematically searched the PubMed, Embase, and Cochrane library databases to identify articles discussing such compounds published as of May 01, 2021. Compounds reported to exert anti-inflammatory glucocorticoid-like activity without inducing GIOP include escin, ginsenosides, and glycyrrhizic acid, while compounds reported to alleviate GIOP by improving osteoblast function or modulating steroid hormone synthesis include tanshinol and icariin.
Collapse
|
31
|
Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 2020; 9:225-240. [PMID: 33150139 PMCID: PMC7605919 DOI: 10.2147/itt.s262566] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.
Collapse
Affiliation(s)
- Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Hamilton JA. GM-CSF in inflammation. J Exp Med 2020; 217:jem.20190945. [PMID: 31611249 PMCID: PMC7037240 DOI: 10.1084/jem.20190945] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
GM-CSF is a potential therapeutic target in inflammation and autoimmunity. This study reviews the literature on the biology of GM-CSF, in particular that describing the research leading to clinical trials targeting GM-CSF and its receptor in numerous inflammatory/autoimmune conditions, such as rheumatoid arthritis. Granulocyte–macrophage colony-stimulating factor (GM-CSF) has many more functions than its original in vitro identification as an inducer of granulocyte and macrophage development from progenitor cells. Key features of GM-CSF biology need to be defined better, such as the responding and producing cell types, its links with other mediators, its prosurvival versus activation/differentiation functions, and when it is relevant in pathology. Significant preclinical data have emerged from GM-CSF deletion/depletion approaches indicating that GM-CSF is a potential target in many inflammatory/autoimmune conditions. Clinical trials targeting GM-CSF or its receptor have shown encouraging efficacy and safety profiles, particularly in rheumatoid arthritis. This review provides an update on the above topics and current issues/questions surrounding GM-CSF biology.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Victoria, Australia
| |
Collapse
|
33
|
Bonaventura A, Vecchié A, Wang TS, Lee E, Cremer PC, Carey B, Rajendram P, Hudock KM, Korbee L, Van Tassell BW, Dagna L, Abbate A. Targeting GM-CSF in COVID-19 Pneumonia: Rationale and Strategies. Front Immunol 2020; 11:1625. [PMID: 32719685 PMCID: PMC7348297 DOI: 10.3389/fimmu.2020.01625] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a clinical syndrome ranging from mild symptoms to severe pneumonia that often leads to respiratory failure, need for mechanical ventilation, and death. Most of the lung damage is driven by a surge in inflammatory cytokines [interleukin-6, interferon-γ, and granulocyte-monocyte stimulating factor (GM-CSF)]. Blunting this hyperinflammation with immunomodulation may lead to clinical improvement. GM-CSF is produced by many cells, including macrophages and T-cells. GM-CSF-derived signals are involved in differentiation of macrophages, including alveolar macrophages (AMs). In animal models of respiratory infections, the intranasal administration of GM-CSF increased the proliferation of AMs and improved outcomes. Increased levels of GM-CSF have been recently described in patients with COVID-19 compared to healthy controls. While GM-CSF might be beneficial in some circumstances as an appropriate response, in this case the inflammatory response is maladaptive by virtue of being later and disproportionate. The inhibition of GM-CSF signaling may be beneficial in improving the hyperinflammation-related lung damage in the most severe cases of COVID-19. This blockade can be achieved through antagonism of the GM-CSF receptor or the direct binding of circulating GM-CSF. Initial findings from patients with COVID-19 treated with a single intravenous dose of mavrilimumab, a monoclonal antibody binding GM-CSF receptor α, showed oxygenation improvement and shorter hospitalization. Prospective, randomized, placebo-controlled trials are ongoing. Anti-GM-CSF monoclonal antibodies, TJ003234 and gimsilumab, will be tested in clinical trials in patients with COVID-19, while lenzilumab received FDA approval for compassionate use. These trials will help inform whether blunting the inflammatory signaling provided by the GM-CSF axis in COVID-19 is beneficial.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/therapeutic use
- Betacoronavirus/immunology
- COVID-19
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Disease Models, Animal
- Drug Delivery Systems
- Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Humans
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/pathology
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- SARS-CoV-2
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Aldo Bonaventura
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alessandra Vecchié
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Tisha S. Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Paul C. Cremer
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brenna Carey
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | | | - Kristin M. Hudock
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, United States
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Leslie Korbee
- Academic Regulatory & Monitoring Services, LLC, Cincinnati, OH, United States
| | - Benjamin W. Van Tassell
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Abbate
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
34
|
Förster-Ruhrmann U, Szczepek AJ, Bachert C, Olze H. COVID-19 in a patient with severe chronic rhinosinusitis with nasal polyps during therapy with dupilumab. J Allergy Clin Immunol 2020; 146:218-220.e2. [PMID: 32417136 PMCID: PMC7228693 DOI: 10.1016/j.jaci.2020.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ulrike Förster-Ruhrmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claus Bachert
- Upper Airways Research Laboratory and Department of Oto-Rhino-Laryngology, Ghent University, Ghent, Belgium, Germany
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
35
|
Andrighetti T, Bohar B, Lemke N, Sudhakar P, Korcsmaros T. MicrobioLink: An Integrated Computational Pipeline to Infer Functional Effects of Microbiome-Host Interactions. Cells 2020; 9:cells9051278. [PMID: 32455748 PMCID: PMC7291277 DOI: 10.3390/cells9051278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Microbiome–host interactions play significant roles in health and in various diseases including autoimmune disorders. Uncovering these inter-kingdom cross-talks propels our understanding of disease pathogenesis and provides useful leads on potential therapeutic targets. Despite the biological significance of microbe–host interactions, there is a big gap in understanding the downstream effects of these interactions on host processes. Computational methods are expected to fill this gap by generating, integrating, and prioritizing predictions—as experimental detection remains challenging due to feasibility issues. Here, we present MicrobioLink, a computational pipeline to integrate predicted interactions between microbial and host proteins together with host molecular networks. Using the concept of network diffusion, MicrobioLink can analyse how microbial proteins in a certain context are influencing cellular processes by modulating gene or protein expression. We demonstrated the applicability of the pipeline using a case study. We used gut metaproteomic data from Crohn’s disease patients and healthy controls to uncover the mechanisms by which the microbial proteins can modulate host genes which belong to biological processes implicated in disease pathogenesis. MicrobioLink, which is agnostic of the microbial protein sources (bacterial, viral, etc.), is freely available on GitHub.
Collapse
Affiliation(s)
- Tahila Andrighetti
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Institute of Biosciences, São Paulo University (UNESP), Botucatu 18618-689, SP, Brazil;
| | - Balazs Bohar
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Department of Genetics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Ney Lemke
- Institute of Biosciences, São Paulo University (UNESP), Botucatu 18618-689, SP, Brazil;
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven BE-3000, Leuven, Belgium
- Correspondence: (T.K.); (P.S.)
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Correspondence: (T.K.); (P.S.)
| |
Collapse
|
36
|
Zhong C, Nong Q, Feng W, Pan Y, Wu Y, Zeng X, Li H, Zhong X, Li F, Luan Z, Huang X, Luo K, Liu D, Yao J. Polyphyllin VII induces fibroblasts apoptosis via the ERK/JNK pathway. Burns 2020; 47:140-149. [PMID: 33279335 DOI: 10.1016/j.burns.2020.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Hypertrophic scar (HS) is a pathological scar that often occurs in burn patients. Its histology is characterized by the excessive proliferation of fibroblasts (FB) and excessive accumulation of extracellular matrix (ECM). Inhibition of proliferation and activation of FB is essential for the treatment of HS. The crude extracts of traditional Chinese medicines have beneficial therapeutic effects on HS besides possessing fewer side effects and being easily available. Polyphyllin VII (PP7) is an isoprene saponin isolated from Rhizoma paridis. It has a pro-apoptotic effect on cancer cells. In the present study, we demonstrate that PP7 exerts a significant inhibitory effect on hypertrophic scar fibroblasts (HSFs) in vitro. We also demonstrate that PP7 considerably induces the apoptosis of HSFs and inhibits their activity. Our data show that the PP7-induced HSFs cell apoptosis was mainly due to the enhanced expression of apoptotic genes (Bax, Caspase-3, Caspase-9) and decreased expression of Bcl-2. Moreover, PP7 treatment also enhances the expression of JNK, but that of extracellular protein kinases (ERK) was reduced, and induces apoptosis through ERK/JNK pathways. Thus, PP7 can be used as a drug to prevent the formation of HS.
Collapse
Affiliation(s)
- Chaoyi Zhong
- Departments of Burn and Plastic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingwen Nong
- Departments of Burn and Plastic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenyu Feng
- Departments of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yugu Pan
- Departments of Burn and Plastic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yajun Wu
- Departments of Burn and Plastic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianmin Zeng
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hanwen Li
- Departments of Burn and Plastic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xueran Zhong
- Guangxi Medical University, Nanning, Guangxi, China
| | - Feicui Li
- Departments of General Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiwei Luan
- Departments of Bone and Joint surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Huang
- Departments of Bone and Joint surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Luo
- Guangxi Medical University, Nanning, Guangxi, China
| | - Daen Liu
- Departments of Burn and Plastic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Jun Yao
- Departments of Bone and Joint surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
37
|
Tan F, Al-Rubeai M. A multifunctional dexamethasone-delivery implant fabricated using atmospheric plasma and its effects on apoptosis, osteogenesis and inflammation. Drug Deliv Transl Res 2020; 11:86-102. [PMID: 31898081 DOI: 10.1007/s13346-019-00700-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implant-based local drug delivery is a unique surgical therapy with many clinical advantages. Atmospheric pressure plasma is a novel non-thermal surface biotechnology that has only recently been applied in enhancing a surgical implant. We are the first to use this technology to successfully create a dexamethasone-delivery metallic implant. Irrespective of the loaded medication, the surface of this novel implant possesses advantageous material features including homogeneity, hydrophilicity, and optimal roughness. UV-vis spectroscopy revealed much more sustainable drug release compared to the implants produced using simple drug attachment. In addition, our drug-releasing implant was found to have multiple biological benefits. As proven by the ELISA data, this multi-layer drug complex provides differential regulation on the cell apoptosis, as well as pro-osteogenic and anti-inflammatory effects on the peri-implant tissue. Furthermore, using the pathway-specific PCR array, our study discovered 28 and 26 upregulated and downregulated genes during osteogenesis and inflammation on our newly fabricated drug-delivery implant, respectively. The medication-induced change in molecular profile serves as a promising clue for designing future implant-based therapy. Collectively, we present atmospheric pressure plasma as a potent tool for creating a surgical implant-based drug-delivery system, which renders multiple therapeutic potentials. Graphical abstract Schematic of the APP-facilitated Dex-delivery implant. This layer-by-layer drug-releasing complex consisted of bottom plasma activation layer, middle medication layer, and top absorbable polymer layer.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, Shanghai East Hospital, and School of Medicine, Tongji University, Shanghai, China. .,School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin-National University of Ireland, Dublin, Ireland. .,The Royal College of Surgeons of England, London, UK.
| | | |
Collapse
|
38
|
Ai F, Zhao G, Lv W, Liu B, Lin J. Dexamethasone induces aberrant macrophage immune function and apoptosis. Oncol Rep 2019; 43:427-436. [PMID: 31894280 PMCID: PMC6967116 DOI: 10.3892/or.2019.7434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/22/2019] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoids (GCs) are known potent clinical drugs, however, their mode of action is still complex and debatable. Macrophages are the most important target of GCs and play a key role in tumor immunity in vivo, but their relationship is also controversial. In the present study, the lentivirus system was used to overexpress and knock down the level of transcription factor Krüppel-like factor 9 (KLF9). The results revealed that dexamethasone (Dex) induced ROS generation and mitochondria-dependent apoptosis in RAW 264.7 cells via the KLF9. In addition, overexpression of KLF9 significantly increased apoptosis of RAW 264.7 cells. Notably, ELISA assay revealed that increased expression of KLF9 inhibited LPS-induced COX-2 expression and reduced COX-2-derived prostaglandin E2 and pro-inflammatory cytokine secretion. Furthermore, a co-culture system was used to reveal that overexpression of KLF9 in RAW 264.7 cells promoted HepG2 cell survival. In summary, it is reported that KLF9 promoted apoptosis of proinflammatory macrophages, and suppressed the antitumor effects, which can be selectively targeted by GCs as a novel mechanism to suppress antineoplastic activity.
Collapse
Affiliation(s)
- Fulu Ai
- Department of General Surgery (VIP ward), Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Guohua Zhao
- Department of General Surgery (VIP ward), Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Wu Lv
- Department of General Surgery (VIP ward), Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Bin Liu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jie Lin
- Department of General Surgery (VIP ward), Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
39
|
Abstract
Pre-clinical models and clinical trials demonstrate that targeting the action of the cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), can be efficacious in inflammation/autoimmunity reinforcing the importance of understanding how GM-CSF functions; a significant GM-CSF-responding cell in this context is likely to be the monocyte. This article summarizes critically the literature on the downstream cellular pathways regulating GM-CSF interaction with monocytes (and macrophages), highlighting some contentious issues, and conclusions surrounding this biology. It also suggests future directions which could be undertaken so as to more fully understand this aspect of GM-CSF biology. Given the focus of this collection of articles on monocytes, the following discussion in general will be limited to this population or to its more mature progeny, the macrophage, even though GM-CSF biology is broader than this.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
| |
Collapse
|
40
|
Ehrchen JM, Roth J, Barczyk-Kahlert K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages. Front Immunol 2019; 10:2028. [PMID: 31507614 PMCID: PMC6718555 DOI: 10.3389/fimmu.2019.02028] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Uncontrolled inflammation is a leading cause of many clinically relevant diseases. Current therapeutic strategies focus mainly on immunosuppression rather than on the mechanisms of inflammatory resolution. Glucocorticoids (GCs) are still the most widely used anti-inflammatory drugs. GCs affect most immune cells but there is growing evidence for cell type specific mechanisms. Different subtypes of monocytes and macrophages play a pivotal role both in generation as well as resolution of inflammation. Activation of these cells by microbial products or endogenous danger signals results in production of pro-inflammatory mediators and initiation of an inflammatory response. GCs efficiently inhibit these processes by down-regulating pro-inflammatory mediators from macrophages and monocytes. On the other hand, GCs act on “naïve” monocytes and macrophages and induce anti-inflammatory mediators and differentiation of anti-inflammatory phenotypes. GC-induced anti-inflammatory monocytes have an increased ability to migrate toward inflammatory stimuli. They remove endo- and exogenous danger signals by an increased phagocytic capacity, produce anti-inflammatory mediators and limit T-cell activation. Thus, GCs limit amplification of inflammation by repressing pro-inflammatory macrophage activation and additionally induce anti-inflammatory monocyte and macrophage populations actively promoting resolution of inflammation. Further investigation of these mechanisms should lead to the development of novel therapeutic strategies to modulate undesirable inflammation with fewer side effects via induction of inflammatory resolution rather than non-specific immunosuppression.
Collapse
Affiliation(s)
- Jan M Ehrchen
- Department of Dermatology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | | |
Collapse
|
41
|
Gururajan A, van de Wouw M, Boehme M, Becker T, O'Connor R, Bastiaanssen TFS, Moloney GM, Lyte JM, Ventura Silva AP, Merckx B, Dinan TG, Cryan JF. Resilience to chronic stress is associated with specific neurobiological, neuroendocrine and immune responses. Brain Behav Immun 2019; 80:583-594. [PMID: 31059807 DOI: 10.1016/j.bbi.2019.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Research into the molecular basis of stress resilience is a novel strategy to identify potential therapeutic strategies to treat stress-induced psychopathologies such as anxiety and depression. Stress resilience is a phenomenon which is not solely driven by effects within the central nervous system (CNS) but involves multiple systems, central and peripheral, which interact with and influence each other. Accordingly, we used the chronic social defeat stress paradigm and investigated specific CNS, endocrine and immune responses to identify signatures of stress-resilience and stress susceptibility in mice. Our results showed that mice behaviourally susceptible to stress (indexed by a reduction in social interaction behaviour) had higher plasma corticosterone levels and adrenal hypertrophy. An increase in inflammatory circulating monocytes was another hallmark of stress susceptibility. Furthermore, prefrontal cortex mRNA expression of corticotrophin-releasing factor (Crf) was increased in susceptible mice relative to resilient mice. We also report differences in hippocampal synaptic plasticity between resilient and susceptible mice. Ongoing studies will interpret the functional relevance of these signatures which could potentially inform the development of novel psychotherapeutic strategies.
Collapse
Affiliation(s)
- Anand Gururajan
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Marcel van de Wouw
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Marcus Boehme
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Thorsten Becker
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Rory O'Connor
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Barbara Merckx
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry & Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
42
|
Zhu G, Pei L, Lin F, Yin H, Li X, He W, Liu N, Gou X. Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p. J Cell Physiol 2019; 234:23736-23749. [PMID: 31180587 DOI: 10.1002/jcp.28941] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/05/2023]
Abstract
Renal ischemia/reperfusion (I/R) injury is the main reason for acute kidney injury (AKI) and is closely related to high morbidity and mortality. In this study, we found that exosomes from human-bone-marrow-derived mesenchymal stem cells (hBMSC-Exos) play a protective role in hypoxia/reoxygenation (H/R) injury. hBMSC-Exos were enriched in miR-199a-3p, and hBMSC-Exo treatment increased the expression level of miR-199a-3p in renal cells. We further explored the function of miR-199a-3p on H/R injury. miR-199a-3p was knocked down in hBMSCs with a miR-199a-3p inhibitor. HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs were more susceptible to H/R injury and showed more apoptosis than those cocultured with hBMSCs or miR-199a-3p-overexpressing hBMSCs. Meanwhile, we found that HK-2 cells exposed to H/R treatment incubated with hBMSC-Exos decreased semaphorin 3A (Sema3A) and activated the protein kinase B (AKT) and extracellular-signal-regulated kinase (ERK) pathways. However, HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs restored Sema3A expression and blocked the activation of the AKT and ERK pathways. Moreover, knocking down Sema3A could reactivate the AKT and ERK pathways suppressed by a miR-199a-3p inhibitor. In vivo, we injected hBMSC-Exos into mice suffering from I/R injury; this treatment induced functional recovery and histologic protection and reduced cleaved caspase-3 and Sema3A expression levels, as shown by immunohistochemistry. On the whole, this study demonstrated an antiapoptotic effect of hBMSC-Exos, which protected against I/R injury, via delivering miR-199a-3p to renal cells, downregulating Sema3A expression and thereby activating the AKT and ERK pathways. These findings reveal a novel mechanism of AKI treated with hBMSC-Exos and provide a therapeutic method for kidney diseases.
Collapse
Affiliation(s)
- Gongmin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijiao Pei
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Lin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nian Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Meinhardt A, Wang M, Schulz C, Bhushan S. Microenvironmental signals govern the cellular identity of testicular macrophages. J Leukoc Biol 2019; 104:757-766. [PMID: 30265772 DOI: 10.1002/jlb.3mr0318-086rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
Testicular macrophages (TM) comprise the largest immune cell population in the mammalian testis. They are characterized by a subdued proinflammatory response upon adequate stimulation, and a polarization toward the immunoregulatory and immunotolerant M2 phenotype. This enables them to play a relevant role in supporting the archetypical functions of the testis, namely spermatogenesis and steroidogenesis. During infection, the characteristic blunted immune response of TM reflects the need for a delicate balance between a sufficiently strong reaction to counteract invading pathogens, and the prevention of excessive proinflammatory cytokine levels with the potential to disturb or destroy spermatogenesis. Local microenvironmental factors that determine the special phenotype of TM have just begun to be unraveled, and are discussed in this review.
Collapse
Affiliation(s)
- Andreas Meinhardt
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ming Wang
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sudhanshu Bhushan
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
44
|
Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc Natl Acad Sci U S A 2019; 116:10333-10338. [PMID: 31064871 PMCID: PMC6535017 DOI: 10.1073/pnas.1820130116] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Consequences of heat stress, particularly for the immune system and the intestinal health of mammals, are a topic of increasing global relevance due to rising temperatures and potential health impairments. Specific climate effects, however, are often difficult to discriminate from indirect consequences, e.g. reduced feed intake. Our study in dairy cattle, which are particularly sensitive to heat, identifies the infiltration of the small intestinal epithelium by a previously unobserved distinct cell population with macrophage-like phenotype in response to moderate heat stress. By using a pair-feeding design, we attributed these effects as direct consequences of heat stress via impaired intestinal barrier function. Therefore, an appropriate gut function is an important component in combating the negative consequences of heat stress. High ambient temperature has multiple potential effects on the organism such as hyperthermia, endotoxemia, and/or systemic inflammation. However, it is often difficult to discriminate between cause and consequence of phenotypic effects, such as the indirect influence of heat stress via reduced food intake. Lactating dairy cows are a particularly sensitive model to examine the effects of heat stress due to their intensive metabolic heat production and small surface:volume ratio. Results from this model show heat stress directly induced a so-far unknown infiltration of yet uncategorized cells into the mucosa and submucosa of the jejunum. Due to a pair-feeding design, we can exclude this effect being a consequence of the concurrent heat-induced reduction in feed intake. Isolation and characterization of the infiltrating cells using laser capture microdissection and RNA sequencing indicated a myeloic origin and macrophage-like phenotype. Furthermore, targeted transcriptome analyses provided evidence of activated immune- and phagocytosis-related pathways with LPS and cytokines as upstream regulators directly associated with heat stress. Finally, we obtained indication that heat stress may directly alter jejunal tight junction proteins suggesting an impaired intestinal barrier. The penetration of toxic and bacterial compounds during heat stress may have triggered a modulated immune repertoire and induced an antioxidative defense mechanism to maintain homeostasis between commensal bacteria and the jejunal immune system. Our bovine model indicates direct effects of heat stress on the jejunum of mammals already at moderately elevated ambient temperature. These results need to be considered when developing concepts to combat the negative consequences of heat stress.
Collapse
|
45
|
Voo VTF, O'Brien T, Butzkueven H, Monif M. The role of vitamin D and P2X7R in multiple sclerosis. J Neuroimmunol 2019; 330:159-169. [PMID: 30908981 DOI: 10.1016/j.jneuroim.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is characterized by neuroinflammatory infiltrates and central nervous system demyelination. In the neuroinflammatory foci of MS there is increased expression of a purinergic receptor, P2X7R. Although implicated in the neuroinflammation, the exact role of P2X7R in the context of MS is unclear and forms the basis of this review. In this review, we also introduce the immunopathologies and inflammatory processes in MS, with a focus on P2X7R and the possible immunomodulatory role of vitamin D deficiency in this setting.
Collapse
Affiliation(s)
- Veronica Tsin Fong Voo
- Department of Physiology, The University of Melbourne, Melbourne, Australia; Department of Neuroscience, Monash University, Melbourne, Australia
| | - Terence O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Neurology, Melbourne Health, Melbourne, Australia
| | | | - Mastura Monif
- Department of Physiology, The University of Melbourne, Melbourne, Australia; Department of Neuroscience, Monash University, Melbourne, Australia; Department of Neurology, Melbourne Health, Melbourne, Australia.
| |
Collapse
|
46
|
MicroRNA-25 Protects Smooth Muscle Cells against Corticosterone-Induced Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2691514. [PMID: 30992737 PMCID: PMC6434288 DOI: 10.1155/2019/2691514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/17/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022]
Abstract
Background and Aims Vascular smooth muscle cells (VSMCs) are central components of atherosclerotic plaque. Loss of VSMCs through apoptotic cell death can cause fibrous cap thinning, necrotic core formation, and calcification that may destabilize plaque. Elevated glucocorticoid levels caused by psychological stress promote VSMC apoptosis and can exacerbate atherosclerosis in mice and humans. Changes in the levels of antiapoptosis microRNA-25 (miR-25) have been linked with heart disease, inflammation, VSMC phenotype, oxidative stress, and apoptosis. Here, we investigated the pathways and mechanisms of glucocorticoid-induced apoptosis of mouse VSMCs and the protective role of miR-25. Methods Primary mouse VSMCs were cultured +/- corticosterone for 48 h. Apoptosis, ROS, apoptotic protein activities, miR-25, MOAP1, a miR-25 target, and p70S6 kinase were quantified at intervals. The roles of miR-25 were assessed by treating cells with lenti-pre-miR-25 and anti-miR-25. Results VSMC apoptosis, caspase-3 activity, and Bax were increased by corticosterone, and cell death was paralleled by marked loss of miR-25. Protection was conferred by pre-miR-25 and exacerbated by anti-miR-25. Pre-miR-25 conferred reduced expression of the proapoptotic protein MOAP1, and the protective effects of pre-miR-25 were abrogated by overexpressing MOAP1. The antiapoptotic effects of miR-25 were paralleled by inhibition of the p70S6K pathway, a convergence target for the survival signaling pathways, and protection by pre-miR-25 was abrogated by the p70S6k inhibitor rapamycin. Conclusions MicroRNA-25 blocks corticosterone-induced VSMC apoptosis by targeting MOAP1 and the p70S6k pathway. Therapeutic manipulation of miR-25 may reduce atherosclerosis and unstable plaque formation associated with chronic stress.
Collapse
|
47
|
Zou W, Niu C, Fu Z, Gong C. PNS-R1 inhibits Dex-induced bronchial epithelial cells apoptosis in asthma through mitochondrial apoptotic pathway. Cell Biosci 2019; 9:18. [PMID: 30891181 PMCID: PMC6388479 DOI: 10.1186/s13578-019-0279-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/01/2019] [Indexed: 12/04/2022] Open
Abstract
Dexamethasone (Dex) are widely used for the treatment of asthma. However, they may cause apoptosis of bronchial epithelial cells and delay the recovery of asthma. Therefore, it is an urgent problem to find effective drugs to reduce this side effects. Panax notoginseng saponins R1 (PNS-R1) is known to exhibit anti-oxidative and anti-apoptotic properties in many diseases. We aim to investigate whether PNS-R1 can reduce Dex-induced apoptosis in bronchial epithelial cells. In this study, the anti-apoptotic effects of PNS-R1 were investigated by conducting in vitro and in vivo. Annexin V-FITC/PI staining flow cytometry analysis and TUNEL assay were conducted to detect apoptotic cells. Mitochondrial membrane potential was detected by JC-1 analysis. Western blotting and immunohistochemical analysis were conducted to measure caspase3, Bcl-2, Bax, Cyt-c, Apaf-1, cleaved-caspase3 and cleaved-caspase9 levels in lung tissues and 16HBE cells. Our findings demonstrated that Dex could induce apoptosis of bronchial epithelial cells and upregulate caspase3 expression of lung tissues. Western blot showed that Dex increased Bax, Cyt-c, Apaf-1, cleaved-caspase9, cleaved-caspase3 expression and decreased Bcl-2 expression. PNS-R1 could suppress Dex-induced apoptosis of bronchial epithelial cells by inhibiting Bax, Cyt-c, Apaf-1, cleaved-caspase9, cleaved-caspase3 expression and upregulating Bcl-2 expression. Flow cytometry analysis showed PNS-R1 alleviated JC-1 positive cells induced by Dex in 16HBE cells. These results showed that PNS-R1 alleviated Dex-induced apoptosis in bronchial epithelial cells by inhibition of mitochondrial apoptosis pathway. Furthermore, our findings highlighted the potential use of PNS-R1 as an adjuvant drug to treat asthma.
Collapse
Affiliation(s)
- Wenjing Zou
- 1Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
| | - Chao Niu
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| | - Zhou Fu
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| | - Caihui Gong
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| |
Collapse
|
48
|
Hsu AT, Lupancu TJ, Lee MC, Fleetwood AJ, Cook AD, Hamilton JA, Achuthan A. Epigenetic and transcriptional regulation of IL4-induced CCL17 production in human monocytes and murine macrophages. J Biol Chem 2018; 293:11415-11423. [PMID: 29871928 DOI: 10.1074/jbc.ra118.002416] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/17/2018] [Indexed: 12/31/2022] Open
Abstract
Interleukin 4 (IL4) is generally viewed as a Th2 cytokine capable of polarizing macrophages into an anti-inflammatory phenotype, whereas granulocyte macrophage-colony-stimulating factor (GM-CSF) is often viewed as a proinflammatory cytokine with part of this function due to its action on monocytes/macrophages. Paradoxically, these two cytokines act additively to enhance the in vitro differentiation of dendritic cells from precursors such as monocytes. One up-regulated marker of an IL4-polarized M2 macrophage is the chemokine (C-C motif) ligand 17 (CCL17), which we have recently reported to be induced by GM-CSF in monocytes/macrophages in an interferon regulatory factor 4 (IRF4)-dependent manner. In this study, we report that IL4 also induces CCL17 production by acting through IRF4 in human monocytes and murine macrophages. Furthermore, evidence is presented that IL4 up-regulates IRF4 expression at the epigenetic level by enhancing the expression and activity of jumonji domain-containing protein 3 (JMJD3) demethylase. Intriguingly, silencing the signal transducer and activator of transcription 6 (STAT6) gene led to a decrease in not only CCL17 formation, but also in that of its upstream regulators, JMJD3 and IRF4. Moreover, IL4 treatment of human monocytes resulted in an increased association of STAT6 to the promoter regions of the CCL17, IRF4, and JMJD3 genes. Thus, despite their vastly different functions, IL4 and GM-CSF appear to share elements of a common signaling pathway in regulating CCL17 production in human monocytes and murine macrophages.
Collapse
Affiliation(s)
- Amy T Hsu
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050
| | - Tanya J Lupancu
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050
| | - Ming-Chin Lee
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050
| | - Andrew J Fleetwood
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050
| | - Andrew D Cook
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050
| | - John A Hamilton
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Victoria 3021, Australia
| | - Adrian Achuthan
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050.
| |
Collapse
|