1
|
He Q, Zhou Y, Wu L, Huang L, Yuan Y, Flores JJ, Luo X, Tao Y, Chen X, Kanamaru H, Dong S, Zhu S, Yu Q, Han M, Sherchan P, Li J, Tang J, Xie Z, Zhang JH. Inhibition of acid-sensing receptor GPR4 attenuates neuronal ferroptosis via RhoA/YAP signaling in a rat model of subarachnoid hemorrhage. Free Radic Biol Med 2024; 225:333-345. [PMID: 39393553 DOI: 10.1016/j.freeradbiomed.2024.10.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is a devastating stroke, in which acidosis is one of detrimental complications. The extracellular pH reduction can activate G protein-coupled receptor 4 (GPR4) in the brain. Yet, the extent to which proton-activated GPR4 contributes to the early brain injury (EBI) post-SAH remains largely unexplored. Ferroptosis, iron-dependent programmed cell death, has recently been shown to contribute to EBI. We aimed to investigate the effects of GPR4 inhibition on neurological deficits and neuronal ferroptosis after SAH in rats. METHODS A total 253 Sprague Dawley (SD) male rats (weighing 275-330g) were utilized in this study. SAH was induced by endovascular perforation. NE-52-QQ57 (NE), a selective antagonist of GPR4 was administered intraperitoneally 1-h post-SAH. To explore the mechanisms, RhoA activator U-46619 and YAP activator PY-60 were delivered intracerebroventricularly. Short- and long-term neurobehavior, SAH grading, Western blot assay, ELISA assay, immunofluorescence staining, and transmission electron microscopy was performed post-SAH. RESULTS Following SAH, there was an upregulation of GPR4 expression in neurons. GPR4 inhibition by NE improved both short-term and long-term neurological outcomes post-SAH. NE also reduced neuronal ferroptosis, as evidenced by decreased lipid peroxidation products 4HNE and MDA levels in brain tissues, and reduced mitochondrial shrinkage, increased mitochondria crista and decreased membrane density. The application of either U-46619 or PY-60 partially offset the neuroprotective effects of NE on neuronal ferroptosis in SAH rats. CONCLUSIONS This study demonstrated that acid-sensing receptor GPR4 contributed to neuronal ferroptosis after SAH via RhoA/YAP pathway, and NE may be a potential therapeutic strategy to attenuate GPR4 mediated neuronal ferroptosis and EBI after SAH.
Collapse
Affiliation(s)
- Qiuguang He
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - You Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Lei Wu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Xionghui Chen
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Yu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Mingyang Han
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Anesthesiology and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
2
|
He H, Su H, Chen X, Chen X, Yang S. Interference with GPR4 inactivates NLRP3 inflammasome signaling by inhibiting LPAR1 expression to ameliorate oxygen-glucose deprivation/reoxygenation-induced inflammation and apoptosis of cardiomyocytes. Prostaglandins Other Lipid Mediat 2024; 174:106863. [PMID: 38936540 DOI: 10.1016/j.prostaglandins.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a detrimental disease with high mortality worldwide. We aimed to explore the role of G protein-coupled receptor 4 (GPR4) and lysophosphatidic acid receptor 1 (LPAR1) in MI/R injury in vitro. H9c2 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) conditions to simulate the MI/R injury and GPR4 expression was detected. Then, GPR4 was knocked down and cell viability was examined with a CCK-8 assay. The activities of LDH, CK and CK-MB were detected to evaluate the damage of OGD/R-induced H9c2 cells. ELISA kits and TUNEL staining were used to examine the inflammation and apoptosis of H9c2 cells exposed to OGD/R conditions. Western blot was employed to detect the expression of proteins related to apoptosis and NLRP3 inflammasome signaling. Additionally, Co-IP analyzed the binding between GPR4 and LPAR1. Finally, LPAR1 was overexpressed to conduct the rescue experiments. Results revealed that GPR4 was upregulated in OGD/R-treated H9c2 cells and GPR4 knockdown attenuated the damage of H9c2 cells. OGD/R induced inflammation and apoptosis were markedly inhibited by GPR4 silencing, as evidenced by the decreased TNF-α, IL-6 and IL-8 levels as well as the elevated Bcl-2 expression and reduced Bax and cleaved caspase3 expression. Moreover, GPR4 bound to LPAR1 and upregulated LPAR1 expression. Interference with GPR4 inactivated the NLRP3 inflammasome signaling. Besides, LPAR1 overexpression abrogated the effects of GPR4 silencing on the damage, inflammation and apoptosis of H9c2 cells induced by OGD/R. Particularly, LPAR1 upregulation promoted the activation of NLRP3 inflammasome signaling in GPR4-silenced H9c2 cells induced by OGD/R. To be concluded, GPR4 deficiency inactivates NLRP3 inflammasome signaling by inhibiting LPAR1 expression to ameliorate OGD/R -induced inflammation and apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Hanlong He
- Radiology Department, Huizhou First Hospital, Huizhou, Guangdong 516001, China
| | - Huiren Su
- Radiology Department, Huizhou First Hospital, Huizhou, Guangdong 516001, China
| | - Xinjian Chen
- Radiology Department, Huizhou First Hospital, Huizhou, Guangdong 516001, China
| | - Xiaohong Chen
- Hand and Foot Microsurgery & Wound Repair Department, Huizhou First Hospital, Huizhou, Guangdong 516001, China
| | - Shaoze Yang
- Department of Clinical Medicine, School of Medicine, Etugen University, Ulaanbaatar 14191, Mongolia.
| |
Collapse
|
3
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
4
|
Liang S, Zhou J, Cao C, Liu Y, Ming S, Liu X, Shang Y, Lao J, Peng Q, Yang J, Wu M. GITR exacerbates lysophosphatidylcholine-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. Cell Mol Immunol 2024; 21:674-688. [PMID: 38740925 PMCID: PMC11214634 DOI: 10.1038/s41423-024-01170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The NLRP3 inflammasome functions as an inflammatory driver, but its relationship with lipid metabolic changes in early sepsis remains unclear. Here, we found that GITR expression in monocytes/macrophages was induced by lysophosphatidylcholine (LPC) and was positively correlated with the severity of sepsis. GITR is a costimulatory molecule that is mainly expressed on T cells, but its function in macrophages is largely unknown. Our in vitro data showed that GITR enhanced LPC uptake by macrophages and specifically enhanced NLRP3 inflammasome-mediated macrophage pyroptosis. Furthermore, in vivo studies using either cecal ligation and puncture (CLP) or LPS-induced sepsis models demonstrated that LPC exacerbated sepsis severity/lethality, while conditional knockout of GITR in myeloid cells or NLRP3/caspase-1/IL-1β deficiency attenuated sepsis severity/lethality. Mechanistically, GITR specifically enhanced inflammasome activation by regulating the posttranslational modification (PTM) of NLRP3. GITR competes with NLRP3 for binding to the E3 ligase MARCH7 and recruits MARCH7 to induce deacetylase SIRT2 degradation, leading to decreasing ubiquitination but increasing acetylation of NLRP3. Overall, these findings revealed a novel role of macrophage-derived GITR in regulating the PTM of NLRP3 and systemic inflammatory injury, suggesting that GITR may be a potential therapeutic target for sepsis and other inflammatory diseases. GITR exacerbates LPC-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. According to the model, LPC levels increase during the early stage of sepsis, inducing GITR expression on macrophages. GITR not only competes with NLRP3 for binding to the E3 ligase MARCH7 but also recruits MARCH7 to induce the degradation of the deacetylase SIRT2, leading to decreasing ubiquitination but increasing acetylation of NLRP3 and therefore exacerbating LPC-induced NLRP3 inflammasome activation, macrophage pyroptosis and systemic inflammatory injury.
Collapse
Affiliation(s)
- Siping Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jinyu Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Can Cao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yiting Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siqi Ming
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuqi Shang
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Juanfeng Lao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Qin Peng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiahui Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
5
|
Li MS, Wang XH, Wang H. Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation. Curr Med Sci 2024; 44:475-484. [PMID: 38748372 DOI: 10.1007/s11596-024-2872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
Collapse
Affiliation(s)
- Min-Shan Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Xiang-Hong Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Heng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China.
| |
Collapse
|
6
|
Gao W, Liu R, Huang K, Fu W, Wang A, Du G, Tang H, Yin L, Yin ZS. CHMP5 attenuates osteoarthritis via inhibiting chondrocyte apoptosis and extracellular matrix degradation: involvement of NF-κB pathway. Mol Med 2024; 30:55. [PMID: 38664616 PMCID: PMC11046779 DOI: 10.1186/s10020-024-00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1β) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1β-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS This study demonstrated that CHMP5 repressed IL-1β-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.
Collapse
Affiliation(s)
- Weilu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Rui Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
- Department of Orthopedics, Wan Bei General Hospital of Wanbei Coal power Group, Suzhou, Anhui, China
| | - Keke Huang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Anquan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Gongwen Du
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Li Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Zongsheng S Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
7
|
Howard MK, Hoppe N, Huang XP, Macdonald CB, Mehrota E, Grimes PR, Zahm A, Trinidad DD, English J, Coyote-Maestas W, Manglik A. Molecular basis of proton-sensing by G protein-coupled receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.590000. [PMID: 38659943 PMCID: PMC11042331 DOI: 10.1101/2024.04.17.590000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Three proton-sensing G protein-coupled receptors (GPCRs), GPR4, GPR65, and GPR68, respond to changes in extracellular pH to regulate diverse physiology and are implicated in a wide range of diseases. A central challenge in determining how protons activate these receptors is identifying the set of residues that bind protons. Here, we determine structures of each receptor to understand the spatial arrangement of putative proton sensing residues in the active state. With a newly developed deep mutational scanning approach, we determined the functional importance of every residue in proton activation for GPR68 by generating ~9,500 mutants and measuring effects on signaling and surface expression. This unbiased screen revealed that, unlike other proton-sensitive cell surface channels and receptors, no single site is critical for proton recognition in GPR68. Instead, a network of titratable residues extend from the extracellular surface to the transmembrane region and converge on canonical class A GPCR activation motifs to activate proton-sensing GPCRs. More broadly, our approach integrating structure and unbiased functional interrogation defines a new framework for understanding the rich complexity of GPCR signaling.
Collapse
Affiliation(s)
- Matthew K. Howard
- Tetrad graduate program, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, CA, USA
| | - Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics graduate program, University of California, San Francisco, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology and the National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian B. Macdonald
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, CA, USA
| | - Eshan Mehrota
- Tetrad graduate program, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | | | - Adam Zahm
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Donovan D. Trinidad
- Department of Medicine, Division of Infectious Disease, University of California, San Francisco, United States
| | - Justin English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Li Z, Xie L, Zou L, Xiao S, Tao J. Overexpression of RAD54L attenuates osteoarthritis by suppressing the HIF-1α/VEGF signaling pathway: Bioinformatics analysis and experimental validation. PLoS One 2024; 19:e0298575. [PMID: 38593124 PMCID: PMC11003635 DOI: 10.1371/journal.pone.0298575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/28/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) is a widespread chronic, progressive, degenerative joint disease that causes pain and disability. Current treatments for OA have limited effectiveness and new biomarkers need to be identified. Bioinformatics analysis was conducted to explore differentially expressed genes and DNA repair/recombination protein 54 L (RAD54L) was selected. We firstly overexpressed RAD54L in interleukin-1β (IL-1β)-induced human articular chondrocytes or in OA rats to investigate its effect on OA. Chondrocyte viability and apoptotic rate were measured by Cell Counting Kit-8 and flow cytometry, respectively. Then we evaluated OA severity in vivo by Hematoxylin-eosin staining and Osteoarthritis Research Society International standards. The expression of inflammatory mediators was tested by enzyme-linked immunosorbent assay. Finally, western blot was performed to determine the relative expression level of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Overexpression of RAD54L promoted cell viability and attenuated apoptosis in IL-1β-induced human chondrocytes. A lower Osteoarthritis Research Society International score and a remarkable alleviation of chondrocyte disordering and infiltration of inflammatory cells were found in cartilage tissues of OA rats after overexpressing RAD54L. The inflammatory response induced by OA was decreased by RAD54L overexpression in vitro and in vivo. In addition, RAD54L overexpression decreased the relative expression level of HIF-1α and VEGF. Overexpression of RAD54L could attenuate OA by suppressing the HIF-1α/VEGF signaling pathway, indicating that RAD54L may be a potential treatment target for OA.
Collapse
Affiliation(s)
- Zhengnan Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang City, Jiangxi Province, China
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Lifeng Xie
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang City, Jiangxi Province, China
| | - Longqiang Zou
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Shiliang Xiao
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Jun Tao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
9
|
Li R, Xiao X, Yan Y, Yu L, Lv C, Zhang Y, Hong T, Zhang H, Wang Y. GPRASP1 loss-of-function links to arteriovenous malformations by endothelial activating GPR4 signals. Brain 2024; 147:1571-1586. [PMID: 37787182 DOI: 10.1093/brain/awad335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023] Open
Abstract
Arteriovenous malformations (AVMs) are fast-flow vascular malformations and refer to important causes of intracerebral haemorrhage in young adults. Getting deep insight into the genetic pathogenesis of AVMs is necessary. Herein, we identified two vital missense variants of G protein-coupled receptor (GPCR) associated sorting protein 1 (GPRASP1) in AVM patients for the first time and congruously determined to be loss-of-function variants in endothelial cells. GPRASP1 loss-of-function caused endothelial dysfunction in vitro and in vivo. Endothelial Gprasp1 knockout mice suffered a high probability of cerebral haemorrhage, AVMs and exhibited vascular anomalies in multiple organs. GPR4 was identified to be an effective GPCR binding with GPRASP1 to develop endothelial disorders. GPRASP1 deletion activated GPR4/cAMP/MAPK signalling to disturb endothelial functions, thus contributing to vascular anomalies. Mechanistically, GPRASP1 promoted GPR4 degradation. GPRASP1 enabled GPR4 K63-linked ubiquitination, enhancing the binding of GPR4 and RABGEF1 to activate RAB5 for conversions from endocytic vesicles to endosomes, and subsequently increasing the interactions of GPR4 and ESCRT members to package GPR4 into multivesicular bodies or late endosomes for lysosome degradation. Notably, the GPR4 antagonist NE 52-QQ57 and JNK inhibitor SP600125 effectively rescued the vascular phenotype caused by endothelial Gprasp1 deletion. Our findings provided novel insights into the roles of GPRASP1 in AVMs and hinted at new therapeutic strategies.
Collapse
Affiliation(s)
- Ruofei Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Liang Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing 100053, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing 100053, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
10
|
Glitsch MD. Recent advances in acid sensing by G protein coupled receptors. Pflugers Arch 2024; 476:445-455. [PMID: 38340167 PMCID: PMC11006784 DOI: 10.1007/s00424-024-02919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Changes in extracellular proton concentrations occur in a variety of tissues over a range of timescales under physiological conditions and also accompany virtually all pathologies, notably cancers, stroke, inflammation and trauma. Proton-activated, G protein coupled receptors are already partially active at physiological extracellular proton concentrations and their activity increases with rising proton concentrations. Their ability to monitor and report changes in extracellular proton concentrations and hence extracellular pH appears to be involved in a variety of processes, and it is likely to mirror and in some cases promote disease progression. Unsurprisingly, therefore, these pH-sensing receptors (pHR) receive increasing attention from researchers working in an expanding range of research areas, from cellular neurophysiology to systemic inflammatory processes. This review is looking at progress made in the field of pHRs over the past few years and also highlights outstanding issues.
Collapse
Affiliation(s)
- Maike D Glitsch
- Medical School Hamburg, Am Sandtorkai 1, 20457, Hamburg, Germany.
| |
Collapse
|
11
|
Kondreddy V, Banerjee R, Devi BLAP, Muralidharan K, Piramanayagam S. Inhibition of the MALT1-LPCAT3 axis protects cartilage degeneration and osteoarthritis. Cell Commun Signal 2024; 22:189. [PMID: 38519981 PMCID: PMC10960471 DOI: 10.1186/s12964-024-01547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1β and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1β-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1β-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1β-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
| | - Rajkumar Banerjee
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - B L A Prabhavathi Devi
- Department of Lipid Science and Technology, The Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - Kathirvel Muralidharan
- Division of Applied Biology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - Selvakumar Piramanayagam
- Division of Applied Biology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| |
Collapse
|
12
|
Marie MA, Sanderlin EJ, Hoffman AP, Cashwell KD, Satturwar S, Hong H, Sun Y, Yang LV. GPR4 Knockout Attenuates Intestinal Inflammation and Forestalls the Development of Colitis-Associated Colorectal Cancer in Murine Models. Cancers (Basel) 2023; 15:4974. [PMID: 37894341 PMCID: PMC10605520 DOI: 10.3390/cancers15204974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
GPR4 is a proton-sensing G protein-coupled receptor highly expressed in vascular endothelial cells and has been shown to potentiate intestinal inflammation in murine colitis models. Herein, we evaluated the proinflammatory role of GPR4 in the development of colitis-associated colorectal cancer (CAC) using the dextran sulfate sodium (DSS) and azoxymethane (AOM) mouse models in wild-type and GPR4 knockout mice. We found that GPR4 contributed to chronic intestinal inflammation and heightened DSS/AOM-induced intestinal tumor burden. Tumor blood vessel density was markedly reduced in mice deficient in GPR4, which correlated with increased tumor necrosis and reduced tumor cell proliferation. These data demonstrate that GPR4 ablation alleviates intestinal inflammation and reduces tumor angiogenesis, development, and progression in the AOM/DSS mouse model.
Collapse
Affiliation(s)
- Mona A. Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Edward J. Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Alexander P. Hoffman
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Kylie D. Cashwell
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Swati Satturwar
- Department of Pathology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Heng Hong
- Department of Pathology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Pathology, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Ying Sun
- Department of Pathology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V. Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| |
Collapse
|
13
|
Xu M, Hu B, Chen J, Zhao L, Wang J, Li X. CXCR7 promotes the migration of fibroblasts derived from patients with acquired laryngotracheal stenosis by NF-κB signaling. Transl Pediatr 2023; 12:1634-1645. [PMID: 37814711 PMCID: PMC10560356 DOI: 10.21037/tp-23-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/02/2023] [Indexed: 10/11/2023] Open
Abstract
Background Laryngotracheal stenosis (LTS) is a life-threatening disease that commonly results in airway obstruction in children. Traditional treatments such as laryngotracheal reconstruction and balloon dilation all have the risk of laryngotracheal restenosis. It is of great importance to spare patients the morbidity of LTS and risks of restenosis associated with these treatments. Laboratory and clinical trials have focused on fibrosis, the crucial pathological process of LTS. This study was undertaken to investigate the function of CXC chemokine receptor-7 (CXCR7) in the fibroblasts derived from LTS. Methods RNA sequencing was performed on acquired human LTS and normal trachea tissues to analyze differentially expressed genes. Fibroblasts from LTS and normal trachea tissues were isolated and cultured. CXCR7 knockdown was performed using specific small interfering RNAs (siRNAs) and activated by CXCR7 agonist VUF11207. The assessment of cell proliferation and migration was conducted using EdU proliferation, wound healing, and transwell assays. The assessment of cell proliferation and migration was conducted using EdU proliferation, wound healing, and transwell assays. The expressions of CXCR7, E-cadherin and NF-κB signaling pathway were analyzed by quantitative polymerase chain reaction (qPCR), western blotting, immunohistochemistry, and immunofluorescence. Results RNA sequencing showed that CXCR7 was among the most differentially expressed genes. LTS had an increased CXCR7 expression but decreased E-cadherin expression in vivo. CXCR7 agonist stimulated the migration of LTS derived fibroblasts significantly in vitro, with no significant influence on the cell proliferation and apoptosis. CXCR7 agonist inhibited the expression of E-cadherin by activating the NF-κB signaling pathway. The effects of CXCR7 on cell migration and E-cadherin expression were blocked by CXCR7 siRNA. Conclusions LTS had an increased CXCR7 expression but decreased E-cadherin expression. CXCR7 activation inhibited E-cadherin expression by NF-κB signaling pathway and thereby promoted the migration of LTS derived fibroblasts.
Collapse
Affiliation(s)
- Mengrou Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Changhai Hospital Affiliated with the Second Military Medical University of PLA, Shanghai, China
| | - Jiarui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Limin Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Peng Y, Jiang H, Zuo HD. Factors affecting osteogenesis and chondrogenic differentiation of mesenchymal stem cells in osteoarthritis. World J Stem Cells 2023; 15:548-560. [PMID: 37424946 PMCID: PMC10324504 DOI: 10.4252/wjsc.v15.i6.548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that often involves progressive cartilage degeneration and bone destruction of subchondral bone. At present, clinical treatment is mainly for pain relief, and there are no effective methods to delay the progression of the disease. When this disease progresses to the advanced stage, the only treatment option for most patients is total knee replacement surgery, which causes patients great pain and anxiety. As a type of stem cell, mesenchymal stem cells (MSCs) have multidirectional differentiation potential. The osteogenic differentiation and chondrogenic differentiation of MSCs can play vital roles in the treatment of OA, as they can relieve pain in patients and improve joint function. The differentiation direction of MSCs is accurately controlled by a variety of signaling pathways, so there are many factors that can affect the differentiation direction of MSCs by acting on these signaling pathways. When MSCs are applied to OA treatment, the microenvironment of the joints, injected drugs, scaffold materials, source of MSCs and other factors exert specific impacts on the differentiation direction of MSCs. This review aims to summarize the mechanisms by which these factors influence MSC differentiation to produce better curative effects when MSCs are applied clinically in the future.
Collapse
Affiliation(s)
- Yi Peng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hou-Dong Zuo
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Chengdu Xinhua Hospital, Chengdu 610067, Sichuan Province, China
| |
Collapse
|
15
|
Wei Q, Zhu X, Wang L, Zhang W, Yang X, Wei W. Extracellular matrix in synovium development, homeostasis and arthritis disease. Int Immunopharmacol 2023; 121:110453. [PMID: 37331300 DOI: 10.1016/j.intimp.2023.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Extracellular matrix (ECM) is a three-dimensional network entity composed of extracellular macromolecules. ECM in synovium not only supports the structural integrity of synovium, but also plays a crucial role in regulating homeostasis and damage repair response in synovium. Obvious disorders in the composition, behavior and function of synovial ECM will lead to the occurrence and development of arthritis diseases such as rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis (PsA). Based on the importance of synovial ECM, targeted regulation of the composition and structure of ECM is considered to be an effective measure for the treatment of arthritis disease. This paper reviews the current research status of synovial ECM biology, discusses the role and mechanism of synovial ECM in physiological status and arthritis disease, and summarizes the current strategies for targeting synovial ECM to provide information for the pathogenesis, diagnosis and treatment of arthritis disease.
Collapse
Affiliation(s)
- Qi Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuemin Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
16
|
Hung CH, Chin Y, Fong YO, Lee CH, Han DS, Lin JH, Sun WH, Chen CC. Acidosis-related pain and its receptors as targets for chronic pain. Pharmacol Ther 2023; 247:108444. [PMID: 37210007 DOI: 10.1016/j.pharmthera.2023.108444] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sensing acidosis is an important somatosensory function in responses to ischemia, inflammation, and metabolic alteration. Accumulating evidence has shown that acidosis is an effective factor for pain induction and that many intractable chronic pain diseases are associated with acidosis signaling. Various receptors have been known to detect extracellular acidosis and all express in the somatosensory neurons, such as acid sensing ion channels (ASIC), transient receptor potential (TRP) channels and proton-sensing G-protein coupled receptors. In addition to sense noxious acidic stimulation, these proton-sensing receptors also play a vital role in pain processing. For example, ASICs and TRPs are involved in not only nociceptive activation but also anti-nociceptive effects as well as some other non-nociceptive pathways. Herein, we review recent progress in probing the roles of proton-sensing receptors in preclinical pain research and their clinical relevance. We also propose a new concept of sngception to address the specific somatosensory function of acid sensation. This review aims to connect these acid-sensing receptors with basic pain research and clinical pain diseases, thus helping with better understanding the acid-related pain pathogenesis and their potential therapeutic roles via the mechanism of acid-mediated antinociception.
Collapse
Affiliation(s)
- Chih-Hsien Hung
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin Chin
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Der-Shen Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Jiann-Her Lin
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
17
|
Feng C, Zhang Y, Li W, Liu Y, Duan C, Ma J, Wang Y, Zhuang R, Ding Y. Identification of CaMK4 as a sex-difference-related gene in knee osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:194. [PMID: 37007557 PMCID: PMC10061463 DOI: 10.21037/atm-22-4284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
Background Osteoarthritis (OA) is a common degenerative joint disease with a higher prevalence in females than in males. Sex may be a key factor affecting the progression of OA. This study aimed to investigate critical sex-difference-related genes in patients with OA and confirm their potential roles in OA regulation. Methods OA datasets GSE12021, GSE55457, and GSE36700 were downloaded from the Gene Expression Omnibus database to screen OA-causing genes that are differentially expressed in the two sexes. Cytoscape was used to construct a protein-protein interaction network and determine hub genes. Synovial tissues of patients (male and female) with OA and female non-OA healthy controls were obtained to confirm the expression of hub genes and screen the key genes among them. Destabilization of the medial meniscus (DMM)-induced OA mice model was established to verify the screened key genes. Hematoxylin and eosin (HE) staining and Safranin O-fast green dye staining were employed to observe synovial inflammation and pathological cartilage status. Results The abovementioned three datasets were intersected to obtain 99 overlapping differentially expressed genes, of which 77 were upregulated and 22 were downregulated in female patients with OA. The hub genes screened were EGF, AQP4, CDC42, NTRK3, ERBB2, STAT1, and CaMK4. Among them, Ca2+/calmodulin-dependent protein kinase-4 (CaMK4) was identified as a key sex-related gene for OA. It was significantly higher in female OA patients than in the cases of male patients. Moreover, CaMK4 was significantly increased in female patients with OA compared with the female non-OA group. These results suggest that CaMK4 plays an important role in the progression of OA. OA mouse models demonstrated that CaMK4 expression in the mice knee joint synovial tissue elevated after DMM, with aggravated synovial inflammation and significant cartilage damage. Cartilage damage improved after intraperitoneal administration of the CaMK4 inhibitor KN-93. Conclusions CaMK4 is a key sex-related gene influencing the progression and pathogenesis of OA and may be considered as a new target for OA treatment.
Collapse
Affiliation(s)
- Chongyang Feng
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Wenpeng Li
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yitian Liu
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Ran Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Yong Ding
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
18
|
Gsmtx4 Alleviated Osteoarthritis through Piezo1/Calcineurin/NFAT1 Signaling Axis under Excessive Mechanical Strain. Int J Mol Sci 2023; 24:ijms24044022. [PMID: 36835440 PMCID: PMC9961447 DOI: 10.3390/ijms24044022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Excessive mechanical strain is the prominent risk factor for osteoarthritis (OA), causing cartilage destruction and degeneration. However, the underlying molecular mechanism contributing to mechanical signaling transduction remains unclear in OA. Piezo type mechanosensitive ion channel component 1 (Piezo1) is a calcium-permeable mechanosensitive ion channel and provides mechanosensitivity to cells, but its role in OA development has not been determined. Herein, we found up-regulated expression of Piezo1 in OA cartilage, and that its activation contributes to chondrocyte apoptosis. The knockdown of Piezo1 could protect chondrocytes from apoptosis and maintain the catabolic and anabolic balance under mechanical strain. In vivo, Gsmtx4, a Piezo1 inhibitor, markedly ameliorated the progression of OA, inhibited the chondrocyte apoptosis, and accelerated the production of the cartilage matrix. Mechanistically, we observed the elevated activity of calcineurin (CaN) and the nuclear transfection of nuclear factor of activated T cells 1 (NFAT1) under mechanical strain in chondrocytes. Inhibitors of CaN or NFAT1 rescued the pathologic changes induced by mechanical strain in chondrocytes. Overall, our findings revealed that Piezo1 was the essential molecule response to mechanical signals and regulated apoptosis and cartilage matrix metabolism via the CaN/NFAT1 signaling axis in chondrocytes, and that Gsmtx4 could be an attractive therapeutic drug for OA treatment.
Collapse
|
19
|
Lin W, Wang M, Xu L, Tortorella M, Li G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol 2023; 11:1125405. [PMID: 36824369 PMCID: PMC9941961 DOI: 10.3389/fcell.2023.1125405] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Cartilage organoids have emerged as powerful modelling technology for recapitulation of joint embryonic events, and cartilage regeneration, as well as pathophysiology of cartilage-associated diseases. Recent breakthroughs have uncovered "mini-joint" models comprising of multicellular components and extracellular matrices of joint cartilage for development of novel disease-modifying strategies for personalized therapeutics of cartilage-associated diseases. Here, we hypothesized that LGR5-expressing embryonic joint chondroprogenitor cells are ideal stem cells for the generation of cartilage organoids as "mini-joints" ex vivo "in a dish" for embryonic joint development, cartilage repair, and cartilage-associated disease modelling as essential research models of drug screening for further personalized regenerative therapy. The pilot research data suggested that LGR5-GFP-expressing embryonic joint progenitor cells are promising for generation of cartilage organoids through gel embedding method, which may exert various preclinical and clinical applications for realization of personalized regenerative therapy in the future.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Min Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| |
Collapse
|
20
|
Li J, Chen K, Zhao Z. The protective effects of NE 52-QQ57 against interleukin-33-induced inflammatory response in activated synovial mast cells. J Biochem Mol Toxicol 2022; 36:e23116. [PMID: 35670019 DOI: 10.1002/jbt.23116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokines-mediated immunity is essential for the pathological development of rheumatoid arthritis (RA). Inhibition of signaling has suggested a potential remedial approach to RA. G protein-coupled receptor 4 (GPR4) has been proven to possess a broad range of physiological functions, but its function in synovial mast cells and RA is less reported. In this study, the protective effects of NE 52-QQ57, a GPR4 antagonist, against interleukin (IL)-33-challenged inflammatory response in activated synovial mast cells were investigated. We report that IL-33 amplified GPR4 expression in HMC-1 mast cells. The GPR4 antagonist NE 52-QQ57 alleviated IL-33-caused secretions of IL-17, interferon-γ, and tumor necrosis factor-α in HMC-1 mast cells. Furthermore, we note that NE 52-QQ57 reduced IL-33-induced expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9. Also, NE 52-QQ57 inhibited cyclooxygenase 2 and prostaglandin E2 expression in IL-33-challenged cells. Also, NE 52-QQ57 ameliorated IL-33-induced oxidative stress by reducing mitochondrial reactive oxygen species and 4-hydroxynonenal. Mechanistically, NE 52-QQ57 mitigated IL-33-induced activation of the p38/nuclear factor-κB signaling pathway. We conclude that targeting GPR4 might be a promising strategy for RA treatment.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Emergency Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| | - Kunfeng Chen
- Department of Emergency Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| | - Zhijian Zhao
- Department of Emergency Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| |
Collapse
|