1
|
Wu P, Chen J, Li H, Lu H, Li Y, Zhang J. Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review). Oncol Rep 2025; 53:18. [PMID: 39635847 PMCID: PMC11638741 DOI: 10.3892/or.2024.8851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Ferroptosis is a form of programmed cell death that is distinct from apoptosis. The mechanism involves redox‑active metallic iron and is characterized by an abnormal increase in iron‑dependent lipid reactive oxygen species, which results in high levels of membrane lipid peroxides. The relationship between ferroptosis and gynaecological tumours is complex. Ferroptosis can regulate tumour proliferation, metastasis and chemotherapy resistance, and targeting ferroptosis is a promising antitumour approach. Ferroptosis interacts with mechanisms related to tumorigenesis and development, such as macrophage polarization, the neutrophil trap network, mitochondrial autophagy and cuproptosis. The present review examines recent information on the interaction between the molecular mechanism of ferroptosis and other tumour‑related mechanisms, as well as the involvement of ferroptosis in gynaecological tumours, to identify implications for gynaecological cancer therapy.
Collapse
Affiliation(s)
- Peiting Wu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Jianlin Chen
- Department of Assisted Reproductive Centre, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Haiyuan Lu
- Department of Clinical Laboratory Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Hunan Vigorzoe Biotechnology Co., Ltd., Hunan 417700, P.R. China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| |
Collapse
|
2
|
Wei Y, Pan T, Zhao Y, Chen Z, Wu L, Fang S, Wang X, Wang X, Chen D, Chen Y. Nicotine aggravates high-fat diet-induced non-alcoholic fatty liver disease in mice via inhibition of CISD3. Int Immunopharmacol 2024; 142:113067. [PMID: 39241515 DOI: 10.1016/j.intimp.2024.113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease globally. Growing data suggests that smoking plays an important role in the evolution of NAFLD. CDGSH iron sulfur domain 3 (CISD3) regulates critical biological activities. However, its role in nicotine-associated NAFLD and its underlying mechanisms have not been elucidated. Mice were given a high-fat diet for 10 weeks to induce the development of NAFLD. The results revealed that in mice with NAFLD, nicotine treatment resulted in reduced CISD3 expression, leading to mitochondrial dysfunction and impaired β-oxidation. Notably, exacerbation of hepatic steatosis and inflammatory injury was observed. Furthermore, Cisd3-knockout exacerbated lipid accumulation, aggravating oxidative stress and apoptosis. In conclusion, these results contribute to our knowledge of the function of CISD3 in nicotine-associated NAFLD, revealing the possibility of using CISD3 as a potential molecular target for treating NAFLD.
Collapse
Affiliation(s)
- Yifeng Wei
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Tongtong Pan
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Youhong Zhao
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Zhiyi Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Lina Wu
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Sizhe Fang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Xiaowei Wang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Xiaodong Wang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China
| | - Dazhi Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China; Hangzhou Medical College, Hangzhou 311300, China.
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou 325035, China.
| |
Collapse
|
3
|
Sheng F, Gu Y, Hao S, Liu Y, Chen S, Lu B, Chen L, Zhao W, Wu D, Xu Y, Chen R, Han Y, Lou X, Wang X, Chen Z, Yao K, Fu Q. Ferroptosis is involved in the damage of ocular lens under long-term PM 2.5 exposure in rat models and humans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117397. [PMID: 39612680 DOI: 10.1016/j.ecoenv.2024.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Epidemiological studies show a positive association between air pollution and age-related cataracts, but the pathogenic mechanism remains unclear. This study first demonstrates that fine particulate matter (PM2.5) induces ferroptosis in the lens, leading to morphological and functional disorders, through human, animal, and cellular samples. In 3-week PM2.5-exposed rat models (10 µl 1 mg/ml PM2.5 suspension per eye, 4 times a day), we find that many vacuoles form in the lens equatorial region by analysis of haematoxylin and eosin staining after PM2.5 exposure. Using iron and glutathione (GSH) assay kits, we found increased Fe2+ contents and decreased GSH levels in PM2.5-exposed rats' lenses. Additionally, the lipid peroxide 4-hydroxynonenal (4-HNE) was also found to be elevated with immunoblot, suggesting ferroptosis is involved. Ferroptosis was also observed in human lens epithelial cells treated with 25, 50, and 100 µg/ml PM2.5 suspension for 24 h, accompanied by decreased cell viability and migration. Furthermore, we collect about 60 human lens anterior capsule (HLAC) samples for RNA-seq. The results show that compared to HLACs from areas with PM2.5 concentration ≤30 μg/m³, ferroptosis-related genes expression of those from areas with PM2.5 concentration ≥35 μg/m³ are significantly altered, such as glutathione peroxidase 4 and STEAP family member 3. Also, human lens in areas with high PM2.5 concentrations showed elevated levels of transferrin receptor and 4-HNE with immunoblot, and down-regulated expression of connexin 43 (Cx43) through immunofluorescent. These results demonstrate that ferroptosis plays a key role in PM2.5-induced cataractogenesis.
Collapse
Affiliation(s)
- Feiyin Sheng
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Yuzhou Gu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Shengjie Hao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Ye Liu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Shuying Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Lu Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Wei Zhao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Di Wu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Yili Xu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Rongrong Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Yu Han
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China
| | - Xiaoming Lou
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaofeng Wang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhijian Chen
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China.
| | - Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wang X, Li S, Shen Y, Cao L, Lu Y, Cao J, Liu Y, Deng A, Yang J, Wang T. Construction of molecular subtype and prognostic model for gastric cancer based on nucleus-encoded mitochondrial genes. Sci Rep 2024; 14:28491. [PMID: 39557952 PMCID: PMC11574080 DOI: 10.1038/s41598-024-78729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Gastric cancer (GC) is a common digestive system cancer, characterized by a significant mortality rate. Mitochondria is an indispensable organelle in eukaryotic cells. It was previously revealed that a series of nucleus-encoded mitochondrial genes (NMG) mutations and dysfunctions potentially contribute to the initiation and progression of GC. However, the correlation between NMG mutations and survival outcomes for GC patients is still unclear. In this study, NMG expression profile and clinical information in GC samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Through consistent clustering and functional enrichment analysis, we have identified three NMG clusters and three gene clusters that are associated with patterns of immune cell infiltration. Prognostic genes were identified through Univariate Cox regression analysis. The principal component analysis was conducted to set up a scoring system. Subsequently, the Single‑cell RNA sequencing (scRNA-seq) data of GC patients and cancer cell drug sensitivity data were retrieved from the GEO database. Patients with high NMG scores exhibited increased microsatellite instability status and a heightened tumor mutation rate compared to those with low NMG scores. Survival analysis revealed that GC samples with high NMG scores could achieve a better prognosis. Additionally, These patients were observed to be more responsive to immunotherapy. Moreover, we delved into prognostic genes at the level of single cells, revealing that MRPL4 and MRPL37 exhibit high expression in epithelial cells, while TPM1 demonstrates high expression in tissue stem cells. Utilizing cancer cell drug sensitivity data from the Drug Sensitivity in Cancer (GDSC) database, we noted a heightened sensitivity to chemotherapy in the high NMG group. Furthermore, we discovered a significant enrichment of cuproptosis-related genes in clusters with high NMG scores. Consequently, employing the scoring system could facilitate the prediction of GC patients' sensitivity to cuproptosis-induced therapy. Our study confirmed the potency of this scoring system as a therapeutic response biomarker for gastric cancer, potentially informing clinical treatment strategies.
Collapse
Affiliation(s)
- Xu Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Li Cao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jiyun Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Tongtong Wang
- Department of Intensive Care Unit, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xian, China.
| |
Collapse
|
5
|
Tian M, Huang X, Li M, Lou P, Ma H, Jiang X, Zhou Y, Liu Y. Ferroptosis in diabetic cardiomyopathy: from its mechanisms to therapeutic strategies. Front Endocrinol (Lausanne) 2024; 15:1421838. [PMID: 39588340 PMCID: PMC11586197 DOI: 10.3389/fendo.2024.1421838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as structural and functional cardiac abnormalities in diabetes, and cardiomyocyte death is the terminal event of DCM. Ferroptosis is iron-dependent oxidative cell death. Evidence has indicated that iron overload and ferroptosis play important roles in the pathogenesis of DCM. Mitochondria, an important organelle in iron homeostasis and ROS production, play a crucial role in cardiomyocyte ferroptosis in diabetes. Studies have shown some anti-diabetic medicines, plant extracts, and ferroptosis inhibitors might improve DCM by alleviating ferroptosis. In this review, we systematically reviewed the evidence of ferroptosis in DCM. Anti-ferroptosis might be a promising therapeutic strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingping Lou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|
7
|
Li J, Yang H, Qi Y, Yu P, Han X, Zhang Z, Zhao K, Yin X, Zhu G, Yan X, Jiang Z, Ma X, He T, Wang K. CISD3 is a prognostic biomarker and therapeutic target in pan-cancer. Sci Rep 2024; 14:23494. [PMID: 39379442 PMCID: PMC11461847 DOI: 10.1038/s41598-024-74247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Recent studies indicate that CISD3 is crucial in mitochondrial function and tumorigenesis. Using various databases, we systematically analyzed its expression, prognostic value, and immune activity. Our findings show CISD3 is mainly expressed in tumor cells across cancers, with higher mRNA but lower protein levels, degraded post-translationally via the lysosomal pathway. In certain cancers, CISD3 expression is positively correlated with tumor-infiltrating immune cells. Prognostic analysis suggests dual roles as both protective and risk factors, notably an independent prognostic predictor in renal cell carcinoma (RCC). CISD3 copy number variations are linked to homologous recombination defects and tumor-specific neoantigens, negatively correlated with methylation levels. Pathway analysis reveals CISD3 involvement in oncogenic processes, such as proliferation inhibition and epithelial-mesenchymal transition. Protein interactions underline its role in mitochondrial metabolism and redox balance. Experiments confirm low CISD3 expression in cancers, with overexpression reducing proliferation, migration, invasion, and tumor growth in mice. Mechanistic studies indicate CISD3 overexpression disrupts mitochondrial function, increases ROS levels, decreases GSH/GSSG ratios and mitochondrial membrane potential, inhibiting antioxidant activity and promoting cell damage and ferroptosis, thus impeding cancer progression. This study highlights CISD3's potential as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jie Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266042, China
| | - Han Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
| | - Yixin Qi
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
| | - Peng Yu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
- Department of Urology, Weihai Maternal and Child Health Hospital, Yantai, 264008, China
| | - Xiahui Han
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
| | - Zongliang Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
| | - Xinbao Yin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
| | - Guanqun Zhu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
| | - Xuechuan Yan
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
| | - Zaiqing Jiang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266042, China.
| | - Tianzhen He
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266001, China.
| |
Collapse
|
8
|
Wang L, Tong L, Xiong Z, Chen Y, Zhang P, Gao Y, Liu J, Yang L, Huang C, Ye G, Du J, Liu H, Yang W, Wang Y. Ferroptosis-inducing nanomedicine and targeted short peptide for synergistic treatment of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:533. [PMID: 39223666 PMCID: PMC11370132 DOI: 10.1186/s12951-024-02808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) is still an urgent challenge to be solved worldwide. Hence, assembling drugs and targeted short peptides together to construct a novel medicine delivery strategy is crucial for targeted and synergy therapy of HCC. Herein, a high-efficiency nanomedicine delivery strategy has been constructed by combining graphdiyne oxide (GDYO) as a drug-loaded platform, specific peptide (SP94-PEG) as a spear to target HCC cells, sorafenib, doxorubicin-Fe2+ (DOX-Fe2+), and siRNA (SLC7A11-i) as weapons to exert a three-path synergistic attack against HCC cells. In this work, SP94-PEG and GDYO form nanosheets with HCC-targeting properties, the chemotherapeutic drug DOX linked to ferrous ions increases the free iron pool in HCC cells and synergizes with sorafenib to induce cell ferroptosis. As a key gene of ferroptosis, interference with the expression of SLC7A11 makes the ferroptosis effect in HCC cells easier, stronger, and more durable. Through gene interference, drug synergy, and short peptide targeting, the toxic side effects of chemotherapy drugs are reduced. The multifunctional nanomedicine GDYO@SP94/DOX-Fe2+/sorafenib/SLC7A11-i (MNMG) possesses the advantages of strong targeting, good stability, the ability to continuously induce tumor cell ferroptosis and has potential clinical application value, which is different from traditional drugs.
Collapse
Affiliation(s)
- Luyang Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
- Center for Drug Safety Evaluation, Qingdao Center for Pharmaceutical Collaborative Innovation, Qingdao, 266209, Shandong, P. R. China
- Department of Laboratory Medicine, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China
| | - Le Tong
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Zecheng Xiong
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yi Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jing Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Chunqi Huang
- Department of Laboratory Medicine, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Wei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China.
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, P. R. China.
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China.
| |
Collapse
|
9
|
Li H, Li Y, Yu Y, Ren X, Yang C, Jin W, Li K, Zhou Y, Wu C, Shen Y, Hu W, Liu Y, Yu L, Tong X, Du J, Wang Y. GSH exhaustion via inhibition of xCT-GSH-GPX4 pathway synergistically enhanced DSF/Cu-induced cuproptosis in myelodysplastic syndromes. Free Radic Biol Med 2024; 222:130-148. [PMID: 38866192 DOI: 10.1016/j.freeradbiomed.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The clinical application of the therapeutic approach in myelodysplastic syndromes (MDS) remains an insurmountable challenge for the high propensity for progressing to acute myeloid leukemia and predominantly affecting elderly individuals. Thus, the discovery of molecular mechanisms underlying the regulatory network of different programmed cell death holds great promise for the identification of therapeutic targets and provides insights into new therapeutic avenues. Herein, we found that disulfiram/copper (DSF/Cu) significantly repressed the cell viability, increased reactive oxygen species (ROS) accumulation, destroyed mitochondrial morphology, and altered oxygen consumption rate. Further studies verified that DSF/Cu induces cuproptosis, as evidenced by the depletion of glutathione (GSH), aggregation of lipoylated DLAT, and induced loss of Fe-S cluster-containing proteins, which could be rescued by tetrathiomolybdate and knockdown of ferredoxin 1 (FDX1). Additionally, GSH contributed to the tolerance of DSF/Cu-mediated cuproptosis, while pharmacological chelation of GSH triggered ROS accumulation and sensitized cell death. The xCT-GSH-GPX4 axis is the ideal downstream component of ferroptosis that exerts a powerful protective mechanism. Notably, classical xCT inhibitors were capable of leading to the catastrophic accumulation of ROS and exerting synergistic cell death, while xCT overexpression restored these phenomena. Simvastatin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase, has beneficial effects in repurposing for inhibiting GPX4. Similarly, the combination treatment of DSF/Cu and simvastatin dramatically decreased the expression of GPX4 and Fe-S proteins, ultimately accelerating cell death. Moreover, we identified that the combination treatment of DSF/Cu and simvastatin also had a synergistic antitumor effect in the MDS mouse model, with the reduced GPX4, increased COX-2 and accumulated lipid peroxides. Overall, our study provided insight into developing a novel synergistic strategy to sensitize MDS therapy by targeting ferroptosis and cuproptosis.
Collapse
Affiliation(s)
- Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xueying Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Keyi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Cuiyun Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wanye Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiangmin Tong
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Ying Wang
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
10
|
Han F, Chen S, Zhang K, Zhang K, Wang M, Wang P. Targeting Nrf2/PHKG2 axis to enhance radiosensitivity in NSCLC. NPJ Precis Oncol 2024; 8:183. [PMID: 39169204 PMCID: PMC11339382 DOI: 10.1038/s41698-024-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/07/2024] [Indexed: 08/23/2024] Open
Abstract
While ferroptosis shows promise in anti-cancer strategy, the molecular mechanisms behind this process remain poorly understood. Our research aims to highlight the regulation of radiotherapy-induced ferroptosis in non-small cell lung cancer (NSCLC) via the NRF2/PHKG2 axis-mediated mechanism. To identify ferroptosis-associated genes associated with radioresistance in NSCLC, this study employed high-throughput transcriptome sequencing and Lasso risk regression analysis. Clinical samples were analyzed to confirm PHKG2 expression changes before and after radiotherapy. The study further examined ferritinophagy-related factors, intracellular iron levels, mitochondrial function, and ferroptosis in NSCLC cells undergoing radiation exposure to explore the effect of PHKG2 on radiosensitivity or radioresistance. The research also demonstrated the transcriptional inhibition of PHKG2 by NRF2 and created in situ transplantation tumor models of NSCLC to examine the role of NRF2/PHKG2 axis in NSCLC radiosensitivity and resistance in vivo. The Lasso risk regression model that incorporated ferroptosis-associated genes effectively predicted the prognosis of patients with NSCLC. Radiotherapy-sensitive tissues exhibited an increased expression of PHKG2. Overexpression of PHKG2 led to elevated intracellular iron levels by promoting ferritinophagy and increased mitochondrial stress-dependent ferroptosis induced by radiotherapy. PHKG2 transcription repression was achieved through NRF2. The FAGs-Lasso risk regression model can accurately predict the prognosis of NSCLC patients. Targeting Nrf2 upregulates the expression of PHKG2 and reverses radiotherapy resistance in NSCLC by promoting iron autophagy and inducing mitochondrial dysfunction, thereby increasing radiotherapy sensitivity.
Collapse
Affiliation(s)
- Fushi Han
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, 200065, China
| | - Shuzhen Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Kangwei Zhang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, 200065, China
| | - Kunming Zhang
- Department of Internal Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Meng Wang
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Peijun Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
11
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
12
|
Nechushtai R, Rowland L, Karmi O, Marjault HB, Nguyen TT, Mittal S, Ahmed RS, Grant D, Manrique-Acevedo C, Morcos F, Onuchic JN, Mittler R. CISD3/MiNT is required for complex I function, mitochondrial integrity, and skeletal muscle maintenance. Proc Natl Acad Sci U S A 2024; 121:e2405123121. [PMID: 38781208 PMCID: PMC11145280 DOI: 10.1073/pnas.2405123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.
Collapse
Affiliation(s)
- Rachel Nechushtai
- Plant & Environmental Sciences, The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Linda Rowland
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65201
| | - Ola Karmi
- Plant & Environmental Sciences, The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Henri-Baptiste Marjault
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65201
| | - Thi Thao Nguyen
- Gehrke Proteomics Center, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Shubham Mittal
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Raheel S. Ahmed
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
| | - DeAna Grant
- Electron Microscopy Core Facility, University of Missouri, NextGen Precision Health Institute, Columbia, MO65211
| | - Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO 65201
- NextGen Precision Health, University of Missouri, Columbia, MO 65201
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX75080
- Department of Physics, University of Texas at Dallas, Richardson, TX75080
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX75080
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Biosciences, Rice University, Houston, TX77005
| | - Ron Mittler
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65201
| |
Collapse
|
13
|
Duan Y, Yao RQ, Ling H, Zheng LY, Fan Q, Li Q, Wang L, Zhou QY, Wu LM, Dai XG, Yao YM. Organellophagy regulates cell death:A potential therapeutic target for inflammatory diseases. J Adv Res 2024:S2090-1232(24)00203-0. [PMID: 38740259 DOI: 10.1016/j.jare.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.
Collapse
Affiliation(s)
- Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China; Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Hua Ling
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qiong Li
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Le-Min Wu
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Xin-Gui Dai
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
14
|
Zhou QY, Ren C, Li JY, Wang L, Duan Y, Yao RQ, Tian YP, Yao YM. The crosstalk between mitochondrial quality control and metal-dependent cell death. Cell Death Dis 2024; 15:299. [PMID: 38678018 PMCID: PMC11055915 DOI: 10.1038/s41419-024-06691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.
Collapse
Affiliation(s)
- Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing-Yan Li
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Ren-Qi Yao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ying-Ping Tian
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
15
|
Adegboro AG, Afolabi IS. Molecular mechanisms of mitochondria-mediated ferroptosis: a potential target for antimalarial interventions. Front Cell Dev Biol 2024; 12:1374735. [PMID: 38660623 PMCID: PMC11039840 DOI: 10.3389/fcell.2024.1374735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death characterized by glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) inactivation, and the build-up of lipotoxic reactive species. Ferroptosis-targeted induction is a promising therapeutic approach for addressing antimalarial drug resistance. In addition to being the primary source of intracellular energy supply and reactive oxygen species (ROS) generation, mitochondria actively participate in diverse forms of regulated cell death, including ferroptosis. Altered mitochondrial morphology and functionality are attributed to ferroptosis. Diverse mitochondria-related proteins and metabolic activities have been implicated in fine-tuning the action of ferroptosis inducers. Herein, we review recent progress in this evolving field, elucidating the numerous mechanisms by which mitochondria regulate ferroptosis and giving an insight into the role of the organelle in ferroptosis. Additionally, we present an overview of how mitochondria contribute to ferroptosis in malaria. Furthermore, we attempt to shed light on an inclusive perspective on how targeting malaria parasites' mitochondrion and attacking redox homeostasis is anticipated to induce ferroptosis-mediated antiparasitic effects.
Collapse
Affiliation(s)
- Adegbolagun Grace Adegboro
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Israel Sunmola Afolabi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| |
Collapse
|
16
|
Bian W, Li H, Chen Y, Yu Y, Lei G, Yang X, Li S, Chen X, Li H, Yang J, Yang C, Li Y, Zhou Y. Ferroptosis mechanisms and its novel potential therapeutic targets for DLBCL. Biomed Pharmacother 2024; 173:116386. [PMID: 38492438 DOI: 10.1016/j.biopha.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), a heterogeneous lymphoid malignancy, poses a significant threat to human health. The standard therapeutic regimen for patients with DLBCL is rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), with a typical cure rate of 50-70%. However, some patients either relapse after complete remission (CR) or exhibit resistance to R-CHOP treatment. Therefore, novel therapeutic approaches are imperative for managing high-risk or refractory DLBCL. Ferroptosis is driven by iron-dependent phospholipid peroxidation, a process that relies on the transition metal iron, reactive oxygen species (ROS), and phospholipids containing polyunsaturated fatty acids-containing phospholipids (PUFA-PLs). Research indicates that ferroptosis is implicated in various carcinogenic and anticancer pathways. Several hematological disorders exhibit heightened sensitivity to cell death induced by ferroptosis. DLBCL cells, in particular, demonstrate an increased demand for iron and an upregulation in the expression of fatty acid synthase. Additionally, there exists a correlation between ferroptosis-associated genes and the prognosis of DLBCL. Therefore, ferroptosis may be a promising novel target for DLBCL therapy. In this review, we elucidate ferroptosis mechanisms, its role in DLBCL, and the potential therapeutic targets in DLBCL. This review offers novel insights into the application of ferroptosis in treatment strategies for DLBCL.
Collapse
Affiliation(s)
- Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haoran Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xi Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Wang X, Li M, Wang F, Mao G, Wu J, Han R, Sheng R, Qin Z, Ni H. TIGAR reduces neuronal ferroptosis by inhibiting succinate dehydrogenase activity in cerebral ischemia. Free Radic Biol Med 2024; 216:89-105. [PMID: 38494143 DOI: 10.1016/j.freeradbiomed.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Ischemia Stroke (IS) is an acute neurological condition with high morbidity, disability, and mortality due to a severe reduction in local cerebral blood flow to the brain and blockage of oxygen and glucose supply. Oxidative stress induced by IS predisposes neurons to ferroptosis. TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits the intracellular glycolytic pathway to increase pentose phosphate pathway (PPP) flux, promotes NADPH production and thus generates reduced glutathione (GSH) to scavenge reactive oxygen species (ROS), and thus shows strong antioxidant effects to ameliorate cerebral ischemia/reperfusion injury. However, in the current study, prolonged ischemia impaired the PPP, and TIGAR was unable to produce NADPH but was still able to reduce neuronal ferroptosis and attenuate ischemic brain injury. Ferroptosis is a form of cell death caused by free radical-driven lipid peroxidation, and the vast majority of ROS leading to oxidative stress are generated by mitochondrial succinate dehydrogenase (SDH) driving reverse electron transfer (RET) via the mitochondrial electron transport chain. Overexpression of TIGAR significantly inhibited hypoxia-induced enhancement of SDH activity, and TIGAR deficiency further enhanced SDH activity. We also found that the inhibitory effect of TIGAR on SDH activity was related to its mitochondrial translocation under hypoxic conditions. TIGAR may inhibit SDH activity by mediating post-translational modifications (acetylation and succinylation) of SDH A through interaction with SDH A. SDH activity inhibition reduces neuronal ferroptosis by decreasing ROS production, eliminating MitoROS levels and attenuating lipid peroxide accumulation. Notably, TIGAR-mediated inhibition of SDH activity and ferroptosis was not dependent on the PPP-NADPH-GPX4 pathways. In conclusion, mitochondrial translocation of TIGAR in prolonged ischemia is an important pathway to reduce neuronal ferroptosis and provide sustainable antioxidant defense for the brain under prolonged ischemia, further complementing the mechanism of TIGAR resistance to oxidative stress induced by IS.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Mei Li
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Fan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guanghui Mao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Institute of Heath Technology, Global Institute of Software Technology, Qingshan Road, Suzhou Science & Technology Tower, Hi-Tech Area, Suzhou, 215163, China.
| | - Hong Ni
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
18
|
Ruan S, Wang H, Zhang Z, Yan Q, Chen Y, Cui J, Huang S, Zhou Q, Zhang C, Hou B. Identification and validation of stemness-based and ferroptosis-related molecular clusters in pancreatic ductal adenocarcinoma. Transl Oncol 2024; 41:101877. [PMID: 38262107 PMCID: PMC10832490 DOI: 10.1016/j.tranon.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an extremely poor prognosis. Cancer stem cells (CSCs) are considered to be responsible for the poor survival, recurrence and therapy resistance of PDAC. Ferroptosis plays a crucial role in the sustain and survival of CSCs. Here, we employed a rigorous evaluation of multiple datasets to identify a novel stemness-based and ferroptosis-related genes (SFRGs) signature to access the potential prognostic application. This work we retrieved RNA-sequencing and clinical annotation data from the TCGA, ICGC, GTEx and GEO database, and acquired 26 stem cell gene sets and 259 ferroptosis genes from StemChecker database and FerrDb database, respectively. Based on consensus clustering and ssGSEA analysis, we identified two expression patterns of CSCs traits (C1 and C2). Then, WGCNA analysis was implemented to screen out hub module genes correlated with stemness. Furthermore, differential expression analysis, Pearson correlation analysis, and the Least absolute shrinkage and selection operator (LASSO) and Cox regression were performed to identify the SFRGs and to construct model. In addition, the differences in prognosis, tumor microenvironment (TME) components and therapy responses were evaluated between two risk groups. Finally, we verified the most influential marker ARNTL2 experimentally by western blot, qRT-PCR, sphere formation assay, mitoscreen assay, intracellular iron concentration determination and MDA determination assays. In conclusion, we developed a stemness-based and ferroptosis-related prognostic model, which could help predict overall survival for PDAC patients. Targeting ferroptosis may be a promising therapeutic strategy to inhibit PDAC progression by suppressing CSCs.
Collapse
Affiliation(s)
- Shiye Ruan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hailiang Wang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai 264400, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China.
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China; Heyuan People's Hospital, Heyuan 517000, China.
| |
Collapse
|
19
|
Grifagni D, Silva JM, Querci L, Lepoivre M, Vallières C, Louro RO, Banci L, Piccioli M, Golinelli-Cohen MP, Cantini F. Biochemical and cellular characterization of the CISD3 protein: Molecular bases of cluster release and destabilizing effects of nitric oxide. J Biol Chem 2024; 300:105745. [PMID: 38354784 PMCID: PMC10937110 DOI: 10.1016/j.jbc.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
The NEET proteins, an important family of iron-sulfur (Fe-S) proteins, have generated a strong interest due to their involvement in diverse diseases such as cancer, diabetes, and neurodegenerative disorders. Among the human NEET proteins, CISD3 has been the least studied, and its functional role is still largely unknown. We have investigated the biochemical features of CISD3 at the atomic and in cellulo levels upon challenge with different stress conditions i.e., iron deficiency, exposure to hydrogen peroxide, and nitric oxide. The redox and cellular stability properties of the protein agree on a predominance of reduced form of CISD3 in the cells. Upon the addition of iron chelators, CISD3 loses its Fe-S clusters and becomes unstructured, and its cellular level drastically decreases. Chemical shift perturbation measurements suggest that, upon cluster oxidation, the protein undergoes a conformational change at the C-terminal CDGSH domain, which determines the instability of the oxidized state. This redox-associated conformational change may be the source of cooperative electron transfer via the two [Fe2S2] clusters in CISD3, which displays a single sharp voltammetric signal at -31 mV versus SHE. Oxidized CISD3 is particularly sensitive to the presence of hydrogen peroxide in vitro, whereas only the reduced form is able to bind nitric oxide. Paramagnetic NMR provides clear evidence that, upon NO binding, the cluster is disassembled but iron ions are still bound to the protein. Accordingly, in cellulo CISD3 is unaffected by oxidative stress induced by hydrogen peroxide but it becomes highly unstable in response to nitric oxide treatment.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - José Malanho Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Querci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Michel Lepoivre
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cindy Vallières
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | | | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
20
|
Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, Jiang X, Stockwell BR. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 2024; 187:1177-1190.e18. [PMID: 38366593 PMCID: PMC10940216 DOI: 10.1016/j.cell.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.
Collapse
Affiliation(s)
- Baiyu Qiu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Mass Spectrometry Core Facility, Columbia University, New York, NY 10027, USA
| | - Carla T Bezjian
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
21
|
Du J, Yu L, Yang X, Shao F, Xia J, Jin W, Zhang Y, Lei G, Wang Y, Li Y, Zhang J. Regulation of NCOA4-mediated iron recycling ameliorates paraquat-induced lung injury by inhibiting ferroptosis. Cell Commun Signal 2024; 22:146. [PMID: 38388414 PMCID: PMC10885609 DOI: 10.1186/s12964-024-01520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Paraquat (PQ) is an irreplaceable insecticide in many countries for the advantage of fast-acting and broad-spectrum. However, PQ was classified as the most prevailing poisoning substance for suicide with no specific antidote. Therefore, it is imperative to develop more effective therapeutic agents for the treatment of PQ poisoning. In the present study, both the RNA-Seq and the application of various cell death inhibitors reflected that ferroptosis exerts a crucial regulatory role in PQ poisoning. Moreover, we found PQ strengthens lipid peroxidation as evidenced by different experimental approaches. Of note, pretreatment of iron chelation agent DFO could ameliorate the ferroptotic cell death and alleviate the ferroptosis-related events. Mechanistically, PQ treatment intensively impaired mitochondrial homeostasis, enhanced phosphorylation of AMPK, accelerated the autophagy flux and triggered the activation of Nuclear receptor coactivator 4-ferritin heavy chain (NCOA4-FTH) axis. Importantly, the activation of autophagy was observed prior to the degradation of ferritin, and inhibition of autophagy could inhibit the accumulation of iron caused by the ferritinophagy process. Genetic and pharmacological inhibition of ferritinophagy could alleviate the lethal oxidative events, and rescue the ferroptotic cell death. Excitingly, in the mouse models of PQ poisoning, both the administration of DFO and adeno-associated virus-mediated FTH overexpression significantly reduced PQ-induced ferroptosis and improved the pathological characteristics of pulmonary fibrosis. In summary, the current work provides an in-depth study on the mechanism of PQ intoxication, describes a framework for the further understanding of ferroptosis in PQ-associated biological processes, and demonstrates modulation of iron metabolism may act as a promising therapeutic agent for the management of PQ toxicity.
Collapse
Affiliation(s)
- Jing Du
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fangchun Shao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhao Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, Taizhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
22
|
Zhang P, Zhou C, Ren X, Jing Q, Gao Y, Yang C, Shen Y, Zhou Y, Hu W, Jin F, Xu H, Yu L, Liu Y, Tong X, Li Y, Wang Y, Du J. Inhibiting the compensatory elevation of xCT collaborates with disulfiram/copper-induced GSH consumption for cascade ferroptosis and cuproptosis. Redox Biol 2024; 69:103007. [PMID: 38150993 PMCID: PMC10788306 DOI: 10.1016/j.redox.2023.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the fourth leading cause of cancer-related death globally, which is characterized by complicated pathophysiology, high recurrence rate, and poor prognosis. Our previous study has demonstrated that disulfiram (DSF)/Cu could be repurposed for the treatment of HCC by inducing ferroptosis. However, the effectiveness of DSF/Cu may be compromised by compensatory mechanisms that weaken its sensitivity. The mechanisms underlying these compensatory responses are currently unknown. Herein, we found DSF/Cu induces endoplasmic reticulum stress with disrupted ER structures, increased Ca2+ level and activated expression of ATF4. Further studies verified that DSF/Cu induces both ferroptosis and cuproptosis, accompanied by the depletion of GSH, elevation of lipid peroxides, and compensatory increase of xCT. Comparing ferroptosis and cuproptosis, it is interesting to note that GSH acts at the crossing point of the regulation network and therefore, we hypothesized that compensatory elevation of xCT may be a key aspect of the therapeutic target. Mechanically, knockdown of ATF4 facilitated the DSF/Cu-induced cell death and exacerbated the generation of lipid peroxides under the challenge of DSF/Cu. However, ATF4 knockdown was unable to block the compensatory elevation of xCT and the GSH reduction. Notably, we found that DSF/Cu induced the accumulation of ubiquitinated proteins, promoted the half-life of xCT protein, and dramatically dampened the ubiquitination-proteasome mediated degradation of xCT. Moreover, both pharmacologically and genetically suppressing xCT exacerbated DSF/Cu-induced cell death. In conclusion, the current work provides an in-depth study of the mechanism of DSF/Cu-induced cell death and describes a framework for the further understanding of the crosstalk between ferroptosis and cuproptosis. Inhibiting the compensatory increase of xCT renders HCC cells more susceptible to DSF/Cu, which may provide a promising synergistic strategy to sensitize tumor therapy and overcome drug resistance, as it activates different programmed cell death.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xueying Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanye Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feifan Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haifeng Xu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Rezaei M, Ghasemitarei M, Razzokov J, Yusupov M, Ghorbanalilu M, Ejtehadi MR. In silico study of the impact of oxidation on pyruvate transmission across the hVDAC1 protein channel. Arch Biochem Biophys 2024; 751:109835. [PMID: 38000492 DOI: 10.1016/j.abb.2023.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The overexpression of voltage dependent anion channels (VDACs), particularly VDAC1, in cancer cells compared to normal cells, plays a crucial role in cancer cell metabolism, apoptosis regulation, and energy homeostasis. In this study, we used molecular dynamics (MD) simulations to investigate the effect of a low level of VDAC1 oxidation (induced e.g., by cold atmospheric plasma (CAP)) on the pyruvate (Pyr) uptake by VDAC1. Inhibiting Pyr uptake through VDAC1 can suppress cancer cell proliferation. Our primary target was to study the translocation of Pyr across the native and oxidized forms of hVDAC1, the human VDAC1. Specifically, we employed MD simulations to analyze the hVDAC1 structure by modifying certain cysteine residues to cysteic acids and methionine residues to methionine sulfoxides, which allowed us to investigate the effect of oxidation. Our results showed that the free energy barrier for Pyr translocation through the native and oxidized channel was approximately 4.3 ± 0.7 kJ mol-1 and 10.8 ± 1.8 kJ mol-1, respectively. An increase in barrier results in a decrease in rate of Pyr permeation through the oxidized channel. Thus, our results indicate that low levels of CAP oxidation reduce Pyr translocation, resulting in decreased cancer cell proliferation. Therefore, low levels of oxidation are likely sufficient to treat cancer cells given the inhibition of Pyr uptake.
Collapse
Affiliation(s)
- Mahsa Rezaei
- Department of Physics, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, 14588-89694, Tehran, Iran; Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Belgium.
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan; School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan; Laboratory of Experimental Biophysics, Centre for Advanced Technologies, 100174, Tashkent, Uzbekistan; Department of Chemistry, Termez State University, 190111, Termez, Uzbekistan
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, 100000, Tashkent, Uzbekistan; Department of Information Technologies, Tashkent International University of Education, 100207, Tashkent, Uzbekistan; Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, 100125, Tashkent, Uzbekistan; Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, 100000, Tashkent, Uzbekistan
| | | | | |
Collapse
|
24
|
Sun K, Zhi Y, Ren W, Li S, Zhou X, Gao L, Zhi K. The mitochondrial regulation in ferroptosis signaling pathway and its potential strategies for cancer. Biomed Pharmacother 2023; 169:115892. [PMID: 37976895 DOI: 10.1016/j.biopha.2023.115892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Ferroptosis is an iron-dependent regulated cell death, mainly manifested by the production of reactive oxygen species and accumulation of lipid peroxides. It is distinct from other forms of cell death with regard to morphology and biochemistry, particularly in disrupting mitochondrial function. Mitochondria are essential compartments where the organism generates energy and are closely associated with the fate of ferroptosis. Currently, researchers focus on the potential value of ferroptosis and mitochondria for overcoming drug sensitivity and assisting in cancer therapy. In this review, we summarize the main mechanisms of ferroptosis (the GPX4-realated pathway, FSP1-related pathway, and iron metabolism pathway) and the functions and regulating pathways of mitochondria (the TCA cycle, oxidative phosphorylation, mitochondrial regulation of iron ions, and mtDNA) in ferroptosis. We believe that exploring the role of mitochondria in ferroptosis will help us understand the potential regulatory mechanisms of ferroptosis in cancer and help us find new therapeutic targets.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuan Zhi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoqing Zhou
- Department of the Stomatology, Jining NO.1 People' hospital, Shandong, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
25
|
Yadav VK, Choudhary N, Gacem A, Verma RK, Abul Hasan M, Tarique Imam M, Almalki ZS, Yadav KK, Park HK, Ghosh T, Kumar P, Patel A, Kalasariya H, Jeon BH, Ali AlMubarak H. Deeper insight into ferroptosis: association with Alzheimer's, Parkinson's disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis. Redox Rep 2023; 28:2269331. [PMID: 38010378 PMCID: PMC11001282 DOI: 10.1080/13510002.2023.2269331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia (KSA)
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tathagata Ghosh
- Department of Arts, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hassan Ali AlMubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Zhang P, Zhou C, Jing Q, Gao Y, Yang L, Li Y, Du J, Tong X, Wang Y. Role of APR3 in cancer: apoptosis, autophagy, oxidative stress, and cancer therapy. Apoptosis 2023; 28:1520-1533. [PMID: 37634193 DOI: 10.1007/s10495-023-01882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
APR3 (Apoptosis-related protein 3) is a gene that has recently been identified to be associated with apoptosis. The gene is located on human chromosome 2p22.3 and contains both transmembrane and EGF (epidermal growth factor)-like domains. Additionally, it has structural sites, including AP1, SP1, and MEF2D, that indicate NFAT (nuclear factor of activated T cells) and NF-κB (nuclear factor kappa-B) may be transcription factors for this gene. Functionally, APR3 participates in apoptosis due to the induction of mitochondrial damage to release mitochondrial cytochrome C. Concurrently, APR3 affects the cell cycle by altering the expression of Cyclin D1, which, in turn, affects the incidence and growth of malignancies and promotes cell differentiation. Previous reports indicate that APR3 is located in lysosomal membranes, where it contributes to lysosomal activity and participates in autophagy. While further research is required to determine the precise role and molecular mechanisms of APR3, earlier studies have laid the groundwork for APR3 research. There is growing evidence supporting the significance of APR3 in oncology. Therefore, this review aims to examine the current state of knowledge on the role of the newly discovered APR3 in tumorigenesis and to generate fresh insights and suggestions for future research.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, 317200, Taizhou, Zhejiang, China.
| |
Collapse
|
27
|
Yang L, Wu Y, Jin W, Mo N, Ye G, Su Z, Tang L, Wang Y, Li Y, Du J. The potential role of ferroptosis in COVID-19-related cardiovascular injury. Biomed Pharmacother 2023; 168:115637. [PMID: 37844358 DOI: 10.1016/j.biopha.2023.115637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a global health threat in 2019. An important feature of the disease is that multiorgan symptoms of SARS-CoV-2 infection persist after recovery. Evidence indicates that people who recovered from COVID-19, even those under the age of 65 years without cardiovascular risk factors such as smoking, obesity, hypertension, and diabetes, had a significantly increased risk of cardiovascular disease for up to one year after diagnosis. Therefore, it is important to closely monitor individuals who have recovered from COVID-19 for potential cardiovascular damage that may manifest at a later stage. Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by the production of reactive oxygen species (ROS) and increased lipid peroxide levels. Several studies have demonstrated that ferroptosis plays an important role in cancer, ischemia/reperfusion injury (I/RI), and other cardiovascular diseases. Altered iron metabolism, upregulation of reactive oxygen species, and glutathione peroxidase 4 inactivation are striking features of COVID-19-related cardiovascular injury. SARS-CoV-2 can cause cardiovascular ferroptosis, leading to cardiovascular damage. Understanding the mechanism of ferroptosis in COVID-19-related cardiovascular injuries will contribute to the development of treatment regimens for preventing or reducing COVID-19-related cardiovascular complications. In this article, we go over the pathophysiological underpinnings of SARS-CoV-2-induced acute and chronic cardiovascular injury, the function of ferroptosis, and prospective treatment approaches.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Mo
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zixin Su
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Cosialls E, Pacreau E, Duruel C, Ceccacci S, Elhage R, Desterke C, Roger K, Guerrera C, Ducloux R, Souquere S, Pierron G, Nemazanyy I, Kelly M, Dalmas E, Chang Y, Goffin V, Mehrpour M, Hamaï A. mTOR inhibition suppresses salinomycin-induced ferroptosis in breast cancer stem cells by ironing out mitochondrial dysfunctions. Cell Death Dis 2023; 14:744. [PMID: 37968262 PMCID: PMC10651934 DOI: 10.1038/s41419-023-06262-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Ferroptosis constitutes a promising therapeutic strategy against cancer by efficiently targeting the highly tumorigenic and treatment-resistant cancer stem cells (CSCs). We previously showed that the lysosomal iron-targeting drug Salinomycin (Sal) was able to eliminate CSCs by triggering ferroptosis. Here, in a well-established breast CSCs model (human mammary epithelial HMLER CD24low/CD44high), we identified that pharmacological inhibition of the mechanistic target of rapamycin (mTOR), suppresses Sal-induced ferroptosis. Mechanistically, mTOR inhibition modulates iron cellular flux and thereby limits iron-mediated oxidative stress. Furthermore, integration of multi-omics data identified mitochondria as a key target of Sal action, leading to profound functional and structural alteration prevented by mTOR inhibition. On top of that, we found that Sal-induced metabolic plasticity is mainly dependent on the mTOR pathway. Overall, our findings provide experimental evidence for the mechanisms of mTOR as a crucial effector of Sal-induced ferroptosis pointing not only that metabolic reprogramming regulates ferroptosis, but also providing proof-of-concept that careful evaluation of such combination therapy (here mTOR and ferroptosis co-targeting) is required in the development of an effective treatment.
Collapse
Affiliation(s)
- Emma Cosialls
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
- Ferostem group, F-75015, Paris, France
| | - Emeline Pacreau
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
| | - Clémence Duruel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
- Ferostem group, F-75015, Paris, France
| | - Sara Ceccacci
- Proteomic Core Facility, Université de Paris - Structure Fédérative de Recherche - Necker, INSERM US24/CNRS, UAR3633, Paris, France
| | - Rima Elhage
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
- Ferostem group, F-75015, Paris, France
| | | | - Kevin Roger
- Proteomic Core Facility, Université de Paris - Structure Fédérative de Recherche - Necker, INSERM US24/CNRS, UAR3633, Paris, France
| | - Chiara Guerrera
- Proteomic Core Facility, Université de Paris - Structure Fédérative de Recherche - Necker, INSERM US24/CNRS, UAR3633, Paris, France
| | - Romane Ducloux
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
- Ferostem group, F-75015, Paris, France
| | - Sylvie Souquere
- CNRS, UMR9196, Villejuif, France - Gustave Roussy Cancer Campus, Villejuif, France
| | - Gérard Pierron
- CNRS, UMR9196, Villejuif, France - Gustave Roussy Cancer Campus, Villejuif, France
| | - Ivan Nemazanyy
- Metabolic Core Facility, Université de Paris - Structure Fédérative de Recherche - Necker, INSERM US24/CNRS, UAR3633, Paris, France
| | - Mairead Kelly
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
| | - Elise Dalmas
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
| | - Yunhua Chang
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
| | - Vincent Goffin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
| | - Maryam Mehrpour
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France
- Ferostem group, F-75015, Paris, France
| | - Ahmed Hamaï
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 5 and Ferostem group, F-75015, Paris, France.
- Ferostem group, F-75015, Paris, France.
| |
Collapse
|
29
|
Wu H, Lu Y, Duan Z, Wu J, Lin M, Wu Y, Han S, Li T, Fan Y, Hu X, Xiao H, Feng J, Lu Z, Kong D, Li S. Nanopore long-read RNA sequencing reveals functional alternative splicing variants in human vascular smooth muscle cells. Commun Biol 2023; 6:1104. [PMID: 37907652 PMCID: PMC10618188 DOI: 10.1038/s42003-023-05481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the major contributor to vascular repair and remodeling, which showed high level of phenotypic plasticity. Abnormalities in VSMC plasticity can lead to multiple cardiovascular diseases, wherein alternative splicing plays important roles. However, alternative splicing variants in VSMC plasticity are not fully understood. Here we systematically characterized the long-read transcriptome and their dysregulation in human aortic smooth muscle cells (HASMCs) by employing the Oxford Nanopore Technologies long-read RNA sequencing in HASMCs that are separately treated with platelet-derived growth factor, transforming growth factor, and hsa-miR-221-3P transfection. Our analysis reveals frequent alternative splicing events and thousands of unannotated transcripts generated from alternative splicing. HASMCs treated with different factors exhibit distinct transcriptional reprogramming modulated by alternative splicing. We also found that unannotated transcripts produce different open reading frames compared to the annotated transcripts. Finally, we experimentally validated the unannotated transcript derived from gene CISD1, namely CISD1-u, which plays a role in the phenotypic switch of HASMCs. Our study characterizes the phenotypic modulation of HASMCs from an insight of long-read transcriptome, which would promote the understanding and the manipulation of HASMC plasticity in cardiovascular diseases.
Collapse
Affiliation(s)
- Hao Wu
- Department of Cardiovascular Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yicheng Lu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Duan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingni Wu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghui Lin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangjun Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Siyang Han
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongqi Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Fan
- North Cross School Shanghai, Shanghai, China
| | - Xiaoyuan Hu
- H. Milton Stewart School of Industrial and Systems Engineering, College of Engineering, Geogia Institute of Technology, Atlanta, GA, USA
| | - Hongyan Xiao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jiaxuan Feng
- Department of Vascular Surgery and Intervention Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiqian Lu
- Department of Cardiovascular Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Deping Kong
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: Regulator of cell death. Cell Death Dis 2023; 14:648. [PMID: 37794028 PMCID: PMC10551038 DOI: 10.1038/s41419-023-06154-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Autophagy is the process by which cells degrade and recycle proteins and organelles to maintain intracellular homeostasis. Generally, autophagy plays a protective role in cells, but disruption of autophagy mechanisms or excessive autophagic flux usually leads to cell death. Despite recent progress in the study of the regulation and underlying molecular mechanisms of autophagy, numerous questions remain to be answered. How does autophagy regulate cell death? What are the fine-tuned regulatory mechanisms underlying autophagy-dependent cell death (ADCD) and autophagy-mediated cell death (AMCD)? In this article, we highlight the different roles of autophagy in cell death and discuss six of the main autophagy-related cell death modalities, with a focus on the metabolic changes caused by excessive endoplasmic reticulum-phagy (ER-phagy)-induced cell death and the role of mitophagy in autophagy-mediated ferroptosis. Finally, we discuss autophagy enhancement in the treatment of diseases and offer a new perspective based on the use of autophagy for different functional conversions (including the conversion of autophagy and that of different autophagy-mediated cell death modalities) for the clinical treatment of tumors.
Collapse
Affiliation(s)
- ShiZuo Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Yao
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Huan Yang
- The Second School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - YanJiao Wang
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
31
|
Zhang M, Tong Z, Wang Y, Fu W, Meng Y, Huang J, Sun L. Relationship between ferroptosis and mitophagy in renal fibrosis: a systematic review. J Drug Target 2023; 31:858-866. [PMID: 37607069 DOI: 10.1080/1061186x.2023.2250574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Renal fibrosis, characterised by glomerulosclerosis and tubulointerstitial fibrosis, is a typical pathological alteration in the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). However, the limited and expensive options for treating renal fibrosis place a heavy financial burden on patients and healthcare systems. Therefore, it is significant to find an effective treatment for renal fibrosis. Ferroptosis, a non-traditional form of cell death, has been found to play an important role in acute kidney injury (AKI), tumours, neurodegenerative diseases, and so on. Moreover, a growing body of research suggests that ferroptosis might be a potential target of renal fibrosis. Meanwhile, mitophagy is a type of selective autophagy that can selectively degrade damaged or dysfunctional mitochondria as a form of mitochondrial quality control, reducing the production of reactive oxygen species (ROS), the accumulation of which is the main cause of renal fibrosis. Additionally, as a receptor of mitophagy, NIX can release beclin1 to induce mitophagy, which can also bind to solute carrier family 7 member 11 (SLC7A11) to block the activity of cystine/glutamate antitransporter (system Xc-) and inhibit ferroptosis, thereby suggesting a link between mitophagy and ferroptosis. However, there have been only limited studies on the relationship among mitophagy, ferroptosis and renal fibrosis. In this paper, we review the mechanisms of mitophagy, and describe how ferroptosis and mitophagy are related to renal fibrosis in an effort to identify potential novel targets for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ziyuan Tong
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yaqing Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Wenjing Fu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yilin Meng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Jiayi Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
32
|
Liu Y, Lu S, Wu LL, Yang L, Yang L, Wang J. The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis 2023; 14:519. [PMID: 37580393 PMCID: PMC10425449 DOI: 10.1038/s41419-023-06045-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Ferroptosis is a form of regulated cell death induced by iron-dependent lipid peroxidation, and it has been studied extensively since its discovery in 2012. Induced by iron overload and ROS accumulation, ferroptosis is modulated by various cellular metabolic and signaling pathways. The GSH-GPX4 pathway, the FSP1-CoQ10 pathway, the GCH1-BH4 pathway, the DHODH-CoQH2 system and the sex hormones suppress ferroptosis. Mitochondrial iron metabolism regulates ferroptosis and mitochondria also undergo a morphological change during ferroptosis, these changes include increased membrane density and reduced mitochondrial cristae. Moreover, mitochondrial energy metabolism changes during ferroptosis, the increased oxidative phosphorylation and ATP production rates lead to a decrease in the glycolysis rate. In addition, excessive oxidative stress induces irreversible damage to mitochondria, diminishing organelle integrity. ROS production, mitochondrial membrane potential, mitochondrial fusion and fission, and mitophagy also function in ferroptosis. Notably, some ferroptosis inhibitors target mitochondria. Ferroptosis is a major mechanism for cell death associated with the progression of cancer. Metastasis-prone or metastatic cancer cells are more susceptible to ferroptosis. Inducing ferroptosis in tumor cells shows very promising potential for treating drug-resistant cancers. In this review, we present a brief retrospect of the discovery and the characteristics of ferroptosis, then we discuss the regulation of ferroptosis and highlight the unique role played by mitochondria in the ferroptosis of cancer cells. Furthermore, we explain how ferroptosis functions as a double-edged sword as well as novel therapies aimed at selectively manipulating cell death for cancer eradication.
Collapse
Affiliation(s)
- Yu'e Liu
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shiping Lu
- Center for Translational Research in infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Liang Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Lixue Yang
- Department of Biliary Tract Surgery II, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Jinghan Wang
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
33
|
Silva JM, Grifagni D, Cantini F, Piccioli M. 1H, 13C and 15N assignment of the human mitochondrial paramagnetic iron-sulfur protein CISD3. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:17-22. [PMID: 36520264 DOI: 10.1007/s12104-022-10113-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/25/2022] [Indexed: 06/02/2023]
Abstract
CISD3 is a mitochondrial protein that contains two [2Fe-2S] clusters. This protein is overexpressed in some types of cancer, so it has emerged as a potential drug target. A detailed characterization of this protein is crucial to understand how CISD3 is involved in these physiopathologies. In this study, isotopically labeled human CISD3 was expressed in Escherichia coli. A set of double and triple resonance experiments performed with standard parameters/datasets provided the assignment of 40% of the HN resonances, 47% of Cα, and 46% of C' resonances. Tailored paramagnetic HSQC, CON and CACO experiments extended up to 59% for HN, 70% for Cα and 69% for C'. The 1H, 13C and 15N NMR chemical shift assignment of human CISD3 is reported here.
Collapse
Affiliation(s)
- José Malanho Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
34
|
Du J, Huang Z, Li Y, Ren X, Zhou C, Liu R, Zhang P, Lei G, Lyu J, Li J, Tan G. Copper exerts cytotoxicity through inhibition of iron-sulfur cluster biogenesis on ISCA1/ISCA2/ISCU assembly proteins. Free Radic Biol Med 2023:S0891-5849(23)00433-1. [PMID: 37225108 DOI: 10.1016/j.freeradbiomed.2023.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Copper is an essential mineral nutrient that provides the cofactors for some key enzymes. However, excess copper is paradoxically cytotoxic. Wilson's disease is an autosomal recessive hereditary disease characterized by pathological copper accumulation in many organs, with high mortality and disability. Nevertheless, many questions about the molecular mechanism in Wilson's disease remain unknown and there is an imperative need to address these questions to better exploit therapeutic strategy. In this study, we constructed the mouse model of Wilson's disease, ATP7A-/- immortalized lymphocyte cell line and ATP7B knockdown cells to explore whether copper could impair iron-sulfur cluster biogenesis in eukaryotic mitochondria. Through a series of cellular, molecular, and pharmacological analyses, we demonstrated that copper could suppress the assembly of Fe-S cluster, decrease the activity of the Fe-S enzyme and disorder the mitochondrial function both in vivo and in vitro. Mechanistically, we found that human ISCA1, ISCA2 and ISCU proteins have a strong copper-binding activity, which would hinder the process of iron-sulfur assembly. Of note, we proposed a novel mechanism of action to explain the toxicity of copper by providing evidence that iron-sulfur cluster biogenesis may be a primary target of copper toxicity both in cells and mouse models. In summary, the current work provides an in-depth study on the mechanism of copper intoxication and describes a framework for the further understanding of impaired Fe-S assembly in the pathological processes of Wilson's diseases, which helps to develop latent therapeutic strategies for the management of copper toxicity.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Zhaoyang Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xueying Ren
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ruolan Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jianxin Lyu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Jianghui Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guoqiang Tan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
35
|
Li J, Jia YC, Ding YX, Bai J, Cao F, Li F. The crosstalk between ferroptosis and mitochondrial dynamic regulatory networks. Int J Biol Sci 2023; 19:2756-2771. [PMID: 37324946 PMCID: PMC10266069 DOI: 10.7150/ijbs.83348] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
Ferroptosis is an iron-driven cell death modality characterized by iron accumulation and excessive lipid peroxidation. Ferroptosis is closely related to mitochondrial function, as indicated by studies showing that mitochondrial dysfunction and damage promote oxidative stress, which in turn induces ferroptosis. Mitochondria play crucial roles in cellular homeostasis, and abnormalities in their morphology and function are closely associated with the development of many diseases. Mitochondria are highly dynamic organelles, and their stability is maintained through a series of regulatory pathways. Mitochondrial homeostasis is dynamically regulated, mainly via key processes such as mitochondrial fission, mitochondrial fusion and mitophagy; however, mitochondrial processes are prone to dysregulation. Mitochondrial fission and fusion and mitophagy are intimately related to ferroptosis. Therefore, investigations into the dynamic regulation of mitochondrial processes during ferroptosis are important to provide a better understanding of the development of disease. In this paper, we systematically summarized changes in ferroptosis, mitochondrial fission and fusion and mitophagy to promote an in-depth understanding of the mechanism underlying ferroptosis and provide a corresponding reference for the treatment of related diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yu-chen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yi-xuan Ding
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Jian Bai
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Zerbato B, Gobbi M, Ludwig T, Brancato V, Pessina A, Brambilla L, Wegner A, Chiaradonna F. PGM3 inhibition shows cooperative effects with erastin inducing pancreatic cancer cell death via activation of the unfolded protein response. Front Oncol 2023; 13:1125855. [PMID: 37260977 PMCID: PMC10227458 DOI: 10.3389/fonc.2023.1125855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor patient prognosis. Remarkably, PDAC is one of the most aggressive and deadly tumor types and is notorious for its resistance to all types of treatment. PDAC resistance is frequently associated with a wide metabolic rewiring and in particular of the glycolytic branch named Hexosamine Biosynthetic Pathway (HBP). Methods Transcriptional and bioinformatics analysis were performed to obtain information about the effect of the HBP inhibition in two cell models of PDAC. Cell count, western blot, HPLC and metabolomics analyses were used to determine the impact of the combined treatment between an HBP's Phosphoglucomutase 3 (PGM3) enzyme inhibitor, named FR054, and erastin (ERA), a recognized ferroptosis inducer, on PDAC cell growth and survival. Results Here we show that the combined treatment applied to different PDAC cell lines induces a significant decrease in cell proliferation and a concurrent enhancement of cell death. Furthermore, we show that this combined treatment induces Unfolded Protein Response (UPR), NFE2 Like BZIP Transcription Factor 2 (NRF2) activation, a change in cellular redox state, a greater sensitivity to oxidative stress, a major dependence on glutamine metabolism, and finally ferroptosis cell death. Conclusion Our study discloses that HBP inhibition enhances, via UPR activation, the ERA effect and therefore might be a novel anticancer mechanism to be exploited as PDAC therapy.
Collapse
Affiliation(s)
- Barbara Zerbato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Maximilian Gobbi
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Tobias Ludwig
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Virginia Brancato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan, Italy
| | - Alex Pessina
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Luca Brambilla
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Andre Wegner
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ferdinando Chiaradonna
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
37
|
Zheng S, Guan XY. Ferroptosis: Promising approach for cancer and cancer immunotherapy. Cancer Lett 2023; 561:216152. [PMID: 37023938 DOI: 10.1016/j.canlet.2023.216152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Ferroptosis is the cell death induced by ferrous ions and lipid peroxidation accumulation in tumor cells. Targeting ferroptosis, which is regulated by various metabolic and immune elements, might become a novel strategy for anti-tumor therapy. In this review, we will focus on the mechanism of ferroptosis and its interaction with cancer and tumor immune microenvironment, especially for the relationship between immune cells and ferroptosis. Also, we will discuss the latest preclinical progress of the collaboration between the ferroptosis-targeted drugs and immunotherapy, and the best potential conditions for their combined use. It will present a future insight on the possible value of ferroptosis in cancer immunotherapy.
Collapse
Affiliation(s)
- Shuyue Zheng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Advanced Nuclear Energy and Nuclear Technology Research Center, Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China.
| |
Collapse
|
38
|
Yang J, Jin F, Li H, Shen Y, Shi W, Wang L, Zhong L, Wu G, Wu Q, Li Y. Identification of mitochondrial respiratory chain signature for predicting prognosis and immunotherapy response in stomach adenocarcinoma. Cancer Cell Int 2023; 23:69. [PMID: 37062830 PMCID: PMC10105960 DOI: 10.1186/s12935-023-02913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
Stomach adenocarcinoma (STAD) is the third leading cause of cancer-related deaths and the fifth most prevalent malignancy worldwide. Mitochondrial respiratory chain complexes play a crucial role in STAD pathogenesis. However, how mitochondrial respiratory chain complex genes (MRCCGs) affect the prognosis and tumor microenvironment in STAD remains unclear. In this study, we systematically analyzed genetic alterations and copy number variations of different expression densities of MRCCGs, based on 806 samples from two independent STAD cohorts. Then we employed the unsupervised clustering method to classify the samples into three expression patterns based on the prognostic MRCCG expressions, and found that they were involved in different biological pathways and correlated with the clinicopathological characteristics, immune cell infiltration, and prognosis of STAD. Subsequently, we conducted a univariate Cox regression analysis to identify the prognostic value of 1175 subtype-related differentially expressed genes (DEGs) and screened out 555 prognostic-related genes. Principal component analysis was performed and developed the MG score system to quantify MRCCG patterns of STAD. The prognostic significance of MG Score was validated in three cohorts. The low MG score group, characterized by increased microsatellite instability-high (MSI-H), tumor mutation burden (TMB), PD-L1 expression, had a better prognosis. Interestingly, we demonstrated MRCCG patterns score could predict the sensitivity to ferroptosis inducing therapy. Our comprehensive analysis of MRCCGs in STAD demonstrated their potential roles in the tumor-immune-stromal microenvironment, clinicopathological features, and prognosis. Our findings highlight that MRCCGs may provide a new understanding of immunotherapy strategies for gastric cancer and provide a new perspective on the development of personalized immune therapeutic strategies for patients with STAD.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory Medicine Center, Department of Laboratory Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Feifan Jin
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Laboratory Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Weilin Shi
- Department of Medicine, Taizhou Luqiao District Second People's Hospital, Taizhou, Zhejiang, 318058, China
| | - Lina Wang
- Department of Medicine, Taizhou Luqiao District Second People's Hospital, Taizhou, Zhejiang, 318058, China
| | - Lei Zhong
- Department of Clinical Laboratory, Tongxiang Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, 314599, China
| | - Gongqiang Wu
- Department of Hematology, Dongyang People's Hospital, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang, Zhejiang, 322100, China.
| | - Qiaoliang Wu
- Department of Hematology, Jiashan first people's Hospital, Jiaxing, Zhejiang, 314199, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
39
|
Xing N, Du Q, Guo S, Xiang G, Zhang Y, Meng X, Xiang L, Wang S. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov 2023; 9:110. [PMID: 37005430 PMCID: PMC10067943 DOI: 10.1038/s41420-023-01407-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Lung cancer is a common malignant tumor that occurs in the human body and poses a serious threat to human health and quality of life. The existing treatment methods mainly include surgical treatment, chemotherapy, and radiotherapy. However, due to the strong metastatic characteristics of lung cancer and the emergence of related drug resistance and radiation resistance, the overall survival rate of lung cancer patients is not ideal. There is an urgent need to develop new treatment strategies or new effective drugs to treat lung cancer. Ferroptosis, a novel type of programmed cell death, is different from the traditional cell death pathways such as apoptosis, necrosis, pyroptosis and so on. It is caused by the increase of iron-dependent reactive oxygen species due to intracellular iron overload, which leads to the accumulation of lipid peroxides, thus inducing cell membrane oxidative damage, affecting the normal life process of cells, and finally promoting the process of ferroptosis. The regulation of ferroptosis is closely related to the normal physiological process of cells, and it involves iron metabolism, lipid metabolism, and the balance between oxygen-free radical reaction and lipid peroxidation. A large number of studies have confirmed that ferroptosis is a result of the combined action of the cellular oxidation/antioxidant system and cell membrane damage/repair, which has great potential application in tumor therapy. Therefore, this review aims to explore potential therapeutic targets for ferroptosis in lung cancer by clarifying the regulatory pathway of ferroptosis. Based on the study of ferroptosis, the regulation mechanism of ferroptosis in lung cancer was understood and the existing chemical drugs and natural compounds targeting ferroptosis in lung cancer were summarized, with the aim of providing new ideas for the treatment of lung cancer. In addition, it also provides the basis for the discovery and clinical application of chemical drugs and natural compounds targeting ferroptosis to effectively treat lung cancer.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
40
|
Lee J, Roh JL. Promotion of ferroptosis in head and neck cancer with divalent metal transporter 1 inhibition or salinomycin. Hum Cell 2023; 36:1090-1098. [PMID: 36890422 DOI: 10.1007/s13577-023-00890-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023]
Abstract
Divalent metal transporter 1 (DMT1) inhibitors can selectively kill iron-addicted cancer stem cells by causing lysosomal iron overload, but their role in head and neck cancer (HNC) is unknown. We examined the role of DMT1 inhibition or salinomycin in promoting ferroptosis by lysosomal iron targeting in HNC cells. RNA interference was performed by transfection of siRNA targeting DMT1 or scrambled control siRNA in HNC cell lines. Cell death and viability, lipid peroxidation, iron contents, and molecular expression were compared between the DMT1 silencing or salinomycin group and the control. DMT1 silencing markedly accelerated cell death induced by the ferroptosis inducers. DMT1 silencing marked increases in the labile iron pool, intracellular ferrous and total iron contents, and lipid peroxidation. DMT1 silencing revealed molecular changes in iron starvation response, resulting in increases in TFRC, and decreases in FTH1. Salinomycin treatment also showed similar results to the above DMT1 silencing. DMT1 silencing or salinomycin can promote ferroptosis in HNC cells, suggesting a novel strategy for killing iron-avid cancer cells.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
41
|
Jiang H, Fang Y, Wang Y, Li T, Lin H, Lin J, Pan T, Liu Q, Lv J, Chen D, Chen Y. FGF4 improves hepatocytes ferroptosis in autoimmune hepatitis mice via activation of CISD3. Int Immunopharmacol 2023; 116:109762. [PMID: 36702076 DOI: 10.1016/j.intimp.2023.109762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Autoimmune hepatitis (AIH) is increasingly affecting human health but pharmacotherapies remain to be identified. Growing evidence reveals that ferroptosis, a newly recognized form of programmed cell death, is critical for AIH. However, the exact mechanisms of the ferroptotic cascade remain elusive. Data in this study showed that ferroptosis aggravation was associated with protectively-elevated fibroblast growth factor 4 (FGF4) expression in Concanavalin A (ConA)-induced AIH liver injury, with these effects being effectively reversed by Ferrostatin-1 (Fer-1). Moreover, hepatic Fgf4 depletion was more susceptible to lipid peroxidation and iron accumulation, as well as hepatic lesion and inflammation caused by ConA administration. Conversely, treatment with non-mitogenic recombinant FGF4 (rFGF4) mitigated liver damage and hepatocellular ferroptosis while being accompanied by the upregulation of CDGSH iron-sulfur domain-containing protein 3 (CISD3) in vivo and in vitro. Furthermore, CISD3 overexpression exhibited stronger resistance to ferroptosis while CISD3 knockdown reduced ferroptotic biomarkers cystine/glutamate transporter (xCT) and glutathione peroxidase 4(GPX4) in rFGF4-treated Erastin-induced AML12 cells. In addition, rFGF4 significantly enhanced the levels of heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) in ConA-induced AIH mice. Overall, this study showed that FGF4 can act as a phylactic role in AIH progression, with rFGF4 treatment inhibiting ferroptosis of hepatocytes by increasing CISD3 levels and activating Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325035, China
| | - Yan Fang
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325035, China
| | - Yuxin Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325035, China
| | - Ting Li
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325035, China
| | - Hongwei Lin
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Lin
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325035, China
| | - Tongtong Pan
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325035, China
| | - Qingxiu Liu
- Department of Infectious Diseases, the People's Hospital of Lishui, Lishui 323000, China
| | - Jiaojian Lv
- Department of Infectious Diseases, the People's Hospital of Lishui, Lishui 323000, China
| | - Dazhi Chen
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | - Yongping Chen
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
42
|
Grifagni D, Silva JM, Cantini F, Piccioli M, Banci L. Relaxation-based NMR assignment: Spotlights on ligand binding sites in human CISD3. J Inorg Biochem 2023; 239:112089. [PMID: 36502664 DOI: 10.1016/j.jinorgbio.2022.112089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
CISD3 is a mitochondrial protein belonging to the NEET proteins family, bearing two [Fe2S2] clusters coordinated by CDGSH domains. At variance with the other proteins of the NEET family, very little is known about its structure-function relationships. NMR is the only technique to obtain information at the atomic level in solution on the residues involved in intermolecular interactions; however, in paramagnetic proteins this is limited by the broadening of signals of residues around the paramagnetic center. Tailored experiments can revive signals of the cluster surrounding; however, signals identification without specific residue assignment remains useless. Here, we show how paramagnetic relaxation can drive the signal assignment of residues in the proximity of the paramagnetic center(s). This allowed us to identify the potential key players of the biological function of the CISD3 protein.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - José M Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
43
|
Chen F, Liu J, Tang D, Kang R. Monitoring Mitochondria Function in Ferroptosis. Methods Mol Biol 2023; 2712:103-115. [PMID: 37578700 DOI: 10.1007/978-1-0716-3433-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a type of regulated necrosis driven by uncontrolled membrane lipid peroxidation. Mitochondria, which are membrane-bound organelles present in almost all eukaryotic cells and play a central role in energy metabolism and various types of cell death, have a complicated role in ferroptosis. On one hand, mitochondrial-derived iron metabolism and reactive oxygen species (ROS) production may promote ferroptosis. On the other hand, mitochondria also possess a dihydroorotate dehydrogenase (DHODH)-dependent antioxidant system that detoxifies lipid peroxides. This chapter summarizes several methods, such as western blotting, immunofluorescence, cell viability assays, mitochondrial fluorescent probes, adenosine 5'-triphosphate (ATP) assay kits, mitochondrial respiration, and mitophagy tests, that may enable researchers to gain a deeper understanding of the dual role of mitochondria in ferroptosis.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
44
|
Marjault HB, Yang-Sung S, Zuo K, Carloni P, Mittler R, Nechushtai R. Structure-Based Screening Reveals a Ligand That Stabilizes the [2Fe-2S] Clusters of Human mitoNEET and Reduces Ovarian Cancer Cell Proliferation. J Phys Chem B 2022; 126:9559-9565. [PMID: 36374279 DOI: 10.1021/acs.jpcb.2c05728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human NEET proteins play an important role in a variety of diseases, including cancer. Using the recently published X-ray structure of the human mNT-M1 complex, we screened a commercial chemical compound library and identified a new human mitoNEET (mNT) binding ligand (NTS-01). Biochemical investigations revealed that NTS-01 specifically binds to the human mNT protein and stabilizes its [2Fe-2S] clusters under oxidative conditions in vitro. Treatment of ovarian cancer cells with NTS-01 induces ovarian cancer (SKOV-3) mitochondrial fragmentation (fission) and reduces ovarian cancer cell proliferation in a 2D single-layer cell culture, as well as in a 3D-spheroids culture. The NTS-01 molecule represents therefore a new lead compound for further drug design studies attempting to develop efficient treatment against ovarian cancer.
Collapse
Affiliation(s)
- Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
- Department of Physics, RWTH Aachen University, 52074Aachen, Germany
| | - Sohn Yang-Sung
- The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Ke Zuo
- The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
- Department of Physics, RWTH Aachen University, 52074Aachen, Germany
| | - Paolo Carloni
- Department of Physics, RWTH Aachen University, 52074Aachen, Germany
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
- Computational Biomedicine, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
- JARA Institute: Molecular Neuroscience and Imaging, Institute of Neuroscience and Medicine INM-11, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
| | - Ron Mittler
- Department of Surgery, University of Missouri School of Medicine, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, Missouri65211, United States
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|
45
|
Wang X, Xu B, Du J, Xia J, Lei G, Zhou C, Hu J, Zhang Y, Chen S, Shao F, Yang J, Li Y. Characterization of pyruvate metabolism and citric acid cycle patterns predicts response to immunotherapeutic and ferroptosis in gastric cancer. Cancer Cell Int 2022; 22:317. [PMID: 36229828 PMCID: PMC9563156 DOI: 10.1186/s12935-022-02739-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background Gastric cancer is one of the most common malignancies of the digestive system with a high lethal rate. Studies have shown that inherited and acquired mutations in pyruvate metabolism and citric acid cycle (P-CA) enzymes are involved in tumorigenesis and tumor development. However, it is unclear how different P-CA patterns affect the tumor microenvironment (TME), which is critical for cancer progression. Methods This study mainly concentrated on investigating the role of the P-CA patterns in multicellular immune cell infiltration of GC TME. First, the expression levels of P-CA regulators were profiled in GC samples from The Cancer Genome Atlas and Gene Expression Omnibus cohorts to construct a consensus clustering analysis and identify three distinct P-CA clusters. GSVA was conducted to reveal the different biological processes in three P-CA clusters. Subsequently, 1127 cluster-related differentially expressed genes were identified, and prognostic-related genes were screened using univariate Cox regression analysis. A scoring system was then set up to quantify the P-CA gene signature and further evaluate the response of the patients to the immunotherapy. Results We found that GC patients in the high P-CA score group had a higher tumor mutational burden, higher microsatellite instability, and better prognosis. The opposite was observed in the low P-CA score group. Interestingly, we demonstrated P-CA gene cluster could predict the sensitivity to immunotherapy and ferroptosis-induced therapy. Conclusion Collectively, the P-CA gene signature in this study exhibits potential roles in the tumor microenvironment and predicts the response to immunotherapeutic. The identification of these P-CA patterns may significantly accelerate the strategic development of immunotherapy for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02739-z.
Collapse
Affiliation(s)
- Xu Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, Sichuan, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Bing Xu
- Department of Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, 310005, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jiayu Hu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yinhao Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Sufeng Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Fangchun Shao
- Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| | - Jiyun Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, Sichuan, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
46
|
Li Y, Xu B, Ren X, Wang L, Xu Y, Zhao Y, Yang C, Yuan C, Li H, Tong X, Wang Y, Du J. Inhibition of CISD2 promotes ferroptosis through ferritinophagy-mediated ferritin turnover and regulation of p62-Keap1-NRF2 pathway. Cell Mol Biol Lett 2022; 27:81. [PMID: 36180832 PMCID: PMC9523958 DOI: 10.1186/s11658-022-00383-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND CDGSH iron sulfur domain 2 (CISD2) is an iron-sulfur protein with a [2Fe-2S] cluster, which is critical for cell proliferation and iron homeostasis. It has been demonstrated that aberrant expression of CISD2 is associated with the progression of multiple cancers. However, the underlying mechanism of CISD2 in regulating tumorigenesis remains obscure. METHODS Bioinformatics strategies were used to investigate the protein interaction network and functional annotation of CISD2. In the functional experiment, cell viability was measured by CCK-8 kit. The levels of cellular reactive oxygen species (ROS), intracellular free iron, lipid peroxides, and lysosomal activity were determined by DCF-DA, RPA, C11-BODIPY, and cathepsin B staining, respectively. The glutathione (GSH) content was determined using a GSH assay kit. RESULTS We showed that knockdown of CISD2 significantly accelerated the Erastin-induced ferroptotic cell death with excess lipid peroxidation, GSH exhaustion, and iron accumulation, while overexpression of CISD2 hindered the sensitivity to Erastin. Further assays via confocal microscopy and western blot exhibited that CISD2 knockdown markedly enhanced the lysosomal activity, and activated ferritinophagy under the exposure of Erastin. Pharmacological inhibition of lysosomal function could inhibit the degradation of ferritin heavy chain (FTH), and attenuate the phenotypes of ferroptosis, such as accelerated iron accumulation and lipid peroxidation. Notably, we found that Erastin-induced compensatory elevation of nuclear factor erythroid 2-related factor 2 (NRF2) could be eliminated in CISD2 depletion cells. Mechanically, CISD2 knockdown promoted the degradation of autophagy adaptor p62 and resulted in an increased binding affinity of Keap1 with NRF2, thus leading to the increased ubiquitination and subsequent degradation of NRF2. Enforced expression of NRF2 reversed the sensitivity of shCISD2 cells to ferroptosis both in vitro and in vivo. Conversely, enforced expression of Keap1 exacerbated the degradation of NRF2, reduced the transcriptional expression of FTH and heme oxygenase 1 (HO-1), increased the oxidative damage, and thus further facilitated ferroptosis. CONCLUSION Taken together, our current results illustrated two parallel mechanisms involved in the shCISD2-mediated ferroptosis. One was that shCISD2 enhanced the accumulation of free iron via ferritinophagy-dependent ferritin turnover; the other was that CISD2 depletion induced the inhibition of the p62-Keap1-NRF2 pathway, which resulted in oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Bing Xu
- Department of Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, 310016, Zhejiang, China
| | - Xueying Ren
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 310005, Hangzhou, Zhejiang, China
| | - Luyang Wang
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yaqing Xu
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yefeng Zhao
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Chen Yang
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Chen Yuan
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Huanjuan Li
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
47
|
Chen H, Qi Q, Wu N, Wang Y, Feng Q, Jin R, Jiang L. Aspirin promotes RSL3-induced ferroptosis by suppressing mTOR/SREBP-1/SCD1-mediated lipogenesis in PIK3CA-mutant colorectal cancer. Redox Biol 2022; 55:102426. [PMID: 35963119 PMCID: PMC9389304 DOI: 10.1016/j.redox.2022.102426] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis, a new form of regulated cell death triggered by the iron-dependent peroxidation of phospholipids, is associated with cellular metabolism, redox homeostasis, and various signaling pathways related to cancer. Aspirin is a widely used non-steroidal anti-inflammatory drug (NSAID) and has been reported to show therapeutic benefit in cancers harboring oncogenic PIK3CA, which encodes the catalytic p110α subunit of phosphoinositide 3-kinase (PI3K). In this study, we found that aspirin sensitized cancer cells harboring oncogenic activation of PIK3CA to ferroptosis induction. Mechanistically, aspirin inhibited protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling, suppressed downstream sterol regulatory element-binding protein 1 (SREBP-1) expression, and attenuated stearoyl-CoA desaturase-1 (SCD1)-mediated lipogenesis of monounsaturated fatty acids, thus promoting RSL3-induced ferroptosis in colorectal cancer (CRC) cells. Moreover, genetic ablation of SREBP-1 or SCD1 conferred cancer cells greater sensitivity to ferroptosis induction. Conversely, ectopic expression of SREBP-1 or SCD1 restored ferroptosis resistance in CRC cells and abolished the effect of aspirin on RSL3-induced cytotoxicity. Additionally, the synergistic effects of aspirin and RSL3 were confirmed in a xenograft mouse model. The combined use of aspirin and RSL3 resulted in significant tumor suppression. Our work demonstrated that aspirin enhanced the cytotoxic effect of RSL3 in PIK3CA-mutant cancers, and the combination of aspirin and ferroptosis inducer displayed promising therapeutic effects in cancer treatment.
Collapse
Affiliation(s)
- Hao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qinqin Qi
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Nan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qian Feng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rong Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
48
|
Le-Bel G, Desjardins P, Gross C, Cortez Ghio S, Couture C, Germain L, Guérin SL. Influence of the Postmortem/Storage Time of Human Corneas on the Properties of Cultured Limbal Epithelial Cells. Cells 2022; 11:cells11172716. [PMID: 36078126 PMCID: PMC9455001 DOI: 10.3390/cells11172716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Besides being a powerful model to study the mechanisms of corneal wound healing, tissue-engineered human corneas (hTECs) are sparking interest as suitable substitutes for grafting purposes. To ensure the histological and physiological integrity of hTECs, the primary cultures generated from human cornea (identified as human limbal epithelial cells (hLECs) that are used to produce them must be of the highest possible quality. The goal of the present study consisted in evaluating the impact of the postmortem/storage time (PM/ST) on their properties in culture. hLECs were isolated from the entire cornea comprising the limbus and central cornea. When grown as monolayers, short PM/ST hLECs displayed increased daily doublings and generated more colonies per seeded cells than long PM/ST hLECs. Moreover, hLECs with a short PM/ST exhibited a markedly faster wound closure kinetic both in scratch wound assays and hTECs. Collectively, these results suggest that short PM/ST hLECs have a greater number of highly proliferative stem cells, exhibit a faster and more efficient wound healing response in vitro, and produce hTECs of a higher quality, making them the best candidates to produce biomaterial substitutes for clinical studies.
Collapse
Affiliation(s)
- Gaëtan Le-Bel
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, and Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1S 4L8, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, and Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1S 4L8, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Christelle Gross
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1S 4L8, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sergio Cortez Ghio
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, and Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, and Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1S 4L8, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, and Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1S 4L8, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, and Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1S 4L8, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
49
|
Li H, Xu B, Du J, Wu Y, Shao F, Gao Y, Zhang P, Zhou J, Tong X, Wang Y, Li Y. Autophagy-related prognostic signature characterizes tumor microenvironment and predicts response to ferroptosis in gastric cancer. Front Oncol 2022; 12:959337. [PMID: 36052243 PMCID: PMC9424910 DOI: 10.3389/fonc.2022.959337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Gastric cancer (GC) is an important disease and the fifth most common malignancy worldwide. Autophagy is an important process for the turnover of intracellular substances. Autophagy-related genes (ARGs) are crucial in cancer. Accumulating evidence indicates the clinicopathological significance of the tumor microenvironment (TME) in predicting prognosis and treatment efficacy. Methods Clinical and gene expression data of GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. A total of 22 genes with differences in expression and prognosis were screened from 232 ARGs. Three autophagy patterns were identified using an unsupervised clustering algorithm and scored using principal component analysis to predict the value of autophagy in the prognosis of GC patients. Finally, the relationship between autophagy and ferroptosis was validated in gastric cancer cells. Results The expression of ARGs showed obvious heterogeneity in GC patients. Three autophagy patterns were identified and used to predict the overall survival of GC patients. These three patterns were well-matched with the immunophenotype. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses showed that the biological functions of the three autophagy patterns were different. A scoring system was then set up to quantify the autophagy model and further evaluate the response of the patients to the immunotherapy. Patients with high autophagy scores had a more severe tumor mutation burden and better prognosis. High autophagy scores were accompanied by high microsatellite instability. Patients with high autophagy scores had significantly higher PD-L1 expression and increased survival. The experimental results confirmed that the expression of ferroptosis genes was positively correlated with the expression of autophagy genes in different autophagy clusters, and inhibition of autophagy dramatically reversed the decrease in ferroptotic cell death and lipid accumulation. Conclusions Autophagy patterns are involved in TME diversity and complexity. Autophagy score can be used as an independent prognostic biomarker in GC patients and to predict the effect of immunotherapy and ferroptosis-based therapy. This might benefit individualized treatment for GC.
Collapse
Affiliation(s)
- Haoran Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Bing Xu
- Department of Clinical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Fangchun Shao
- Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Targeting Molecular Mediators of Ferroptosis and Oxidative Stress for Neurological Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3999083. [PMID: 35910843 PMCID: PMC9337979 DOI: 10.1155/2022/3999083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
With the acceleration of population aging, nervous system diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), anxiety, depression, stroke, and traumatic brain injury (TBI) have become a huge burden on families and society. The mechanism of neurological disorders is complex, which also lacks effective treatment, so relevant research is required to solve these problems urgently. Given that oxidative stress-induced lipid peroxidation eventually leads to ferroptosis, both oxidative stress and ferroptosis are important mechanisms causing neurological disorders, targeting mediators of oxidative stress and ferroptosis have become a hot research direction at present. Our review provides a current view of the mechanisms underlying ferroptosis and oxidative stress participate in neurological disorders, the potential application of molecular mediators targeting ferroptosis and oxidative stress in neurological disorders. The target of molecular mediators or agents of oxidative stress and ferroptosis associated with neurological disorders, such as reactive oxygen species (ROS), nuclear factor erythroid 2–related factor-antioxidant response element (Nrf2-ARE), n-acetylcysteine (NAC), Fe2+, NADPH, and its oxidases NOX, has been described in this article. Given that oxidative stress-induced ferroptosis plays a pivotal role in neurological disorders, further research on the mechanisms of ferroptosis caused by oxidative stress will help provide new targets for the treatment of neurological disorders.
Collapse
|