1
|
Tiwari SK, Chandrasekharan A, Lupitha SS, Mathew KA, Jancy SV, Halikar AM, Sanjeev VS, Sivakumar KC, Prasad T, Anurup KG, Rather AA, Tiffee P J J, Jayaprasad AG, Sivasailam A, Santhoshkumar TR. Hypoxia induced mitophagy generates reversible metabolic and redox heterogeneity with transient cell death switch driving tumorigenesis. Free Radic Biol Med 2025; 230:190-208. [PMID: 39947492 DOI: 10.1016/j.freeradbiomed.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Tumor hypoxia determines tumor growth, metastasis, drug resistance, and tumor heterogeneity through multiple mechanisms, largely dependent on the extent of hypoxia, further modulated by re-oxygenation events. In order to track the cell fates under hypoxia and re-oxygenation, we have developed a sensor cell for real-time tracking of apoptotic, necrotic, and surviving mitophagy cells under hypoxia and re-oxygenation. The study using this sensor revealed a cell death switch from apoptosis to necrosis by hypoxia-exposed cells under re-oxygenation, where mitophagy plays a key role in acquiring temporally evolving functional phenotypes, including metabolic heterogeneity and mitochondrial redox heterogeneity. RNA transcriptomics also revealed a temporally evolving genomic landscape supporting the complex transcriptional plasticity of cells as a non-genetic adaptive event. Interestingly, cells regained from these distinct stages retained their metastatic potential despite slow growth in animal models. Overall, the study demonstrated that cells acquire distinct functions by tumor hypoxia and re-oxygenation, secondarily acquiring transient functional traits and metabolic heterogeneity governed by cell inherent mitochondrial dynamics. Such cell autonomous temporal alterations in cell states governed by organelle integrity with distinct cell proliferation and apoptosis-necrosis switch may be advantageous for the growing tumor to evolve under complex microenvironmental stress, further contributing to tumorigenesis.
Collapse
Affiliation(s)
- Shivanshu Kumar Tiwari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Aneesh Chandrasekharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Santhik Subhasingh Lupitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Krupa Ann Mathew
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Shine Varghese Jancy
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aman Munirpasha Halikar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vishnu S Sanjeev
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - K C Sivakumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Tilak Prasad
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - K G Anurup
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aijaz Ahmad Rather
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Jain Tiffee P J
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Aparna Geetha Jayaprasad
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aswathy Sivasailam
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Research Centre, University of Kerala, Thiruvananthapuram, Kerala, 695534, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
2
|
Liao W, Wang J, Li Y. Natural products based on Correa's cascade for the treatment of gastric cancer trilogy: Current status and future perspective. J Pharm Anal 2025; 15:101075. [PMID: 39957902 PMCID: PMC11830317 DOI: 10.1016/j.jpha.2024.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 02/18/2025] Open
Abstract
Gastric carcinoma (GC) is a malignancy with multifactorial involvement, multicellular regulation, and multistage evolution. The classic Correa's cascade of intestinal GC specifies a trilogy of malignant transformation of the gastric mucosa, in which normal gastric mucosa gradually progresses from inactive or chronic active gastritis (Phase I) to gastric precancerous lesions (Phase II) and finally to GC (Phase III). Correa's cascade highlights the evolutionary pattern of GC and the importance of early intervention to prevent malignant transformation of the gastric mucosa. Intervening in early gastric mucosal lesions, i.e., Phase I and II, will be the key strategy to prevent and treat GC. Natural products (NPs) have been an important source for drug development due to abundant sources, tremendous safety, and multiple pharmacodynamic mechanisms. This review is the first to investigate and summarize the multi-step effects and regulatory mechanisms of NPs on the Correa's cascade in gastric carcinogenesis. In phase I, NPs modulate Helicobacter pylori urease activity, motility, adhesion, virulence factors, and drug resistance, thereby inhibiting H. pylori-induced gastric mucosal inflammation and oxidative stress, and facilitating ulcer healing. In Phase II, NPs modulate multiple pathways and mediators regulating gastric mucosal cell cycle, apoptosis, autophagy, and angiogenesis to reverse gastric precancerous lesions. In Phase III, NPs suppress cell proliferation, migration, invasion, angiogenesis, and cancer stem cells, induce apoptosis and autophagy, and enhance chemotherapeutic drug sensitivity for the treatment of GC. In contrast to existing work, we hope to uncover NPs with sequential therapeutic effects on multiple phases of GC development, providing new ideas for gastric cancer prevention, treatment, and drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Chongqing Bishan Hospital of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yuchen Li
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| |
Collapse
|
3
|
Teng L, Qin Q, Zhou ZY, Zhou F, Cao CY, He C, Ding JW, Yang J. Role of C/EBP Homologous Protein in Vascular Stenosis After Carotid Artery Injury. Biochem Genet 2025; 63:832-849. [PMID: 38526708 DOI: 10.1007/s10528-024-10713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
The study aims to explore the fluctuating expression of C/EBP Homologous Protein (CHOP) following rat carotid artery injury and its central role in vascular stenosis. Using in vivo rat carotid artery injury models and in vitro ischemia and hypoxia cell models employing human aortic endothelial cells (HAECs) and vascular smooth muscle cells (T/G HA-VSMCs), a comprehensive investigative framework was established. Histological analysis confirmed intimal hyperplasia in rat models. CHOP expression in vascular tissues was assessed using Western blot and immunohistochemical staining, and its presence in HAECs and T/G HA-VSMCs was determined through RT-PCR and Western blot. The study evaluated HAEC apoptosis, inflammatory cytokine secretion, cell proliferation, and T/G HA-VSMCs migration through Western blot, ELISA, CCK8, and Transwell migration assays. The rat carotid artery injury model revealed substantial fibrous plaque formation and vascular stenosis, resulting in an increased intimal area and plaque-to-lumen area ratio. Notably, CHOP is markedly elevated in vessels of the carotid artery injury model compared to normal vessels. Atorvastatin effectively mitigated vascular stenosis and suppresses CHOP protein expression. In HAECs, ischemia and hypoxia-induced CHOP upregulation, along with heightened TNFα, IL-6, caspase3, and caspase8 levels, while reducing cell proliferation. Atorvastatin demonstrated a dose-dependent suppression of CHOP expression in HAECs. Downregulation of CHOP or atorvastatin treatment led to reduced IL-6 and TNFα secretion, coupled with augmented cell proliferation. Similarly, ischemia and hypoxia conditions increased CHOP expression in T/G HA-VSMCs, which was concentration-dependently inhibited by atorvastatin. Furthermore, significantly increased MMP-9 and MMP-2 concentrations in the cell culture supernatant correlated with enhanced T/G HA-VSMCs migration. However, interventions targeting CHOP downregulation and atorvastatin usage curtailed MMP-9 and MMP-2 secretion and suppressed cell migration. In conclusion, CHOP plays a crucial role in endothelial injury, proliferation, and VSMCs migration during carotid artery injury, serving as a pivotal regulator in post-injury fibrous plaque formation and vascular remodeling. Statins emerge as protectors of endothelial cells, restraining VSMCs migration by modulating CHOP expression.
Collapse
Affiliation(s)
- Lin Teng
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, SE5 9NU, UK
| | - Qin Qin
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Zi-Yi Zhou
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
| | - Cun-Yu Cao
- School of Basic Medicine, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
- Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Chao He
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
| | - Jia-Wang Ding
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China
| | - Jian Yang
- Department of Cardiology, Yichang Central People's Hospital, NO, 183 Yiling Road, Yichang, 443003, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Pilotto F, Smeele PH, Scheidegger O, Diab R, Schobesberger M, Sierra-Delgado JA, Saxena S. Kaempferol enhances ER-mitochondria coupling and protects motor neurons from mitochondrial dysfunction and ER stress in C9ORF72-ALS. Acta Neuropathol Commun 2025; 13:21. [PMID: 39893487 PMCID: PMC11787762 DOI: 10.1186/s40478-025-01927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Repeat expansions in the C9ORF72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Considerable progress has been made in identifying C9ORF72-mediated disease and resolving its underlying etiopathogenesis. The contributions of intrinsic mitochondrial deficits as well as chronic endoplasmic reticulum stress to the development of the C9ORF72-linked pathology are well established. Nevertheless, to date, no cure or effective therapy is available, and thus attempts to find a potential drug target, have received increasing attention. Here, we investigated the mode of action and therapeutic effect of a naturally occurring dietary flavanol, kaempferol in preclinical rodent and human models of C9ORF72-ALS. Notably, kaempferol treatment of C9ORF72-ALS human patient-derived motor neurons/neurons, resolved mitochondrial deficits, promoted resiliency against severe ER stress, and conferred neuroprotection. Treatment of symptomatic C9ORF72 mice with kaempferol, normalized mitochondrial calcium uptake, restored mitochondria function, and diminished ER stress. Importantly, in vivo, chronic kaempferol administration ameliorated pathological motor dysfunction and inhibited motor neuron degeneration, highlighting the translational potential of kaempferol. Lastly, in silico modelling identified a novel kaempferol target and mechanistically the neuroprotective mechanism of kaempferol is through the iP3R-VDAC1 pathway via the modulation of GRP75 expression. Thus, kaempferol holds great promise for treating neurodegenerative diseases where both mitochondrial and ER dysfunction are causally linked to the pathophysiology.
Collapse
Affiliation(s)
- Federica Pilotto
- Institut Neuromyogène, Pathophysiology and Genetics of the Neuron and Muscle, Inserm U1315, CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008, Lyon, France
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Paulien Hermine Smeele
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Olivier Scheidegger
- Institut Neuromyogène, Pathophysiology and Genetics of the Neuron and Muscle, Inserm U1315, CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008, Lyon, France
| | - Rim Diab
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | | | - Julieth Andrea Sierra-Delgado
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Smita Saxena
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, USA.
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland.
| |
Collapse
|
5
|
Zhang Q, Guo S, Ge H, Wang H. The protective role of baicalin regulation of autophagy in cancers. Cytotechnology 2025; 77:33. [PMID: 39760060 PMCID: PMC11699138 DOI: 10.1007/s10616-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy. Autophagy plays a key role in regulating multiple physiological and pathological processes, such as cell metabolism, development, energy homeostasis, cell death and hunger adaptation, and so on. Increasing evidence indicates that autophagy dysfunction participates in many kinds of cancers, such as liver cancer, pancreatic cancer, prostate cancer, and so on. However, the relevant mechanisms are not yet fully understood. Baicalin is a natural flavonoid compound extracted from the traditional Chinese medicine Scutellaria baicalensis. The research has shown that after oral or intravenous administration of baicalin, it is delivered to various organs through the systemic circulation, with the highest volume in the kidneys and lungs. More and more evidence suggests that baicalin has antioxidant, anticancer, anti-inflammatory, anti-apoptotic, immunomodulatory and antiviral effects. Therefore, baicalin plays an important role in various diseases, such as cancers, lung diseases, liver diseases, cardiovascular diseases, ans so on. However, the relevant mechanisms have not yet been fully clear. Recently, increasing evidence indicates that baicalin participates in different cancer by regulating autophagy. Herein, we reviewed the current knowledge about the role and mechanism of baicalin regulation of autophagy in multiple types of cancers to lay the theoretical foundation for future related researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Hangwei Ge
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
6
|
Du W, Wang X, Zhou Y, Wu W, Huang H, Jin Z. From micro to macro, nanotechnology demystifies acute pancreatitis: a new generation of treatment options emerges. J Nanobiotechnology 2025; 23:57. [PMID: 39881355 PMCID: PMC11776322 DOI: 10.1186/s12951-025-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Acute pancreatitis (AP) is a disease characterized by an acute inflammatory response in the pancreas. This is caused by the abnormal activation of pancreatic enzymes by a variety of etiologic factors, which results in a localized inflammatory response. The symptoms of this disease include abdominal pain, nausea and vomiting and fever. These symptoms are induced by a hyperinflammatory response and oxidative stress. In recent years, research has focused on developing anti-inflammatory and antioxidative therapies for the treatment of acute pancreatitis (AP). However, there are still limitations to this approach, including poor drug stability, low bioavailability and a short half-life. The advent of nanotechnology has opened up a novel avenue for the management of acute pancreatitis (AP). Nanomaterials can serve as an efficacious vehicle for conventional pharmaceuticals, enhancing their targeting ability, improving bioavailability and prolonging their half-life. Moreover, they can also exert a direct therapeutic effect. This review begins by introducing the general situation of acute pancreatitis (AP). It then discusses the pathogenesis of acute pancreatitis (AP) and the current status of treatment. Finally, it considers the literature related to the treatment of acute pancreatitis (AP) by nanomaterials. The objective of this study is to provide a comprehensive review of the existing literature on the use of nanomaterials in the treatment of acute pancreatitis (AP). In particular, the changes in inflammatory markers and therapeutic outcomes following the administration of nanomaterials are examined. This is done with the intention of offering insights that can inform subsequent research and facilitate the clinical application of nanomaterials in the management of acute pancreatitis (AP).
Collapse
Affiliation(s)
- Wei Du
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xinyue Wang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuyan Zhou
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wencheng Wu
- Central Laboratory, Department of Medical Ultrasound, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Haojie Huang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zhendong Jin
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Zhao X, Zhang C, Qian X, Zhang J, Wang G, Wang Z. Research progress on the anti-tumor effects of euphorbia humifusa. Discov Oncol 2024; 15:761. [PMID: 39692814 DOI: 10.1007/s12672-024-01624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
EH (Euphorbia Humifusa) is commonly known as ground spurge, contains various compounds such as flavonoids, triterpenes, coumarins, sterols, tannins, and phenolic acids. It exerts a wide spectrum of properties including anti-bacterial, anti-inflammatory, Antioxidant, anti-viral, hypoglycemic, and anti-tumor. In this article, we focus on the antitumor effects of EH and its active constituents, providing evidence for further research on this medicinal herb.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Department of Medicine, Jiading District Hospital of Traditional Chinese Medicine, Shanghai, 201800, China
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chengcheng Zhang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xinle Qian
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jia Zhang
- Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guoying Wang
- Department of Critical Care Medicine, The Second People's Hospital of Dongying, Dongying, Shandong, China.
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
8
|
Song M, Yang H, Liu R. Kaempferol modulates Wnt/ β-catenin pathway to alleviate preeclampsia- induced changes and protect renal and ovarian histomorphology. J Mol Histol 2024; 56:36. [PMID: 39644402 DOI: 10.1007/s10735-024-10321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Preeclampsia (PE) is a form of hypertension that manifests in the later stages of pregnancy. Since Kaempferol (Ka) has remedial potential hence this research was conducted to examine its therapeutic effect on Preeclampsia rats by regulating Wingless-related integration site/β-catenin (Wnt/B-catenin) pathway. To achieve this, thirty-two SD female rats were randomly allocated into four groups: control, preeclampsia (PE, LPS, 1 mg/kg), preeclampsia with kaempferol (PE + Ka), and preeclampsia with Dickkopf - 1 (DKK-1) and kaempferol (PE + DKK-1 + Ka). Rats in the PE + Ka and PE + DKK-1 + Ka groups received intraperitoneal injections at 50 mg/kg/d of kaempferol, whereas the PE + DKK-1 + Ka group was administered with 60 µg/kg/d of recombinant rat DKK-1 protein, an inhibitor of the Wnt/β-catenin signaling pathway. Our findings revealed that systolic blood pressure (SBP) in the PE + Ka group was significantly reduced in comparison to PE group (P < 0.05). The urine albumin levels in the PE + Ka group decreased noticeably (P < 0.05), whereas serum concentrations of Tumor Necrosis Factor Alpha (TNF-α), Interleukin-1β (IL-1β), and Interleukin-6 (IL-6) in the PE + Ka group were reduced (P < 0.05) in comparison to PE group. Although PE + Ka group exhibited elevated levels of superoxide dismutases (SOD), glutathione (GSH), and catalase (CAT) in placental tissue relative to the PE group, whilst levels of malondialdehyde (MDA), alkaline phosphatase (ALP), serum glutamic-pyruvic transaminase (SGPT), and serum glutamic-oxaloacetic transaminase (SGOT) considerably decreased (P < 0.05). Comparatively mRNA levels of Wnt1 and β-catenin in the PE + Ka group were elevated, whereas mRNA level of DKK-1 was diminished (P < 0.05). Administration of DKK-1 counteracted kaempferol effects on these parameters in Preeclampsia rats (P < 0.05). Devastatingly, ovarian and kidney histomorphology in the PE group exhibited significant degenerative alterations, whereas kaempferol groups demonstrated normal histomorphology in comparison to the PE group. Conclusively, Kaempferol can significantly lower systolic blood pressure and urine albumin in PE female rats while mitigating excessive oxidative stress. The therapeutic efficacy of kaempferol on Preeclampsia may be mediatated via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Meiyu Song
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Haiyan Yang
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Ronghui Liu
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong, 264003, China.
| |
Collapse
|
9
|
Zhang WJ, Shi QM, Li TZ, Huang YW. G protein coupled P2Y2 receptor as a regulatory molecule in cancer progression. Arch Biochem Biophys 2024; 762:110194. [PMID: 39486566 DOI: 10.1016/j.abb.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The occurrence and development of cancer involves the participation of many factors, its pathological mechanism is far more complicated than other diseases, and the treatment is also extremely difficult. Although the treatment of cancer adopts diversified methods to improve the survival rate and quality of life of patients, but the drug resistance, metastasis and recurrence of cancer cause most patients to fail in treatment. Therefore, exploring new molecular targets in cancer pathology is of great value for improving and preventing the treatment of cancer. Fortunately, the P2Y2 purinergic receptor (P2Y2 receptor) in the G protein-coupled receptor family has been recognized for regulating cancer progression. Agonist activated P2Y2 receptor has a certain contribution to the growth and metastasis of tumor cells. P2Y2 receptor activation participates in cancer progression by regulating calcium ion channels and classical signaling pathways (such as PLC-PKC and PI3K/AKT). It has the effect of anti-tumor therapy by inhibiting the activation of P2Y2 receptor (the use of antagonist) and reducing its expression. Therefore, in this article, we focus on the expression patterns of P2Y2 receptor in cancer and potential pharmacological targets as anti-cancer treatments.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qing-Ming Shi
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Teng-Zheng Li
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Ya-Wei Huang
- Urology Department, The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang City, China.
| |
Collapse
|
10
|
Deng K, Pei M, Li B, Yang N, Wang Z, Wan X, Zhong Z, Yang Z, Chen Y. Signal pathways involved in contrast-induced acute kidney injury. Front Physiol 2024; 15:1490725. [PMID: 39655278 PMCID: PMC11625813 DOI: 10.3389/fphys.2024.1490725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) has emerged as a global public health concern, ranking as the third most prevalent cause of hospital-acquired acute kidney injury, which is related to adverse outcomes. However, its precise pathogenesis remains elusive. Consequently, researchers are dedicated to uncovering CI-AKI's pathophysiology and signaling pathways, including inflammation, oxidative stress, apoptosis, and ferroptosis, to improve prevention and treatment. This review thoroughly analyzes the signaling pathways and their interactions associated with CI-AKI, assesses the impact of various research models on pathway analysis, and explores more precise targeted treatment and prevention approaches. Aims to furnish a robust theoretical foundation for the molecular mechanisms underpinning clinical treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yanling Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
11
|
Hao X, Ding M, Chi C, Xu X, Zhang X, Hu M. The potential of kaempferol in digestive system tumors: recent advances and mechanistic insights. Discov Oncol 2024; 15:658. [PMID: 39546109 PMCID: PMC11568081 DOI: 10.1007/s12672-024-01510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Digestive system neoplasms are a heterogeneous group of cancers characterized by diverse symptoms, complex diagnosis, and treatment. Prognosis is poor and influenced by multiple factors, making early detection and comprehensive treatment crucial for patient survival. Kaempferol, a flavonoid compound, has attracted attention due to its anti-tumor biological activity, holding promise as a potential drug for treating digestive system neoplasms. Derived from various plants such as cabbage, propolis, and grapefruit, this compound's anti-inflammatory, antioxidant, and other pharmacological effects have been confirmed. Research has found that kaempferol inhibits the occurrence and development of digestive system neoplasms by inducing apoptosis in cancer cells, inhibiting tumor cell proliferation, suppressing tumor metastasis and invasion, and enhancing the effects of other cancer treatment methods. This paper summarizes the role and mechanisms of kaempferol in the study of digestive system neoplasms, providing valuable insights for both scientists and clinical physicians engaged in this field. By detailing the various pathways through which kaempferol exerts its anticancer effects, the paper not only highlights its potential as a therapeutic agent but also opens avenues for further research into its applications.
Collapse
Affiliation(s)
- Xunxing Hao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province, China
| | - Meng Ding
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province, China
| | - Chenyu Chi
- The Emergency and Critical Care Medicine Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaodong Xu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Mingzhe Hu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
12
|
Rajendran P, Renu K, Ali EM, Genena MAM, Veeraraghavan V, Sekar R, Sekar AK, Tejavat S, Barik P, Abdallah BM. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immun Inflamm Dis 2024; 12:e70041. [PMID: 39436197 PMCID: PMC11494898 DOI: 10.1002/iid3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Enas M. Ali
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Botany and Microbiology, Faculty of ScienceCairo UniversityCairoEgypt
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityMansouraEgypt
| | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral MicrobiologyMeenakshi Ammal Dental College & Hospital, MAHERChennaiTamil NaduIndia
| | | | - Sujatha Tejavat
- Department of Biomedical Sciences, College of MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | | | - Basem M. Abdallah
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
13
|
Huang W, Liu X, Li X, Zhang R, Chen G, Mao X, Xu S, Liu C. Integrating network pharmacology, molecular docking and non-targeted serum metabolomics to illustrate pharmacodynamic ingredients and pharmacologic mechanism of Haizao Yuhu Decoction in treating hyperthyroidism. Front Endocrinol (Lausanne) 2024; 15:1438821. [PMID: 39387049 PMCID: PMC11462413 DOI: 10.3389/fendo.2024.1438821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Objective To explore the pharmacodynamic ingredients and pharmacologic mechanism of Haizao Yuhu Decoction (HYD) in treating hyperthyroidism via an analysis integrating network pharmacology, molecular docking, and non-targeted serum metabolomics. Methods Therapeutic targets of hyperthyroidism were searched through multi-array analyses in the Gene Expression Omnibus (GEO) database. Hub genes were subjected to the construction of a protein-protein interaction (PPI) network, and GO and KEGG enrichment analyses. Targets of active pharmaceutical ingredients (APIs) in HYD and those of hyperthyroidism were intersected to yield hub genes, followed by validations via molecular docking and non-targeted serum metabolomics. Results 112 hub genes were identified by intersecting APIs of HYD and therapeutic targets of hyperthyroidism. Using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) in both negative and positive ion polarity modes, 279 compounds of HYD absorbed in the plasma were fingerprinted. Through summarizing data yielded from network pharmacology and non-targeted serum metabolomics, 214 common targets were identified from compounds of HYD absorbed in the plasma and therapeutic targets of hyperthyroidism, including PTPN11, PIK3CD, EGFR, HRAS, PIK3CA, AKT1, SRC, PIK3CB, and PIK3R1. They were mainly enriched in the biological processes of positive regulation of gene expression, positive regulation of MAPK cascade, signal transduction, protein phosphorylation, negative regulation of apoptotic process, positive regulation of protein kinase B signaling and positive regulation of MAP kinase activity; and molecular functions of identical protein binding, protein serine/threonine/tyrosine kinase activity, protein kinase activity, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding and protein binding. A total of 185 signaling pathways enriched in the 214 common targets were associated with cell proliferation and angiogenesis. Conclusion HYD exerts a pharmacological effect on hyperthyroidism via inhibiting pathological angiogenesis in the thyroid and rebalancing immunity.
Collapse
Affiliation(s)
- Wenbin Huang
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoju Liu
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingjia Li
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ruixiang Zhang
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiaodong Mao
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shuhang Xu
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Liu
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Al Azzani M, Nizami ZN, Magramane R, Sekkal MN, Eid AH, Al Dhaheri Y, Iratni R. Phytochemical-mediated modulation of autophagy and endoplasmic reticulum stress as a cancer therapeutic approach. Phytother Res 2024; 38:4353-4385. [PMID: 38961675 DOI: 10.1002/ptr.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Autophagy and endoplasmic reticulum (ER) stress are conserved processes that generally promote survival, but can induce cell death when physiological thresholds are crossed. The pro-survival aspects of these processes are exploited by cancer cells for tumor development and progression. Therefore, anticancer drugs targeting autophagy or ER stress to induce cell death and/or block the pro-survival aspects are being investigated extensively. Consistently, several phytochemicals have been reported to exert their anticancer effects by modulating autophagy and/or ER stress. Various phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate the unfolded protein response to induce ER stress-mediated apoptosis through different pathways. Similarly, various phytochemicals induce autophagy through different mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition). However, phytochemical-induced autophagy can function either as a cytoprotective mechanism or as programmed cell death type II. Interestingly, at times, the same phytochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotective autophagy or programmed cell death type II depending on cellular contexts, such as cancer type. Although there is well-documented mechanistic interplay between autophagy and ER stress, only a one-way modulation was noted with some phytochemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent phytochemicals and while numerous phytochemicals have been investigated in preclinical and clinical studies, the search for novel phytochemicals with anticancer effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum majorana). Nonetheless, the clinical translation of phytochemicals, a promising avenue for cancer therapeutics, is hindered by several limitations that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed N Sekkal
- Department of Surgery, Specialty Orthopedic, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Tang R, Lin L, Liu Y, Li H. Bibliometric and visual analysis of global publications on kaempferol. Front Nutr 2024; 11:1442574. [PMID: 39221164 PMCID: PMC11362042 DOI: 10.3389/fnut.2024.1442574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Kaempferol, a flavonoid found in numerous foods and medicinal plants, offers a range of health benefits such as anti-inflammatory, antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective effects. Methods Herein, a bibliometric and visual analysis of global publications on kaempferol was performed to map the evolution of frontiers and hotspots in the field. Using the search string TS = kaempferol, bibliometric data for this analysis was extracted from the Web of Science Core Collection database and analyzed using the VOSviewer, CiteSpace, and Scimago Graphica software. Results As a result, by February 26, 2024, 11,214 publications were identified, comprising articles (n = 10,746, 96%) and review articles (n = 468, 4%). Globally, the annual number of kaempferol publications surpassed 100 per year since 2000, exceeded 500 per year since 2018, and further crossed the threshold of 1,000 per year starting in 2022. The major contributing countries were China, the United States of America, and India, while the top three institutes of the citations of kaempferol were the Chinese Academy of Sciences, Consejo Superio de Investigaciones Cientficas, and Uniersidade do Porto. These publications were mainly published in agricultural and food chemistry journals, food chemistry, and phytochemistry. Discussion The keywords frequently mentioned include phenolic compounds, antioxidant activity, flavonoids, NF-kappa B, inflammation, bioactive compounds, etc. Anti-inflammation, anti-oxidation, and anti-cancer have consistently been the focus of kaempferol research, while cardiovascular protection, neuroprotection, antiviral, and anti-bacterial effects have emerged as recent highlights. The field of kaempferol research is thriving.
Collapse
Affiliation(s)
- Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| |
Collapse
|
16
|
Kim H, Shin J, Lee Y, Jin B, Lee WW, Lee Y, Choi S, Han J, Ahn M, Kim J, Park D, Hong S, Kang S, Cho S. Zingiber officinale promotes autophagy and apoptosis in human oral cancer through the C/EBP homologous protein. Cancer Sci 2024; 115:2701-2717. [PMID: 38888067 PMCID: PMC11309930 DOI: 10.1111/cas.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The rhizome of Zingiber officinale (Z. officinale), commonly known as ginger, has been characterized as a potential drug candidate due to its antitumor effects. However, the chemotherapeutic effect of ginger on human oral cancer remains poorly understood. In this study, we examined the effects of an ethanol extract of Z. officinale rhizomes (ZOE) on oral cancer and identified the components responsible for its pharmacological activity. ZOE exerts its inhibitory activity in oral cancer by inducing both autophagy and apoptosis simultaneously. Mechanistically, ZOE-induced autophagy and apoptosis in oral cancer are attributed to the reactive oxygen species (ROS)-mediated endoplasmic reticulum stress response. Additionally, we identified two active components of ZOE, 1-dehydro-6-gingerdione and 8-shogaol, which were sufficient to stimulate autophagy initiation and apoptosis induction by enhancing CHOP expression. These results suggest that ZOE and its two active components induce ROS generation, upregulate CHOP, initiate autophagy and apoptosis, and hold promising therapeutics against human oral cancer.
Collapse
Affiliation(s)
- Hyun‐Ji Kim
- Department of Oral Pathology, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Ji‐Ae Shin
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoulRepublic of Korea
| | - Yeong‐Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life ScienceKyung Hee UniversityYonginRepublic of Korea
| | - Bohwan Jin
- Laboratory Animal CenterCHA UniversitySeongnamRepublic of Korea
| | - Won Woo Lee
- Laboratory Animal CenterCHA UniversitySeongnamRepublic of Korea
| | - Yosub Lee
- Department of Oral Pathology, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| | - Su‐Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Jung‐Min Han
- Department of Oral Pathology, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Min‐Hye Ahn
- Chemical Biology Research CenterKorea Research Institute of Bioscience and BiotechnologyCheongjuRepublic of Korea
| | - Ji‐Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Dong‐Guk Park
- Department of Oral Pathology, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Seong‐Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Se‐Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life ScienceKyung Hee UniversityYonginRepublic of Korea
| | - Sung‐Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
17
|
Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, Xia L, Lin J, Xu X, Wu N, Peng Q, Tang Y, Luo X, Liao Q, Jiang X, Zhou Y. Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov 2024; 10:343. [PMID: 39080273 PMCID: PMC11289465 DOI: 10.1038/s41420-024-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
Collapse
Grants
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- he Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
- the Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
Collapse
Affiliation(s)
- Wenlong Zhang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yidan Shi
- The High School Attached to Hunan Normal University, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Shiwen Cui
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| |
Collapse
|
18
|
Cai J, Tan X, Hu Q, Pan H, Zhao M, Guo C, Zeng J, Ma X, Zhao Y. Flavonoids and Gastric Cancer Therapy: From Signaling Pathway to Therapeutic Significance. Drug Des Devel Ther 2024; 18:3233-3253. [PMID: 39081701 PMCID: PMC11287762 DOI: 10.2147/dddt.s466470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gastric cancer (GC) is a prevalent gastrointestinal tumor characterized by high mortality and recurrence rates. Current treatments often have limitations, prompting researchers to explore novel anti-tumor substances and develop new drugs. Flavonoids, natural compounds with diverse biological activities, are gaining increasing attention in this regard. We searched from PubMed, Web of Science, SpringerLink and other databases to find the relevant literature in the last two decades. Using "gastric cancer", "stomach cancers", "flavonoid", "bioflavonoid", "2-Phenyl-Chromene" as keywords, were searched, then analyzed and summarized the mechanism of flavonoids in the treatment of GC. It was revealed that the anti-tumor mechanism of flavonoids involves inhibiting tumor growth, proliferation, invasion, and metastasis, as well as inducing cell death through various processes such as apoptosis, autophagy, ferroptosis, and pyroptosis. Additionally, combining flavonoids with other chemotherapeutic agents like 5-FU and platinum compounds can potentially reduce chemoresistance. Flavonoids have also demonstrated enhanced biological activity when used in combination with other natural products. Consequently, this review proposes innovative perspectives for the development of flavonoids as new anti-GC agents.
Collapse
Affiliation(s)
- Jiaying Cai
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Cui Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Sharma N, Gupta M, Anand P, Akhter Y, Al-Dayan N, Majed HA, Biswas S, Ali S, Sarwat M. Mechanistic Insight into the Autophagic and Apoptotic Activity of Kaempferol on Liver Cancer Cells. Onco Targets Ther 2024; 17:579-601. [PMID: 39071955 PMCID: PMC11283267 DOI: 10.2147/ott.s460359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Background The accumulation of poorly folded protein in the endoplasmic reticulum (ER) promotes ER stress and contributes to the pathogenesis of hepatocellular carcinoma (HCC). Current therapies have various adverse effects, therefore, laying the need for an alternative approach. Kaempferol (KP), a naturally occurring flavonoid, possesses potent anti-proliferative properties against various cancer cells. Nevertheless, its involvement in HCC remains relatively unexplored, particularly regarding its influence on apoptosis and autophagy pathways. Methods The effect of KP on cell viability, and motility of Hep3B cells was evaluated by MTT, and scratch assay, respectively. Hoechst staining and FACS analysis were done to check the effect of KP on apoptosis and cell cycle progression. qRTPCR was used to evaluate the expression of several apoptosis and autophagy-related genes. KP was docked with several ER stress-related proteins involved in HCC to gain further insights into molecular mechanisms. The results of docking studies were validated with MD simulation and in vitro studies. Results Treatment with KP at different time intervals showed dose- and time-dependent growth inhibition of liver cancer cells. KP decreased motility and arrested the cell cycle at the G0/G1 phase in Hep3B cells. Additionally, in the context of HCC, the relationship between KP, apoptosis, and autophagy is significant. It induced apoptosis and autophagy in Hep3B cells by downregulating the expression of Bcl-2 and upregulated Bax and Bid, Caspase-3, Beclin-1, and LC3. KP showed a better binding affinity with Nrf2, PERK, and IRE1α among all selected proteins. Further, it reversed the protective effect of 4-PBA (ER Stress inhibitor) by inducing apoptosis and autophagy in Hep3B cells. Conclusion The study suggested KP as a potential chemopreventive agent for managing HCC by effectively inducing apoptosis and autophagy in Hep3B cells.
Collapse
Affiliation(s)
- Nidhi Sharma
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Pragya Anand
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Noura Al-Dayan
- Department of Medical Laboratory, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hind Abdul Majed
- Department of Clinical Microbiology and Immunology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Sher Ali
- VC Office, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201301, India
| |
Collapse
|
20
|
Shao G, Liu Y, Lu L, Wang L, Ji G, Xu H. Therapeutic potential of traditional Chinese medicine in the prevention and treatment of digestive inflammatory cancer transformation: Portulaca oleracea L. as a promising drug. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117999. [PMID: 38447616 DOI: 10.1016/j.jep.2024.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been used for centuries to treat various types of inflammation and tumors of the digestive system. Portulaca oleracea L. (POL), has been used in TCM for thousands of years. The chemical composition of POL is variable and includes flavonoids, alkaloids, terpenoids and organic acids and other classes of natural compounds. Many of these compounds exhibit powerful anti-inflammatory and anti-cancer-transforming effects in the digestive system. AIM OF STUDY In this review, we focus on the potential therapeutic role of POL in NASH, gastritis and colitis and their associated cancers, with a focus on the pharmacological properties and potential mechanisms of action of the main natural active compounds in POL. METHODS The information and data on Portulaca oleracea L. and its main active ingredients were collated from various resources like ethnobotanical textbooks and literature databases such as CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures), Wiley, Springer, Tailor and Francis, Scopus, Inflibnet. RESULTS Kaempferol, luteolin, myricetin, quercetin, genistein, EPA, DHA, and melatonin were found to improve NASH and NASH-HCC, while kaempferol, apigenin, luteolin, and quercetin played a therapeutic role in gastritis and gastric cancer. Apigenin, luteolin, myricetin, quercetin, genistein, lupeol, vitamin C and melatonin were found to have therapeutic effects in the treatment of colitis and its associated cancers. The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. CONCLUSION The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. However, clinical data describing the mode of action of the naturally active compounds of POL are still lacking. In addition, pharmacokinetic data for POL compounds, such as changes in drug dose and absorption rates, cannot be extrapolated from animal models and need to be measured in patients in clinical trials. On the one hand, a systematic meta-analysis of the existing publications on TCM containing POL still needs to be carried out. On the other hand, studies on the hepatic and renal toxicity of POL are also needed. Additionally, well-designed preclinical and clinical studies to validate the therapeutic effects of TCM need to be performed, thus hopefully providing a basis for the validation of the clinical benefits of POL.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| |
Collapse
|
21
|
Zhang W, Wang Y, Yu H, Jin Z, Yuan Y, Liu L, Zhou J. Exploring the mechanism of Erteng-Sanjie capsule in treating gastric and colorectal cancers via network pharmacology and in-vivo validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117945. [PMID: 38428659 DOI: 10.1016/j.jep.2024.117945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Erteng-Sanjie capsule (ETSJC) has therapeutic effects against gastric cancer (GC) and colorectal cancer (CRC). However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY To explore the pharmacological mechanism of ETSJC against GC and CRC via network pharmacology and in-vivo validation. MATERIALS AND METHODS Data on the ingredients of ETSJC were obtained from the TCMSP and HERB databases. Further, details on the related targets of the active ingredients were collected from the HERB and SwissTargetPrediction databases. The targets in GC and CRC, which were screened from the OMIM, GeneCards, and TTD databases, were uploaded to STRING for a separate protein-protein interaction network analysis. The common targets shared by ETSJC, GC, and CRC were then screened. Cytoscape and STRING were used to construct the networks of herbs-compounds-targets and PPI. Metascape was utilized to analyze the enrichment of the GO and KEGG pathways. Molecular docking was used to validate the potential binding mode between the core ingredients and targets. Finally, the predicted results were verified with animal experiment. RESULTS Eight core ingredients (resveratrol, quercetin, luteolin, baicalein, delphinidin, kaempferol, pinocembrin, and naringenin) and six core targets (TP53, SRC, PIK3R1, AKT1, MAPK3, and STAT3) were filtered via network analysis. The molecular mechanism mainly involved the positive regulation of various processes such as cell migration, protein phosphorylation, and the PI3K-Akt signaling pathway. Molecular docking revealed that the core ingredients could be significantly combined with all core targets. The animal experiment revealed that ETSJC could suppress proliferation and promote apoptosis of both GC and CRC tumor cells by regulating the PI3K/Akt signaling pathway. CONCLUSIONS Multiple targets (TP53, SRC, AKT1, and STAT3) were important in GC and CRC. ETSJC could act on these targets and engage in different pathways against GC and CRC. Simultaneously, inhibiting the PI3K/Akt signaling pathway was a promising therapeutic mechanism for treating GC and CRC.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Ying Wang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Han Yu
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Zengcai Jin
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Yuyao Yuan
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Likun Liu
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Jing Zhou
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| |
Collapse
|
22
|
Ni Y, Shi M, Liu L, Lin D, Zeng H, Ong C, Wang Y. G9a in Cancer: Mechanisms, Therapeutic Advancements, and Clinical Implications. Cancers (Basel) 2024; 16:2175. [PMID: 38927881 PMCID: PMC11201431 DOI: 10.3390/cancers16122175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
G9a, also named EHMT2, is a histone 3 lysine 9 (H3K9) methyltransferase responsible for catalyzing H3K9 mono- and dimethylation (H3K9me1 and H3K9me2). G9a contributes to various aspects of embryonic development and tissue differentiation through epigenetic regulation. Furthermore, the aberrant expression of G9a is frequently observed in various tumors, particularly in prostate cancer, where it contributes to cancer pathogenesis and progression. This review highlights the critical role of G9a in multiple cancer-related processes, such as epigenetic dysregulation, tumor suppressor gene silencing, cancer lineage plasticity, hypoxia adaption, and cancer progression. Despite the increased research on G9a in prostate cancer, there are still significant gaps, particularly in understanding its interactions within the tumor microenvironment and its broader epigenetic effects. Furthermore, this review discusses the recent advancements in G9a inhibitors, including the development of dual-target inhibitors that target G9a along with other epigenetic factors such as EZH2 and HDAC. It aims to bring together the existing knowledge, identify gaps in the current research, and suggest future directions for research and treatment strategies.
Collapse
Affiliation(s)
- Yuchao Ni
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mingchen Shi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Liangliang Liu
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Christopher Ong
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
23
|
Li H, Zeng Y, Zi J, Hu Y, Ma G, Wang X, Shan S, Cheng G, Xiong J. Dietary Flavonoids Consumption and Health: An Umbrella Review. Mol Nutr Food Res 2024; 68:e2300727. [PMID: 38813726 DOI: 10.1002/mnfr.202300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/07/2024] [Indexed: 05/31/2024]
Abstract
SCOPE The current evidence between dietary flavonoids consumption and multiple health outcomes is inadequate and inconclusive. To summarize and evaluate the evidence for dietary flavonoids consumption and multiple health outcomes, an umbrella review of meta-analyses and systematic reviews is conducted. METHODS AND RESULTS PubMed, Ovid-EMBASE, and the Cochrane Database of Systematic Reviews are searched up to January 2024. The study includes a total of 32 articles containing 24 unique health outcomes in this umbrella review. Meta-analyses are recalculated by using a random effects model. Separate analyses are performed based on the kind of different flavonoid subclasses. The study finds some unique associations such as flavonol and gastric cancer, isoflavone and uterine fibroids and endometrial cancer, total flavonoids consumption and lung cancer, ovarian cancer, and prostate cancer. Overall, the study confirms the negative associations between dietary flavonoids consumption and type 2 diabetes mellitus, cardiovascular diseases, breast cancer, colorectal cancer, lung cancer, and mortality, while positive associations are observed for prostate cancer and uterine fibroids. CONCLUSION Although dietary flavonoids are significantly associated with many outcomes, firm generalizable conclusions about their beneficial or harmful effects cannot be drawn because of the low certainty of evidence for most of outcomes. More well-designed primary studies are needed.
Collapse
Affiliation(s)
- Haoqi Li
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaxian Zeng
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zi
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Hu
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Guochen Ma
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| |
Collapse
|
24
|
Wu X, Li W, Luo Z, Chen Y. Exploring the efficacy and molecular mechanism of Danhong injection comprehensively in the treatment of idiopathic pulmonary fibrosis by combining meta-analysis, network pharmacology, and molecular docking methods. Medicine (Baltimore) 2024; 103:e38133. [PMID: 38728523 PMCID: PMC11081554 DOI: 10.1097/md.0000000000038133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Danhong injection, a compound injection of Chinese herbal medicine, has been widely used in idiopathic pulmonary fibrosis (IPF) at present as an adjuvant treatment. However, the clinical efficacy and molecular mechanism of IPF are still unclear. This study will evaluate and explore the clinical efficacy and molecular mechanism of Danhong injection in the treatment of IPF. METHODS In meta-analysis, the computer was used to search 8 databases (PubMed, EMbase, CENTRAL, MEDLINE, CBM, CNKI, WanFang, and VIP) to collect the RCTs, and RevMan 5.3 and Stata 14.0 were used for statistical analysis. It has been registered on PROSPERO: CRD42020221096. In network pharmacology, the main chemical components and targets of the chemical components of Danhong injection were obtained in TCMSP and Swiss Target Prediction databases. The main targets of IPF were obtained through Gencards, Disgenet, OMIM, TTD, and DRUGBANK databases. The String platform was used to construct PPI networks. Cytoscape 3.8.2 was used to construct the "Danhong components - IPF targets-pathways" network. The molecular docking verification was conducted by Auto Dock. RESULTS Twelve RCTs were finally included with a total of 896 patients. The meta-analysis showed that Danhong injection could improve the clinical efficiency ([OR] = 0.25, 95% CI [0.15, 0.41]), lung function, arterial blood gas analysis, inflammatory cytokines, and serum cytokines associated with pulmonary fibrosis of IPF patients, respectively (P < .05). The core active components of Danhong injection on IPF were Luteolin, Quercetin, and Kaempferol, and the core targets were PTGS2, AR, ESR1, PPARG, and RELA. Danhong injection mainly improved IPF through PD-L1 expression and PD-1 checkpoint path in cancer, pathways in cancer, PI3K-Akt signaling pathway, etc. CONCLUSION These results provided scientific basis for the clinical use of Danhong injection for the treatment of IPF, and provided a new direction to explore the potential mechanism of action of Danhong injection.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhenliang Luo
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
25
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
26
|
Safe S. Natural products and synthetic analogs as selective orphan nuclear receptor 4A (NR4A) modulators. Histol Histopathol 2024; 39:543-556. [PMID: 38116863 PMCID: PMC11267491 DOI: 10.14670/hh-18-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Although endogenous ligands for the orphan nuclear receptor 4A1 (NR4A1, Nur77), NR4A2 (Nurr1), and NR4A3 (Nor-1) have not been identified, several natural products and synthetic analogs bind NR4A members. These studies are becoming increasingly important since members of the NR4A subfamily of 3 receptors are potential drug targets for treating cancer and non-cancer endpoints and particularly those conditions associated with inflammatory diseases. Ligands that bind NR4A1, NR4A2, and NR4A3 including Cytosporone B, celastrol, bis-indole derived (CDIM) compounds, tryptophan/indolic, metabolites, prostaglandins, resveratrol, piperlongumine, fatty acids, flavonoids, alkaloids, peptides, and drug families including statins and antimalarial drugs. The structural diversity of NR4A ligands and their overlapping and unique effects on NR4A1, NR4A2, and NR4A3 suggest that NR4A ligands are selective NR4A modulators (SNR4AMs) that exhibit tissue-, structure-, and response-specific activities. The SNR4AM activities of NR4A ligands are exemplified among the Cytosporone B analogs where n-pentyl-2-[3,5-dihydroxy-2-(nonanoyl)]phenyl acetate (PDNPA) binds NR4A1, NR4A2 and NR4A3 but activates only NR4A1 and exhibits significant functional differences with other Cytosporone B analogs. The number of potential clinical applications of agents targeting NR4A is increasing and this should spur future development of SNR4AMs as therapeutics that act through NR4A1, NR4A2 and NR4A3.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
27
|
Singh T, Sharma D, Sharma R, Tuli HS, Haque S, Ramniwas S, Mathkor DM, Yadav V. The Role of Phytonutrient Kaempferol in the Prevention of Gastrointestinal Cancers: Recent Trends and Future Perspectives. Cancers (Basel) 2024; 16:1711. [PMID: 38730663 PMCID: PMC11083332 DOI: 10.3390/cancers16091711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In recent years, kaempferol, a natural flavonoid present in various fruits and vegetables, has received significant attention in gastrointestinal cancer research due to its varied therapeutic effects. Kaempferol has been proven to alter several molecular mechanisms and pathways, such as the PI3/Akt, mTOR, and Erk/MAPK pathway involved in cancer progression, showing its inhibitory effects on cell proliferation, survival, angiogenesis, metastasis, and migration. Kaempferol is processed in the liver and small intestine, but limited bioavailability has been a major concern in the clinical implications of kaempferol. Nano formulations have been proven to enhance kaempferol's efficacy in cancer prevention. The synergy of nanotechnology and kaempferol has shown promising results in in vitro studies, highlighting the importance for more in vivo research and clinical trials to determine safety and efficacy. This review aims to focus on the role of kaempferol in various types of gastrointestinal cancer and how the combination of kaempferol with nanotechnology helps in improving therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi 110007, India; (D.S.); (R.S.)
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences-Defence Research and Development Organization, (INMAS-DRDO) New Delhi, Delhi 110054, India
| | - Deepika Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi 110007, India; (D.S.); (R.S.)
| | - Rishabh Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi 110007, India; (D.S.); (R.S.)
- Amity Stem Cell Institute, Amity Medical School, Amity University, Gurugram 122412, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (S.H.); (D.M.M.)
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; (S.H.); (D.M.M.)
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| |
Collapse
|
28
|
Dai J, Liu J, Shen Y, Zhang B, Li C, Liu Z. Regulation of endoplasmic reticulum stress on autophagy and apoptosis of nucleus pulposus cells in intervertebral disc degeneration and its related mechanisms. PeerJ 2024; 12:e17212. [PMID: 38666076 PMCID: PMC11044878 DOI: 10.7717/peerj.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common and frequent disease in orthopedics, which seriously affects the quality of life of patients. Endoplasmic reticulum stress (ERS)-regulated autophagy and apoptosis play an important role in nucleus pulposus (NP) cells in IVDD. Hypoxia and serum deprivation were used to induce NP cells. Cell counting kit-8 (CCK-8) assay was used to detect cell activity and immunofluorescence (IF) was applied for the appraisement of glucose regulated protein 78 (GRP78) and green fluorescent protein (GFP)-light chain 3 (LC3). Cell apoptosis was detected by flow cytometry and the expression of LC3II/I was detected by western blot. NP cells under hypoxia and serum deprivation were induced by lipopolysaccharide (LPS), and intervened by ERS inhibitor (4-phenylbutyric acid, 4-PBA) and activator (Thapsigargin, TP). Then, above functional experiments were conducted again and western blot was employed for the evaluation of autophagy-, apoptosis and ERS-related proteins. Finally, NP cells under hypoxia and serum deprivation were stimulated by LPS and intervened using apoptosis inhibitor z-Val-Ala-DL-Asp-fluoromethyl ketone (Z-VAD-FMK) and autophagy inhibitor 3-methyladenine (3-MA). CCK-8 assay, IF, flow cytometry and western blot were performed again. Besides, the levels of inflammatory cytokines were measured with enzyme-linked immunosorbent assay (ELISA) and the protein expressions of programmed death markers were estimated with western blot. It showed that serum deprivation induces autophagy and apoptosis. ERS was significantly activated by LPS in hypoxic and serum deprivation environment, and autophagy and apoptosis were significantly promoted. Overall, ERS affects the occurrence and development of IVDD by regulating autophagy, apoptosis and other programmed death.
Collapse
Affiliation(s)
- Jiuming Dai
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Jin Liu
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Yucheng Shen
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Bing Zhang
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Chaonian Li
- Department of Traditional Chinese Medicine, Binhai County People’s Hospital, Yancheng, China
| | - Zhidong Liu
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| |
Collapse
|
29
|
Wendlocha D, Kubina R, Krzykawski K, Mielczarek-Palacz A. Selected Flavonols Targeting Cell Death Pathways in Cancer Therapy: The Latest Achievements in Research on Apoptosis, Autophagy, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. Nutrients 2024; 16:1201. [PMID: 38674891 PMCID: PMC11053927 DOI: 10.3390/nu16081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
30
|
Qi X, Liu J, Wang L, Gu P, Song S, Shu P. Kaempferol-induced mitochondrial damage promotes NF-κB-NLRP3-caspase-1 signaling axis-mediated pyroptosis in gastric cancer cells. Heliyon 2024; 10:e28672. [PMID: 38596072 PMCID: PMC11002587 DOI: 10.1016/j.heliyon.2024.e28672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
GC is a gastrointestinal tumor with high morbidity and mortality. Owing to the high rate of postoperative recurrence associated with GC, the effectiveness of radiotherapy and chemotherapy may be compromised by the occurrence of severe undesirable side effects. In light of these circumstances, KP, a flavonoid abundantly present in diverse herbal and fruit sources, emerges as a promising therapeutic agent with inherent anti-tumor properties. This study endeavors to demonstrate the therapeutic potential of KP in the context of GC while unraveling the intricate underlying mechanisms. Notably, our investigations unveil that KP stimulation effectively promotes the activation of NLRP3 inflammatory vesicles within AGS cells by engaging the NF-κB signaling pathway. Consequently, the signal cascade triggers the cleavage of Caspase-1, culminating in the liberation of IL-18. Furthermore, we ascertain that KP facilitate AGS cell pyroptosis by inducing mitochondrial damage. Collectively, our findings showcase KP as a compelling candidate for the treatment of GC-related diseases, heralding new possibilities for future therapeutic interventions.
Collapse
Affiliation(s)
- Xiafei Qi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Jiatong Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Liuxiang Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Peixing Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Siyuan Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Jiangsu, Nanjing, 210029, China
| |
Collapse
|
31
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
32
|
Yang Y, Liu L, Tian Y, Gu M, Wang Y, Ashrafizadeh M, Reza Aref A, Cañadas I, Klionsky DJ, Goel A, Reiter RJ, Wang Y, Tambuwala M, Zou J. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett 2024; 587:216659. [PMID: 38367897 DOI: 10.1016/j.canlet.2024.216659] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.
Collapse
Affiliation(s)
- Yang Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Lixia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL, USA
| | - Miaomiao Gu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji Yan Road, Jinan, Shandong, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc, 6, Tide Street, Boston, MA, 02210, USA
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
33
|
Wen E, Cao Y, He S, Zhang Y, You L, Wang T, Wang Z, He J, Feng Y. The mitochondria-targeted Kaempferol nanoparticle ameliorates severe acute pancreatitis. J Nanobiotechnology 2024; 22:148. [PMID: 38570776 PMCID: PMC10993609 DOI: 10.1186/s12951-024-02439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Kaempferol (KA), an natural antioxidant of traditional Chinese medicine (TCM), is extensively used as the primary treatment for inflammatory digestive diseases with impaired redox homeostasis. Severe acute pancreatitis (SAP) was exacerbated by mitochondrial dysfunction and abundant ROS, which highlights the role of antioxidants in targeting mitochondrial function. However, low bioavailability and high dosage of KA leading to unavoidable side effects limits clinical transformation. The mechanisms of KA with poor bioavailability largely unexplored, hindering development of the efficient strategies to maximizing the medicinal effects of KA. Here, we engineered a novel thioketals (TK)-modified based on DSPE-PEG2000 liposomal codelivery system for improving bioavailability and avoiding side effects (denotes as DSPE-TK-PEG2000-KA, DTM@KA NPs). We demonstrated that the liposome exerts profound impacts on damaging intracellular redox homeostasis by reducing GSH depletion and activating Nrf2, which synergizes with KA to reinforce the inhibition of inadequate fission, excessive mitochondrial fusion and impaired mitophagy resulting in inflammation and apoptosis; and then, the restored mitochondrial homeostasis strengthens ATP supply for PAC renovation and homeostasis. Interestingly, TK bond was proved as the main functional structure to improve the above efficacy of KA compared with the absence of TK bond. Most importantly, DTM@KA NPs obviously suppresses PAC death with negligible side effects in vitro and vivo. Mechanismly, DTM@KA NPs facilitated STAT6-regulated mitochondrial precursor proteins transport via interacting with TOM20 to further promote Drp1-dependent fission and Pink1/Parkin-regulated mitophagy with enhanced lysosomal degradation for removing damaged mitochondria in PAC and then reduce inflammation and apoptosis. Generally, DTM@KA NPs synergistically improved mitochondrial homeostasis, redox homeostasis, energy metabolism and inflammation response via regulating TOM20-STAT6-Drp1 signaling and promoting mitophagy in SAP. Consequently, such a TCM's active ingredients-based nanomedicine strategy is be expected to be an innovative approach for SAP therapy.
Collapse
Affiliation(s)
- E Wen
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No 76, Linjiang road, Chongqing, China
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Cao
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No 76, Linjiang road, Chongqing, China
| | - Shiwen He
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No 76, Linjiang road, Chongqing, China
| | - Yuezhou Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanlan You
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No 76, Linjiang road, Chongqing, China
| | - Tingqiu Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No 76, Linjiang road, Chongqing, China
| | - Zhigang Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, No 76, Linjiang road, Chongqing, China.
| | - Jun He
- The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China.
| | - Yi Feng
- Institute of Burn Research, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), No 76, Linjiang road, Chongqing, China.
| |
Collapse
|
34
|
Hu D, Wang HJ, Yu LH, Guan ZR, Jiang YP, Hu JH, Yan YX, Zhou ZH, Lou JS. The role of Ginkgo Folium on antitumor: Bioactive constituents and the potential mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117202. [PMID: 37742878 DOI: 10.1016/j.jep.2023.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. is a well-known and highly regarded resource in Chinese traditional medicine due to its effectiveness and safety. Ginkgo Folium, the leaf of Ginkgo biloba L., contains biologically active constituents with diverse pharmacological activities. Recent studies have shown promising antitumor effects of the bioactive constituents found in Ginkgo Folium against various types of cancer cells, highlighting its potential as a natural source of antitumor agents. Further research is needed to elucidate the underlying mechanisms and optimize its therapeutic potential. AIM OF THE REVIEW To provide a detailed understanding of the pharmacological activities of Ginkgo Folium and its potential therapeutic benefits for cancer patients. MATERIALS AND METHODS In this study, we conducted a thorough and systematic search of multiple online databases, including PubMed, Web of Science, Medline, using relevant keywords such as "Ginkgo Folium," "flavonoids," "terpenoids," "Ginkgo Folium extracts," and "antitumor" to cover a broad range of studies that could inform our review. Additionally, we followed a rigorous selection process to ensure that the studies included in our review met the predetermined inclusion criteria. RESULTS The active constituents of Ginkgo Folium primarily consist of flavonoids and terpenoids, with quercetin, kaempferol, isorhamnetin, ginkgolides, and bilobalide being the major compounds. These active constituents exert their antitumor effects through crucial biological events such as apoptosis, cell cycle arrest, autophagy, and inhibition of invasion and metastasis via modulating diverse signaling pathways. During the process of apoptosis, active constituents primarily exert their effects by modulating the caspase-8 mediated death receptor pathway and caspase-9 mediated mitochondrial pathway via regulating specific signaling pathways. Furthermore, by modulating multiple signaling pathways, active constituents effectively induce G1, G0/G1, G2, and G2/M phase arrest. Among these, the pathways associated with G2/M phase arrest are particularly extensive, with the cyclin-dependent kinases (CDKs) being most involved. Moreover, active constituents primarily mediate autophagy by modulating certain inflammatory factors and stressors, facilitating the fusion stage between autophagosomes and lysosomes. Additionally, through the modulation of specific chemokines and matrix metalloproteinases, active constituents effectively inhibit the processes of epithelial-mesenchymal transition (EMT) and angiogenesis, exerting a significant impact on cellular invasion and migration. Synergistic effects are observed among the active constituents, particularly quercetin and kaempferol. CONCLUSION Active components derived from Ginkgo Folium demonstrate a comprehensive antitumor effect across various levels and pathways, presenting compelling evidence for their potential in new drug development. However, in order to facilitate their broad and adaptable clinical application, further extensive experimental investigations are required to thoroughly explore their efficacy, safety, and underlying mechanisms of action.
Collapse
Affiliation(s)
- Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
35
|
Jiang W, Yuan L, Liu Q, Li X, Yang Y, Li J, Jiao T, Niu Y, Zhang L, Dou H, Nan Y. The mechanism of action and experimental verification of Gan-song Yin on renal clear cell carcinoma based on network pharmacology and bioinformatics. Discov Oncol 2024; 15:52. [PMID: 38416262 PMCID: PMC10902223 DOI: 10.1007/s12672-024-00909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/25/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Gan-song Yin (GSY) is originated from the scripture "Gan-song Pills", a medical work of the Ningxia ethnic minorities, and its treatment of kidney diseases has good results. Its method of treating Renal clear cell carcinoma (KIRC) is still unknown, nevertheless. METHODS Firstly, utilizing a network pharmacology strategy to screen GSY for active components and targets and looking up KIRC-related targets in GeneCards and GEO databases. Secondly, protein interaction networks were constructed and analyzed for GO and KEGG enrichment. Molecular docking was then performed and clinical and other correlations of the network pharmacology results were analyzed using bioinformatic analysis methods. Finally, we performed in vitro cellular experiments with 786-O cells and ACHN cells to validate the results of network pharmacology and bioinformatic analysis. RESULTS With the help of network pharmacological analysis, six hub targets were eliminated. Bioinformatics study revealed that the hub targets has clinically significant clinical guiding importance. The results showed that GSY inhibited the proliferation of 786-O cells and ACHN cells, induced cell apoptosis, blocked cell cycle, and reduced cell colony formation ability. qRT-PCR results showed that GSY promoted the expression of ALB and CASP3 genes, and inhibited the expression of EGFR, JUN, MYC and VEGFA genes. Western blot results showed that GSY could promote the expression of ALB and CASP3 protein, and inhibit the expression of EGFR, JUN, MYC and VEGFA protein. CONCLUSIONS Network pharmacology and bioinformatics analysis showed that GSY could act on multiple targets through a variety of components to achieve the effect of treating KIRC. In this study, we confirmed that GSY inhibits KIRC by regulating the expression of core targets through in vitro cellular experiments, thus providing a reference for subsequent related studies.
Collapse
Affiliation(s)
- Wenjie Jiang
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qian Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiangyang Li
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yifan Yang
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jiaqing Li
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Taiqiang Jiao
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yang Niu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Lei Zhang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hongli Dou
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
36
|
Zhang J, Chen Y, Chen B, Sun D, Sun Z, Liang J, Liang J, Xiong X, Yan H. The dual effect of endoplasmic reticulum stress in digestive system tumors and intervention of Chinese botanical drug extracts: a review. Front Pharmacol 2024; 15:1339146. [PMID: 38449811 PMCID: PMC10917068 DOI: 10.3389/fphar.2024.1339146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for maintaining human health, and once imbalanced, it will trigger endoplasmic reticulum stress (ERS), which participates in the development of digestive system tumors and other diseases. ERS has dual effect on tumor cells, activating adaptive responses to promote survival or inducing apoptotic pathways to accelerate cell death of the tumor. Recent studies have demonstrated that Chinese botanical drug extracts can affect the tumor process of the digestive system by regulating ERS and exert anticancer effects. This article summarizes the dual effect of ERS in the process of digestive system tumors and the intervention of Chinese botanical drug extracts in recent years, as reference for the combined treatment of digestive system tumors with Chinese and modern medicine.
Collapse
Affiliation(s)
- Jinlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanyu Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Junwei Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Xiong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hua Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
37
|
Lv L, Du J, Wang D, Yan Z. A Comprehensive Study to Investigate the Tumor-Suppressive Role of Radix Bupleuri on Gastric Cancer with Network Pharmacology and Molecular Docking. Drug Des Devel Ther 2024; 18:375-394. [PMID: 38347958 PMCID: PMC10860608 DOI: 10.2147/dddt.s441126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Background Gastric cancer (GC) is a common fatal malignancy. The aim of this study was to explore and validate the tumor-suppressive role and mechanism of Radix Bupleuri in GC. Methods The active constituents of Radix Bupleuri were screened using TCMSP database. SwissTargetPrediction database was used to predict potential target genes of the compounds. GeneCards, TTD, DisGeNET, OMIM, and PharmGKB databases were used to search for GC-related targets. STRING database and Cytoscape 3.10 software were used for protein-protein interaction network construction and screening of core targets. DAVID database was used for GO and KEGG analyses. Core targets were validated using molecular docking. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry after GC cells were treated with isorhamnetin. The mRNA and protein expression levels of genes were detected using qRT PCR and Western blot. The metastasis potential of GC cells was evaluated in a nude mouse model. Results A total of 371 potential targets were retrieved by searching the intersection of Radix Bupleuri and GC targets. Petunidin, 3',4',5',3,5,6,7-Heptamethoxyflavone, quercetin, kaempferol, and isorhamnetin were identified as the main bioactive compounds in Radix Bupleuri. SRC, HSP90AA1, AKT1, and EGFR, were core targets through which Radix Bupleuri suppressed GC. The tumor-suppressive effect of Radix Bupleuri on GC was mediated by multiple pathways, including PI3K-AKT, cAMP, and TNF signaling. The key compounds of Radix Bupleuri had good binding affinity with the core target. Isorhamnetin, a key component of Radix Bupleuri, could inhibit proliferation and metastasis, and induces apoptosis of GC cells. In addition, isorhamnetin could also reduce the mRNA expression of core targets, and the activation of PI3K/AKT pathway. Conclusion This study identified potential targets and pathways of Radix Bupleuri against GC through network pharmacology and molecular docking, providing new insights into the pharmacological mechanisms of Radix Bupleuri in GC treatment.
Collapse
Affiliation(s)
- Long Lv
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Jinghu Du
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Daorong Wang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Zeqiang Yan
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| |
Collapse
|
38
|
Wang J, Ni BY, Wang J, Han L, Ni X, Wang XM, Cao LC, Sun QH, Han XP, Cui HJ. Research progress of Paris polyphylla in the treatment of digestive tract cancers. Discov Oncol 2024; 15:31. [PMID: 38324023 PMCID: PMC10850040 DOI: 10.1007/s12672-024-00882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Cancer has become one of the most important causes of human death. In particular, the 5 year survival rate of patients with digestive tract cancer is low. Although chemotherapy drugs have a certain efficacy, they are highly toxic and prone to chemotherapy resistance. With the advancement of antitumor research, many natural drugs have gradually entered basic clinical research. They have low toxicity, few adverse reactions, and play an important synergistic role in the combined targeted therapy of radiotherapy and chemotherapy. A large number of studies have shown that the active components of Paris polyphylla (PPA), a common natural medicinal plant, can play an antitumor role in a variety of digestive tract cancers. In this paper, the main components of PPA such as polyphyllin, C21 steroids, sterols, and flavonoids, amongst others, are introduced, and the mechanisms of action and research progress of PPA and its active components in the treatment of various digestive tract cancers are reviewed and summarized. The main components of PPA have been thoroughly explored to provide more detailed references and innovative ideas for the further development and utilization of similar natural antitumor drugs.
Collapse
Affiliation(s)
- Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Bao-Yi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Chaoyang, China
| | - Lei Han
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin Ni
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin-Miao Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu-Chang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian-Hui Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Pu Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu-Jun Cui
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
39
|
Yao D, Chen E, Li Y, Wang K, Liao Z, Li M, Huang L. The role of endoplasmic reticulum stress, mitochondrial dysfunction and their crosstalk in intervertebral disc degeneration. Cell Signal 2024; 114:110986. [PMID: 38007189 DOI: 10.1016/j.cellsig.2023.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Low back pain (LBP) is a pervasive global health issue. Roughly 40% of LBP cases are attributed to intervertebral disc degeneration (IVDD). While the underlying mechanisms of IVDD remain incompletely understood, it has been confirmed that apoptosis and extracellular matrix (ECM) degradation caused by many factors such as inflammation, oxidative stress, calcium (Ca2+) homeostasis imbalance leads to IVDD. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are involved in these processes. The initiation of ER stress precipitates cell apoptosis, and is also related to inflammation, levels of oxidative stress, and Ca2+ homeostasis. Additionally, mitochondrial dynamics, antioxidative systems, disruption of Ca2+ homeostasis are closely associated with Reactive Oxygen Species (ROS) and inflammation, promoting cell apoptosis. However, numerous crosstalk exists between the ER and mitochondria, where they interact through inflammatory cytokines, signaling pathways, ROS, or key molecules such as CHOP, forming positive and negative feedback loops. Furthermore, the contact sites between the ER and mitochondria, known as mitochondria-associated membranes (MAM), facilitate direct signal transduction such as Ca2+ transfer. However, the current attention towards this issue is insufficient. Therefore, this review summarizes the impacts of ER stress and mitochondrial dysfunction on IVDD, along with the possibly potential crosstalk between them, aiming to unveil novel avenues for IVDD intervention.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China..
| |
Collapse
|
40
|
de Morais EF, de Oliveira LQR, de Farias Morais HG, de Souto Medeiros MR, Freitas RDA, Rodini CO, Coletta RD. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers (Basel) 2024; 16:585. [PMID: 38339336 PMCID: PMC10854650 DOI: 10.3390/cancers16030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Given the heterogeneity of different malignant processes, planning cancer treatment is challenging. According to recent studies, natural products are likely to be effective in cancer prevention and treatment. Among bioactive flavonoids found in fruits and vegetables, kaempferol (KMP) is known for its anti-inflammatory, antioxidant, and anticancer properties. This systematic review aims to highlight the potential therapeutic effects of KMP on different types of solid malignant tumors. This review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Searches were performed in EMBASE, Medline/PubMed, Cochrane Collaboration Library, Science Direct, Scopus, and Google Scholar. After the application of study criteria, 64 studies were included. In vitro experiments demonstrated that KMP exerts antitumor effects by controlling tumor cell cycle progression, proliferation, apoptosis, migration, and invasion, as well as by inhibiting angiogenesis. KMP was also able to inhibit important markers that regulate epithelial-mesenchymal transition and enhanced the sensitivity of cancer cells to traditional drugs used in chemotherapy, including cisplatin and 5-fluorouracil. This flavonoid is a promising therapeutic compound and its combination with current anticancer agents, including targeted drugs, may potentially produce more effective and predictable results.
Collapse
Affiliation(s)
- Everton Freitas de Morais
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Hannah Gil de Farias Morais
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Maurília Raquel de Souto Medeiros
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Roseana de Almeida Freitas
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ricardo D. Coletta
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| |
Collapse
|
41
|
Jeon SJ, Jung GH, Choi EY, Han EJ, Lee JH, Han SH, Woo JS, Jung SH, Jung JY. Kaempferol induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in MC-3 cells. Toxicol Res 2024; 40:45-55. [PMID: 38223666 PMCID: PMC10786811 DOI: 10.1007/s43188-023-00206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 01/16/2024] Open
Abstract
This study sought to determine the anticancer effect of kaempferol, a glycone-type flavonoid glycoside with various pharmacological benefits, on human oral cancer MC-3 cells. In vitro studies comprised a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, annexin V and propidium iodide staining, western blotting analysis, and acridine orange staining, while the in vivo studies entailed a xenograft model, hematoxylin and eosin staining, and TdT-mediated dUTP-biotin nick end labelling. In vitro, kaempferol reduced the rate of survival of MC-3 cells, mediated intrinsic apoptosis, increased the number of acidic vesicular organelles, and altered the expression of autophagy-related proteins. Further, treatment with the autophagy inhibitors revealed that the induced autophagy had a cytoprotective effect on apoptosis in kaempferol-treated MC-3 cells. Kaempferol also decreased the expression of phosphorylated extracellular signal-regulated kinase and increased that of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated p38 kinase in MC-3 cells, suggesting the occurrence of mitogen-activated protein kinase-mediated apoptosis and JNK-mediated autophagy. In vivo, kaempferol reduced tumor growth inducing apoptosis and autophagy. These results showed that kaempferol has the potential use as an adjunctive agent in treating oral cancer.
Collapse
Affiliation(s)
- Su-Ji Jeon
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Gi-Hwan Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Eun-Young Choi
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Jae-Han Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - So-Hee Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
- Research Institute for Natural Products, Kongju National University, Daehak-ro, Yesan-eup, Yesan-gun, Chungcheongnam-do 32439 Republic of Korea
| |
Collapse
|
42
|
|
43
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Chowdhury SG, Karmakar P. Revealing the role of epigenetic and post-translational modulations of autophagy proteins in the regulation of autophagy and cancer: a therapeutic approach. Mol Biol Rep 2023; 51:3. [PMID: 38063905 DOI: 10.1007/s11033-023-08961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Autophagy is a process that is characterized by the destruction of redundant components and the removal of dysfunctional ones to maintain cellular homeostasis. Autophagy dysregulation has been linked to various illnesses, such as neurodegenerative disorders and cancer. The precise transcription of the genes involved in autophagy is regulated by a network of epigenetic factors. This includes histone modifications and histone-modifying enzymes. Epigenetics is a broad category of heritable, reversible changes in gene expression that do not include changes to DNA sequences, such as chromatin remodeling, histone modifications, and DNA methylation. In addition to affecting the genes that are involved in autophagy, the epigenetic machinery can also alter the signals that control this process. In cancer, autophagy plays a dual role by preventing the development of tumors on one hand and this process may suppress tumor progression. This may be the control of an oncogene that prevents autophagy while, conversely, tumor suppression may promote it. The development of new therapeutic strategies for autophagy-related disorders could be initiated by gaining a deeper understanding of its intricate regulatory framework. There is evidence showing that certain machineries and regulators of autophagy are affected by post-translational and epigenetic modifications, which can lead to alterations in the levels of autophagy and these changes can then trigger disease or affect the therapeutic efficacy of drugs. The goal of this review is to identify the regulatory pathways associated with post-translational and epigenetic modifications of different proteins in autophagy which may be the therapeutic targets shortly.
Collapse
Affiliation(s)
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
45
|
Rajaselvi ND, Jida MD, Ajeeshkumar KK, Nair SN, John P, Aziz Z, Nisha AR. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 2023; 55:1803-1817. [PMID: 37389730 DOI: 10.1007/s00726-023-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.
Collapse
Affiliation(s)
- N Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - M D Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - K K Ajeeshkumar
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Suresh N Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - Preethy John
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, 673 576, India
| | - Zarina Aziz
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India.
| |
Collapse
|
46
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
47
|
Kim MJ, Song YR, Kim YE, Bae SJ, Lee WY, Bak SB, Kim YW. Kaempferol stimulation of autophagy regulates the ferroptosis under the oxidative stress as mediated with AMP-activated protein kinase. Free Radic Biol Med 2023; 208:630-642. [PMID: 37703935 DOI: 10.1016/j.freeradbiomed.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Recent studies have highlighted the positive effects of Kaempferol (KP), including its anti-inflammatory and antioxidant properties. However, its impact on oxidative damage induced by heavy metals and pro-inflammatory mediators, such as arachidonic acid (AA), has not yet been identified. Our objective was to specifically evaluate liver damage due to AA + iron-induced oxidative stress, both in vitro and in vivo. In HepG2 cells, KP activated the AMP-activated protein kinase (AMPK), suggesting a hepatoprotective effect through AMPK inhibition, as assessed by immunoblot and FACS analysis (EC50 = 10 μM). KP also stimulated autophagy, a degradation process that eliminates aged, damaged, and unnecessary components, via mTOR inhibition and ULK1 phosphorylation. This activation was further validated by the upregulation of autophagy-related genes (ATG5) and Beclin-1, along with the conversion of LC3BI to LC3BII. Ferroptosis, a non-apoptotic type of cell death characterized by oxidative stress from the production of reactive oxygen species (ROS) and excessive iron accumulation, was linked to the activation of autophagy, as confirmed through the protein expression of deferoxamine (DFO) and ferrostatin-1 (Fer-1), the representative ferroptosis inhibitors (positive controls). In mice, oral administration of KP demonstrated protective effects against CCl4-induced hepatotoxicity. In conclusion, KP provides hepatoprotective effects against oxidative stress induced by AA + iron treatment in vitro and CCl4 treatment in vivo.
Collapse
Affiliation(s)
- Min-Jin Kim
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Yu-Rim Song
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Young Eun Kim
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Su-Jin Bae
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Won-Yung Lee
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea; College of Korean Medicine, Wonkwang University, Iksan-si, South Korea
| | - Seon-Been Bak
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Young Woo Kim
- AI-Bio Convergence DDI Basic Research Lab., School of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea.
| |
Collapse
|
48
|
Adedokun KA, Imodoye SO, Yahaya ZS, Oyeyemi IT, Bello IO, Adeyemo‐Imodoye MT, Sanusi MA, Kamorudeen RT. Nanodelivery of Polyphenols as Nutraceuticals in Anticancer Interventions. POLYPHENOLS 2023:188-224. [DOI: 10.1002/9781394188864.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: Regulator of cell death. Cell Death Dis 2023; 14:648. [PMID: 37794028 PMCID: PMC10551038 DOI: 10.1038/s41419-023-06154-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Autophagy is the process by which cells degrade and recycle proteins and organelles to maintain intracellular homeostasis. Generally, autophagy plays a protective role in cells, but disruption of autophagy mechanisms or excessive autophagic flux usually leads to cell death. Despite recent progress in the study of the regulation and underlying molecular mechanisms of autophagy, numerous questions remain to be answered. How does autophagy regulate cell death? What are the fine-tuned regulatory mechanisms underlying autophagy-dependent cell death (ADCD) and autophagy-mediated cell death (AMCD)? In this article, we highlight the different roles of autophagy in cell death and discuss six of the main autophagy-related cell death modalities, with a focus on the metabolic changes caused by excessive endoplasmic reticulum-phagy (ER-phagy)-induced cell death and the role of mitophagy in autophagy-mediated ferroptosis. Finally, we discuss autophagy enhancement in the treatment of diseases and offer a new perspective based on the use of autophagy for different functional conversions (including the conversion of autophagy and that of different autophagy-mediated cell death modalities) for the clinical treatment of tumors.
Collapse
Affiliation(s)
- ShiZuo Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Yao
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Huan Yang
- The Second School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - YanJiao Wang
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
50
|
Zhang L, Martin G, Mohankumar K, Wright GA, Mariyam F, Safe S. Piperlongumine is a ligand for the orphan nuclear receptor 4A1 (NR4A1). Front Pharmacol 2023; 14:1223153. [PMID: 37808182 PMCID: PMC10551445 DOI: 10.3389/fphar.2023.1223153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Piperlongumine and derivatives are being developed as anticancer agents which act primarily as inducers of reactive oxygen species (ROS) in cancer cell lines. Many of the anticancer activities of piperlongumine resemble those observed for bis-indole derived compounds that bind the orphan nuclear receptor 4A1 (NR4A1) and act as inverse receptor agonists to inhibit NR4A1-regulated pro-oncogenic pathways and genes. In this study we show that like other NR4A1 inverse agonists piperlongumine inhibited RKO, SW480 and HCT116 colon cancer cell growth migration and invasion and induced apoptosis. Piperlongumine also downregulated the pro-reductant isocitrate dehydrogenase 1 (IDH1) and thioredoxin domain-containing 5 (TXNDC5) gene products resulting in the induction of ROS as previously observed for other inverse NR4A1 agonists. ROS also induced sestrin2 and this resulted in activation of AMPK phosphorylation and inhibition of mTOR pathway signaling. It has previously been reported that these pathways/genes are also regulated by inverse NR4A1 agonists or by knockdown of NR4A1. We also observed that piperlongumine directly bound NR4A1, inhibited NR4A1-dependent transactivation and interactions of the NR4A1/Sp1 complex bound to the GC-rich promoter of the NR4A1-regulated G9a gene.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | - Greg Martin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | - Gus A. Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Fuada Mariyam
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| |
Collapse
|