1
|
Rawal S, Randhawa V, Rizvi SHM, Sachan M, Wara AK, Pérez-Cremades D, Weisbrod RM, Hamburg NM, Feinberg MW. miR-369-3p ameliorates diabetes-associated atherosclerosis by regulating macrophage succinate-GPR91 signalling. Cardiovasc Res 2024; 120:1693-1712. [PMID: 38703377 PMCID: PMC11587565 DOI: 10.1093/cvr/cvae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS Diabetes leads to dysregulated macrophage immunometabolism, contributing to accelerated atherosclerosis progression. Identifying critical factors to restore metabolic alterations and promote resolution of inflammation remains an unmet goal. MicroRNAs orchestrate multiple signalling events in macrophages, yet their therapeutic potential in diabetes-associated atherosclerosis remains unclear. METHODS AND RESULTS miRNA profiling revealed significantly lower miR-369-3p expression in aortic intimal lesions from Ldlr-/- mice on a high-fat sucrose-containing (HFSC) diet for 12 weeks. miR-369-3p was also reduced in peripheral blood mononuclear cells from diabetic patients with coronary artery disease (CAD). Cell-type expression profiling showed miR-369-3p enrichment in aortic macrophages. In vitro, oxLDL treatment reduced miR-369-3p expression in mouse bone marrow-derived macrophages (BMDMs). Metabolic profiling in BMDMs revealed that miR-369-3p overexpression blocked the oxidized low density lipoprotein (oxLDL)-mediated increase in the cellular metabolite succinate and reduced mitochondrial respiration (OXPHOS) and inflammation [Interleukin (lL)-1β, TNF-α, and IL-6]. Mechanistically, miR-369-3p targeted the succinate receptor (GPR91) and alleviated the oxLDL-induced activation of inflammasome signalling pathways. Therapeutic administration of miR-369-3p mimics in HFSC-fed Ldlr-/- mice reduced GPR91 expression in lesional macrophages and diabetes-accelerated atherosclerosis, evident by a decrease in plaque size and pro-inflammatory Ly6Chi monocytes. RNA-Seq analyses showed more pro-resolving pathways in plaque macrophages from miR-369-3p-treated mice, consistent with an increase in macrophage efferocytosis in lesions. Finally, a GPR91 antagonist attenuated oxLDL-induced inflammation in primary monocytes from human subjects with diabetes. CONCLUSION These findings establish a therapeutic role for miR-369-3p in halting diabetes-associated atherosclerosis by regulating GPR91 and macrophage succinate metabolism.
Collapse
MESH Headings
- Animals
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Macrophages/metabolism
- Macrophages/pathology
- Signal Transduction
- Humans
- Mice, Knockout
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Male
- Mice, Inbred C57BL
- Disease Models, Animal
- Lipoproteins, LDL/metabolism
- Succinic Acid/metabolism
- Plaque, Atherosclerotic
- Mice
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aortic Diseases/immunology
- Cells, Cultured
- Gene Expression Regulation
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/prevention & control
- Female
- Middle Aged
Collapse
Affiliation(s)
- Shruti Rawal
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Vinay Randhawa
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Syed Husain Mustafa Rizvi
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Madhur Sachan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Akm Khyrul Wara
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Daniel Pérez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Department of Physiology, University of Valencia, INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Robert M Weisbrod
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Naomi M Hamburg
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
2
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
3
|
Tamarindo GH, Ribeiro CF, Silva ADT, Castro A, Caruso ÍP, Souza FP, Taboga SR, Loda M, Góes RM. The polyunsaturated fatty acid docosahexaenoic affects mitochondrial function in prostate cancer cells. Cancer Metab 2024; 12:24. [PMID: 39113152 PMCID: PMC11308158 DOI: 10.1186/s40170-024-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines. METHODS Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation. RESULTS In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1. CONCLUSION In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Guilherme Henrique Tamarindo
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Alana Della Torre Silva
- Department of Biological Sciences, IBILCE - UNESP. Rua Cristovão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, São Paulo, 15054-000, Brazil
| | - Alex Castro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Ícaro Putinhon Caruso
- Department of Biophysics, Institute of Biosciences, Humanities and Exact Science, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil
- Institute of Medical Biochemistry and National Center for Structure Biology and Bioimaging (CENABIO), National Center for Nuclear Magnetic Resonance of Macromolecules, Federal University of Rio de Janeiro, Ilha Do Fundão, Rio de Janeiro, Brazil
| | - Fátima Pereira Souza
- Department of Biophysics, Institute of Biosciences, Humanities and Exact Science, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, IBILCE - UNESP. Rua Cristovão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, São Paulo, 15054-000, Brazil
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rejane Maira Góes
- Department of Biological Sciences, IBILCE - UNESP. Rua Cristovão Colombo, 2265 Jardim Nazareth, São José Do Rio Preto, São Paulo, 15054-000, Brazil.
| |
Collapse
|
4
|
Zhang N, Wang X, Feng M, Li M, Wang J, Yang H, He S, Xia Z, Shang L, Jiang X, Sun M, Wu Y, Ren C, Zhang X, Li J, Gao F. Early-life exercise induces immunometabolic epigenetic modification enhancing anti-inflammatory immunity in middle-aged male mice. Nat Commun 2024; 15:3103. [PMID: 38600123 PMCID: PMC11006929 DOI: 10.1038/s41467-024-47458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Exercise is usually regarded to have short-term beneficial effects on immune health. Here we show that early-life regular exercise exerts long-term beneficial effects on inflammatory immunity. Swimming training for 3 months in male mice starting from 1-month-old curbs cytokine response and mitigates sepsis when exposed to lipopolysaccharide challenge, even after an 11-month interval of detraining. Metabolomics analysis of serum and liver identifies pipecolic acid, a non-encoded amino acid, as a pivotal metabolite responding to early-life regular exercise. Importantly, pipecolic acid reduces inflammatory cytokines in bone marrow-derived macrophages and alleviates sepsis via inhibiting mTOR complex 1 signaling. Moreover, early-life exercise increases histone 3 lysine 4 trimethylation at the promoter of Crym in the liver, an enzyme responsible for catalyzing pipecolic acid production. Liver-specific knockdown of Crym in adult mice abolishes this early exercise-induced protective effects. Our findings demonstrate that early-life regular exercise enhances anti-inflammatory immunity during middle-aged phase in male mice via epigenetic immunometabolic modulation, in which hepatic pipecolic acid production has a pivotal function.
Collapse
Affiliation(s)
- Nini Zhang
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinpei Wang
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Mengya Feng
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Li
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongyan Yang
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Siyu He
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Ziqi Xia
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Lei Shang
- Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Ministry of Education; Department of Health Statistics, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mao Sun
- Department of Biochemistry and Molecular Biology, Center for DNA Typing, Fourth Military Medical University, Xi'an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Center for DNA Typing, Fourth Military Medical University, Xi'an, China
| | - Chaoxue Ren
- School of Sport and Health Science, Xi'an Physical Education University, Xi'an, China
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China.
- Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Ministry of Education; Department of Health Statistics, School of Public Health, Fourth Military Medical University, Xi'an, China.
| | - Feng Gao
- Key Laboratory of Aerospace Medicine, Ministry of Education; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Ashok S, Raji SR, Manjunatha S, Srinivas G. Impairment of substrate-mediated mitochondrial respiration in cardiac cells by chloroquine. Mol Cell Biochem 2024; 479:373-382. [PMID: 37074504 PMCID: PMC10113731 DOI: 10.1007/s11010-023-04740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Chloroquine (CQ) has a long clinical history as an anti-malarial agent and also being used for the treatment of other infections and autoimmune diseases. Recently, this lysosomotropic agent and its derivatives are also been tested as adjuncts alongside conventional anti-cancer treatments in combinatorial therapies. However, their reported cardiotoxicity tends to raise concern over their indiscriminate use. Even though the influence of CQ and its derivatives on cardiac mitochondria is extensively studied in disease models, their impact on cardiac mitochondrial respiration under physiological conditions remains inconclusive. In this study, we aimed to evaluate the impact of CQ on cardiac mitochondrial respiration using both in-vitro and in-vivo model systems. Using high-resolution respirometry in isolated cardiac mitochondria from male C57BL/6 mice treated with intraperitoneal injection of 10 mg/kg/day of CQ for 14 days, CQ was found to impair substrate-mediated mitochondrial respiration in cardiac tissue. In an in-vitro model of H9C2 cardiomyoblasts, incubation with 50 µM of CQ for 24 h disrupted mitochondrial membrane potential, produced mitochondrial fragmentation, decreased mitochondrial respiration and induced superoxide generation. Altogether, our study results indicate that CQ has a deleterious impact on cardiac mitochondrial bioenergetics which in turn suggests that CQ treatment could be an added burden, especially in patients affected with diseases with underlying cardiac complications. As CQ is an inhibitor of the lysosomal pathway, the observed effect could be an outcome of the accumulation of dysfunctional mitochondria due to autophagy inhibition.
Collapse
Affiliation(s)
- Sivasailam Ashok
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Sasikala Rajendran Raji
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Shankarappa Manjunatha
- Dr B C Roy Multispeciality Medical Research Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| | - Gopala Srinivas
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
6
|
Leung TCS, Fields E, Rana N, Shen RYL, Bernstein AE, Cook AA, Phillips DE, Watt AJ. Mitochondrial damage and impaired mitophagy contribute to disease progression in SCA6. Acta Neuropathol 2024; 147:26. [PMID: 38286873 PMCID: PMC10824820 DOI: 10.1007/s00401-023-02680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease that manifests in midlife and progressively worsens with age. SCA6 is rare, and many patients are not diagnosed until long after disease onset. Whether disease-causing cellular alterations differ at different disease stages is currently unknown, but it is important to answer this question in order to identify appropriate therapeutic targets across disease duration. We used transcriptomics to identify changes in gene expression at disease onset in a well-established mouse model of SCA6 that recapitulates key disease features. We observed both up- and down-regulated genes with the major down-regulated gene ontology terms suggesting mitochondrial dysfunction. We explored mitochondrial function and structure and observed that changes in mitochondrial structure preceded changes in function, and that mitochondrial function was not significantly altered at disease onset but was impaired later during disease progression. We also detected elevated oxidative stress in cells at the same disease stage. In addition, we observed impairment in mitophagy that exacerbates mitochondrial dysfunction at late disease stages. In post-mortem SCA6 patient cerebellar tissue, we observed metabolic changes that are consistent with mitochondrial impairments, supporting our results from animal models being translatable to human disease. Our study reveals that mitochondrial dysfunction and impaired mitochondrial degradation likely contribute to disease progression in SCA6 and suggests that these could be promising targets for therapeutic interventions in particular for patients diagnosed after disease onset.
Collapse
Affiliation(s)
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Namrata Rana
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | | | - Anna A Cook
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Hamed SA, Mohan A, Navaneetha Krishnan S, Wang A, Drikic M, Prince NL, Lewis IA, Shearer J, Keita ÅV, Söderholm JD, Shutt TE, McKay DM. Butyrate reduces adherent-invasive E. coli-evoked disruption of epithelial mitochondrial morphology and barrier function: involvement of free fatty acid receptor 3. Gut Microbes 2023; 15:2281011. [PMID: 38078655 PMCID: PMC10730202 DOI: 10.1080/19490976.2023.2281011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Gut bacteria provide benefits to the host and have been implicated in inflammatory bowel disease (IBD), where adherent-invasive E. coli (AIEC) pathobionts (e.g., strain LF82) are associated with Crohn's disease. E. coli-LF82 causes fragmentation of the epithelial mitochondrial network, leading to increased epithelial permeability. We hypothesized that butyrate would limit the epithelial mitochondrial disruption caused by E. coli-LF82. Human colonic organoids and the T84 epithelial cell line infected with E. coli-LF82 (MOI = 100, 4 h) showed a significant increase in mitochondrial network fission that was reduced by butyrate (10 mM) co-treatment. Butyrate reduced the loss of mitochondrial membrane potential caused by E. coli-LF82 and increased expression of PGC-1α mRNA, the master regulator of mitochondrial biogenesis. Metabolomics revealed that butyrate significantly altered E. coli-LF82 central carbon metabolism leading to diminished glucose uptake and increased succinate secretion. Correlating with preservation of mitochondrial network form/function, butyrate reduced E. coli-LF82 transcytosis across T84-cell monolayers. The use of the G-protein inhibitor, pertussis toxin, implicated GPCR signaling as critical to the effect of butyrate, and the free fatty acid receptor three (FFAR3, GPR41) agonist, AR420626, reproduced butyrate's effect in terms of ameliorating the loss of barrier function and reducing the mitochondrial fragmentation observed in E. coli-LF82 infected T84-cells and organoids. These data indicate that butyrate helps maintain epithelial mitochondrial form/function when challenged by E. coli-LF82 and that this occurs, at least in part, via FFAR3. Thus, loss of butyrate-producing bacteria in IBD in the context of pathobionts would contribute to loss of epithelial mitochondrial and barrier functions that could evoke disease and/or exaggerate a low-grade inflammation.
Collapse
Affiliation(s)
- Samira A. Hamed
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Armaan Mohan
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Saranya Navaneetha Krishnan
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Marija Drikic
- Calgary Metabolomics Research Facility, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Nicole L. Prince
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ian A. Lewis
- Calgary Metabolomics Research Facility, Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology, Linköping University, Linköping, Sweden
| | - Johan D. Söderholm
- Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology, Linköping University, Linköping, Sweden
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming. Antioxid Redox Signal 2023; 39:684-707. [PMID: 37212238 DOI: 10.1089/ars.2023.0268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
Collapse
Affiliation(s)
- Ippei Kawano
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bazila Bazila
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
10
|
Wu KK. Extracellular Succinate: A Physiological Messenger and a Pathological Trigger. Int J Mol Sci 2023; 24:11165. [PMID: 37446354 DOI: 10.3390/ijms241311165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
When tissues are under physiological stresses, such as vigorous exercise and cold exposure, skeletal muscle cells secrete succinate into the extracellular space for adaptation and survival. By contrast, environmental toxins and injurious agents induce cellular secretion of succinate to damage tissues, trigger inflammation, and induce tissue fibrosis. Extracellular succinate induces cellular changes and tissue adaptation or damage by ligating cell surface succinate receptor-1 (SUCNR-1) and activating downstream signaling pathways and transcriptional programs. Since SUCNR-1 mediates not only pathological processes but also physiological functions, targeting it for drug development is hampered by incomplete knowledge about the characteristics of its physiological vs. pathological actions. This review summarizes the current status of extracellular succinate in health and disease and discusses the underlying mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Institute of Biotechnology, College of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
11
|
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J Biol Chem 2023; 299:104761. [PMID: 37119852 PMCID: PMC10238741 DOI: 10.1016/j.jbc.2023.104761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.
Collapse
Affiliation(s)
- T M Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Prashant K Singh
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
12
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
13
|
Mitochondrial dynamics in macrophages: divide to conquer or unite to survive? Biochem Soc Trans 2023; 51:41-56. [PMID: 36815717 PMCID: PMC9988003 DOI: 10.1042/bst20220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Mitochondria have long been appreciated as the metabolic hub of cells. Emerging evidence also posits these organelles as hubs for innate immune signalling and activation, particularly in macrophages. Macrophages are front-line cellular defenders against endogenous and exogenous threats in mammals. These cells use an array of receptors and downstream signalling molecules to respond to a diverse range of stimuli, with mitochondrial biology implicated in many of these responses. Mitochondria have the capacity to both divide through mitochondrial fission and coalesce through mitochondrial fusion. Mitochondrial dynamics, the balance between fission and fusion, regulate many cellular functions, including innate immune pathways in macrophages. In these cells, mitochondrial fission has primarily been associated with pro-inflammatory responses and metabolic adaptation, so can be considered as a combative strategy utilised by immune cells. In contrast, mitochondrial fusion has a more protective role in limiting cell death under conditions of nutrient starvation. Hence, fusion can be viewed as a cellular survival strategy. Here we broadly review the role of mitochondria in macrophage functions, with a focus on how regulated mitochondrial dynamics control different functional responses in these cells.
Collapse
|
14
|
Wang Y, Tao H, Tang W, Wu S, Tang Y, Liu L. Succinate level is increased and succinate dehydrogenase exerts forward and reverse catalytic activities in lipopolysaccharides-stimulated cardiac tissue: The protective role of dimethyl malonate. Eur J Pharmacol 2023; 940:175472. [PMID: 36549501 DOI: 10.1016/j.ejphar.2022.175472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the alterations of myocardial succinate and fumarate levels with or without succinate dehydrogenase (SDH) inhibitor dimethyl malonate during 24 h of lipopolysaccharides (LPS) challenge, as well as the effects of dimethyl malonate on the impaired cardiac tissue. Myocardial succinate and fumarate levels were increased in the initial 9 h of LPS challenge. During this time, dimethyl malonate increased the succinate level, decreased the fumarate level, aggravated the cardiac dysfunction, reduced the oxidative stress, had little effect on interleukin-1β production, promoted interleukin-10 production and bothered the ATP production. Co-treatment with exogenous succinate significantly increased interleukin-1β production in this period. After 12 h of LPS challenge, myocardial the succinate level increased sharply, while the fumarate level gradually decreased. During 12-24 h of LPS challenge, dimethyl malonate effectively reduced the succinate level, increased the fumarate level, improved cardiac dysfunction, inhibited interleukin-1β production, and had little effect on oxidative stress, interleukin-10 production, and ATP production. LPS challenge also significantly increased the myocardial succinate receptor 1 expression and circulating succinate level. Inhibition of succinate receptor 1 significantly reduced the mRNA expression of interleukin-1β. In conclusion, the current study suggests that myocardial succinate accumulates during LPS challenge, and that SDH activity may be transformed (from forward to reversed) and involved in a line of stress response. Dimethyl malonate inhibits SDH and, depending on the time of treatment, reduces LPS-induced cardiac impairment. Furthermore, accumulated succinate exerts pro-inflammatory effects partly via succinate receptor 1 signaling.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongmei Tao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenjing Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siqi Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yin Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ling Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
15
|
Pu M, Zhang J, Zeng Y, Hong F, Qi W, Yang X, Gao G, Zhou T. Succinate-SUCNR1 induces renal tubular cell apoptosis. Am J Physiol Cell Physiol 2023; 324:C467-C476. [PMID: 36622070 DOI: 10.1152/ajpcell.00327.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Succinate has long been known to be only an intermediate product of the tricarboxylic acid cycle until identified as a natural ligand for SUCNR1 in 2004. SUCNR1 is widely expressed throughout the body, especially in the kidney. Abnormally elevated succinate is associated with many diseases, including obesity, type 2 diabetes, nonalcoholic fatty liver disease, and ischemia injury, but it is not known whether succinate can cause kidney damage. This study showed that succinate induced apparent renal injury after treatment for 12 wk, characterized by a reduction in 24 h urine and the significant detachment of the brush border of proximal tubular epithelial cells, tubular dilation, cast formation, and vacuolar degeneration of tubular cells in succinate-treated mice. Besides, succinate caused tubular epithelial cell apoptosis in kidneys and HK-2 cells. Mechanistically, succinate triggered cell apoptosis via SUCNR1 activation. In addition, succinate upregulated ERK by binding to SUCNR1, and inhibition of ERK using PD98059 abolished the proapoptotic effects of succinate in HK-2 cells. In summary, our study provides the first evidence that succinate acts as a risk factor and contributes to renal injury, and further research is required to discern the pathological effects of succinate on renal functions.
Collapse
Affiliation(s)
- Min Pu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongcheng Zeng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fuyan Hong
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,China Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Nguyen G, Park SY, Do DV, Choi DH, Cho EH. Gemigliptin Alleviates Succinate-Induced Hepatic Stellate Cell Activation by Ameliorating Mitochondrial Dysfunction. Endocrinol Metab (Seoul) 2022; 37:918-928. [PMID: 36377343 PMCID: PMC9816499 DOI: 10.3803/enm.2022.1530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGRUOUND Dipeptidyl peptidase-4 inhibitors (DPP-4Is) are used clinically as oral antidiabetic agents. Although DPP-4Is are known to ameliorate liver fibrosis, the protective mechanism of DPP-4Is in liver fibrosis remains obscure. In this study, gemigliptin was used to investigate the potential of DPP-4Is to alleviate the progression of liver fibrosis. METHODS To clarify the effects and mechanisms of gemigliptin, we conducted various experiments in LX-2 cells (immortalized human hepatic stellate cells [HSCs], the principal effectors of hepatic fibrogenesis), which were activated by succinate and exhibited elevated expression of α-smooth muscle actin, collagen type 1, and pro-inflammatory cytokines and increased cell proliferation. In vivo, we examined the effects and mechanisms of gemigliptin on a high-fat, high-cholesterol-induced mouse model of nonalcoholic steatohepatitis (NASH). RESULTS Gemigliptin decreased the expression of fibrogenesis markers and reduced the abnormal proliferation of HSCs. In addition, gemigliptin reduced the succinate-induced production of mitochondrial reactive oxygen species (ROS), intracellular ROS, and mitochondrial fission in HSCs. Furthermore, in the mouse model of NASH-induced liver fibrosis, gemigliptin alleviated both liver fibrosis and mitochondrial dysfunction. CONCLUSION Gemigliptin protected against HSC activation and liver fibrosis by alleviating mitochondrial dysfunction and ROS production, indicating its potential as a strategy for preventing the development of liver disease.
Collapse
Affiliation(s)
- Giang Nguyen
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - So Young Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Dinh Vinh Do
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Dae-Hee Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
- Corresponding author: Eun-Hee Cho. Department of Internal Medicine, Kangwon National University School of Medicine, 1 Gangwondaehak-gil, Chuncheon 24341, Korea Tel: +82-33-258-9167, Fax: +82-33-258-2455, E-mail:
| |
Collapse
|
17
|
Yang Y, Xia Z, Xu C, Zhai C, Yu X, Li S. Ciprofol attenuates the isoproterenol-induced oxidative damage, inflammatory response and cardiomyocyte apoptosis. Front Pharmacol 2022; 13:1037151. [PMID: 36483733 PMCID: PMC9723392 DOI: 10.3389/fphar.2022.1037151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 01/25/2023] Open
Abstract
Background and Purpose: Ciprofol (HSK3486), a novel 2,6-disubstituted phenol derivative, is a new intravenous anesthetic compound with a similar chemical structure to propofol. Animal studies have also shown that propofol plays a protective role in a variety of cardiovascular diseases, including myocardial infarction, myocardial ischemia-reperfusion injury and takotsubo syndrome. However, whether ciprofol exerts cardioprotective effects on myocardial infarction remains unclear. Thus, the aim of this work was to explore the potential cardioprotective mechanism of ciprofol on isoproterenol (ISO)-induced myocardial infarction. Experimental Approach: In the present study, male C57BL/6 mice were subjected to subcutaneous injection of ISO (100 mg/kg) for 2 consecutive days to induce experimental myocardial infarction. Herein, we found that ciprofol could inhibit the abnormal increase in myocardial injury enzymes, the area of myocardial infarction and cardiac dysfunction in ISO-treated mice. Ciprofol administration increased the activity of superoxide dismutase and reduced the levels of NADPH oxidase and malondialdehyde in ISO-treated hearts. Additionally, ciprofol administration markedly reduced the expression of pro-inflammatory cytokines and cardiomyocyte apoptosis. In an in vitro model, the results also confirmed that ciprofol could inhibit ISO-induced oxidative damage, the inflammatory response and cardiomyocyte apoptosis. Moreover, ciprofol can activate the sirtuin1 (Sirt1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and Sirt1 and Nrf2 inhibition almost abolished ciprofol-mediated cardioprotective effects. Interpretation: Ciprofol protects the heart against ISO-induced myocardial infarction by reducing cardiac oxidative stress, the inflammatory response and cardiomyocyte apoptosis.
Collapse
|
18
|
Kuo CC, Wu JY, Wu KK. Cancer-derived extracellular succinate: a driver of cancer metastasis. J Biomed Sci 2022; 29:93. [DOI: 10.1186/s12929-022-00878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractSuccinate is a tricarboxylic acid (TCA) cycle intermediate normally confined to the mitochondrial matrix. It is a substrate of succinate dehydrogenase (SDH). Mutation of SDH subunits (SDHD and SDHB) in hereditary tumors such as paraganglioma or reduction of SDHB expression in cancer results in matrix succinate accumulation which is transported to cytoplasma and secreted into the extracellular milieu. Excessive cytosolic succinate is known to stabilize hypoxia inducible factor-1α (HIF-1α) by inhibiting prolyl hydroxylase. Recent reports indicate that cancer-secreted succinate enhances cancer cell migration and promotes cancer metastasis by activating succinate receptor-1 (SUCNR-1)-mediated signaling and transcription pathways. Cancer-derived extracellular succinate enhances cancer cell and macrophage migration through SUCNR-1 → PI-3 K → HIF-1α pathway. Extracellular succinate induces tumor angiogenesis through SUCNR-1-mediated ERK1/2 and STAT3 activation resulting in upregulation of vascular endothelial growth factor (VEGF) expression. Succinate increases SUCNR-1 expression in cancer cells which is considered as a target for developing new anti-metastasis drugs. Furthermore, serum succinate which is elevated in cancer patients may be a theranostic biomarker for selecting patients for SUCNR-1 antagonist therapy.
Collapse
|
19
|
Peng F, Jiang D, Xu W, Sun Y, Zha Z, Tan X, Yu J, Pan C, Zheng Q, Chen W. AMPK/MFF Activation: Role in Mitochondrial Fission and Mitophagy in Dry Eye. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 36374514 PMCID: PMC9669805 DOI: 10.1167/iovs.63.12.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose To assess the role of mitochondrial morphology and adenosine monophosphate-activated protein kinase (AMPK)/mitochondrial fission factor (MFF) in dry eye and the underlying mechanisms. Methods Immortalized human corneal epithelial cells (HCECs) and primary HCECs were cultured under high osmotic pressure (HOP). C57BL/6 female mice were injected subcutaneously with scopolamine. Quantitative real-time PCR was used to measure mRNA expression. Protein expression was assessed by western blot and immunofluorescence staining. Mitochondrial morphology was observed by confocal microscopy and transmission electron microscopy. Results First, HOP induced mitochondrial oxidative damage to HCECs, accompanied by mitochondrial fission and increased mitophagy. Then, AMPK/MFF pathway proteins were increased consequent to HOP-induced energy metabolism dysfunction. Interestingly, the AMPK pathway promoted mitochondrial fission and mitophagy by increasing the recruitment of dynamin-related protein 1 (DRP1) to the mitochondrial outer membrane in the HOP group. Moreover, AMPK knockdown attenuated mitochondrial fission and mitophagy due to HOP in HCECs. AMPK activation triggered mitochondrial fission and mitophagy. Mitochondrial fission of HCECs stressed by HOP was mediated via MFF phosphorylation. MFF knockdown reversed mitochondrial fragmentation and mitophagy in HCECs treated with HOP. Inhibition of MFF protected HCECs against oxidative damage, cell death, and inflammation in the presence of HOP. Finally, we detected mitochondrial fission and AMPK pathway activation in vivo. Conclusions The AMPK/MFF pathway mediates the development of dry eye by positively regulating mitochondrial fission and mitophagy. Inhibition of mitochondrial fission can alleviate oxidative damage and inflammation in dry eye and may provide experimental evidence for treating dry eye.
Collapse
Affiliation(s)
- Fangli Peng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Jiang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Xu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yining Sun
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiwei Zha
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiying Tan
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinjie Yu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengjie Pan
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinxiang Zheng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Bai Y, Wu J, Yang Z, Wang X, Zhang D, Ma J. Mitochondrial quality control in cardiac ischemia/reperfusion injury: new insights into mechanisms and implications. Cell Biol Toxicol 2022; 39:33-51. [PMID: 35951200 DOI: 10.1007/s10565-022-09716-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The current effective method for the treatment of myocardial infarction is timely restoration of the blood supply to the ischemic area of the heart. Although reperfusion is essential for reestablishing oxygen and nutrient supplies, it often leads to additional myocardial damage, creating an important clinical dilemma. Reports from long-term studies have confirmed that mitochondrial damage is the critical mechanism in cardiac ischemia/reperfusion (I/R) injury. Mitochondria are dynamic and possess a quality control system that targets mitochondrial quantity and quality by modifying mitochondrial fusion, fission, mitophagy, and biogenesis and protein homeostasis to maintain a healthy mitochondrial network. The system of mitochondrial quality control involves complex molecular machinery that is highly interconnected and associated with pathological changes such as oxidative stress, calcium overload, and endoplasmic reticulum (ER) stress. Because of the critical role of the mitochondrial quality control systems, many reports have suggested that defects in this system are among the molecular mechanisms underlying myocardial reperfusion injury. In this review, we briefly summarize the important role of the mitochondrial quality control in cardiomyocyte function and focus on the current understanding of the regulatory mechanisms and molecular pathways involved in mitochondrial quality control in cardiac I/R damage.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhenyu Yang
- Department of Endocrinology, South China Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Xu'an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
21
|
Pérez-Hernández CA, Moreno-Altamirano MMB, López-Villegas EO, Butkeviciute E, Ali M, Kronsteiner B, Dunachie SJ, Dockrell HM, Smith SG, Sánchez-García FJ. Mitochondrial Ultrastructure and Activity Are Differentially Regulated by Glycolysis-, Krebs Cycle-, and Microbiota-Derived Metabolites in Monocytes. BIOLOGY 2022; 11:biology11081132. [PMID: 36009759 PMCID: PMC9404980 DOI: 10.3390/biology11081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Several intermediate metabolites harbour cell-signalling properties, thus, it is likely that specific metabolites enable the communication between neighbouring cells, as well as between host cells with the microbiota, pathogens, and tumour cells. Mitochondria, a source of intermediate metabolites, participate in a wide array of biological processes beyond that of ATP production, such as intracellular calcium homeostasis, cell signalling, apoptosis, regulation of immune responses, and host cell-microbiota crosstalk. In this regard, mitochondria's plasticity allows them to adapt their bioenergetics status to intra- and extra-cellular cues, and the mechanisms driving such plasticity are currently a matter of intensive research. Here, we addressed whether mitochondrial ultrastructure and activity are differentially shaped when human monocytes are exposed to an exogenous source of lactate (derived from glycolysis), succinate, and fumarate (Krebs cycle metabolic intermediates), or butyrate and acetate (short-chain fatty acids produced by intestinal microbiota). It has previously been shown that fumarate induces mitochondrial fusion, increases the mitochondrial membrane potential (Δψm), and reshapes the mitochondrial cristae ultrastructure. Here, we provide evidence that, in contrast to fumarate, lactate, succinate, and butyrate induce mitochondrial fission, while acetate induces mitochondrial swelling. These traits, along with mitochondrial calcium influx kinetics and glycolytic vs. mitochondrial ATP-production rates, suggest that these metabolites differentially shape mitochondrial function, paving the way for the understanding of metabolite-induced metabolic reprogramming of monocytes and its possible use for immune-response intervention.
Collapse
Affiliation(s)
- C. Angélica Pérez-Hernández
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.P.-H.); (M.M.B.M.-A.)
| | - M. Maximina Bertha Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.P.-H.); (M.M.B.M.-A.)
| | - Edgar O. López-Villegas
- Unidad de Microscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Egle Butkeviciute
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.B.); (H.M.D.)
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK; (M.A.); (B.K.); (S.J.D.)
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK; (M.A.); (B.K.); (S.J.D.)
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Susanna J. Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK; (M.A.); (B.K.); (S.J.D.)
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Hazel M. Dockrell
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.B.); (H.M.D.)
| | - Steven G. Smith
- Division of Biosciences, Brunel University London, London UB8 3PH, UK;
| | - F. Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.P.-H.); (M.M.B.M.-A.)
- Correspondence:
| |
Collapse
|
22
|
Detraux D, Renard P. Succinate as a New Actor in Pluripotency and Early Development? Metabolites 2022; 12:651. [PMID: 35888775 PMCID: PMC9325148 DOI: 10.3390/metabo12070651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Pluripotent cells have been stabilized from pre- and post-implantation blastocysts, representing respectively naïve and primed stages of embryonic stem cells (ESCs) with distinct epigenetic, metabolic and transcriptomic features. Beside these two well characterized pluripotent stages, several intermediate states have been reported, as well as a small subpopulation of cells that have reacquired features of the 2C-embryo (2C-like cells) in naïve mouse ESC culture. Altogether, these represent a continuum of distinct pluripotency stages, characterized by metabolic transitions, for which we propose a new role for a long-known metabolite: succinate. Mostly seen as the metabolite of the TCA, succinate is also at the crossroad of several mitochondrial biochemical pathways. Its role also extends far beyond the mitochondrion, as it can be secreted, modify proteins by lysine succinylation and inhibit the activity of alpha-ketoglutarate-dependent dioxygenases, such as prolyl hydroxylase (PHDs) or histone and DNA demethylases. When released in the extracellular compartment, succinate can trigger several key transduction pathways after binding to SUCNR1, a G-Protein Coupled Receptor. In this review, we highlight the different intra- and extracellular roles that succinate might play in the fields of early pluripotency and embryo development.
Collapse
Affiliation(s)
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| |
Collapse
|
23
|
Owen A, Patel JM, Parekh D, Bangash MN. Mechanisms of Post-critical Illness Cardiovascular Disease. Front Cardiovasc Med 2022; 9:854421. [PMID: 35911546 PMCID: PMC9334745 DOI: 10.3389/fcvm.2022.854421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prolonged critical care stays commonly follow trauma, severe burn injury, sepsis, ARDS, and complications of major surgery. Although patients leave critical care following homeostatic recovery, significant additional diseases affect these patients during and beyond the convalescent phase. New cardiovascular and renal disease is commonly seen and roughly one third of all deaths in the year following discharge from critical care may come from this cluster of diseases. During prolonged critical care stays, the immunometabolic, inflammatory and neurohumoral response to severe illness in conjunction with resuscitative treatments primes the immune system and parenchymal tissues to develop a long-lived pro-inflammatory and immunosenescent state. This state is perpetuated by persistent Toll-like receptor signaling, free radical mediated isolevuglandin protein adduct formation and presentation by antigen presenting cells, abnormal circulating HDL and LDL isoforms, redox and metabolite mediated epigenetic reprogramming of the innate immune arm (trained immunity), and the development of immunosenescence through T-cell exhaustion/anergy through epigenetic modification of the T-cell genome. Under this state, tissue remodeling in the vascular, cardiac, and renal parenchymal beds occurs through the activation of pro-fibrotic cellular signaling pathways, causing vascular dysfunction and atherosclerosis, adverse cardiac remodeling and dysfunction, and proteinuria and accelerated chronic kidney disease.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jaimin M. Patel
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mansoor N. Bangash
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Mansoor N. Bangash
| |
Collapse
|
24
|
Bai N, Lu X, Jin L, Alimujiang M, Ma J, Hu F, Xu Y, Sun J, Xu J, Zhang R, Han J, Hu C, Yang Y. CLSTN3 gene variant associates with obesity risk and contributes to dysfunction in white adipose tissue. Mol Metab 2022; 63:101531. [PMID: 35753632 PMCID: PMC9254126 DOI: 10.1016/j.molmet.2022.101531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Objective White adipose tissue (WAT) possesses the remarkable remodeling capacity, and maladaptation of this ability contributes to the development of obesity and associated comorbidities. Calsyntenin-3 (CLSTN3) is a transmembrane protein that promotes synapse development in brain. Even though this gene has been reported to be associated with adipose tissue, its role in the regulation of WAT function is unknown yet. We aim to further assess the expression pattern of CLSTN3 gene in human adipose tissue, and investigate its regulatory impact on WAT function. Methods In our study, we observed the expression pattern of Clstn3/CLSTN3 gene in mouse and human WAT. Genetic association study and expression quantitative trait loci analysis were combined to identify the phenotypic effect of CLSTN3 gene variant in humans. This was followed by mouse experiments using adeno-associated virus-mediated human CLSTN3 overexpression in inguinal WAT. We investigated the effect of CLSTN3 on WAT function and overall metabolic homeostasis, as well as the possible underlying molecular mechanism. Results We observed that CLSTN3 gene was routinely expressed in human WAT and predominantly enriched in adipocyte fraction. Furthermore, we identified that the variant rs7296261 in the CLSTN3 locus was associated with a high risk of obesity, and its risk allele was linked to an increase in CLSTN3 expression in human WAT. Overexpression of CLSTN3 in inguinal WAT of mice resulted in diet-induced local dysfunctional expansion, liver steatosis, and systemic metabolic deficiency. In vivo and ex vivo lipolysis assays demonstrated that CLSTN3 overexpression attenuated catecholamine-stimulated lipolysis. Mechanistically, CLSTN3 could interact with amyloid precursor protein (APP) in WAT and increase APP accumulation in mitochondria, which in turn impaired adipose mitochondrial function and promoted obesity. Conclusion Taken together, we provide the evidence for a novel role of CLSTN3 in modulating WAT function, thereby reinforcing the fact that targeting CLSTN3 may be a potential approach for the treatment of obesity and associated metabolic diseases. CLSTN3 is expressed in the adipocyte fraction of human adipose tissue and mainly localizes to the plasma membrane. SNP rs7296261 in human CLSTN3 locus is associated with obesity risk. Overexpression of CLSTN3 leads to adipose tissue dysfunction in mice. CLSTN3 can attenuate catecholamine-stimulated lipolysis. CLSTN3 overexpression increases mitochondrial APP localization of mouse adipose tissue.
Collapse
Affiliation(s)
- Ningning Bai
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Xuhong Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Li Jin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Miriayi Alimujiang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jingyuan Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Fan Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Yuejie Xu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jingjing Sun
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jun Xu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| |
Collapse
|
25
|
Zhang MY, Zhu L, Bao X, Xie TH, Cai J, Zou J, Wang W, Gu S, Li Y, Li HY, Yao Y, Wei TT. Inhibition of Drp1 ameliorates diabetic retinopathy by regulating mitochondrial homeostasis. Exp Eye Res 2022; 220:109095. [PMID: 35490835 DOI: 10.1016/j.exer.2022.109095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022]
Abstract
Diabetic retinopathy (DR) is a potentially blinding complication resulting from diabetes mellitus (DM). Retinal vascular endothelial cells (RMECs) dysfunction occupies an important position in the pathogenesis of DR, and mitochondrial disorders play a vital role in RMECs dysfunction. However, the detailed mechanisms underlying DR-induced mitochondrial disorders in RMECs remain elusive. In the present study, we used High glucose (HG)-induced RMECs in vitro and streptozotocin (STZ)-induced Sprague-Dawley rats in vivo to explore the related mechanisms. We found that HG-induced mitochondrial dysfunction via mitochondrial Dynamin-related protein 1(Drp1)-mediated mitochondrial fission. Drp1 inhibitor, Mdivi-1, rescued HG-induced mitochondrial dysfunction. Protein Kinase Cδ (PKCδ) could induce phosphorylation of Drp1, and we found that HG induced phosphorylation of PKCδ. PKCδ inhibitor (Go 6983) or PKCδ siRNA reversed HG-induced phosphorylation of Drp1 and further mitochondrial dysfunction. The above studies indicated that HG increases mitochondrial fission via promoting PKCδ/Drp1 signaling. Drp1 induces excessive mitochondrial fission and produces damaged mitochondrial, and mitophagy plays a key role in clearing damaged mitochondrial. Our study showed that HG suppressed mitophagy via inhibiting LC3B-II formation and p62 degradation. 3-MA (autophagy inhibitor) aggravated HG-induced RMECs damage, while rapamycin (autophagy agonist) rescued the above phenomenon. Further studies were identified that HG inhibited mitophagy by down-regulation of the PINK1/Parkin signaling pathway, and PINK1 siRNA aggravated HG-induced RMECs damage. Further in-depth study, we propose that Drp1 promotion of Hexokinase II (HK-II) separation from mitochondria, thus inhibiting HK-II-PINK1-mediated mitophagy. In vivo, we found that intraretinal microvascular abnormalities (IRMA), including retinal vascular leakage, acellular capillaries, and apoptosis were increased in STZ-induced DR rats, which were reversed by pretreatment with Mdivi-1 or Rapamycin. Altogether, our findings provide new insight into the mechanisms underlying the regulation of mitochondrial homeostasis and provide a potential treatment strategy for Diabetic retinopathy.
Collapse
Affiliation(s)
- Meng-Yuan Zhang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Xun Bao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Tian-Hua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Wenjuan Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Shun Gu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Yan Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Hong-Ying Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, PR China.
| | - Ting-Ting Wei
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China.
| |
Collapse
|
26
|
SUCNR1 Mediates the Priming Step of the Inflammasome in Intestinal Epithelial Cells: Relevance in Ulcerative Colitis. Biomedicines 2022; 10:biomedicines10030532. [PMID: 35327334 PMCID: PMC8945150 DOI: 10.3390/biomedicines10030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Intestinal epithelial cells (IECs) constitute a defensive physical barrier in mucosal tissues and their disruption is involved in the etiopathogenesis of several inflammatory pathologies, such as Ulcerative Colitis (UC). Recently, the succinate receptor SUCNR1 was associated with the activation of inflammatory pathways in several cell types, but little is known about its role in IECs. We aimed to analyze the role of SUCNR1 in the inflammasome priming and its relevance in UC. Inflammatory and inflammasome markers and SUCNR1 were analyzed in HT29 cells treated with succinate and/or an inflammatory cocktail and transfected with SUCNR1 siRNA in a murine DSS model, and in intestinal resections from 15 UC and non-IBD patients. Results showed that this receptor mediated the inflammasome, priming both in vitro in HT29 cells and in vivo in a murine chronic DSS-colitis model. Moreover, SUNCR1 was also found to be involved in the activation of the inflammatory pathways NFкB and ERK pathways, even in basal conditions, since the transient knock-down of this receptor significantly reduced the constitutive levels of pERK-1/2 and pNFкB and impaired LPS-induced inflammation. Finally, UC patients showed a significant increase in the expression of SUCNR1 and several inflammasome components which correlated positively and significantly. Therefore, our results demonstrated a role for SUCNR1 in basal and stimulated inflammatory pathways in intestinal epithelial cells and suggested a pivotal role for this receptor in inflammasome activation in UC.
Collapse
|
27
|
Juhász L, Tallósy SP, Nászai A, Varga G, Érces D, Boros M. Bioactivity of Inhaled Methane and Interactions With Other Biological Gases. Front Cell Dev Biol 2022; 9:824749. [PMID: 35071248 PMCID: PMC8777024 DOI: 10.3389/fcell.2021.824749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
A number of studies have demonstrated explicit bioactivity for exogenous methane (CH4), even though it is conventionally considered as physiologically inert. Other reports cited in this review have demonstrated that inhaled, normoxic air-CH4 mixtures can modulate the in vivo pathways involved in oxidative and nitrosative stress responses and key events of mitochondrial respiration and apoptosis. The overview is divided into two parts, the first being devoted to a brief review of the effects of biologically important gases in the context of hypoxia, while the second part deals with CH4 bioactivity. Finally, the consequence of exogenous, normoxic CH4 administration is discussed under experimental hypoxia- or ischaemia-linked conditions and in interactions between CH4 and other biological gases, with a special emphasis on its versatile effects demonstrated in pulmonary pathologies.
Collapse
Affiliation(s)
- László Juhász
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szabolcs Péter Tallósy
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Anna Nászai
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
28
|
Xu G, Yuan Y, Luo P, Yang J, Zhou J, Zhu C, Jiang Q, Shu G. Acute Succinate Administration Increases Oxidative Phosphorylation and Skeletal Muscle Explosive Strength via SUCNR1. Front Vet Sci 2022; 8:808863. [PMID: 35097053 PMCID: PMC8795363 DOI: 10.3389/fvets.2021.808863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 11/15/2022] Open
Abstract
Endurance training and explosive strength training, with different contraction protein and energy metabolism adaptation in skeletal muscle, are both beneficial for physical function and quality of life. Our previous study found that chronic succinate feeding enhanced the endurance exercise of mice by inducing skeletal muscle fiber-type transformation. The purpose of this study is to investigate the effect of acute succinate administration on skeletal muscle explosive strength and its potential mechanism. Succinate was injected to mature mice to explore the acute effect of succinate on skeletal muscle explosive strength. And C2C12 cells were used to verify the short-term effect of succinate on oxidative phosphorylation. Then the cells interfered with succinate receptor 1 (SUCNR1) siRNA, and the SUCNR1-GKO mouse model was used for verifying the role of SUCNR1 in succinate-induced muscle metabolism and expression and explosive strength. The results showed that acute injection of succinate remarkably improved the explosive strength in mice and also decreased the ratio of nicotinamide adenine dinucleotide (NADH) to NAD+ and increased the mitochondrial complex enzyme activity and creatine kinase (CK) activity in skeletal muscle tissue. Similarly, treatment of C2C12 cells with succinate revealed that succinate significantly enhanced oxidative phosphorylation with increased adenosine triphosphate (ATP) content, CK, and the activities of mitochondrial complex I and complex II, but with decreased lactate content, reactive oxygen species (ROS) content, and NADH/NAD+ ratio. Moreover, the succinate's effects on oxidative phosphorylation were blocked in SUCNR1-KD cells and SUCNR1-KO mice. In addition, succinate-induced explosive strength was also abolished by SUCNR1 knockout. All the results indicate that acute succinate administration increases oxidative phosphorylation and skeletal muscle explosive strength in a SUCNR1-dependent manner.
Collapse
|
29
|
Diethyl Succinate Modulates Microglial Polarization and Activation by Reducing Mitochondrial Fission and Cellular ROS. Metabolites 2021; 11:metabo11120854. [PMID: 34940612 PMCID: PMC8705220 DOI: 10.3390/metabo11120854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022] Open
Abstract
Succinate is a metabolite in the tricarboxylic acid cycle (TCA) which plays a central role in mitochondrial activity. Excess succinate is known to be transported out of the cytosol, where it activates a succinate receptor (SUCNR1) to enhance inflammation through macrophages in various contexts. In addition, the intracellular role of succinate beyond an intermediate metabolite and prior to its extracellular release is also important to the polarization of macrophages. However, the role of succinate in microglial cells has not been characterized. Lipopolysaccharide (LPS) stimulates the elevation of intracellular succinate levels. To reveal the function of intracellular succinate associated with LPS-stimulated inflammatory response in microglial cells, we assessed the levels of ROS, cytokine production and mitochondrial fission in the primary microglia pretreated with cell-permeable diethyl succinate mimicking increased intracellular succinate. Our results suggest that elevated intracellular succinate exerts a protective role in the primary microglia by preventing their conversion into the pro-inflammatory M1 phenotype induced by LPS. This protective effect is SUCNR1-independent and mediated by reduced mitochondrial fission and cellular ROS production.
Collapse
|
30
|
Priming, Triggering, Adaptation and Senescence (PTAS): A Hypothesis for a Common Damage Mechanism of Steatohepatitis. Int J Mol Sci 2021; 22:ijms222212545. [PMID: 34830427 PMCID: PMC8624051 DOI: 10.3390/ijms222212545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the pathomechanism of steatohepatitis (SH) is hampered by the difficulty of distinguishing between causes and consequences, by the broad spectrum of aetiologies that can produce the phenotype, and by the long time-span during which SH develops, often without clinical symptoms. We propose that SH develops in four phases with transitions: (i) priming lowers stress defence; (ii) triggering leads to acute damage; (iii) adaptation, possibly associated with cellular senescence, mitigates tissue damage, leads to the phenotype, and preserves liver function at a lower level; (iv) finally, senescence prevents neoplastic transformation but favours fibrosis (cirrhosis) and inflammation and further reduction in liver function. Escape from senescence eventually leads to hepatocellular carcinoma. This hypothesis for a pathomechanism of SH is supported by clinical and experimental observations. It allows organizing the various findings to uncover remaining gaps in our knowledge and, finally, to provide possible diagnostic and intervention strategies for each stage of SH development.
Collapse
|
31
|
Liu Y, Gokhale S, Jung J, Zhu S, Luo C, Saha D, Guo JY, Zhang H, Kyin S, Zong WX, White E, Xie P. Mitochondrial Fission Factor Is a Novel Interacting Protein of the Critical B Cell Survival Regulator TRAF3 in B Lymphocytes. Front Immunol 2021; 12:670338. [PMID: 34745083 PMCID: PMC8564014 DOI: 10.3389/fimmu.2021.670338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Proteins controlling mitochondrial fission have been recognized as essential regulators of mitochondrial functions, mitochondrial quality control and cell apoptosis. In the present study, we identified the critical B cell survival regulator TRAF3 as a novel binding partner of the key mitochondrial fission factor, MFF, in B lymphocytes. Elicited by our unexpected finding that the majority of cytoplasmic TRAF3 proteins were localized at the mitochondria in resting splenic B cells after ex vivo culture for 2 days, we found that TRAF3 specifically interacted with MFF as demonstrated by co-immunoprecipitation and GST pull-down assays. We further found that in the absence of stimulation, increased protein levels of mitochondrial TRAF3 were associated with altered mitochondrial morphology, decreased mitochondrial respiration, increased mitochondrial ROS production and membrane permeabilization, which eventually culminated in mitochondria-dependent apoptosis in resting B cells. Loss of TRAF3 had the opposite effects on the morphology and function of mitochondria as well as mitochondria-dependent apoptosis in resting B cells. Interestingly, co-expression of TRAF3 and MFF resulted in decreased phosphorylation and ubiquitination of MFF as well as decreased ubiquitination of TRAF3. Moreover, lentivirus-mediated overexpression of MFF restored mitochondria-dependent apoptosis in TRAF3-deficient malignant B cells. Taken together, our findings provide novel insights into the apoptosis-inducing mechanisms of TRAF3 in B cells: as a result of survival factor deprivation or under other types of stress, TRAF3 is mobilized to the mitochondria through its interaction with MFF, where it triggers mitochondria-dependent apoptosis. This new role of TRAF3 in controlling mitochondrial homeostasis might have key implications in TRAF3-mediated regulation of B cell transformation in different cellular contexts. Our findings also suggest that mitochondrial fission is an actionable therapeutic target in human B cell malignancies, including those with TRAF3 deletion or relevant mutations.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Debanjan Saha
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
32
|
Balnis J, Drake LA, Vincent CE, Korponay TC, Singer DV, Lacomis D, Lee CG, Elias JA, Jourd'heuil D, Singer HA, Jaitovich A. Succinate Dehydrogenase (SDH)-subunit C Regulates Muscle Oxygen Consumption and Fatigability in an Animal Model of Pulmonary Emphysema. Am J Respir Cell Mol Biol 2021; 65:259-271. [PMID: 33909984 DOI: 10.1165/rcmb.2020-0551oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Patients with pulmonary emphysema often develop locomotor muscle dysfunction, which is independently associated with disability and higher mortality in that population. Muscle dysfunction entails reduced force-generation capacity which partially depends on fibers' oxidative potential, yet very little mechanistic research has focused on muscle respiration in pulmonary emphysema. Using a recently established animal model of pulmonary emphysema-driven skeletal muscle dysfunction, we found downregulation of succinate dehydrogenase (SDH) subunit C in association with lower oxygen consumption and fatigue-tolerance in locomotor muscles. Reduced SDH activity has been previously observed in muscles from patients with pulmonary emphysema and we found that SDHC is required to support respiration in cultured muscle cells. Moreover, in-vivo gain of SDH function in emphysema animals muscles resulted in better oxygen consumption rate (OCR) and fatigue tolerance. These changes correlated with a larger number of relatively more oxidative type 2-A and 2X fibers, and a reduced amount of 2B fibers. Our data suggests that SDHC is a key regulator of respiration and fatigability in pulmonary emphysema-driven skeletal muscles, which could be impactful to develop strategies aimed at attenuating this comorbidity.
Collapse
Affiliation(s)
- Joseph Balnis
- Albany Medical College, 1092, Albany, New York, United States
| | - Lisa A Drake
- Albany Medical Center, 138207, Albany, New York, United States
| | | | | | - Diane V Singer
- Albany Medical College, 1092, Albany, New York, United States
| | - David Lacomis
- University of Pittsburgh, 6614, Pittsburgh, Pennsylvania, United States
| | - Chun Geun Lee
- Brown University, 6752, Molecular Microbiology and Immunology, Providence, Rhode Island, United States
| | - Jack A Elias
- Brown University, 6752, Medicine and Biologic Science, Providence, Rhode Island, United States
| | | | - Harold A Singer
- Albany Medical College, 1092, Albany, New York, United States
| | - Ariel Jaitovich
- Albany Medical College Center for Cardiovascular Sciences, 150554, Medicine, Albany, New York, United States;
| |
Collapse
|
33
|
Caicedo A, Zambrano K, Sanon S, Luis Vélez J, Montalvo M, Jara F, Moscoso SA, Vélez P, Maldonado A, Velarde G. The diversity and coexistence of extracellular mitochondria in circulation: A friend or foe of the immune system. Mitochondrion 2021; 58:270-284. [PMID: 33662580 DOI: 10.1016/j.mito.2021.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
The diversity and coexistence of extracellular mitochondria may have a key role in the maintenance of health and progression of disease. Studies report that active mitochondria can be found physiologically outside of cells and circulating in the blood without inducing an inflammatory response. In addition, inactive or harmed mitochondria have been recognized as activators of immune cells, as they play an essential role in diseases characterized by the metabolic deregulation of these cells, such as sepsis. In this review we analyze key aspects regarding the existence of a diversity of extracellular mitochondria, their coexistence in body fluids and their effects on various immune cells. Additionally, we introduce models of how extracellular mitochondria could be interacting to maintain health and affect disease prognosis. Unwrapped mitochondria (freeMitos) can exist as viable, active, inactive or harmed organelles. Mitochondria can also be found wrapped in a membrane (wrappedMitos) that may differ depending on the cell of origin. Mitochondrial fragments can also be present in various body fluids as DAMPs, as mtDNA enclosed in vesicles or as circulating-cell-free mtDNA (ccf-mtDNA). Interestingly, the great quantity of evidence regarding the levels of ccf-mtDNA and their correlation with aging and disease allows for the identification of the diversity, but not type, of extracellular mitochondria. The existence of a diversity of mitochondria and their effects on immune cells opens a new concept in the biomedical field towards the understanding of health, the progression of disease and the development of mitochondria as therapeutic agents.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Cornell University - Ithaca, United States
| | - Jorge Luis Vélez
- Universidad Central del Ecuador, Facultad de Ciencias Médicas, Quito, Ecuador; Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Mario Montalvo
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Fernando Jara
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Santiago Aguayo Moscoso
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Pablo Vélez
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Augusto Maldonado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States; Hospital General Docente de Calderón, Quito, Ecuador
| | - Gustavo Velarde
- Universidad Central del Ecuador, Facultad de Ciencias Médicas, Quito, Ecuador; Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| |
Collapse
|
34
|
Zhang L, Wang L, Xiao H, Gan H, Chen H, Zheng S, Jian D, Zhai X, Jiang N, Jing Z, Liang P. Tyrosine kinase Fyn promotes apoptosis after intracerebral hemorrhage in rats by activating Drp1 signaling. J Mol Med (Berl) 2021; 99:359-371. [PMID: 33409551 DOI: 10.1007/s00109-020-02022-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Tyrosine kinase Fyn is a member of the Src kinase family, which is involved in neuroinflammation, apoptosis, and oxidative stress. Its role in intracerebral hemorrhage (ICH) is not fully understood. In this study, we found that Fyn was significantly elevated in human brain tissue after ICH. Accordingly, we investigated the role of Fyn in a rat ICH model, which was constructed by injecting blood into the right basal ganglia. In this model, Fyn expression was significantly upregulated in brain tissue adjacent to the hematoma. SiRNA-induced Fyn knockdown was neuroprotective for secondary cerebral damage, as demonstrated by reduced brain edema, suppression of the modified neurological severity score, and mitigation of blood-brain barrier permeability and neuronal damage. Fyn downregulation reduced apoptosis following ICH, as indicated by downregulation of apoptosis-related proteins AIF, Cyt.c, caspase 3, and Bax; upregulation of anti-apoptosis-related protein Bcl-2; and decreased tunnel staining. Mdivi-1, a Drp1 inhibitor, reversed Fyn overexpression induced pro-apoptosis. However, Fyn did not significantly affect inflammation-related proteins NF-κB, TNF-α, caspase 1, MPO, IL-1β, or IL-18 after ICH. Fyn activated Drp1 signaling by phosphorylating Drp1 at serine 616, which increased apoptosis after ICH in rats. This study clarifies the relationship between Fyn, apoptosis, and inflammation following ICH and provides a new strategy for exploring the prevention and treatment of ICH. KEY MESSAGES: ICH induced an increase in Fyn expression in human and rat cerebral tissues. Knockdown of Fyn prevented cerebral damage following ICH. Inhibition of Fyn had no significant effects on inflammatory responses. However, the downregulation of Fyn exerted neuroprotective effects on apoptosis. Fyn perturbed ICH-induced cell apoptosis by interacting with and phosphorylating (Ser616) Drp1 in a rat ICH model.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Lu Wang
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Han Xiao
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Hui Gan
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Hui Chen
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Shuyue Zheng
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Dan Jian
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| | - Xuan Zhai
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China.
| | - Ning Jiang
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhao Jing
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ping Liang
- Department of Neurosurgery, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, People's Republic of China
| |
Collapse
|
35
|
Yan ZP, Li JT, Zeng N, Ni GX. Role of extracellular signal-regulated kinase 1/2 signaling underlying cardiac hypertrophy. Cardiol J 2021; 28:473-482. [PMID: 32329039 PMCID: PMC8169190 DOI: 10.5603/cj.a2020.0061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/17/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy is the result of increased myocardial cell size responding to an increased workload and developmental signals. These extrinsic and intrinsic stimuli as key drivers of cardiac hypertrophy have spurred efforts to target their associated signaling pathways. The extracellular signal-regulated kinases 1/2 (ERK1/2), as an essential member of mitogen-activated protein kinases (MAPKs), has been widely recognized for promoting cardiac growth. Several modified transgenic mouse models have been generated through either affecting the upstream kinase to change ERK1/2 activity, manipulating the direct role of ERK1/2 in the heart, or targeting phosphatases or MAPK scaffold proteins to alter total ERK1/2 activity in response to an increased workload. Using these models, both regulation of the upstream events and modulation of each isoform and indirect effector could provide important insights into how ERK1/2 modulates cardiomyocyte biology. Furthermore, a plethora of compounds, inhibitors, and regulators have emerged in consideration of ERK, or its MAPK kinases, are possible therapeutic targets against cardiac hypertrophic diseases. Herein, is a review of the available evidence regarding the exact role of ERK1/2 in regulating cardiac hypertrophy and a discussion of pharmacological strategy for treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhi-Peng Yan
- Beijing Sport University, #48 Information Road, Beijing, 100084 Beijing, China
- First Affiliated Hospital of Fujian Medical University, #20 Chazhong Rd., 350005 fuzhou, China
| | - Jie-Ting Li
- First Affiliated Hospital of Fujian Medical University, #20 Chazhong Rd., 350005 fuzhou, China
| | - Ni Zeng
- First Affiliated Hospital of Fujian Medical University, #20 Chazhong Rd., 350005 fuzhou, China
| | - Guo-Xin Ni
- Beijing Sport University, #48 Information Road, Beijing, 100084 Beijing, China.
| |
Collapse
|
36
|
Shimasaki M, Ueda S, Ichiseki T, Hirata H, Kawahara N, Ueda Y. Resistance of bone marrow mesenchymal stem cells in a stressed environment - Comparison with osteocyte cells. Int J Med Sci 2021; 18:1375-1381. [PMID: 33628093 PMCID: PMC7893571 DOI: 10.7150/ijms.52104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 11/05/2022] Open
Abstract
Introduction: Recently, the efficacy of mesenchymal stem cells (MSCs) mediated by their tissue repair and anti-inflammatory actions in the prevention and therapy of various disorders has been reported. In this research, our attention was focused specifically on the prevention and therapy of glucocorticoid-induced osteonecrosis. We investigated the stress resistance of MSC against glucocorticoid administration and hypoxic stress, which are factors known to induce osteocytic cell death. Materials and Methods: Mouse bone cells (MLO-Y4) and bone-marrow derived mouse MSCs were exposed to dexamethasone (Dex), hypoxia of 1% oxygen or both in vitro. Mitochondrial membrane potentials were estimated by mitochondria labeling with a cell-permeant probe (Mito tracker red); expression of these apoptosis-inducing molecules, oxidative stress marker (8-hydroxy-2'-deoxyguanosine), caspase-3, -9, and two apoptosis-inhibiting molecules, energy-producing ATP synthase (ATP5A) and X-linked inhibitor of apoptosis protein (XIAP), were analyzed by both immunofluorescence and western blot. Results: With exposure to either dexamethasone or hypoxia, MLO-Y4 showed reduced mitochondrial membrane potential, ATP5A and upregulation of 8-OHdG, cleaved caspases and XIAP. Those changes were significantly enhanced by treatment with dexamethasone plus hypoxia. In MSCs, however, mitochondrial membrane potentials were preserved, while no significant changes in the pro-apoptosis or anti-apoptosis molecules analyzed were found even with exposure to both dexamethasone and hypoxia. No such effects induced by treatment with dexamethasone, hypoxia, or both were demonstrated in MSCs at all. Discussion: In osteocyte cells subjected to the double stresses of glucocorticoid administration and a hypoxic environment osteocytic cell death was mediated via mitochondria. In contrast, MSC subjected to the same stressors showed preservation of mitochondrial function and reduced oxidative stress. Accordingly, even under conditions sufficiently stressful to cause the osteocytic cell death in vivo, it was thought that the function of MSC could be preserved, suggesting that in the case of osteonecrosis preventative and therapeutic strategies incorporating their intraosseous implantation may be promising.
Collapse
Affiliation(s)
- Miyako Shimasaki
- Department of Pathology 2, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Shusuke Ueda
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Toru Ichiseki
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Hiroaki Hirata
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Norio Kawahara
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yoshimichi Ueda
- Department of Pathology 2, Kanazawa Medical University, Daigaku 1-1, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| |
Collapse
|
37
|
Gong C, Zhang D, Ou W, Ou M, Liang P, Liao D, Zhang W, Zhu T, Liu J, Zhou C. Deficiency of Mitochondrial Functions and Peroxidation of Frontoparietal Cortex Enhance Isoflurane Sensitivity in Aging Mice. Front Aging Neurosci 2020; 12:583542. [PMID: 33343330 PMCID: PMC7744615 DOI: 10.3389/fnagi.2020.583542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Hypersensitivity to general anesthetics may predict poor postoperative outcomes, especially among the older subjects. Therefore, it is essential to elucidate the mechanism underlying hypersensitivity to volatile anesthetics in the aging population. Given the fact that isoflurane sensitivity increases with aging, we hypothesized that deficiencies of mitochondrial function and elevated oxidative levels in the frontoparietal cortex may contribute to the enhanced sensitivity to isoflurane in aging mice. Methods: Isoflurane sensitivity in aging mice was determined by the concentration of isoflurane that is required for loss of righting reflex (LORR). Mitochondrial bioenergetics of the frontoparietal cortex was measured using a Seahorse XFp analyzer. Protein oxidation and lipid oxidation in the frontoparietal cortex were assessed using the Oxyblot protein oxidation detection kit and thiobarbituric acid reactive substance (TBARS) assay, respectively. Contributions of mitochondrial complex II inhibition by malonate and peroxidation by ozone to isoflurane sensitivity were tested in vivo. Besides, effects of antioxidative therapy on mitochondrial function and isoflurane sensitivity in mice were also measured. Results: The mean concentration of isoflurane that is required for LORR in aging mice (14-16 months old) was 0.83% ± 0.13% (mean ± SD, n = 80). Then, the mice were divided into three groups as sensitive group (S group, mean - SD), medium group (M group), and resistant group (R group, mean + SD) based on individual concentrations of isoflurane required for LORR. Activities of mitochondrial complex II and complex IV in mice of the S group were significantly lower than those of the R group, while frontoparietal cortical malondialdehyde (MDA) levels were higher in the mice of S group. Both inhibition of mitochondrial complexes and peroxidation significantly decreased the concentration of isoflurane that is required for LORR in vivo. After treatment with idebenone, the levels of lipid oxidation were alleviated and mitochondrial function was restored in aging mice. The concentration of isoflurane that required for LORR was also elevated after idebenone treatment. Conclusions: Decreased mitochondrial functions and higher oxidative stress levels in the frontoparietal cortex may contribute to the hypersensitivity to isoflurane in aging mice.
Collapse
Affiliation(s)
- Cansheng Gong
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Daqing Liao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Takeda H, Yamaguchi T, Yano H, Tanaka J. Microglial metabolic disturbances and neuroinflammation in cerebral infarction. J Pharmacol Sci 2020; 145:130-139. [PMID: 33357771 DOI: 10.1016/j.jphs.2020.11.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia/reperfusion injury activates microglia, resident immune cells in the brain, and allows the infiltration of circulating immune cells into the ischemic lesions. Microglia play both exacerbating and protective roles in pathological processes and are thus often referred to as "double-edged swords." In ischemic brains, blood-borne macrophages play a role that is distinct from that of resident activated microglia. Recently, the metabolic alteration of immune cells in the pathogenesis of inflammatory disorders including cerebral infarction has become a critical target for investigation. We begin this review by describing the multifaceted functions of microglia in cerebral infarction. Next, we focus on the metabolic alterations that occur in microglia during pathological processes. We also discuss morphological changes that take place in the mitochondria, leading to functional disturbances, accompanied by alterations in microglial function. Moreover, we describe the involvement of the reactive oxygen species that are produced during aberrant metabolic activity. Finally, we discuss therapeutic strategies to ameliorate aggravative changes in metabolism.
Collapse
Affiliation(s)
- Haruna Takeda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Teruaki Yamaguchi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.
| |
Collapse
|
39
|
Dallons M, Alpan E, Schepkens C, Tagliatti V, Colet JM. GPR91 Receptor Mediates Protection against Doxorubicin-Induced Cardiotoxicity without Altering Its Anticancer Efficacy. An In Vitro Study on H9C2 Cardiomyoblasts and Breast Cancer-Derived MCF-7 Cells. Cells 2020; 9:E2177. [PMID: 32992522 PMCID: PMC7599858 DOI: 10.3390/cells9102177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer drug widely used in oncology, especially for breast cancer. The main limitation of DOX treatment is its cardiotoxicity due to the cumulative dose. Clinically, DOX-induced cardiomyopathy develops as a progressive heart failure caused by a progressive cardiomyocyte's death. For long, the oxidative stress induced by DOX was considered as the main toxic mechanism responsible for heart damage, but it is now controverted, and other processes are investigated to develop cardioprotective strategies. Previously, we studied DOX-induced cardiotoxicity and dexrazoxane (DEX), the only cardioprotective compound authorized by the FDA, by 1H-NMR metabonomics in H9C2 cells. We observed an increased succinate secretion in the extracellular fluid of DEX-exposed cardiomyocytes, a finding that led us to the hypothesis of a possible protective role of this agonist of the GPR91 receptor. The objective of the present work was to study the effect of succinate (SUC) and cis-epoxysuccinate (cis-ES), two agonists of the GPR91 receptor, on DOX-induced cardiotoxicity to H9C2 cells. To this purpose, several toxicity parameters, including cell viability, oxidative stress and apoptosis, as well as the GPR91 expression, were measured to assess the effects of DEX, SUC and cis-ES either alone or in combination with DOX in H9C2 cells. A 1H-NMR-based metabonomic study was carried out on cellular fluids collected after 24 h to highlight the metabolic changes induced by those protective compounds. Moreover, the effects of each agonist given either alone or in combination with DOX were evaluated on MCF-7 breast cancer cells. GPR91 expression was confirmed in H9C2 cells, while no expression was found in MCF-7 cells. Under such experimental conditions, both SUC and cis-ES decreased partially the cellular mortality, the oxidative stress and the apoptosis induced by DOX. The SUC protective effect was similar to the DEX effect, but the protective effect of cis-ES was higher on oxidative stress and apoptosis. In addition, the metabonomics findings pointed out several metabolic pathways involved in the cardioprotective effects of both GPR91 agonists: the stimulation of aerobic metabolism with glucose as the main fuel, redox balance and phospholipids synthesis. Finally, none of the GPR91 agonists jeopardized the pharmacological effects of DOX on MCF-7 breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Marie Colet
- Department of Human Biology & Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.D.); (E.A.); (C.S.); (V.T.)
| |
Collapse
|
40
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
41
|
Wang J, Zhu P, Toan S, Li R, Ren J, Zhou H. Pum2-Mff axis fine-tunes mitochondrial quality control in acute ischemic kidney injury. Cell Biol Toxicol 2020; 36:365-378. [PMID: 31993882 DOI: 10.1007/s10565-020-09513-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
Mitochondrial fission factor (Mff) has been demonstrated to play a role in the activation of mitochondrial cleavage and mitochondrial death, denoting its role in the regulation of mitochondrial quality control. Recent evidence suggested that the mRNA translation of Mff is under the negative regulation by the RNA-binding protein Pumilio2 (Pum2). This study was designed to examine the role of Pum2 and Mff in the governance of mitochondrial quality control in a murine model of acute ischemic kidney injury. Our results indicated that genetic deletion of Mff overtly attenuated ischemic acute kidney injury (AKI)-induced renal failure through inhibition of pro-inflammatory response, tubular oxidative stress, and ultimately cell death in the kidney. Furthermore, Mff inhibition effectively preserved mitochondrial homeostasis through amelioration of mitochondrial mitosis, restoration of Sirt1/3 expression, and boost of mitochondrial respiration. Western blot analysis revealed that levels of Pum2 were significantly downregulated by ischemic AKI, inversely coinciding with levels of Mff. Overexpression of Pum2 reduced ischemic AKI-mediated Mff upregulation and offered protection on renal tubules through modulation of mitochondrial quality control. Taken together, our data have unveiled the molecular mechanism of the Pum2-Mff axis in mitochondrial quality control in a mouse model of ischemic AKI. These data indicated the therapeutic potential of Pum2 activation and Mff inhibition in the management of ischemic AKI.
Collapse
Affiliation(s)
- Jin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Ruibing Li
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, 82071, USA.
| | - Hao Zhou
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
42
|
Gabrovsek L, Collins KB, Aggarwal S, Saunders LM, Lau HT, Suh D, Sancak Y, Trapnell C, Ong SE, Smith FD, Scott JD. A-kinase-anchoring protein 1 (dAKAP1)-based signaling complexes coordinate local protein synthesis at the mitochondrial surface. J Biol Chem 2020; 295:10749-10765. [PMID: 32482893 PMCID: PMC7397098 DOI: 10.1074/jbc.ra120.013454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Compartmentalization of macromolecules is a ubiquitous molecular mechanism that drives numerous cellular functions. The appropriate organization of enzymes in space and time enables the precise transmission and integration of intracellular signals. Molecular scaffolds constrain signaling enzymes to influence the regional modulation of these physiological processes. Mitochondrial targeting of protein kinases and protein phosphatases provides a means to locally control the phosphorylation status and action of proteins on the surface of this organelle. Dual-specificity protein kinase A anchoring protein 1 (dAKAP1) is a multivalent binding protein that targets protein kinase A (PKA), RNAs, and other signaling enzymes to the outer mitochondrial membrane. Many AKAPs recruit a diverse set of binding partners that coordinate a broad range of cellular processes. Here, results of MS and biochemical analyses reveal that dAKAP1 anchors additional components, including the ribonucleoprotein granule components La-related protein 4 (LARP4) and polyadenylate-binding protein 1 (PABPC1). Local translation of mRNAs at organelles is a means to spatially control the synthesis of proteins. RNA-Seq data demonstrate that dAKAP1 binds mRNAs encoding proteins required for mitochondrial metabolism, including succinate dehydrogenase. Functional studies suggest that the loss of dAKAP1-RNA interactions reduces mitochondrial electron transport chain activity. Hence, dAKAP1 plays a previously unappreciated role as a molecular interface between second messenger signaling and local protein synthesis machinery.
Collapse
Affiliation(s)
- Laura Gabrovsek
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Kerrie B Collins
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Stacey Aggarwal
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Lauren M Saunders
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Danny Suh
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - F Donelson Smith
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Allen ME, Pennington ER, Perry JB, Dadoo S, Makrecka-Kuka M, Dambrova M, Moukdar F, Patel HD, Han X, Kidd GK, Benson EK, Raisch TB, Poelzing S, Brown DA, Shaikh SR. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Commun Biol 2020; 3:389. [PMID: 32680996 PMCID: PMC7368046 DOI: 10.1038/s42003-020-1101-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction contributes to cardiac pathologies. Barriers to new therapies include an incomplete understanding of underlying molecular culprits and a lack of effective mitochondria-targeted medicines. Here, we test the hypothesis that the cardiolipin-binding peptide elamipretide, a clinical-stage compound under investigation for diseases of mitochondrial dysfunction, mitigates impairments in mitochondrial structure-function observed after rat cardiac ischemia-reperfusion. Respirometry with permeabilized ventricular fibers indicates that ischemia-reperfusion induced decrements in the activity of complexes I, II, and IV are alleviated with elamipretide. Serial block face scanning electron microscopy used to create 3D reconstructions of cristae ultrastructure reveals that disease-induced fragmentation of cristae networks are improved with elamipretide. Mass spectrometry shows elamipretide did not protect against the reduction of cardiolipin concentration after ischemia-reperfusion. Finally, elamipretide improves biophysical properties of biomimetic membranes by aggregating cardiolipin. The data suggest mitochondrial structure-function are interdependent and demonstrate elamipretide targets mitochondrial membranes to sustain cristae networks and improve bioenergetic function.
Collapse
Affiliation(s)
- Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, USA
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Maija Dambrova
- Latvian Institute for Organic Synthesis Riga Latvia, Norwich, UK
| | - Fatiha Moukdar
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Hetal D Patel
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Grahame K Kidd
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
- Renovo Neural Inc, Cleveland, OH, USA
| | | | - Tristan B Raisch
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
| | - Steven Poelzing
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Virginia Tech Center for Drug Discovery, Blacksburg, VA, USA
- Virginia Tech Metabolism Core Virginia Tech, Blacksburg, VA, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Hernandez‐Resendiz S, Prunier F, Girao H, Dorn G, Hausenloy DJ. Targeting mitochondrial fusion and fission proteins for cardioprotection. J Cell Mol Med 2020; 24:6571-6585. [PMID: 32406208 PMCID: PMC7299693 DOI: 10.1111/jcmm.15384] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
New treatments are needed to protect the myocardium against the detrimental effects of acute ischaemia/reperfusion (IR) injury following an acute myocardial infarction (AMI), in order to limit myocardial infarct (MI) size, preserve cardiac function and prevent the onset of heart failure (HF). Given the critical role of mitochondria in energy production for cardiac contractile function, prevention of mitochondrial dysfunction during acute myocardial IRI may provide novel cardioprotective strategies. In this regard, the mitochondrial fusion and fissions proteins, which regulate changes in mitochondrial morphology, are known to impact on mitochondrial quality control by modulating mitochondrial biogenesis, mitophagy and the mitochondrial unfolded protein response. In this article, we review how targeting these inter-related processes may provide novel treatment targets and new therapeutic strategies for reducing MI size, preventing the onset of HF following AMI.
Collapse
Affiliation(s)
- Sauri Hernandez‐Resendiz
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Centro de Biotecnologia‐FEMSATecnologico de MonterreyNuevo LeonMexico
| | - Fabrice Prunier
- Institut MITOVASCCNRS UMR 6015 INSERM U1083University Hospital Center of AngersUniversity of AngersAngersFrance
| | - Henrique Girao
- Faculty of MedicineCoimbra Institute for Clinical and Biomedical Research (iCBR)University of CoimbraPortugal
- Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Clinical Academic Centre of Coimbra (CACC)CoimbraPortugal
| | - Gerald Dorn
- Department of Internal MedicineCenter for PharmacogenomicsWashington University School of MedicineSt. LouisMOUSA
| | - Derek J. Hausenloy
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular Research CenterCollege of Medical and Health SciencesAsia UniversityTaichungTaiwan
| | | |
Collapse
|
45
|
Dallons M, Schepkens C, Dupuis A, Tagliatti V, Colet JM. New Insights About Doxorubicin-Induced Toxicity to Cardiomyoblast-Derived H9C2 Cells and Dexrazoxane Cytoprotective Effect: Contribution of In Vitro 1H-NMR Metabonomics. Front Pharmacol 2020; 11:79. [PMID: 32153402 PMCID: PMC7044126 DOI: 10.3389/fphar.2020.00079] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer drug widely used in oncology. The main limitation to DOX treatments though is due to the cumulative dose that may lead to cardiotoxicity. Clinically, DOX-induced cardiomyopathy develops as a progressive heart failure consecutive to a progressive loss in cardiomyocytes due to cell necrosis and apoptosis induced by DOX. For many years, the cardiac oxidative stress caused by DOX was considered as its main toxic mechanism. Therefore, several clinical trials were carried out to assess the efficacy of various antioxidants as a cardioprotective strategy. Only dexrazoxane (DEX), did significantly reduce DOX cardiotoxicity. However, since other antioxidants used later on to counteract DOX cardiotoxicity were not as successful as DEX, DOX-induced oxidative stress and DEX antioxidant activity are not considered as the main feature anymore and this led the scientific world to suspect other involved mechanisms which are still unknown. The objective of the present work was to study from a metabolic point of view the side effects of DOX and the protective properties of DEX. In vitro1H-NMR metabonomics was applied to the rat cardiomyoblastic H9C2 cell line. This strategy was used with the hope of unveiling possible new targets to cope with DOX cardiotoxicity. Another underlying goal was the validation of H9C2 in vitro model for metabolic investigations of DOX and DEX effects. For this purpose, several parameters, including oxidative stress, cell mortality, and apoptosis, were measured to assess the effects of DOX and DEX alone or in combination. The metabonomic study was carried out on cellular fluids collected after either 4 or 24 hours of DOX-exposure. Under such experimental conditions, both the major adverse effects reported in patients exposed to DOX and the protective effect of DEX were demonstrated in vitro, suggesting that the H9C2 in vitro model is relevant to investigate both DOX cardiotoxicity and putative cardioprotective strategies. In addition, the metabonomics findings highlighted several metabolic pathways involved in DOX cardiotoxicity and DEX cardioprotective effects as potential metabolic targets for cardioprotection: energy metabolism, redox balance, as well as phospholipids and proteins metabolism.
Collapse
Affiliation(s)
- Matthieu Dallons
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Corentin Schepkens
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Aurélie Dupuis
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Vanessa Tagliatti
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Jean-Marie Colet
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| |
Collapse
|
46
|
Adaniya SM, O-Uchi J, Cypress MW, Kusakari Y, Jhun BS. Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 2019; 316:C583-C604. [PMID: 30758993 DOI: 10.1152/ajpcell.00523.2018] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear. Recent studies have increasingly shown that posttranslational modifications (PTMs) of fission and fusion proteins are capable of directly modulating the stability, localization, and/or activity of these proteins. These PTMs include phosphorylation, acetylation, ubiquitination, conjugation of small ubiquitin-like modifier proteins, O-linked-N-acetyl-glucosamine glycosylation, and proteolysis. Thus, understanding the PTMs of fission and fusion proteins may allow us to understand the complexities that determine the balance of mitochondrial fission and fusion as well as mitochondrial function in various cell types and organs including cardiomyocytes and the heart. In this review, we summarize present knowledge regarding the function and regulation of mitochondrial fission and fusion in cardiomyocytes, specifically focusing on the PTMs of each mitochondrial fission/fusion protein. We also discuss the molecular mechanisms underlying abnormal mitochondrial morphology in HF and their contributions to the development of cardiac diseases, highlighting the crucial roles of PTMs of mitochondrial fission and fusion proteins. Finally, we discuss the future potential of manipulating PTMs of fission and fusion proteins as a therapeutic strategy for preventing and/or treating HF.
Collapse
Affiliation(s)
- Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota.,Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University , Providence, Rhode Island
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine , Tokyo , Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
47
|
Nair S, Sobotka KS, Joshi P, Gressens P, Fleiss B, Thornton C, Mallard C, Hagberg H. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia 2019; 67:1047-1061. [PMID: 30637805 DOI: 10.1002/glia.23587] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that changes in the metabolic signature of microglia underlie their response to inflammation. We sought to increase our knowledge of how pro-inflammatory stimuli induce metabolic changes. Primary microglia exposed to lipopolysaccharide (LPS)-expressed excessive fission leading to more fragmented mitochondria than tubular mitochondria. LPS-mediated Toll-like receptor 4 (TLR4) activation also resulted in metabolic reprogramming from oxidative phosphorylation to glycolysis. Blockade of mitochondrial fission by Mdivi-1, a putative mitochondrial division inhibitor led to the reversal of the metabolic shift. Mdivi-1 treatment also normalized the changes caused by LPS exposure, namely an increase in mitochondrial reactive oxygen species production and mitochondrial membrane potential as well as accumulation of key metabolic intermediate of TCA cycle succinate. Moreover, Mdivi-1 treatment substantially reduced LPS induced cytokine and chemokine production. Finally, we showed that Mdivi-1 treatment attenuated expression of genes related to cytotoxic, repair, and immunomodulatory microglia phenotypes in an in vivo neuroinflammation paradigm. Collectively, our data show that the activation of microglia to a classically pro-inflammatory state is associated with a switch to glycolysis that is mediated by mitochondrial fission, a process which may be a pharmacological target for immunomodulation.
Collapse
Affiliation(s)
- Syam Nair
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina S Sobotka
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pooja Joshi
- PROTECT, INSERM, Université Paris Diderot, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Paris, France
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Bobbi Fleiss
- PROTECT, INSERM, Université Paris Diderot, Paris, France
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Claire Thornton
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|