1
|
Xu K, Nnyamah C, Pandya N, Sweis N, Corona-Avila I, Priyadarshini M, Wicksteed B, Layden BT. β cell acetate production and release are negligible. Islets 2024; 16:2339558. [PMID: 38607959 PMCID: PMC11018053 DOI: 10.1080/19382014.2024.2339558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Studies suggest that short chain fatty acids (SCFAs), which are primarily produced from fermentation of fiber, regulate insulin secretion through free fatty acid receptors 2 and 3 (FFA2 and FFA3). As these are G-protein coupled receptors (GPCRs), they have potential therapeutic value as targets for treating type 2 diabetes (T2D). The exact mechanism by which these receptors regulate insulin secretion and other aspects of pancreatic β cell function is unclear. It has been reported that glucose-dependent release of acetate from pancreatic β cells negatively regulates glucose stimulated insulin secretion. While these data raise the possibility of acetate's potential autocrine action on these receptors, these findings have not been independently confirmed, and multiple concerns exist with this observation, particularly the lack of specificity and precision of the acetate detection methodology used. METHODS Using Min6 cells and mouse islets, we assessed acetate and pyruvate production and secretion in response to different glucose concentrations, via liquid chromatography mass spectrometry. RESULTS Using Min6 cells and mouse islets, we showed that both intracellular pyruvate and acetate increased with high glucose conditions; however, intracellular acetate level increased only slightly and exclusively in Min6 cells but not in the islets. Further, extracellular acetate levels were not affected by the concentration of glucose in the incubation medium of either Min6 cells or islets. CONCLUSIONS Our findings do not substantiate the glucose-dependent release of acetate from pancreatic β cells, and therefore, invalidate the possibility of an autocrine inhibitory effect on glucose stimulated insulin secretion.
Collapse
Affiliation(s)
- Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Chioma Nnyamah
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Nupur Pandya
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Nadia Sweis
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Li X, Chen R, Wen J, Ji R, Chen X, Cao Y, Yu Y, Zhao C. The mechanisms in the gut microbiota regulation and type 2 diabetes therapeutic activity of resistant starches. Int J Biol Macromol 2024; 274:133279. [PMID: 38906356 DOI: 10.1016/j.ijbiomac.2024.133279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Resistant starch (RS) can potentially prevent type 2 diabetes through the modulation of intestinal microbiota and microbial metabolites. Currently, it has been wildly noted that altering the intestinal microbial composition and short-chain fatty acids levels can achieve therapeutic effects, although the specific mechanisms were rarely elucidated. This review systematically explores the structural characteristics of different RS, analyzes the cross-feeding mechanism utilized by intestinal microbiota, and outlines the pathways and targets of butyrate, a primary microbial metabolite, for treating diabetes. Different RS types may have a unique impact on microbiota composition and their cross-feeding, thus exploring regulatory mechanisms of RS on diabetes through intestinal flora interaction and their metabolites could pave the way for more effective treatment outcomes for host health. Furthermore, by understanding the mechanisms of strain-level cross-feeding and metabolites of RS, precise dietary supplementation methods targeted at intestinal composition and metabolites can be achieved to improve T2DM.
Collapse
Affiliation(s)
- Xiaoqing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Ruoxin Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiahui Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruya Ji
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Xu Chen
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
4
|
Xu Y, Wen L, Tang Y, Zhao Z, Xu M, Wang T, Chen Z. Sodium butyrate activates the K ATP channels to regulate the mechanism of Parkinson's disease microglia model inflammation. Immun Inflamm Dis 2024; 12:e1194. [PMID: 38501544 PMCID: PMC10949401 DOI: 10.1002/iid3.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder. Microglia-mediated neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. Activation of adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels can protect dopaminergic neurons from damage. Sodium butyrate (NaB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury and regulates the KATP channels in islet β cells. In this study, we aimed to verify the anti-inflammatory effect of NaB on PD and further explored potential molecular mechanisms. METHODS We established an in vitro PD model in BV2 cells using 1-methyl-4-phenylpyridinium (MPP+ ). The effects of MPP+ and NaB on BV2 cell viability were detected by cell counting kit-8 assays. The morphology of BV2 cells with or without MPP+ treatment was imaged via an optical microscope. The expression of Iba-1 was examined by the immunofluorescence staining. The intracellular ATP content was estimated through the colorimetric method, and Griess assay was conducted to measure the nitric oxide production. The expression levels of pro-inflammatory cytokines and KATP channel subunits were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analysis. RESULTS NaB (5 mM) activated the KATP channels through elevating Kir6.1 and Kir6.1 expression in MPP+ -challenged BV2 cells. Both NaB and pinacidil (a KATP opener) suppressed the MPP+ -induced activation of BV2 cells and reduced the production of nitrite and pro-inflammatory cytokines in MPP+ -challenged BV2 cells. CONCLUSION NaB treatment alleviates the MPP+ -induced inflammatory responses in microglia via activation of KATP channels.
Collapse
Affiliation(s)
- Ye Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Laofu Wen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yunyi Tang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhenqiang Zhao
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Miaojing Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tan Wang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhibin Chen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| |
Collapse
|
5
|
Pedersen SS, Ingerslev LR, Olsen M, Prause M, Billestrup N. Butyrate functions as a histone deacetylase inhibitor to protect pancreatic beta cells from IL-1β-induced dysfunction. FEBS J 2024; 291:566-583. [PMID: 37985375 DOI: 10.1111/febs.17005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Butyrate, a gut microbial metabolite, has beneficial effects on glucose homeostasis and has become an attractive drug candidate for type 2 diabetes (T2D). Recently, we showed that butyrate protects pancreatic beta cells against cytokine-induced dysfunction. In this study, we explored the underlying mechanisms of butyrate action. Pancreatic mouse islets were exposed to a non-cytotoxic concentration of interleukin-1β (IL-1β) for 10 days to mimic low-grade inflammation in T2D. Similar to the effect of butyrate, an isoform-selective histone deacetylase 3 (HDAC3) inhibitor normalized IL-1β-reduced glucose-stimulated insulin secretion and insulin content. In contrast, free fatty acid receptor 2 and 3 (FFAR2/3) agonists failed to normalize IL-1β-induced beta cell dysfunction. Furthermore, butyrate inhibited HDAC activity and increased the acetylation of histone H3 and H4 by 3- and 10-fold, respectively. Genome-wide analysis of histone H3 lysine 27 acetylation (H3K27ac) revealed that butyrate mainly increased H3K27ac at promoter regions (74%), while H3K27ac peaks regulated by IL-1β were more equally distributed at promoters (38%), introns (23%) and intergenic regions (23%). Gene ontology analysis showed that butyrate increased IL-1β-reduced H3K27ac levels near several genes related to hormone secretion and reduced IL-1β-increased H3K27ac levels near genes associated with inflammatory responses. Butyrate alone increased H3K27ac near many genes related to MAPK signaling, hormone secretion, and differentiation, and decreased H3K27ac at genes involved in cell replication. Together, these results suggest that butyrate prevents IL-1β-induced pancreatic islet dysfunction by inhibition of HDACs resulting in changes in H3K27ac levels at genes relevant for beta cell function and inflammatory responses.
Collapse
Affiliation(s)
- Signe Schultz Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mathias Olsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michala Prause
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Vandenbempt V, Eski SE, Brahma MK, Li A, Negueruela J, Bruggeman Y, Demine S, Xiao P, Cardozo AK, Baeyens N, Martelotto LG, Singh SP, Mariño E, Gysemans C, Gurzov EN. HAMSAB diet ameliorates dysfunctional signaling in pancreatic islets in autoimmune diabetes. iScience 2024; 27:108694. [PMID: 38213620 PMCID: PMC10783594 DOI: 10.1016/j.isci.2023.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
An altered gut microbiota is associated with type 1 diabetes (T1D), affecting the production of short-chain fatty acids (SCFA) and glucose homeostasis. We previously demonstrated that enhancing serum acetate and butyrate using a dietary supplement (HAMSAB) improved glycemia in non-obese diabetic (NOD) mice and patients with established T1D. The effects of SCFA on immune-infiltrated islet cells remain to be clarified. Here, we performed single-cell RNA sequencing on islet cells from NOD mice fed an HAMSAB or control diet. HAMSAB induced a regulatory gene expression profile in pancreas-infiltrated immune cells. Moreover, HAMSAB maintained the expression of β-cell functional genes and decreased cellular stress. HAMSAB-fed mice showed preserved pancreatic endocrine cell identity, evaluated by decreased numbers of poly-hormonal cells. Finally, SCFA increased insulin levels in human β-like cells and improved transplantation outcome in NOD/SCID mice. Our findings support the use of metabolite-based diet as attractive approach to improve glucose control in T1D.
Collapse
Affiliation(s)
- Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Sema Elif Eski
- IRIBHM, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Manoja K. Brahma
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Ao Li
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Ylke Bruggeman
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Campus Gasthuisberg O&N 1, KU Leuven, 3000 Leuven, Belgium
| | - Stéphane Demine
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Peng Xiao
- Inflammatory and Cell Death Signaling in Diabetes group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Alessandra K. Cardozo
- Inflammatory and Cell Death Signaling in Diabetes group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Nicolas Baeyens
- Laboratoire de Physiologie et de Pharmacologie, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Luciano G. Martelotto
- Single Cell and Spatial-Omics Laboratory, Adelaide Centre of Epigenetics, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Eliana Mariño
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, VIC 3800, Australia
- ImmunoBiota Therapeutics Pty Ltd, Melbourne, VIC 3187, Australia
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Campus Gasthuisberg O&N 1, KU Leuven, 3000 Leuven, Belgium
| | - Esteban N. Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
7
|
Sun X, Xi Y, Yan M, Sun C, Tang J, Dong X, Yang Z, Wu L. Lactiplantibacillus plantarum NKK20 Increases Intestinal Butyrate Production and Inhibits Type 2 Diabetic Kidney Injury through PI3K/Akt Pathway. J Diabetes Res 2023; 2023:8810106. [PMID: 38162631 PMCID: PMC10757665 DOI: 10.1155/2023/8810106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
Nephropathy injury is a prevalent complication observed in individuals with diabetes, serving as a prominent contributor to end-stage renal disease, and the advanced glycation products (AGEs) are important factors that induce kidney injury in patients with diabetes. Addressing this condition remains a challenging aspect in clinical practice. The aim of this study was to explore the effects of Lactiplantibacillus plantarum NKK20 strain (NKK20) which protects against diabetic kidney disease (DKD) based on animal and cell models. The results showed that the NKK20 can significantly reduce renal inflammatory response, serum oxidative stress response, and AGE concentration in diabetic mice. After treatment with NKK20, the kidney damage of diabetic mice was significantly improved, and more importantly, the concentration of butyrate, a specific anti-inflammatory metabolite of intestinal flora in the stool of diabetic mice, was significantly increased. In addition, nontargeted metabolomics analysis showed a significant difference between the metabolites in the mouse serum contents of the NKK20 administration group and those in the nephropathy injury group, in which a total of 24 different metabolites that were significantly affected by NKK20 were observed, and these metabolites were mainly involved in glycerophospholipid metabolism and arachidonic acid metabolism. Also, the administration of butyrate to human kidney- (HK-) 2 cells that were stimulated by AGEs resulted in a significant upregulation of ZO-1, Occludin, and E-cadherin gene expressions and downregulation of α-SMA gene expression. This means that butyrate can maintain the tight junction structure of HK-2 cells and inhibit fibrosis. Butyrate also significantly inhibited the activation of PI3K/Akt pathway. These results indicate that NKK20 can treat kidney injury in diabetic mice by reducing blood glucose and AGE concentration and increasing butyrate production in the intestine. By inhibiting PI3K pathway activation in HK-2 cells, butyrate maintains a tight junction structure of renal tubule epithelial cells and inhibits renal tissue fibrosis. These results suggest that NKK20 is helpful to prevent and treat the occurrence and aggravation of diabetic kidney injury.
Collapse
Affiliation(s)
- Xiaohong Sun
- Department of Clinical Laboratory, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng 210008, China
| | - Yue Xi
- Medical Laboratory Department, Huai'an Second People's Hospital, Huai'an 223022, China
| | - Man Yan
- Department of Clinical Laboratory, Zhenjiang City Central Blood Station, Zhenjiang 212399, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Chang Sun
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xueyun Dong
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhengnan Yang
- Department of Clinical Laboratory, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng 210008, China
| | - Liang Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Austin GO, Tomas A. Variation in responses to incretin therapy: Modifiable and non-modifiable factors. Front Mol Biosci 2023; 10:1170181. [PMID: 37091864 PMCID: PMC10119428 DOI: 10.3389/fmolb.2023.1170181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Type 2 diabetes (T2D) and obesity have reached epidemic proportions. Incretin therapy is the second line of treatment for T2D, improving both blood glucose regulation and weight loss. Glucagon-like peptide-1 (GLP-1) and glucose-stimulated insulinotropic polypeptide (GIP) are the incretin hormones that provide the foundations for these drugs. While these therapies have been highly effective for some, the results are variable. Incretin therapies target the class B G protein-coupled receptors GLP-1R and GIPR, expressed mainly in the pancreas and the hypothalamus, while some therapeutical approaches include additional targeting of the related glucagon receptor (GCGR) in the liver. The proper functioning of these receptors is crucial for incretin therapy success and here we review several mechanisms at the cellular and molecular level that influence an individual's response to incretin therapy.
Collapse
Affiliation(s)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol 2023; 20:341-350. [PMID: 36854801 PMCID: PMC10066346 DOI: 10.1038/s41423-023-00987-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Immune tolerance deletes or suppresses autoreactive lymphocytes and is established at multiple levels during the development, activation and effector phases of T and B cells. These mechanisms are cell-intrinsically programmed and critical in preventing autoimmune diseases. We have witnessed the existence of another type of immune tolerance mechanism that is shaped by lifestyle choices, such as diet, microbiome and microbial metabolites. Short-chain fatty acids (SCFAs) are the most abundant microbial metabolites in the colonic lumen and are mainly produced by the microbial fermentation of prebiotics, such as dietary fiber. This review focuses on the preventive and immunomodulatory effects of SCFAs on autoimmunity. The tissue- and disease-specific effects of dietary fiber, SCFAs and SCFA-producing microbes on major types of autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and lupus, are discussed. Additionally, their key regulatory mechanisms for lymphocyte development, tissue barrier function, host metabolism, immunity, autoantibody production, and inflammatory effector and regulatory lymphocytes are discussed. The shared and differential effects of SCFAs on different types and stages of autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Rosli NSA, Abd Gani S, Khayat ME, Zaidan UH, Ismail A, Abdul Rahim MBH. Short-chain fatty acids: possible regulators of insulin secretion. Mol Cell Biochem 2023; 478:517-530. [PMID: 35943655 DOI: 10.1007/s11010-022-04528-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The benefits of gut microbiota-derived short-chain fatty acids (SCFAs) towards health and metabolism have been emerging since the past decade. Extensive studies have been carried out to understand the mechanisms responsible in initiating the functionalities of these SCFAs towards body tissues, which greatly involves the SCFA-specific receptors free fatty acid receptor 2 (FFAR2) and free fatty acid receptor 3 (FFAR3). This review intends to discuss the potential of SCFAs particularly in regulating insulin secretion in pancreatic β-cells, by explaining the production of SCFAs in the gut, the fate of each SCFAs after their production, involvement of FFAR2 and FFAR3 signalling mechanisms and their impacts on insulin secretion. Increased secretion of insulin after SCFAs treatments were reported in many studies, but contradicting evidence also exist in several other studies. Hence, no clear consensus was achieved in determining the true potential of SCFA in regulating insulin secretion. In this review, we explore how such differences were possible and hopefully be able to shed some perspectives in understanding SCFAs-signalling behaviour and preferences.
Collapse
Affiliation(s)
- Nur Suraya Ashikin Rosli
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shafinaz Abd Gani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Badrin Hanizam Abdul Rahim
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia. .,Institut Biosains, NaturMeds, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
van Deuren T, Smolders L, Hartog A, Bouwman FG, Holst JJ, Venema K, Blaak EE, Canfora EE. Butyrate and hexanoate-enriched triglycerides increase postprandrial systemic butyrate and hexanoate in men with overweight/obesity: A double-blind placebo-controlled randomized crossover trial. Front Nutr 2023; 9:1066950. [PMID: 36687671 PMCID: PMC9846253 DOI: 10.3389/fnut.2022.1066950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background Short chain fatty acids (SCFA) are increasingly recognized for their potential ability to alleviate obesity-associated chronic low-grade inflammation and disturbed energy homeostasis. Evidence suggests that an increase in circulating SCFA might be necessary to induce beneficial alterations in energy metabolism. Objective To compare the bioaccessibility of two different SCFA-enriched triglycerides: Akovita SCT (butyrate and hexanoate esterified with long chain fatty acids) and tributyrin/caproin (solely butyrate and hexanoate) and investigate whether the SCFA from orally administrated Akovita SCT reach the circulation and affect postprandial metabolism in men with overweight/obesity. Methods The site, speed, and amount of SCFA release from Akovita SCT and tributyrin/caproin were assessed in a validated In vitro Model of the stomach and small intestine (TIM-1). Subsequently, a double-blind placebo-controlled randomized crossover study was conducted at Maastricht University with fourteen men with overweight/obesity (BMI 25-35 kg/m2) of which twelve men finished all testdays and were included for analysis. The participants received a liquid high fat mixed meal test containing either a low (650 mg), medium (1,325 mg), or high dose (2,000 mg) of Akovita SCT or a placebo (sunflower oil) in randomized order. Blood was sampled at baseline and after ingestion for 6 h for the primary outcome plasma butyrate and hexanoate concentration. Secondary outcomes included hydrogen breath, appetite, gastrointestinal complaints, circulating glucagon-like peptide 1, free fatty acids, glucose, triglycerides, insulin, and cytokines concentrations. Results In TIM-1, tributyrin/caproin was rapidly cleaved in the gastric compartment whereas the release of SCFA from Akovita SCT occurred predominantly in the small intestine. In vivo, all doses were well-tolerated. The medium dose increased (P < 0.05) and the high dose tended to increase (P < 0.10) postprandial circulating butyrate and both doses increased circulating hexanoate (P < 0.05) compared to placebo. Nevertheless, Akovita SCT supplementation did not affect any secondary outcomes compared to placebo. Conclusion Esterifying SCFA-enriched triglycerides with long chain fatty acids delayed SCFA release from the glycerol backbone. Akovita SCT increased postprandial circulating butyrate and hexanoate without changing metabolic parameters in men with overweight/obesity. Future randomized clinical trials should investigate whether long-term Akovita SCT supplementation can aid in the treatment or prevention of metabolic disorders. Clinical trial registration www.ClinicalTrials.gov, identifier: NCT04662411.
Collapse
Affiliation(s)
- Thirza van Deuren
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Lotte Smolders
- AAK, Department of Biotechnology and Nutrition, AAK Netherlands BV, Zaandijk, Netherlands
| | - Anita Hartog
- AAK, Department of Biotechnology and Nutrition, AAK Netherlands BV, Zaandijk, Netherlands
| | - Freek G. Bouwman
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jens J. Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University, Venlo, Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emanuel E. Canfora
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands,*Correspondence: Emanuel E. Canfora ✉
| |
Collapse
|
12
|
Mayorga-Ramos A, Barba-Ostria C, Simancas-Racines D, Guamán LP. Protective role of butyrate in obesity and diabetes: New insights. Front Nutr 2022; 9:1067647. [PMID: 36505262 PMCID: PMC9730524 DOI: 10.3389/fnut.2022.1067647] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Studies in human microbiota dysbiosis have shown that short-chain fatty acids (SCFAs) like propionate, acetate, and particularly butyrate, positively affect energy homeostasis, behavior, and inflammation. This positive effect can be demonstrated in the reduction of butyrate-producing bacteria observed in the gut microbiota of individuals with type 2 diabetes (T2DM) and other energy-associated metabolic alterations. Butyrate is the major end product of dietary fiber bacterial fermentation in the large intestine and serves as the primary energy source for colonocytes. In addition, it plays a key role in reducing glycemia and improving body weight control and insulin sensitivity. The major mechanisms involved in butyrate regulation include key signaling pathways such as AMPK, p38, HDAC inhibition, and cAMP production/signaling. Treatment strategies using butyrate aim to increase its intestine levels, bioavailability, and improvement in delivery either through direct supplementation or by increasing dietary fiber in the diet, which ultimately generates a higher production of butyrate in the gut. In the final part of this review, we present a summary of the most relevant studies currently being carried out in humans.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica (CENBIO), Universidad UTE, Quito, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Daniel Simancas-Racines
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Linda P. Guamán
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica (CENBIO), Universidad UTE, Quito, Ecuador,*Correspondence: Linda P. Guamán,
| |
Collapse
|
13
|
Jiang X, Sun B, Zhou Z. Preclinical Studies of Natural Products Targeting the Gut Microbiota: Beneficial Effects on Diabetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8569-8581. [PMID: 35816090 DOI: 10.1021/acs.jafc.2c02960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a serious metabolic disease characterized by persistent hyperglycemia, with a continuously increasing morbidity and mortality. Although traditional treatments including insulin and oral hypoglycemic drugs maintain blood glucose levels within the normal range to a certain extent, there is an urgent need to develop new drugs that can effectively improve glucose metabolism and diabetes-related complications. Notably, accumulated evidence implicates that the gut microbiota is unbalanced in DM individuals and is involved in the physiological and pathological processes of this metabolic disease. In this review, we introduce the molecular mechanisms by which the gut microbiota contributes to the development of DM. Furthermore, we summarize the preclinical studies of bioactive natural products that exert antidiabetic effects by modulating the gut microbiota, aiming to expand the novel therapeutic strategies for DM prevention and management.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao 266000, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
14
|
Pedersen SS, Prause M, Williams K, Barrès R, Billestrup N. Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells. J Biol Chem 2022; 298:102312. [PMID: 35921894 PMCID: PMC9428856 DOI: 10.1016/j.jbc.2022.102312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022] Open
Abstract
Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.
Collapse
|
15
|
Martínez-Montoro JI, Damas-Fuentes M, Fernández-García JC, Tinahones FJ. Role of the Gut Microbiome in Beta Cell and Adipose Tissue Crosstalk: A Review. Front Endocrinol (Lausanne) 2022; 13:869951. [PMID: 35634505 PMCID: PMC9133559 DOI: 10.3389/fendo.2022.869951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decades, obesity has reached epidemic proportions worldwide. Obesity is a chronic disease associated with a wide range of comorbidities, including insulin resistance and type 2 diabetes mellitus (T2D), which results in significant burden of disease and major consequences on health care systems. Of note, intricate interactions, including different signaling pathways, are necessary for the establishment and progression of these two closely related conditions. Altered cell-to-cell communication among the different players implicated in this equation leads to the perpetuation of a vicious circle associated with an increased risk for the development of obesity-related complications, such as T2D, which in turn contributes to the development of cardiovascular disease. In this regard, the dialogue between the adipocyte and pancreatic beta cells has been extensively studied, although some connections are yet to be fully elucidated. In this review, we explore the potential pathological mechanisms linking adipocyte dysfunction and pancreatic beta cell impairment/insulin resistance. In addition, we evaluate the role of emerging actors, such as the gut microbiome, in this complex crosstalk.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- *Correspondence: José Ignacio Martínez-Montoro, ; Francisco J. Tinahones,
| | - Miguel Damas-Fuentes
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Carlos Fernández-García
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: José Ignacio Martínez-Montoro, ; Francisco J. Tinahones,
| |
Collapse
|