1
|
Liu J, Tao P, Su B, Zheng L, Lin Y, Zou X, Yang H, Wu W, Zhang T, Li H. Interleukin-33 modulates NET formation via an autophagy-dependent manner to promote neutrophilic inflammation in cigarette smoke-exposure asthma. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137257. [PMID: 39842125 DOI: 10.1016/j.jhazmat.2025.137257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Cigarette smoke (CS) contributes to IL---33 release and neutrophil inflammation in asthma. Neutrophil extracellular traps (NETs) are essential for neutrophil function. However, the effect of IL--33 on neutrophils in cigarette smoke--exposure asthma remains unclear. We found that CS exposure led to lower lung function and a neutrophil--related phenotype in asthma, characterized by elevated neutrophil and Th17 cell counts. Granulocytic airway inflammation was ablated by sST2, which blocked excessive IL--33 release. Transcriptome analysis of mouse lungs revealed that IL--33 enhanced NET formation in HDM/CS-treated mice, which was further confirmed in our experimental asthma model and in asthma patients. NETs were associated with poor lung function and airway inflammation and directly facilitated monocyte--derived dendritic cell activation, further inducing Th2/Th17 polarization. Furthermore, we demonstrated a feedforward loop between NETs and neutrophil autophagy, both of which are dependent on reactive oxygen species (ROS) production and the mTOR-Hif-1α signaling pathway. Notably, IL--33 knockout suppressed autophagy and NETs, whereas the autophagy agonist rapamycin reversed the inhibition of NETs by sST2 in a mTOR--dependent manner. Our findings revealed that the IL--33/ST2 signaling pathway interacts with the neutrophil -autophagy--mTOR-Hif-1α-NET pathway, ultimately aggravating Th2/Th17-related inflammation. These insights could lead to potential therapeutic targets for mitigating exacerbations in asthmatic patients who are exposed to CS.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Peizhi Tao
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Beiting Su
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Li Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Yusen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China.
| | - Hongtao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat--sen University, Institute of Respiratory Diseases of Sun Yat--sen University, Guangzhou, PR China.
| |
Collapse
|
2
|
Qiu S, Zhou G, Ke J, Zhou J, Zhang H, Jin Z, Xie W, Huang S, He Z, Qin H, Huang H, Li Q, Huang H, Tang H, Liang Y, Duan M. Impairment of Gal-9 and Tim-3 crosstalk between Tregs and Th17 cells drives tobacco smoke-induced airway inflammation. Immunology 2024; 173:152-171. [PMID: 38829009 DOI: 10.1111/imm.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Overexpression of T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells has been observed in smokers. However, whether and how galectin-9 (Gal-9)/TIM-3 signal between T-regulatory cells (Tregs) and type 17 helper (Th17) cells contributes to tobacco smoke-induced airway inflammation remains unclear. Here, we aimed to explore the role of the Gal-9/TIM-3 signal between Tregs and Th17 cells during chronic tobacco smoke exposure. Tregs phenotype and the expression of TIM-3 on CD4+ T cells were detected in a mouse model of experimental emphysema. The role of TIM-3 in CD4+ T cells was explored in a HAVCR2-/- mouse model and in mice that received recombinant anti-TIM3. The crosstalk between Gal-9 and Tim-3 was evaluated by coculture Tregs with effector CD4+ T cells. We also invested the expression of Gal-9 in Tregs in patients with COPD. Our study revealed that chronic tobacco smoke exposure significantly reduces the frequency of Tregs in the lungs of mice and remarkably shapes the heterogeneity of Tregs by downregulating the expression of Gal-9. We observed a pro-inflammatory but restrained phenotypic transition of CD4+ T cells after tobacco smoke exposure, which was maintained by TIM-3. The restrained phenotype of CD4+ T cells was perturbed when TIM-3 was deleted or neutralised. Tregs from the lungs of mice with emphysema displayed a blunt ability to inhibit the differentiation and proliferation of Th17 cells. The inhibitory function of Tregs was partially restored by using recombinant Gal-9. The interaction between Gal-9 and TIM-3 inhibits the differentiation of Th17 cells and promotes apoptosis of CD4+ T cells, possibly by interfering with the expression of retinoic acid receptor-related orphan receptor gamma t. The expression of Gal-9 in Tregs was reduced in patients with COPD, which was associated with Th17 response and lung function. These findings present a new paradigm that impairment of Gal-9/Tim-3 crosstalk between Tregs and Th17 cells during chronic tobacco smoke exposure promotes tobacco smoke-induced airway/lung inflammation.
Collapse
Affiliation(s)
- Shilin Qiu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guang Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junyi Ke
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianpeng Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhitao Jin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenli Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shu Huang
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zaiqin He
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huajiao Qin
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Huang
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiuming Li
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hongchun Huang
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haijuan Tang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Liang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Minchao Duan
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Meier A, Sakoulas G, Nizet V, Ulloa ER. Neutrophil Extracellular Traps: An Emerging Therapeutic Target to Improve Infectious Disease Outcomes. J Infect Dis 2024; 230:514-521. [PMID: 38728418 PMCID: PMC11326844 DOI: 10.1093/infdis/jiae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/12/2024] Open
Abstract
Neutrophils possess a diverse repertoire of pathogen clearance mechanisms, one of which is the formation of neutrophil extracellular traps (NETs). NETs are complexes of histone proteins and DNA coated with proteolytic enzymes that are released extracellularly to entrap pathogens and aid in their clearance, in a process known as NETosis. Intravascular NETosis may drive a massive inflammatory response that has been shown to contribute to morbidity and mortality in many infectious diseases, including malaria, dengue fever, influenza, bacterial sepsis, and severe acute respiratory syndrome coronavirus 2 infection. In this review we seek to (1) summarize the current understanding of NETs, (2) discuss infectious diseases in which NET formation contributes to morbidity and mortality, and (3) explore potential adjunctive therapeutics that may be considered for future study in treating severe infections driven by NET pathophysiology. This includes drugs specifically targeting NET inhibition and US Food and Drug Administration-approved drugs that may be repurposed as NET inhibitors.
Collapse
Affiliation(s)
- Angela Meier
- Department of Anesthesiology, Division of Critical Care, University of California, San Diego School of Medicine, La Jolla
| | - George Sakoulas
- Division of Infectious Diseases, Sharp Rees-Stealy Medical Group, San Diego
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM)
| | - Victor Nizet
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM)
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla
| | - Erlinda R Ulloa
- Department of Pediatrics, University of California, Irvine School of Medicine
- Division of Infectious Disease, Children's Hospital of Orange County, Orange, California
| |
Collapse
|
4
|
Chen J, Wang T, Li X, Gao L, Wang K, Cheng M, Zeng Z, Chen L, Shen Y, Wen F. DNA of neutrophil extracellular traps promote NF-κB-dependent autoimmunity via cGAS/TLR9 in chronic obstructive pulmonary disease. Signal Transduct Target Ther 2024; 9:163. [PMID: 38880789 PMCID: PMC11180664 DOI: 10.1038/s41392-024-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by persistent airway inflammation even after cigarette smoking cessation. Neutrophil extracellular traps (NETs) have been implicated in COPD severity and acute airway inflammation induced by short-term cigarette smoke (CS). However, whether and how NETs contribute to sustained airway inflammation in COPD remain unclear. This study aimed to elucidate the immunoregulatory mechanism of NETs in COPD, employing human neutrophils, airway epithelial cells (AECs), dendritic cells (DCs), and a long-term CS-induced COPD mouse model, alongside cyclic guanosine monophosphate-adenosine monophosphate synthase and toll-like receptor 9 knockout mice (cGAS--/-, TLR9-/-); Additionally, bronchoalveolar lavage fluid (BALF) of COPD patients was examined. Neutrophils from COPD patients released greater cigarette smoke extract (CSE)-induced NETs (CSE-NETs) due to mitochondrial respiratory chain dysfunction. These CSE-NETs, containing oxidatively-damaged DNA (NETs-DNA), promoted AECs proliferation, nuclear factor kappa B (NF-κB) activation, NF-κB-dependent cytokines and type-I interferons production, and DC maturation, which were ameliorated/reversed by silencing/inhibition of cGAS/TLR9. In the COPD mouse model, blocking NETs-DNA-sensing via cGAS-/- and TLR9-/- mice, inhibiting NETosis using mitoTEMPO, and degrading NETs-DNA with DNase-I, respectively, reduced NETs infiltrations, airway inflammation, NF-κB activation and NF-κB-dependent cytokines, but not type-I interferons due to IFN-α/β receptor degradation. Elevated NETs components (myeloperoxidase and neutrophil elastase activity) in BALF of COPD smokers correlated with disease severity and NF-κB-dependent cytokine levels, but not type-I interferon levels. In conclusion, NETs-DNA promotes NF-κB-dependent autoimmunity via cGAS/TLR9 in long-term CS exposure-induced COPD. Therefore, targeting NETs-DNA and cGAS/TLR9 emerges as a potential strategy to alleviate persistent airway inflammation in COPD.
Collapse
Affiliation(s)
- Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoou Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lijuan Gao
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengxin Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zijian Zeng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
Pei G, Guo L, Liang S, Chen F, Ma N, Bai J, Deng J, Li M, Qin C, Feng T, He Z. Long-Term Erythromycin Treatment Alters the Airway and Gut Microbiota: Data from Chronic Obstructive Pulmonary Disease Patients and Mice with Emphysema. Respiration 2024; 103:461-479. [PMID: 38663359 DOI: 10.1159/000538911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/10/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Although long-term macrolide antibiotics could reduce the recurrent exacerbation of chronic obstructive pulmonary disease (COPD), the side effect of bacterial resistance and the impact on the microbiota remain concerning. We investigated the influence of long-term erythromycin treatment on the airway and gut microbiota in mice with emphysema and patients with COPD. METHODS We conducted 16S rRNA gene sequencing to explore the effect of erythromycin treatment on the lung and gut microbiota in mice with emphysema. Liquid chromatography-mass spectrometry was used for lung metabolomics. A randomized controlled trial was performed to investigate the effect of 48-week erythromycin treatment on the airway and gut microbiota in COPD patients. RESULTS The mouse lung and gut microbiota were disrupted after cigarette smoke exposure. Erythromycin treatment depleted harmful bacteria and altered lung metabolism. Erythromycin treatment did not alter airway or gut microbial diversity in COPD patients. It reduced the abundance of pathogens, such as Burkholderia, in the airway of COPD patients and increased levels of symbiotic bacteria, such as Prevotella and Veillonella. The proportions of Blautia, Ruminococcus, and Lachnospiraceae in the gut were increased in COPD patients after erythromycin treatment. The time to the first exacerbation following treatment was significantly longer in the erythromycin treatment group than in the COPD group. CONCLUSION Long-term erythromycin treatment reduces airway and gut microbe abundance in COPD patients but does not affect microbial diversity and restores microbiota balance in COPD patients by reducing the abundance of pathogenic bacteria.
Collapse
Affiliation(s)
- Guangsheng Pei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Liyan Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siqiao Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fugang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nan Ma
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingmin Deng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meihua Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunhai Qin
- Department of Pulmonary and Critical Care Medicine, Guiping People's Hospital, Guiping, China
| | - Tao Feng
- Department of Pulmonary and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyi He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
7
|
Liu R, Zhang J, Rodrigues Lima F, Zeng J, Nian Q. Targeting neutrophil extracellular traps: A novel strategy in hematologic malignancies. Biomed Pharmacother 2024; 173:116334. [PMID: 38422658 DOI: 10.1016/j.biopha.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have emerged as a critical factor in malignant hematologic disease pathogenesis. These structures, comprising DNA, histones, and cytoplasmic proteins, were initially recognized for their role in immune defense against microbial threats. Growing evidence suggests that NETs contribute to malignant cell progression and dissemination, representing a double-edged sword. However, there is a paucity of reports on its involvement in hematological disorders. A comprehensive understanding of the intricate relationship between malignant cells and NETs is necessary to explore effective therapeutic strategies. This review highlights NET formation and mechanisms underlying disease pathogenesis. Moreover, we discuss recent advancements in targeted inhibitor development for selective NET disruption, empowering precise design and efficacious therapeutic interventions for malignant hematologic diseases.
Collapse
Affiliation(s)
- Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing 400000, China
| | - Jin Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1stRing Rd, Qingyang District, Chengdu, Sichuan 610072, China
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 2-16 Rue Theroigne deMericourt, Paris 75013, France
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, No.37 Shierqiaolu, Chengdu, Sichuan 610000, China.
| | - Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1stRing Rd, Qingyang District, Chengdu, Sichuan 610072, China.
| |
Collapse
|
8
|
Pan T, Lee JW. A crucial role of neutrophil extracellular traps in pulmonary infectious diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:34-41. [PMID: 39170960 PMCID: PMC11332830 DOI: 10.1016/j.pccm.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 08/23/2024]
Abstract
Neutrophil extracellular traps (NETs), extrusions of intracellular DNA with attached granular material that exert an antibacterial effect through entangling, isolating, and immobilizing microorganisms, have been extensively studied in recent decades. The primary role of NETs is to entrap and facilitate the killing of bacteria, fungi, viruses, and parasites, preventing bacterial and fungal dissemination. NET formation has been described in many pulmonary diseases, including both infectious and non-infectious. NETs are considered a double-edged sword. As innate immune cells, neutrophils release NETs to kill pathogens and remove cellular debris. However, the deleterious effects of excessive NET release in lung disease are particularly important because NETs and by-products of NETosis can directly induce epithelial and endothelial cell death while simultaneously inducing inflammatory cytokine secretion and immune-mediated thrombosis. Thus, NET formation must be tightly regulated to preserve the anti-microbial capability of NETs while minimizing damage to the host. In this review, we summarized the recent updates on the mechanism of NETs formation and pathophysiology associated with excessive NETs, aiming to provide insights for research and treatment of pulmonary infectious diseases.
Collapse
Affiliation(s)
- Ting Pan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jae Woo Lee
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA 90230, USA
| |
Collapse
|
9
|
Liu J, Su B, Tao P, Yang X, Zheng L, Lin Y, Zou X, Yang H, Wu W, Zhang T, Li H. Interplay of IL-33 and IL-35 Modulates Th2/Th17 Responses in Cigarette Smoke Exposure HDM-Induced Asthma. Inflammation 2024; 47:173-190. [PMID: 37737467 DOI: 10.1007/s10753-023-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Cigarette smoke (CS) facilitates adverse effects on the airway inflammation and treatment of asthma. Here, we investigated the mechanisms by which CS exacerbates asthma. The roles of IL-33 and IL-35 in asthma development were examined by treatment with IL-33 knockout (IL-33 KO) or transfection of adenovirus encoding IL-35 (Ad-IL-35) in a murine model of cigarette smoke-exposure asthma. Furthermore, the involvement of IL-33 and IL-35 in regulating DCs and Th2/Th17 cells was examined in a coculture system of DCs with CD4+ T cells. Additionally, we observed the effect of CpG-ODNs on the balance of IL-33 and IL-35. We show that CS and house dust mite (HDM) exposure induced IL-33 and suppressed IL-35 levels in cigarette smoke-exposure asthma in vivo and in vitro. Treatment with IL-33 KO or Ad-IL-35 significantly attenuated airway hyperreactivity, goblet hyperplasia, airway remodelling, and eosinophil and neutrophil infiltration in the lung tissues from asthmatic mice. Furthermore, we demonstrated reciprocal regulation between CS and HDM-modulated IL-33 and IL-35. Mechanistically, IL-33 KO (or anti-ST2) and Ad-IL-35 attenuated Th2- and Th17-associated inflammation by downregulating TSLP-DC signalling. Finally, administration of CpG-ODNs suppressed the expression of IL-33/ST2 and elevated the levels of IL-35, which is mainly derived from CD4+Foxp+ Tregs, to alleviate Th2- and Th17-associated inflammation by inhibiting the activation of BMDCs. Taken together, the IL-33/ST2 pathway drives the DC-Th2 and Th17 responses of cigarette smoke-exposure asthma, while IL-35 has the opposite effect. CpG-ODNs represent a potential therapeutic strategy for modulating the balance of IL-33 and IL-35 to suppress allergic airway inflammation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Beiting Su
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Peizhi Tao
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuena Yang
- Department of Pulmonary and Critical Care Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Li Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yusen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Hongtao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Liu Y, Wang R, Song C, Ding S, Zuo Y, Yi K, Li N, Wang B, Geng Q. Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury. Front Immunol 2023; 14:1324021. [PMID: 38162674 PMCID: PMC10755469 DOI: 10.3389/fimmu.2023.1324021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-associated death, occurring during or within 6 hours after transfusion. Reports indicate that TRALI can be categorized as having or lacking acute respiratory distress syndrome (ARDS) risk factors. There are two types of TRALI in terms of its pathogenesis: antibody-mediated and non-antibody-mediated. The key initiation steps involve the priming and activation of neutrophils, with neutrophil extracellular traps (NETs) being established as effector molecules formed by activated neutrophils in response to various stimuli. These NETs contribute to the production and release of reactive oxygen species (ROS) and participate in the destruction of pulmonary vascular endothelial cells. The significant role of NETs in TRALI is well recognized, offering a potential pathway for TRALI treatment. Moreover, platelets, macrophages, endothelial cells, and complements have been identified as promoters of NET formation. Concurrently, studies have demonstrated that the storage of platelets and concentrated red blood cells (RBC) can induce TRALI through bioactive lipids. In this article, recent clinical and pre-clinical studies on the pathophysiology and pathogenesis of TRALI are reviewed to further illuminate the mechanism through which NETs induce TRALI. This review aims to propose new therapeutic strategies for TRALI, with the hope of effectively improving its poor prognosis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Bleakley AS, Kho S, Binks MJ, Pizzutto S, Chang AB, Beissbarth J, Minigo G, Marsh RL. Extracellular traps are evident in Romanowsky-stained smears of bronchoalveolar lavage from children with non-cystic fibrosis bronchiectasis. Respirology 2023; 28:1126-1135. [PMID: 37648649 PMCID: PMC10947271 DOI: 10.1111/resp.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND OBJECTIVE The importance of extracellular traps (ETs) in chronic respiratory conditions is increasingly recognized but their role in paediatric bronchiectasis is poorly understood. The specialized techniques currently required to study ETs preclude routine clinical use. A simple and cost-effective ETs detection method is needed to support diagnostic applications. We aimed to determine whether ETs could be detected using light microscopy-based assessment of Romanowsky-stained bronchoalveolar lavage (BAL) slides from children with bronchiectasis, and whether the ETs cellular origin could be determined. METHODS Archived Romanowsky-stained BAL slides from a cross-sectional study of children with bronchiectasis were examined for ETs using light microscopy. The cellular origin of individual ETs was determined based on morphology and physical contact with surrounding cell(s). RESULTS ETs were observed in 78.7% (70/89) of BAL slides with neutrophil (NETs), macrophage (METs), eosinophil (EETs) and lymphocyte (LETs) ETs observed in 32.6%, 51.7%, 4.5% and 9%, respectively. ETs of indeterminate cellular origin were present in 59.6% of slides. Identifiable and indeterminate ETs were co-detected in 43.8% of slides. CONCLUSION BAL from children with bronchiectasis commonly contains multiple ET types that are detectable using Romanowsky-stained slides. While specialist techniques remain necessary to determining the cellular origin of all ETs, screening of Romanowsky-stained slides presents a cost-effective method that is well-suited to diagnostic settings. Our findings support further research to determine whether ETs can be used to define respiratory endotypes and to understand whether ETs-specific therapies may be required to resolve airway inflammation among children with bronchiectasis.
Collapse
Affiliation(s)
- Amy S. Bleakley
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Steven Kho
- Global and Tropical Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Michael J. Binks
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Susan Pizzutto
- Research Institute for the Environment and Livelihoods, Faculty of Science and TechnologyCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Anne B. Chang
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
- Department of Respiratory and Sleep MedicineQueensland Children's Hospital and Australian Centre for Health Services Innovation, Queensland University of TechnologyBrisbaneQueenslandAustralia
| | - Jemima Beissbarth
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Gabriela Minigo
- Global and Tropical Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
- School of Medicine, Faculty of HealthCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Robyn L. Marsh
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
- School of Health SciencesUniversity of TasmaniaLauncestonTasmaniaAustralia
| |
Collapse
|
12
|
Ma T, Zhang H, Weng Y, Tang S, Mao J, Feng X, Zhang Y, Zhang J. Blocking CD40 Alleviates Th1 and Th17 Cell Responses in Elastin Peptide-Induced Murine Emphysema. Int J Chron Obstruct Pulmon Dis 2023; 18:2687-2698. [PMID: 38022831 PMCID: PMC10680472 DOI: 10.2147/copd.s428832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose To investigate the role of the CD40-CD40 ligand (CD40L) pathway in the regulation of Th1, Th17, and regulatory T (Treg)-cell responses in an elastin peptide (EP)-induced autoimmune emphysema mouse model. Methods BALB/c mice were transnasally treated with EP on day 0, injected intravenously with anti-CD40 antibody via the tail vein on day 33, and sacrificed on day 40. The severity of emphysema was evaluated by determining the mean linear intercept (MLI) and destructive index (DI) from lung sections. The proportions of myeloid dendritic cells (mDCs) and Th1, Th17, and Treg cells in the blood, spleen, and lungs were determined via flow cytometry. The levels of the cytokines interleukin (IL)-6, IL-17, interferon (IFN)-γ, and transforming growth factor (TGF)-β were detected via enzyme-linked immunosorbent assay. Ifnγ, IL17a, Rorγt and Foxp3 transcription levels were detected via polymerase chain reaction. Results CD40+ mDCs accumulated in the lungs of EP-stimulated mice. Blocking the CD40-CD40L pathway with an anti-CD40 antibody alleviated Th1 and Th17 responses; increased the proportion of Treg cells; decreased MLI and DI; reduced the levels of cytokines IL-6, IL-17, and IFN-γ as well as the transcription levels of Ifnγ, IL17a, and Rorγt; and upregulated the expression of TGF-β and Foxp3. Conclusion The CD40-CD40L pathway could play a critical role in Th1, Th17 and Treg cell dysregulation in EP-mediated emphysema and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Tingting Ma
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, People’s Republic of China
- Department of Respiratory and Critical Medicine, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Hui Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yuqing Weng
- Department of Respiratory and Critical Medicine, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Shudan Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jinshan Mao
- Department of Respiratory and Critical Medicine, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Xin Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yuxin Zhang
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Jianquan Zhang
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, People’s Republic of China
| |
Collapse
|
13
|
Shafqat A, Omer MH, Albalkhi I, Alabdul Razzak G, Abdulkader H, Abdul Rab S, Sabbah BN, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front Immunol 2023; 14:1254310. [PMID: 37828990 PMCID: PMC10565006 DOI: 10.3389/fimmu.2023.1254310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan. In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID. Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can drive NET formation through their pro-inflammatory secretome in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
14
|
Alnima T, Meijer RI, Spronk HMH, Warlé M, Cate HT. Diabetes- versus smoking-related thrombo-inflammation in peripheral artery disease. Cardiovasc Diabetol 2023; 22:257. [PMID: 37735399 PMCID: PMC10514957 DOI: 10.1186/s12933-023-01990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Peripheral artery disease (PAD) is a major health problem with increased cardiovascular mortality, morbidity and disabling critical limb threatening ischemia (CLTI) and amputation. Diabetes mellitus (DM) and cigarette smoke are the main risk factors for the development of PAD. Although diabetes related PAD shows an accelerated course with worse outcome regarding complications, mortality and amputations compared with non-diabetic patients, current medical treatment does not make this distinction and includes standard antiplatelet and lipid lowering drugs for all patients with PAD. In this review we discuss the pathophysiologic mechanisms of PAD, with focus on differences in thrombo-inflammatory processes between diabetes-related and smoking-related PAD, and hypothesize on possible mechanisms for the progressive course of PAD in DM. Furthermore, we comment on current medical treatment and speculate on alternative medical drug options for patients with PAD and DM.
Collapse
Affiliation(s)
- T Alnima
- Department of Internal Medicine, Section of Vascular Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Internal Medicine, Section of Diabetology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - R I Meijer
- Department of Internal Medicine, Section of Diabetology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H M H Spronk
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M Warlé
- Department of Vascular Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Ten Cate
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
15
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
16
|
Chen M, Li L, Chai Y, Yang Y, Ma S, Pu X, Chen Y. Vitamin D can ameliorate premature ovarian failure by inhibiting neutrophil extracellular traps: A review. Medicine (Baltimore) 2023; 102:e33417. [PMID: 37000081 PMCID: PMC10063315 DOI: 10.1097/md.0000000000033417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
The etiology of premature ovarian failure (POF) is mainly related to inflammatory diseases, autoimmune diseases, and tumor radiotherapy and chemotherapy; however, its specific pathogenesis has not been clarified. Vitamin D (VD), a fat-soluble vitamin, is an essential steroid hormone in the human body. Neutrophil extracellular traps (NETs) are meshwork structures that are formed when neutrophils are stimulated by inflammation and other factors and are closely associated with autoimmune and inflammatory diseases. Notably, VD inhibits NET formation and intervenes in the development of POF in terms of inflammatory and immune responses, oxidative stress, and tissue fibrosis. Therefore, this study aimed to theorize the relationship between NETs, VD, and POF and provide new ideas and targets for the pathogenesis and clinical treatment of POF.
Collapse
Affiliation(s)
- Menglu Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Lailai Li
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yihui Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yuqi Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Sibu Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Xiang Pu
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yunzhi Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| |
Collapse
|
17
|
Yan Y, Wu L, Li X, Zhao L, Xu Y. Immunomodulatory role of azithromycin: Potential applications to radiation-induced lung injury. Front Oncol 2023; 13:966060. [PMID: 36969016 PMCID: PMC10030824 DOI: 10.3389/fonc.2023.966060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Radiation-induced lung injury (RILI) including radiation-induced pneumonitis and radiation-induced pulmonary fibrosis is a side effect of radiotherapy for thoracic tumors. Azithromycin is a macrolide with immunomodulatory properties and anti-inflammatory effects. The immunopathology of RILI that results from irradiation is robust pro-inflammatory responses with high levels of chemokine and cytokine expression. In some patients, pulmonary interstitial fibrosis results usually due to an overactive immune response. Growing clinical studies recently proposed that the anti-inflammatory and immunomodulatory effects of azithromycin may benefit patients with acute lung injury. It has been shown potential benefits for patients with RILI in preclinical studies. Azithromycin has a variety of immunomodulatory effect to improve the process of disease, including inhibition of pro-inflammatory cytokines production participating in the regulatory function of macrophages, changes in autophagy, and inhibition of neutrophil influx. We review the published evidence of mechanisms of azithromycin, and focus on the potential effect of azithromycin on the immune response to RILI.
Collapse
Affiliation(s)
- Yujie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| | - Lan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yaping Xu, ; Xuefei Li, ; Lan Zhao,
| |
Collapse
|
18
|
Wang K, Liao Y, Li X, Wang R, Zeng Z, Cheng M, Gao L, Xu D, Wen F, Wang T, Chen J. Inhibition of neutrophil elastase prevents cigarette smoke exposure-induced formation of neutrophil extracellular traps and improves lung function in a mouse model of chronic obstructive pulmonary disease. Int Immunopharmacol 2023; 114:109537. [PMID: 36495695 DOI: 10.1016/j.intimp.2022.109537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important public health challenge worldwide, and is usually caused by significant exposure to noxious agents, particularly cigarette smoke. Recent studies have revealed that excessive production of neutrophil extracellular traps (NETs) in the airways is associated with disease severity in COPD patients. NETs are extracellular neutrophil-derived structures composed of chromatin fibers decorated with histones and granule proteases including neutrophil elastase (NE). However, the effective prevention of NET formation in COPD remains elusive. Here, we demonstrated that treatment with GW311616A, a potent and selective inhibitor of NE, prevented cigarette smoke extract (CSE)-induced NET formation in human neutrophils by blocking NE nuclear translocation and subsequent chromatin decondensation. Inhibition of NE also abrogated CSE-induced ROS production and migration impairment of neutrophils. Administration of GW311616A in vivo substantially reduced pulmonary generation of NETs while attenuating the key pathological changes in COPD, including airway leukocyte infiltration, mucus-secreting goblet cell hyperplasia, and emphysema-like alveolar destruction in a mouse model of COPD induced by chronic cigarette smoke exposure. Mice treated with GW311616A also showed significant attenuation of neutrophil numbers and percentages and the levels of neutrophil chemotactic factors (LTB4, KC, and CXCL5) and proinflammatory cytokines (IL-1β, and TNF-α) in bronchoalveolar lavage fluid compared to mice treated with cigarette smoke exposure only. Furthermore, GW311616A treatment considerably improved lung function in the COPD mouse model, including preventing the decline of FEV100/FVC and delta PEF as well as inhibiting the increase in FRC, TLC, and FRC/TLC. Overall, our study suggests that NE plays a critical role in cigarette smoke-induced NET formation by neutrophils and that inhibition of NE is a promising strategy to suppress NET-mediated pathophysiological changes in COPD.
Collapse
Affiliation(s)
- Ke Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Liao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoou Li
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Ran Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Mengxin Cheng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Gao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Aspera-Werz RH, Mück J, Linnemann C, Herbst M, Ihle C, Histing T, Nussler AK, Ehnert S. Nicotine and Cotinine Induce Neutrophil Extracellular Trap Formation-Potential Risk for Impaired Wound Healing in Smokers. Antioxidants (Basel) 2022; 11:antiox11122424. [PMID: 36552632 PMCID: PMC9774423 DOI: 10.3390/antiox11122424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Smoking undoubtedly affects human health. Investigating 2318 representative patients at a level 1 trauma center identified delayed wound healing, tissue infections, and/or sepsis as main complications in smokers following trauma and orthopedic surgery. Therefore, smoking cessation is strongly advised to improve the clinical outcome in these patients, although smoking cessation often fails despite nicotine replacement therapy raising the need for specific interventions that may reduce the complication rate. However, the underlying mechanisms are still unknown. In diabetics, delayed wound healing and infections/sepsis are associated with increased neutrophilic PADI4 expression and formation of neutrophil extracellular traps (NETs). The aim was to investigate if similar mechanisms hold for smokers. Indeed, our results show higher PADI4 expression in active and heavy smokers than non-smokers, which is associated with an increased complication rate. However, in vitro stimulation of neutrophils with cigarette smoke extract (CSE) only moderately induced NET formation despite accumulation of reactive oxygen species (ROS). Physiological levels of nicotine and its main metabolite cotinine more effectively induced NET formation, although they did not actively induce the formation of ROS, but interfered with the activity of enzymes involved in anti-oxidative defense and NET formation. In summary, we propose increased formation of NETs as possible triggers for delayed wound healing, tissue infections, and/or sepsis in smokers after a major trauma and orthopedic surgery. Smoking cessation might reduce this effect. However, our data show that smoking cessation supported by nicotine replacement therapy should be carefully considered as nicotine and its metabolite cotinine effectively induced NET formation in vitro, even without active formation of ROS.
Collapse
|
20
|
Xiaofei Y, Tingting L, Xuan W, Zhiyi H. Erythromycin attenuates oxidative stress-induced cellular senescence via the PI3K-mTOR signaling pathway in chronic obstructive pulmonary disease. Front Pharmacol 2022; 13:1043474. [PMID: 36506578 PMCID: PMC9727195 DOI: 10.3389/fphar.2022.1043474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose: Chronic obstructive pulmonary disease (COPD) is proposed to hasten lung aging. Erythromycin protects against oxidative stress and inflammatory responses. However, the potential anti-senescence effect of erythromycin remains disclosed. In the present study, we investigated whether erythromycin influenced oxidative stress-induced cellular senescence and investigated its related mechanisms. Methods: A cigarrete smoke (CS) -induced emphysema mouse model and a H2O2-induced premature senescence model in human bronchial epithelial cell line (BEAS-2B) were established. Senescence-related markers (P53, P21 and SA-β-Gal activity), and levels of oxidative stress biomarkers (MDA, SOD and ROS) were measured. Additionally, cells were pretreated with rapamycin (mTOR inhibitor) or erythromycin, and the expression levels of components of the PI3K-mTOR signaling pathway were measured in BEAS-2B cells. Results: Exposed to H2O2, increased SA-β-gal activity was observed in BEAS-2B cells suggesting premature senescence. Erythromycin inhibited the expression of P53 and P21 in the CS-induced emphysema mouse model. MDA levels significantly increased and SOD levels decreased in the CS-exposed mice and H2O2-induced BEAS-2B cells. Rapamycin and erythromycin significantly suppressed the expression of P53 and P21. Additionally, rapamycin and erythromycin inhibited the PI3K-mTOR signaling pathway. Conclusion: Our findings suggest that erythromycin ameliorates oxidative stress-induced cellular senescence via the PI3K-mTOR signaling pathway. Hence, we establish a theoretical foundation for the clinical application of erythromycin for COPD prevention and treatment.
Collapse
|
21
|
Abstract
Smoking is a well-established risk factor for chronic obstructive pulmonary disease (COPD). Chronic lung inflammation continues even after smoking cessation and leads to COPD progression. To date, anti-inflammatory therapies are ineffective in improving pulmonary function and COPD symptoms, and new molecular targets are urgently needed to deal with this challenge. The receptor for advanced glycation end-products (RAGE) was shown to be relevant in COPD pathogenesis, since it is both a genetic determinant of low lung function and a determinant of COPD susceptibility. Moreover, RAGE is involved in the physiological response to cigarette smoke exposure. Since innate and acquired immunity plays an essential role in the development of chronic inflammation and emphysema in COPD, here we summarized the roles of RAGE and its ligand HMGB1 in COPD immunity.
Collapse
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xuejiao Sun
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
22
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
23
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
24
|
Huang SUS, O’Sullivan KM. The Expanding Role of Extracellular Traps in Inflammation and Autoimmunity: The New Players in Casting Dark Webs. Int J Mol Sci 2022; 23:ijms23073793. [PMID: 35409152 PMCID: PMC8998317 DOI: 10.3390/ijms23073793] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
The first description of a new form of neutrophil cell death distinct from that of apoptosis or necrosis was discovered in 2004 and coined neutrophil extracellular traps "(NETs)" or "NETosis". Different stimuli for NET formation, and pathways that drive neutrophils to commit to NETosis have been elucidated in the years that followed. Critical enzymes required for NET formation have been discovered and targeted therapeutically. NET formation is no longer restricted to neutrophils but has been discovered in other innate cells: macrophages/monocytes, mast Cells, basophils, dendritic cells, and eosinophils. Furthermore, extracellular DNA can also be extruded from both B and T cells. It has become clear that although this mechanism is thought to enhance host defense by ensnaring bacteria within large webs of DNA to increase bactericidal killing capacity, it is also injurious to innocent bystander tissue. Proteases and enzymes released from extracellular traps (ETs), injure epithelial and endothelial cells perpetuating inflammation. In the context of autoimmunity, ETs release over 70 well-known autoantigens. ETs are associated with pathology in multiple diseases: lung diseases, vasculitis, autoimmune kidney diseases, atherosclerosis, rheumatoid arthritis, cancer, and psoriasis. Defining these pathways that drive ET release will provide insight into mechanisms of pathological insult and provide potential therapeutic targets.
Collapse
|
25
|
You Q, Shen Y, Wu Y, Li Y, Liu C, Huang F, Gu HF, Wu J. Neutrophil Extracellular Traps Caused by Gut Leakage Trigger the Autoimmune Response in Nonobese Diabetic Mice. Front Immunol 2022; 12:711423. [PMID: 35111148 PMCID: PMC8801438 DOI: 10.3389/fimmu.2021.711423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/27/2021] [Indexed: 01/14/2023] Open
Abstract
Increased formation of neutrophil extracellular traps (NETs) is associated with gut leakage in type 1 diabetes (T1D). To explore the mechanism of how enteropathy exacerbated by NETs triggers pancreatic autoimmunity in T1D, we carried out a correlation analysis for NET formation with gut barrier functions and autoimmunity in nonobese diabetic (NOD) mice. Inducing chronic colitis or knocking out of peptidyl arginine deiminase type 4 (PAD4) in NOD mice were used to further study the effect of NET formation on the progression of T1D. Microbial alterations in Deferribacteres and Proteobacteria, along with the loss of gut barrier function, were found to be associated with increased endotoxin and abnormal formation of NETs in NOD mice. Both DSS-induced colitis and knockout of PAD4 in NOD mice indicated that PAD4-dependent NET formation was involved in the aggravation of gut barrier dysfunction, the production of autoantibodies, and the activation of enteric autoimmune T cells, which then migrated to pancreatic lymph nodes (PLNs) and caused self-damage. The current study thus provides evidence that PAD4-dependent NET formation is engaged in leaky gut triggering pancreatic autoimmunity and suggests that either degradation of NETs or inhibition of NET formation may be helpful for innovative therapeutic interventions in T1D.
Collapse
Affiliation(s)
- Qi You
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiming Shen
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiling Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuyan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
26
|
The Analysis of Chitosan-Coated Nanovesicles Containing Erythromycin-Characterization and Biocompatibility in Mice. Antibiotics (Basel) 2021; 10:antibiotics10121471. [PMID: 34943683 PMCID: PMC8698811 DOI: 10.3390/antibiotics10121471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoantibiotics have proved improved pharmacokinetic characteristics and antimicrobial features. Recent studies have shown non-toxicity, non-immunogenicity, antioxidant, anti-hyperlipidemic, and hepatocyte protective actions, among other advantages of chitosan-based nanoparticles. The purpose of our study was the structural analysis of novel chitosan-coated vesicles entrapping erythromycin (ERT) and the assessment of their biocompatibility in mice. According to the group in which they were randomly assigned, the mice were treated orally with one of the following: distilled water; chitosan; ERT; chitosan vesicles containing ERT. Original nanosystems entrapping ERT in liposomes stabilized with chitosan were designed. Their oral administration did not produce sizeable modifications in the percentages of the leukocyte formula elements, of some blood constants useful for evaluating the hepatic and renal function, respectively, and of some markers of oxidative stress and immune system activity, which suggests a good biocompatibility in mice. The histological examination did not reveal significant alterations of liver and kidney architecture in mice treated with chitosan liposomes entrapping ERT. The results indicate the designed liposomes are a promising approach to overcome disadvantages of conventional ERT treatments and to amplify their benefits and can be further studied as carrier systems.
Collapse
|
27
|
Pollock J, Chalmers JD. The immunomodulatory effects of macrolide antibiotics in respiratory disease. Pulm Pharmacol Ther 2021; 71:102095. [PMID: 34740749 PMCID: PMC8563091 DOI: 10.1016/j.pupt.2021.102095] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Macrolide antibiotics are well known for their antibacterial properties, but extensive research in the context of inflammatory lung disease has revealed that they also have powerful immunomodulatory properties. It has been demonstrated that these drugs are therapeutically beneficial in various lung diseases, with evidence they significantly reduce exacerbations in patients with COPD, asthma, bronchiectasis and cystic fibrosis. The efficacy demonstrated in patients infected with macrolide tolerant organisms such as Pseudomonas aeruginosa supports the concept that their efficacy is at least partly related to immunomodulatory rather than antibacterial effects. Inconsistent data and an incomplete understanding of their mechanisms of action hampers the use of macrolide antibiotics as immunomodulatory therapies. Macrolides recently demonstrated no clinically relevant immunomodulatory effects in the context of COVID-19 infection. This review provides an overview of macrolide antibiotics and discusses their immunomodulatory effects and mechanisms of action in the context of inflammatory lung disease.
Collapse
Affiliation(s)
- Jennifer Pollock
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
28
|
Gierlikowska B, Stachura A, Gierlikowski W, Demkow U. Phagocytosis, Degranulation and Extracellular Traps Release by Neutrophils-The Current Knowledge, Pharmacological Modulation and Future Prospects. Front Pharmacol 2021; 12:666732. [PMID: 34017259 PMCID: PMC8129565 DOI: 10.3389/fphar.2021.666732] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are crucial elements of innate immune system, which assure host defense via a range of effector functions, such as phagocytosis, degranulation, and NET formation. The latest literature clearly indicates that modulation of effector functions of neutrophils may affect the treatment efficacy. Pharmacological modulation may affect molecular mechanisms activating or suppressing phagocytosis, degranulation or NET formation. In this review, we describe the role of neutrophils in physiology and in the course of bacterial and viral infections, illustrating the versatility and plasticity of those cells. This review also focus on the action of plant extracts, plant-derived compounds and synthetic drugs on effector functions of neutrophils. These recent advances in the knowledge can help to devise novel therapeutic approaches via pharmacological modulation of the described processes.
Collapse
Affiliation(s)
- Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Albert Stachura
- Department of Methodology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Ding L, Yang J, Zhang C, Zhang X, Gao P. Neutrophils Modulate Fibrogenesis in Chronic Pulmonary Diseases. Front Med (Lausanne) 2021; 8:616200. [PMID: 33987189 PMCID: PMC8110706 DOI: 10.3389/fmed.2021.616200] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammatory pulmonary diseases are characterized by recurrent and persistent inflammation of the airways, commonly associated with poor clinical outcomes. Although their etiologies vary tremendously, airway neutrophilia is a common feature of these diseases. Neutrophils, as vital regulators linking innate and adaptive immune systems, are a double-edged sword in the immune response of the lung involving mechanisms such as phagocytosis, degranulation, neutrophil extracellular trap formation, exosome secretion, release of cytokines and chemokines, and autophagy. Although neutrophils serve as strong defenders against extracellular pathogens, neutrophils and their components can trigger various cascades leading to inflammation and fibrogenesis. Here, we review current studies to elucidate the versatile roles of neutrophils in chronic pulmonary inflammatory diseases and describe the common pathogenesis of these diseases. This may provide new insights into therapeutic strategies for chronic lung diseases.
Collapse
Affiliation(s)
- Lili Ding
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Juan Yang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Chunmei Zhang
- Intensive Care Unit of Emergency Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiuna Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
30
|
Deyell M, Garris CS, Laughney AM. Cancer metastasis as a non-healing wound. Br J Cancer 2021; 124:1491-1502. [PMID: 33731858 PMCID: PMC8076293 DOI: 10.1038/s41416-021-01309-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Most cancer deaths are caused by metastasis: recurrence of disease by disseminated tumour cells at sites distant from the primary tumour. Large numbers of disseminated tumour cells are released from the primary tumour, even during the early stages of tumour growth. However, only a minority survive as potential seeds for future metastatic outgrowths. These cells must adapt to a relatively inhospitable microenvironment, evade immune surveillance and progress from the micro- to macro-metastatic stage to generate a secondary tumour. A pervasive driver of this transition is chronic inflammatory signalling emanating from tumour cells themselves. These signals can promote migration and engagement of stem and progenitor cell function, events that are also central to a wound healing response. In this review, we revisit the concept of cancer as a non-healing wound, first introduced by Virchow in the 19th century, with a new tumour cell-intrinsic perspective on inflammation and focus on metastasis. Cellular responses to inflammation in both wound healing and metastasis are tightly regulated by crosstalk with the surrounding microenvironment. Targeting or restoring canonical responses to inflammation could represent a novel strategy to prevent the lethal spread of cancer.
Collapse
Affiliation(s)
- Matthew Deyell
- grid.5386.8000000041936877XInstitute for Computational Biomedicine, Weill Cornell Medicine, New York, NY USA ,grid.5386.8000000041936877XDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY USA ,grid.5386.8000000041936877XSandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY USA ,grid.4444.00000 0001 2112 9282Chimie Biologie et Innovation, ESPCI Paris, Université PSL, CNRS, Paris, France
| | | | - Ashley M. Laughney
- grid.5386.8000000041936877XInstitute for Computational Biomedicine, Weill Cornell Medicine, New York, NY USA ,grid.5386.8000000041936877XDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY USA ,grid.5386.8000000041936877XSandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY USA
| |
Collapse
|
31
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
32
|
Venditto VJ, Haydar D, Abdel-Latif A, Gensel JC, Anstead MI, Pitts MG, Creameans J, Kopper TJ, Peng C, Feola DJ. Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19. Front Immunol 2021; 12:574425. [PMID: 33643308 PMCID: PMC7906979 DOI: 10.3389/fimmu.2021.574425] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid advancement of the COVID-19 pandemic has prompted an accelerated pursuit to identify effective therapeutics. Stages of the disease course have been defined by viral burden, lung pathology, and progression through phases of the immune response. Immunological factors including inflammatory cell infiltration and cytokine storm have been associated with severe disease and death. Many immunomodulatory therapies for COVID-19 are currently being investigated, and preliminary results support the premise of targeting the immune response. However, because suppressing immune mechanisms could also impact the clearance of the virus in the early stages of infection, therapeutic success is likely to depend on timing with respect to the disease course. Azithromycin is an immunomodulatory drug that has been shown to have antiviral effects and potential benefit in patients with COVID-19. Multiple immunomodulatory effects have been defined for azithromycin which could provide efficacy during the late stages of the disease, including inhibition of pro-inflammatory cytokine production, inhibition of neutrophil influx, induction of regulatory functions of macrophages, and alterations in autophagy. Here we review the published evidence of these mechanisms along with the current clinical use of azithromycin as an immunomodulatory therapeutic. We then discuss the potential impact of azithromycin on the immune response to COVID-19, as well as caution against immunosuppressive and off-target effects including cardiotoxicity in these patients. While azithromycin has the potential to contribute efficacy, its impact on the COVID-19 immune response requires additional characterization so as to better define its role in individualized therapy.
Collapse
Affiliation(s)
- Vincent J. Venditto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C. Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michael I. Anstead
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michelle G. Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jarrod Creameans
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Timothy J. Kopper
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Chi Peng
- Gill Heart Institute and Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David J. Feola
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
33
|
Gao Y, Zhou X, Zhou Y, Zhang W, Zhao L. Chrysene accelerates the proceeding of chronic obstructive pulmonary disease with the aggravation of inflammation and apoptosis in cigarette smoke exposed mice. Hum Exp Toxicol 2020; 40:1031-1044. [PMID: 33345606 DOI: 10.1177/0960327120979343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chrysene, one of the basic polycyclic aromatic hydrocarbons (PAHs), has been reported to make damages to human health and living environment. Chronic obstructive pulmonary disease (COPD) is a progressive disorder with high morbidity and mortality. To investigate the role of chrysene in the development of COPD, male C57BL/6 mice were exposed to the cigarette smoke (CS) followed with the administration of chrysene. Morphological analyses indicated that chrysene caused earlier and severer pathological changes in CS-exposed mice. Besides, CS-exposed mice with chrysene treatment showed obvious collagen deposition, elevated α-smooth muscle actin (α-SMA) expression and reduced E-cadherin abundance at earlier stage, which suggested the acceleration and aggravation of pulmonary fibrosis. Moreover, quantification of leukocytes and pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and lung tissues implied that chrysene significantly exacerbated the proceeding of inflammation in CS-exposed mice. Furthermore, significantly increased apoptotic rates, augmented expressions of apoptotic related proteins and highly expressed TRPV1 were determined in CS-exposed mice with chrysene treatment, which indicated the association between COPD pathogenesis and TRPV1 channel. In summary, our findings elucidate that chrysene accelerates the development of COPD in a murine model with new molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xinjia Zhou
- Department of Otolaryngology Head and Neck Surgery, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Zhou
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
34
|
Reijnders TDY, Saris A, Schultz MJ, van der Poll T. Immunomodulation by macrolides: therapeutic potential for critical care. THE LANCET RESPIRATORY MEDICINE 2020; 8:619-630. [PMID: 32526189 DOI: 10.1016/s2213-2600(20)30080-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
Critical illness is associated with immune dysregulation, characterised by concurrent hyperinflammation and immune suppression. Hyperinflammation can result in collateral tissue damage and organ failure, whereas immune suppression has been implicated in susceptibility to secondary infections and reactivation of latent viruses. Macrolides are a class of bacteriostatic antibiotics that are used in the intensive care unit to control infections or to alleviate gastrointestinal dysmotility. Yet macrolides also have potent and wide-ranging immunomodulatory properties, which might have the potential to correct immune dysregulation in patients who are critically ill without affecting crucial antimicrobial defences. In this Review, we provide an overview of preclinical and clinical studies that point to the beneficial effects of macrolides in acute diseases relevant to critical care, and we discuss the possible underlying mechanisms of their immunomodulatory effects. Further studies are needed to explore the therapeutic potential of macrolides in critical illness, to identify subgroups of patients who might benefit from treatment, and to develop novel non-antibiotic macrolide derivatives with improved immunomodulatory properties.
Collapse
Affiliation(s)
- Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
35
|
Wan R, Jiang J, Hu C, Chen X, Chen C, Zhao B, Hu X, Zheng Z, Li Y. Neutrophil extracellular traps amplify neutrophil recruitment and inflammation in neutrophilic asthma by stimulating the airway epithelial cells to activate the TLR4/ NF-κB pathway and secrete chemokines. Aging (Albany NY) 2020; 12:16820-16836. [PMID: 32756014 PMCID: PMC7521522 DOI: 10.18632/aging.103479] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
Neutrophilic asthma (NA) is a distinct airway inflammation disease with prominent neutrophil infiltration. The role played by neutrophil extracellular traps (NETs) in NA, however, is quite unclear. This study was based on the hypothesis that NETs are responsible for the second neutrophil wave and therefore contribute significantly to inflammation. The proinflammatory effects of NETs were evaluated in vitro and in vivo. Formation of NETs and neutrophil swarming was seen in a mouse model of NA. Additionally, NETs were found to stimulate airway cells to express CXCL1, CXCL2, and CXCL8 via the TLR4/NF-κB pathway, which recruits neutrophils to the inflammation site. Furthermore, prevention of NET formation decreased the recruitment of lung neutrophils and hence reduce neutrophilic inflammation. Additionally, the structural integrity of NETs had no effect on the recruitment of lung neutrophils and neutrophilic inflammation. In NA mice, NETs could trigger airway and alveolar epithelial cells to express chemokines which recruit more neutrophils via activation of the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Rongjun Wan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Chengping Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xi Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Cen Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Zhiyuan Zheng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yuanyuan Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
36
|
Emerging role of NET inhibitors in cardiovascular diseases. Hypertens Res 2020; 43:1459-1461. [PMID: 32733104 DOI: 10.1038/s41440-020-0527-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/05/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022]
|
37
|
Zhang Y, Jian W, He L, Wu J. Externalized histone H4: a novel target that orchestrates chronic inflammation by inducing lytic cell death. Acta Biochim Biophys Sin (Shanghai) 2020; 52:336-338. [PMID: 32072162 DOI: 10.1093/abbs/gmz165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 11/09/2018] [Accepted: 12/05/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yao Zhang
- Department of Inspection, The First People’s Hospital of Changde City, Changde 415003, China, and
| | - Wu Jian
- Department of Inspection, The First People’s Hospital of Changde City, Changde 415003, China, and
| | - Lu He
- Department of Neurosurgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Jianhua Wu
- Department of Inspection, The First People’s Hospital of Changde City, Changde 415003, China, and
| |
Collapse
|