1
|
Ni G, Jia Q, Li Y, Cheang I, Zhu X, Zhang H, Li X. Association of Life's Essential 8 with abdominal aortic calcification and mortality among middle-aged and older individuals. Diabetes Obes Metab 2024; 26:5126-5137. [PMID: 39165042 DOI: 10.1111/dom.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
AIM To assess the association of Life's Essential 8 (LE8) and the presence of abdominal aortic calcification (AAC) with mortality among middle-aged and older individuals. METHODS Participants aged older than 40 years were enrolled from the National Health and Nutrition Examination Survey 2013-2014. AAC was assessed using dual-energy X-ray absorptiometry. Mortality data were ascertained through linkage with the National Death Index until 31 December 2019. The LE8 score incorporates eight components: diet, physical activity, nicotine exposure, sleep health, body mass index, blood lipids, blood glucose and blood pressure. The total LE8 score, an unweighted average of all components, was categorized into low (0-49), medium (50-79) and high (80-100) scores. RESULTS This study included 2567 individuals, with a mean LE8 score of 67.28 ± 0.48 and an AAC prevalence of 28.28%. Participants with low LE8 scores showed a significantly higher prevalence of AAC (odds ratio = 2.12 [1.12-4.19]) compared with those with high LE8 scores. Over a median 6-year follow-up, there were 222 all-cause deaths, and 55 cardiovascular deaths occurred. Participants with AAC had an increased risk of all-cause (hazard ratio [HR] = 2.17 [1.60-2.95]) and cardiovascular (HR = 2.35 [1.40-3.93]) mortality. Moreover, individuals with AAC and low or medium LE8 scores exhibited a 137% (HR = 2.37 [1.58-3.54]) and 119% (HR = 2.19 [1.61-2.99]) higher risk of all-cause mortality, as well as a 224% (HR = 3.24 [1.73-6.04]) and 125% (HR = 2.25 [1.24-4.09]) increased risk of cardiovascular mortality, respectively. CONCLUSIONS The LE8 score correlates with AAC prevalence in middle-aged and older individuals and serves as a valuable tool for evaluating the risk of all-cause and cardiovascular mortality in individuals with AAC.
Collapse
Affiliation(s)
- Gehui Ni
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Qinfeng Jia
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Suzhou, China
| | - Ying Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Iokfai Cheang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xu Zhu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Haifeng Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Suzhou, China
| | - Xinli Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
2
|
Liu WW, Liu ML. Vascular Calcification: Where is the Cure? CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2024; 39:198-210. [PMID: 39229794 DOI: 10.24920/004367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the progress of aging, the incidence of vascular calcification (VC) gradually increases, which is correlated with cardiovascular events and all-cause death, aggravating global clinical burden. Over the past several decades, accumulating approaches targeting the underlying pathogenesis of VC have provided some possibilities for the treatment of VC. Unfortunately, none of the current interventions have achieved clinical effectiveness on reversing or curing VC. The purpose of this review is to make a summary of novel perspectives on the interventions of VC and provide reference for clinical decision-making.
Collapse
Affiliation(s)
- Wen-Wen Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
| | - Mei-Lin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China. ,
| |
Collapse
|
3
|
Zhu Y, Lai Y, Hu Y, Fu Y, Zhang Z, Lin N, Huang W, Zheng L. The mechanisms underlying acute myocardial infarction in chronic kidney disease patients undergoing hemodialysis. Biomed Pharmacother 2024; 177:117050. [PMID: 38968794 DOI: 10.1016/j.biopha.2024.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death in chronic kidney disease (CKD). Hemodialysis is one of the main treatments for patients with end-stage kidney disease. Epidemiological data has shown that acute myocardial infarction (AMI) accounts for the main reason for death in patients with CKD under hemodialysis therapy. Immune dysfunction and changes in metabolism (including a high level of inflammatory cytokines, a disorder of lipid and mineral ion homeostasis, accumulation of uremic toxins et al.) during CKD can deteriorate stability of atherosclerotic plaque and promote vascular calcification, which are exactly the pathophysiological mechanisms underlying the occurrence of AMI. Meanwhile, the hemodialysis itself also has adverse effects on lipoprotein, the immune system and hemodynamics, which contribute to the high incidence of AMI in these patients. This review aims to summarize the mechanisms and further promising methods of prevention and treatment of AMI in CKD patients undergoing hemodialysis, which can provide an excellent paradigm for exploring the crosstalk between the kidney and cardiovascular system.
Collapse
Affiliation(s)
- Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Yuchen Lai
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuxuan Hu
- Hubei University of Science and Technology, Xianning 437100, China
| | - Yiwen Fu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zheng Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Nan Lin
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350013, China
| | - Wei Huang
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| |
Collapse
|
4
|
Veloso MP, Coelho VA, Sekercioglu N, Moyses RMA, Elias RM. Phosphate is associated with frailty in older patients with chronic kidney disease not on dialysis. Int Urol Nephrol 2024; 56:2725-2731. [PMID: 38498271 DOI: 10.1007/s11255-024-03985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Frailty is common in older patients with chronic kidney disease (CKD) and has been considered an independent risk factor for adverse clinical outcomes in this population. CKD-associated mineral and bone metabolism (CKD-MBD) increases energy expenditure and causes malnutrition and inflammation leading to frailty. We investigated whether CKD-MBD markers and energy metabolism are associated with frailty in patients with advanced CKD on conservative management. METHODS In this cross-sectional study, we investigated factors associated with frailty in a sample of 75 patients ≥ 65 years, with stage 4 or 5 CKD. Collected data included age, sex, body mass index, physical activity status, educational level, Charlson Comorbidity Index, and laboratory markers. Frailty was evaluated according to Fried's classification. RESULTS Frailty was observed in 51.3% and pre-frailty in 47.3%. The frail population was significantly older, with a high proportion of females, more inactive, had lower educational levels, spent a long time sitting throughout the day, and had higher phosphate and fibroblast growth factor 21 (FGF-21). In the multivariate logistic analysis age (odds ratio 1.13, p = 0.026) and phosphate (odds ratio 3.38, p = 0.021) remained independently associated with frailty. CONCLUSION Serum phosphate seems to be a toxin associated with the frailty phenotype in older patients with CKD. Whether strategies to decrease serum phosphate would reduce the risk of frailty in this population deserves further evaluation.
Collapse
Affiliation(s)
- Mariana P Veloso
- Department of Medicine. Nephrology Service. Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo., São Paulo, Brazil
| | - Venceslau A Coelho
- Department of Medicine. Geriatric Division. Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Nigar Sekercioglu
- Department of Health Evidence and Impact, McMaster University, Hamilton, Canada
- Department of Medicine, Division of Nephrology, Health Sciences University, Istanbul, Turkey
| | - Rosa M A Moyses
- Department of Medicine. Nephrology Service. Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo., São Paulo, Brazil
| | - Rosilene M Elias
- Department of Medicine. Nephrology Service. Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo., São Paulo, Brazil.
- Universidade Nove de Julho. UNINOVE, São Paulo, Brazil.
| |
Collapse
|
5
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
6
|
Lu KC, Hung KC, Liao MT, Shih LJ, Chao CT. Vascular Calcification Heterogeneity from Bench to Bedside: Implications for Manifestations, Pathogenesis, and Treatment Considerations. Aging Dis 2024:AD.2024.0289. [PMID: 38739930 DOI: 10.14336/ad.2024.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
Vascular calcification (VC) is the ectopic deposition of calcium-containing apatite within vascular walls, exhibiting a high prevalence in older adults, and those with diabetes or chronic kidney disease. VC is a subclinical cardiovascular risk trait that increases mortality and functional deterioration. However, effective treatments for VC remain largely unavailable despite multiple attempts. Part of this therapeutic nihilism results from the failure to appreciate the diversity of VC as a pathological complex, with unforeseeable variations in morphology, risk associates, and anatomical and molecular pathogenesis, affecting clinical management strategies. VC should not be considered a homogeneous pathology because accumulating evidence refutes its conceptual and content uniformity. Here, we summarize the pathophysiological sources of VC heterogeneity from the intersecting pathways and networks of cellular, subcellular, and molecular crosstalk. Part of these pathological connections are synergistic or mutually antagonistic. We then introduce clinical implications related to the VC heterogeneity concept. Even within the same individual, a specific artery may exhibit the strongest tendency for calcification compared with other arteries. The prognostic value of VC may only be detectable with a detailed characterization of calcification morphology and features. VC heterogeneity is also evident, as VC risk factors vary between different arterial segments and layers. Therefore, diagnostic and screening strategies for VC may be improved based on VC heterogeneity, including the use of radiomics. Finally, pursuing a homogeneous treatment strategy is discouraged and we suggest a more rational approach by diversifying the treatment spectrum. This may greatly benefit subsequent efforts to identify effective VC therapeutics.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Kuo-Chin Hung
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Hsinchu Branch, Hsinchu, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Ter Chao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
- Center of Faculty Development, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Lee SY, Chao CT, Han DS, Chiang CK, Hung KY. A combined circulating microRNA panel predicts the risk of vascular calcification in community-dwelling older adults with age strata differences. Arch Gerontol Geriatr 2024; 120:105333. [PMID: 38262252 DOI: 10.1016/j.archger.2024.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Older adults have a higher risk of developing vascular calcification (VC). Circulating miRNAs can be potential risk indicators. However, prior studies used single miRNA mostly, whereas miRNA panels were rarely evaluated. We aimed to examine whether a miRNA panel outperformed each miRNA alone, and analyzed whether advanced age affected VC risk predictive performance offered by the miRNA panel. METHODS We prospectively enrolled older adults (age ≥65 years) during their annual health checkup in 2017, and examined their VC severity followed by analyzing sera for VC regulatory miRNAs (miR-125b-5p, miR-125b-3p, and miR-378a-3p). We used multiple regression analyses to determine associations between each miRNA or a 3-combind panel and VC risk, followed by area under the receiver-operating-characteristics curve (AUROC) analysis. Participants were further divided to those of 65-75 and ≥75 years for comparison. RESULTS From 199 older adults screened, 169 (median age, 73.3 years) with available calcification assessment were analyzed, among whom 74.6 % having VC. Those with VC had significantly lower circulating miR-125b-5p, miR-125b-3p, and miR-378a-3p levels than those without. Regression analyses showed that the 3-combined miRNA panel exhibited significant associations with VC risk, with significantly higher AUROC than those of models based on individual miRNA. Importantly, in those ≥75 years, the miRNA-predicted risk of VC was more prominent than that in the 65-75 years group. CONCLUSION A miRNA panel for VC risk prediction might outperform individual miRNA alone in older adults, and advanced age modified the association between circulating miRNAs and the risk of VC.
Collapse
Affiliation(s)
- Szu-Ying Lee
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Yunlin branch, Yunlin County, Taiwan; Division of Nephrology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Ter Chao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan City, Taiwan.
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Integrative diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuan-Yu Hung
- Division of Nephrology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| |
Collapse
|
8
|
Ballester-Servera C, Alonso J, Cañes L, Vázquez-Sufuentes P, García-Redondo AB, Rodríguez C, Martínez-González J. Lysyl Oxidase in Ectopic Cardiovascular Calcification: Role of Oxidative Stress. Antioxidants (Basel) 2024; 13:523. [PMID: 38790628 PMCID: PMC11118817 DOI: 10.3390/antiox13050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lysyl oxidase (LOX)-mediated extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease; however, this enzyme also induces oxidative stress. We addressed the contribution of LOX-dependent oxidative stress to cardiovascular calcification. LOX is upregulated in human-calcified atherosclerotic lesions and atheromas from atherosclerosis-challenged LOX transgenic mice (TgLOXVSMC) and colocalized with a marker of oxidative stress (8-oxo-deoxyguanosine) in vascular smooth muscle cells (VSMCs). Similarly, in calcific aortic valves, high LOX expression was detected in valvular interstitial cells (VICs) positive for 8-oxo-deoxyguanosine, while LOX and LOXL2 expression correlated with osteogenic markers (SPP1 and RUNX2) and NOX2. In human VICs, mito-TEMPO and TEMPOL attenuated the increase in superoxide anion levels and the mineralization induced by osteogenic media (OM). Likewise, in OM-exposed VICs, β-aminopropionitrile (a LOX inhibitor) ameliorated both oxidative stress and calcification. Gain- and loss-of-function approaches in VICs demonstrated that while LOX silencing negatively modulates oxidative stress and calcification induced by OM, lentiviral LOX overexpression exacerbated oxidative stress and VIC calcification, effects that were prevented by mito-TEMPO, TEMPOL, and β-aminopropionitrile. Our data indicate that LOX-induced oxidative stress participates in the procalcifying effects of LOX activity in ectopic cardiovascular calcification, and highlight the multifaceted role played by LOX isoenzymes in cardiovascular diseases.
Collapse
Affiliation(s)
- Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Paula Vázquez-Sufuentes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Ana B. García-Redondo
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (C.B.-S.); (J.A.); (P.V.-S.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| |
Collapse
|
9
|
Chao CT, Liao MT, Wu CK. Aortic arch calcification increases major adverse cardiac event risk, modifiable by echocardiographic left ventricular hypertrophy, in end-stage kidney disease patients. Ther Adv Chronic Dis 2024; 15:20406223231222817. [PMID: 38213832 PMCID: PMC10777800 DOI: 10.1177/20406223231222817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Background The factors affecting cardiovascular risk associated with vascular calcification in patients with chronic kidney disease are less well addressed. Distinct risk factors may contribute synergistically to this elevated cardiovascular risk in this population. Objectives We aimed to determine whether echocardiographic left ventricular hypertrophy (LVH) affects the risk of major adverse cardiac events (MACE) associated with vascular calcification in end-stage kidney disease (ESKD) patients. Methods In this retrospective cohort study, ESKD patients underwent chest radiography and echocardiography to assess aortic arch calcification (AoAC) and LVH, respectively, and were classified into three groups accordingly: non-to-mild AoAC without LVH, non-to-mild AoAC with LVH, and moderate-to-severe AoAC. The risks of MACE, cardiovascular mortality, and overall mortality were assessed using Cox proportional hazard analysis. Results Of the 283 enrolled ESKD patients, 44 (15.5%) had non-to-mild AoAC without LVH, 117 (41.3%) had non-to-mild AoAC with LVH, and 122 (43.1%) had moderate-to-severe AoAC. After 34.1 months, 107 (37.8%) participants developed MACE, including 6 (13.6%), 40 (34.2%), and 61 (50%) from each respective group. Those with moderate-to-severe AoAC (Hazard ratio, 3.72; 95% confidence interval, 1.58-8.73) had a significantly higher risk of MACE than did those with non-to-mild AoAC without LVH or with non-to-mild AoAC and LVH (Hazard ratio, 2.73; 95% confidence interval, 1.16-6.46). A similar trend was observed for cardiovascular and overall mortality. Conclusion Echocardiographic LVH could modify the risk of adverse cardiovascular events associated with vascular calcification in ESKD patients. Interventions aiming to ameliorate both morbidities might be translated into a lower MACE risk in this population.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Neprology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Taoyuan, Taiwan
| | - Chung-Kuan Wu
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, NO.95, Wen-Chang Road, Shih-Lin District, Taipei 111, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
10
|
Lu X, He Z, Xiao X, Wei X, Song X, Zhang S. Natural Antioxidant-Based Nanodrug for Atherosclerosis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303459. [PMID: 37607320 DOI: 10.1002/smll.202303459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Natural antioxidants are always considered as candidates for the antioxidative therapy of atherosclerosis (AS) due to their good safety profile. However, restricted to their limited reactive oxygen species (ROS) elimination and rapid metabolism, the natural antioxidants' treatment suffers from the undesirable clinical outcomes. Herein, a new natural antioxidant-based nanodrug (VC@cLAVs) that can overcome above issues is developed to treat AS by loading natural antioxidant vitamin C (VC) into the natural antioxidant lipoic acid (LA)-constructed cross-linked vesicles. This integration not only greatly increases the blood half-life of natural antioxidants, but also amplifies the antioxidation capacity by the mutual recycling of two redox pairs LA/DHLA (reduced form of LA) and VC/DHA (oxidized form of VC). In vivo results disclose that VC@cLAVs decreases the apolipoprotein E-deficient mice's plaque area from 52% to 13%, much lower than those of free VC (≈45%) and LA (≈38%). This natural antioxidant-based nanodrug holds great potential in clinics.
Collapse
Affiliation(s)
- Xiaoluan Lu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610064, China
| | - Xiao Xiao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Xuelian Wei
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, 610064, China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
11
|
Wei X, Shen Z, Zhu M, Fang M, Wang S, Zhang T, Zhang B, Yang X, Lv Z, Duan Y, Jiang M, Ma C, Li Q, Chen Y. The pterostilbene-dihydropyrazole derivative Ptd-1 ameliorates vascular calcification by regulating inflammation. Int Immunopharmacol 2023; 125:111198. [PMID: 37952482 DOI: 10.1016/j.intimp.2023.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Vascular calcification is an independent risk factor for cardiovascular disease. However, there is still a lack of adequate treatment. This study aimed to examine the potential of (E)-1-(5-(2-(4-fluorobenzyloxy)Styryl)-4,6-dimethoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-yl) ethyl ketone (Ptd-1) to alleviate vascular calcification. ApoE-deficient mice were fed a high-fat diet for 12/16 weeks to induce intimal calcification, and wild-type mice were induced with a combination of nicotine and vitamin D3 to induce medial calcification. Human aortic smooth muscle cells (HASMCs) and aortic osteogenic differentiation were induced in vitro with phosphate. In the mouse model of atherosclerosis, Ptd-1 significantly ameliorated the progression of atherosclerosis and intimal calcification, and there were significant reductions in lipid deposition and calcium salt deposition in the aorta and aortic root. In addition, Ptd-1 significantly improved medial calcification in vivo and osteogenic differentiation in vitro. Mechanistically, Ptd-1 reduced the levels of the inflammatory factors IL-1β, TNFα and IL-6 in vivo and in vitro. Furthermore, we demonstrated that Ptd-1 could attenuate the expression of p-ERK1/2 and β-catenin, and that the levels of inflammatory factors were elevated in the presence of ERK1/2 and β-catenin agonists. Interestingly, we determined that activation of the ERK1/2 pathway promoted β-catenin expression, which further regulated the IL-6/STAT3 signaling pathway. Ptd-1 blocked ERK1/2 signaling, leading to decreased expression of inflammatory factors, which in turn improved vascular calcification. Taken together, our study reveals that Ptd-1 ameliorates vascular calcification by regulating the production of inflammatory factors, providing new ideas for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Xiaoning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhenbao Shen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengyuan Fang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengnan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhilin Lv
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Qingshan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
12
|
Chao CT, Liao MT, Wu CK. Left Ventricular Hypertrophy Geometry and Vascular Calcification Co-Modify the Risk of Cardiovascular Mortality in Patients with End-Stage Kidney Disease: A Retrospective Cohort Study. J Atheroscler Thromb 2023; 30:1242-1254. [PMID: 36567124 PMCID: PMC10499460 DOI: 10.5551/jat.63870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/01/2022] [Indexed: 12/25/2022] Open
Abstract
AIM Patients with end-stage kidney disease (ESKD) have an unparalleled risk of left ventricular hypertrophy (LVH) and vascular calcification (VC), both of which introduce excessive cardiovascular risk. However, it remains unclear whether LVH geometry co-modulates cardiovascular outcomes with VC in this population. METHODS A retrospective cohort study was conducted. Patients with ESKD requiring chronic hemodialysis were identified from Shin Kong Wu Ho-Su Memorial Hospital between October and December 2018, with echocardiographic LVH geometry and aortic arch calcification (AoAC) determined. They were divided into four groups according to AoAC severity and eccentric or concentric LVH. We used Kaplan-Meier analysis and Cox proportional hazard regression to analyze their cardiovascular and all-cause mortality after multivariate adjustment. RESULTS Overall, 223 patients with ESKD with LVH were analyzed, among whom 29.1%, 23.3%, 25.1%, and 22.4% had non-to-mild AoAC with eccentric and concentric LVH and moderate-to-severe AoAC with eccentric and concentric LVH, respectively. After 3.5 years of follow-up, patients with ESKD with moderate-to-severe AoAC and concentric LVH had a significantly higher risk of cardiovascular mortality than those with non-to-mild AoAC and eccentric LVH (hazard ratio 3.35, p=0.002). However, those with moderate-to-severe AoAC but eccentric LVH did not have higher cardiovascular mortality. Similarly, patients with ESKD with moderate-to-severe AoAC and concentric LVH had a significantly higher all-cause mortality than those with non-to-mild AoAC and eccentric LVH, whereas the other two groups did not have higher risk. CONCLUSION LVH geometry could help stratify the risk of patients with ESKD when they had severe VC, and co-existing severe VC and concentric LVH aggravated cardiovascular risk.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Nephrology division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Chung-Kuan Wu
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
13
|
Brown TK, Alharbi S, Ho KJ, Jiang B. Prosthetic vascular grafts engineered to combat calcification: Progress and future directions. Biotechnol Bioeng 2023; 120:953-969. [PMID: 36544433 PMCID: PMC10023339 DOI: 10.1002/bit.28316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Calcification in prosthetic vascular conduits is a major challenge in cardiac and vascular surgery that compromises the long-term performance of these devices. Significant research efforts have been made to understand the etiology of calcification in the cardiovascular system and to combat calcification in various cardiovascular devices. Novel biomaterial design and tissue engineering strategies have shown promise in preventing or delaying calcification in prosthetic vascular grafts. In this review, we highlight recent advancements in the development of acellular prosthetic vascular grafts with preclinical success in attenuating calcification through advanced biomaterial design. We also discuss the mechanisms of action involved in the designs that will contribute to the further understanding of cardiovascular calcification. Lastly, recent insights into the etiology of vascular calcification will guide the design of future prosthetic vascular grafts with greater potential for translational success.
Collapse
Affiliation(s)
- Taylor K. Brown
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
| | - Sara Alharbi
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Karen J. Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bin Jiang
- Department of Biomedical Engineering, Northwestern University, Chicago, IL
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
14
|
The context-dependent role of transforming growth factor-β/miR-378a-3p/connective tissue growth factor in vascular calcification: a translational study. Aging (Albany NY) 2023; 15:830-845. [PMID: 36787443 PMCID: PMC9970315 DOI: 10.18632/aging.204518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Vascular calcification (VC) constitutes an important vascular pathology with prognostic importance. The pathogenic role of transforming growth factor-β (TGF-β) in VC remains unclear, with heterogeneous findings that we aimed to evaluate using experimental models and clinical specimens. METHODS Two approaches, exogenous administration and endogenous expression upon osteogenic media (OM) exposure, were adopted. Aortic smooth muscle cells (ASMCs) were subjected to TGF-β1 alone, OM alone, or both, with calcification severity determined. We evaluated miR-378a-3p and TGF-β1 effectors (connective tissue growth factor; CTGF) at different periods of calcification. Results were validated in an ex vivo model and further in sera from older adults without or with severe aortic arch calcification. RESULTS TGF-β1 treatment induced a significant dose-responsive increase in ASMC calcification without or with OM at the mature but not early or mid-term VC period. On the other hand, OM alone induced VC accompanied by suppressed TGF-β1 expressions over time; this phenomenon paralleled the declining miR-378a-3p and CTGF expressions since early VC. TGF-β1 treatment led to an upregulation of CTGF since early VC but not miR-378a-3p until mid-term VC, while miR-378a-3p overexpression suppressed CTGF expressions without altering TGF-β1 levels. The OM-induced down-regulation of TGF-β1 and CTGF was also observed in the ex vivo models, with compatible results identified from human sera. CONCLUSIONS We showed that TGF-β1 played a context-dependent role in VC, involving a time-dependent self-regulatory loop of TGF-β1/miR-378a-3p/CTGF signaling. Our findings may assist subsequent studies in devising potential therapeutics against VC.
Collapse
|
15
|
A Low Concentration of Citreoviridin Prevents Both Intracellular Calcium Deposition in Vascular Smooth Muscle Cell and Osteoclast Activation In Vitro. Molecules 2023; 28:molecules28041693. [PMID: 36838684 PMCID: PMC9967071 DOI: 10.3390/molecules28041693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Vascular calcification (VC) and osteoporosis are age-related diseases and significant risk factors for the mortality of elderly. VC and osteoporosis may share common risk factors such as renin-angiotensin system (RAS)-related hypertension. In fact, inhibitors of RAS pathway, such as angiotensin type 1 receptor blockers (ARBs), improved both vascular calcification and hip fracture in elderly. However, a sex-dependent discrepancy in the responsiveness to ARB treatment in hip fracture was observed, possibly due to the estrogen deficiency in older women, suggesting that blocking the angiotensin signaling pathway may not be effective to suppress bone resorption, especially if an individual has underlying osteoclast activating conditions such as estrogen deficiency. Therefore, it has its own significance to find alternative modality for inhibiting both vascular calcification and osteoporosis by directly targeting osteoclast activation to circumvent the shortcoming of ARBs in preventing bone resorption in estrogen deficient individuals. In the present study, a natural compound library was screened to find chemical agents that are effective in preventing both calcium deposition in vascular smooth muscle cells (vSMCs) and activation of osteoclast using experimental methods such as Alizarin red staining and Tartrate-resistant acid phosphatase staining. According to our data, citreoviridin (CIT) has both an anti-VC effect and anti-osteoclastic effect in vSMCs and in Raw 264.7 cells, respectively, suggesting its potential as an effective therapeutic agent for both VC and osteoporosis.
Collapse
|
16
|
Parmenter BH, Bondonno CP, Murray K, Schousboe JT, Croft K, Prince RL, Hodgson JM, Bondonno NP, Lewis JR. Higher Habitual Dietary Flavonoid Intake Associates With Less Extensive Abdominal Aortic Calcification in a Cohort of Older Women. Arterioscler Thromb Vasc Biol 2022; 42:1482-1494. [PMID: 36325901 DOI: 10.1161/atvbaha.122.318408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The extent of abdominal aortic calcification (AAC) is a major predictor of vascular disease events. We have previously found regular apple intake, a major source of dietary flavonoids, associates with lower AAC. Whether total dietary flavonoid intake impacts AAC remains unknown. Here, we extend our observations to habitual intakes of total flavonoids, flavonoid subclasses, and specific flavonoid-containing foods, with the odds of extensive AAC. METHODS We conducted cross-sectional analyses on 881 females (median [interquartile range] age, 80 [78-82] years; body mass index, 27 [24-30] kg/m2) from the PLSAW (Perth Longitudinal Study of Ageing Women). Flavonoid intake was calculated from food-frequency questionnaires. Calcifications of the abdominal aorta were assessed on lateral lumbar spine images and categorized as less extensive or extensive. Logistic regression was used to investigate associations. RESULTS After adjusting for demographic, lifestyle and dietary confounders, participants with higher (Q4), compared with lower (Q1) intakes, of total flavonoids, flavan-3-ols, and flavonols had 36% (odds ratio [95% CI], 0.64 [0.43-0.95]), 39% (0.61 [0.40-0.93]) and 38% (0.62 [0.42-0.92]) lower odds of extensive AAC, respectively. In food-based analyses, higher black tea intake, the main source of total flavonoids (75.9%), associated with significantly lower odds of extensive AAC (2-6 cups/d had 16%-42% lower odds compared with 0 daily intake). In a subset of nonconsumers of black tea, the association of total flavonoid intake with AAC remained (Q4 versus Q1 odds ratio [95% CI], 0.11 [0.02-0.54]). CONCLUSIONS In older women, greater habitual dietary flavonoid intake associates with less extensive AAC.
Collapse
Affiliation(s)
- Benjamin H Parmenter
- School of Biomedical Sciences (B.H.P., K.C.), University of Western Australia, Perth.,Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.)
| | - Catherine P Bondonno
- Medical School (C.P.B., R.L.P., J.M.H., J.R.L.), University of Western Australia, Perth.,Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.)
| | - Kevin Murray
- School of Population and Global Health (K.M.), University of Western Australia, Perth
| | - John T Schousboe
- Park Nicollet Osteoporosis Center, HealthPartners Institute, HealthPartners, Minneapolis, MN (J.T.S.).,Division of Health Policy and Management, University of Minnesota, Minneapolis (J.T.S.)
| | - Kevin Croft
- School of Biomedical Sciences (B.H.P., K.C.), University of Western Australia, Perth
| | - Richard L Prince
- Medical School (C.P.B., R.L.P., J.M.H., J.R.L.), University of Western Australia, Perth
| | - Jonathan M Hodgson
- Medical School (C.P.B., R.L.P., J.M.H., J.R.L.), University of Western Australia, Perth.,Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.)
| | - Nicola P Bondonno
- Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.).,The Danish Cancer Society Research Center, Copenhagen, Denmark (N.P.B.)
| | - Joshua R Lewis
- Medical School (C.P.B., R.L.P., J.M.H., J.R.L.), University of Western Australia, Perth.,Nutrition and Health Innovation Research Institute, Edith Cowan University, Perth' Western Australia (B.H.P., C.P.B., J.M.H., N.P.B., J.R.L.).,Centre for Kidney Research, School of Public Health, The University of Sydney, New South Wales' Australia (J.R.L.)
| |
Collapse
|
17
|
Bamford P, Collins N, Boyle A. A State-of-the-Art Review: The Percutaneous Treatment of Highly Calcified Lesions. Heart Lung Circ 2022; 31:1573-1584. [PMID: 36150953 DOI: 10.1016/j.hlc.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/28/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022]
Abstract
Coronary artery calcification is prevalent in coronary heart disease with its progression being predictive of future adverse cardiac events. Its presence is considered to be a marker of interventional procedural complexity. Several adjunctive percutaneous coronary intervention tools, such as modifying balloons, atherectomy devices and intravascular lithotripsy, now exist to successfully treat calcified lesions. In this state-of-the-art review, a step-wise progression of strategies is described to modify coronary plaque, from well-recognised techniques to techniques that should only be considered when standard manoeuvres have proven unsuccessful. Technology has advanced greatly over the past few decades and we discuss how future technologies might shape percutaneous intervention.
Collapse
Affiliation(s)
- Paul Bamford
- Cardiology Department, John Hunter Hospital, Newcastle, NSW, Australia; Cardiology Department, University of Newcastle, Newcastle, NSW, Australia.
| | - Nicholas Collins
- Cardiology Department, John Hunter Hospital, Newcastle, NSW, Australia; Cardiology Department, University of Newcastle, Newcastle, NSW, Australia
| | - Andrew Boyle
- Cardiology Department, John Hunter Hospital, Newcastle, NSW, Australia; Cardiology Department, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
18
|
Xie Q, Lv H, Wang T, Sun J, Li Y, Niu Y, Xie W. Identifying Common Genes and Pathways Associated with Periodontitis and Aging by Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:4199440. [PMID: 36438900 PMCID: PMC9691312 DOI: 10.1155/2022/4199440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 09/29/2023]
Abstract
BACKGROUND This work used bioinformatic analysis to identify the relationship between periodontitis (PD) and aging, which could lead to new treatments for periodontal disease in the elderly. METHOD Four microarray datasets were obtained from the Gene Expression Omnibus (GEO) database and analyzed in R language to identify differentially expressed genes (DEGs). The common DEGs of PD and aging were evaluated as key genes in this investigation by a Venn diagram. These common DEGs were analyzed through additional experiments and analysis, such as pathway analysis and enrichment analysis, and a network of protein-protein interactions (PPIs) was constructed. Cytoscape was used to visualize hub genes and critical modules based on the PPI network. Interaction of TF-genes and miRNAs with hub genes is identified. RESULT 84 common DEGs were found between PD and aging. Cytohubba was performed on the PPI network obtained from STRING tool, and the top 10 genes (MMP2, PDGFRB, CTGF, CD34, CXCL12, VIM, IL2RG, ACTA2, COL4A2, and TAGLN) were selected as hub genes. VIM may be a potential biomarker in the analysis of linked hub gene regulatory networks, and hsa-mir-21 and hsa-mir-125b are predicted to be associated in PD and aging. CONCLUSION This study investigated the key genes and pathways interactions between PD and aging, which may help reveal the correlation between PD and aging. The current research results are obtained by prediction, and follow-up biological experiments are required for further verification.
Collapse
Affiliation(s)
- Qi Xie
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
- Department of Stomatology, Harbin Children's Hospital, Harbin, Heilongjiang 150001, China
| | - Hongyu Lv
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianqi Wang
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jingxuan Sun
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuekun Li
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yumei Niu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Weili Xie
- Department of Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
19
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
20
|
Byun KA, Oh S, Yang JY, Lee SY, Son KH, Byun K. Ecklonia cava extracts decrease hypertension-related vascular calcification by modulating PGC-1α and SOD2. Biomed Pharmacother 2022; 153:113283. [PMID: 35717781 DOI: 10.1016/j.biopha.2022.113283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Vascular calcification (VC) is induced by a decrease in sirtuin 3 (SIRT3) and superoxide dismutase (SOD)2 and increases mitochondrial reactive oxygen species (mtROS), eventually leading to mitochondrial dysfunction and phenotype alterations in vascular smooth muscle cells (VSMCs) into osteoblast-like cells in hypertension. Ecklonia cava extract (ECE) is known to increase peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) and SOD2. In this study, we evaluated the effect of ECE on decreasing VC by increasing PGC-1α which increased SOD2 activity and decreased mtROS in an in vitro VSMC model of treating serums from Wistar Kyoto (WKY), spontaneous hypertensive rats (SHRs), and ECE-treated SHRs. Furthermore, the decreasing effect of ECE on VC was evaluated with an in vivo SHR model. PGC-1α expression, SIRT3 expression, and SOD2 activity were decreased by the serum from the SHRs and increased by the serum from the ECE-treated SHRs in the VSMCs. PGC-1α silencing eliminated those increases. mtROS generation and mitochondrial DNA (mtDNA) damage increased in the SHRs but decreased with ECE. Mitochondrial fission increased in the SHRs but decreased by ECE. Mitochondrial fusion, mitophagy, and mitochondrial biogenesis were decreased in the SHRs but increased by ECE. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and calcium deposition in the medial layer of the aorta increased in the SHRs but decreased with ECE. Therefore, ECE decreases VC via the upregulation of PGC-1α and SIRT3, which increases SOD2 activity. Activated SOD2 decreases mtDNA damage and mtROS generation, which sequentially decreases NADPH oxidase activity and changes the mitochondrial dynamics, thereby decreasing VC.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Jin Young Yang
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea.
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| |
Collapse
|
21
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
22
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
23
|
Deep Learning-Assisted Repurposing of Plant Compounds for Treating Vascular Calcification: An In Silico Study with Experimental Validation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4378413. [PMID: 35035662 PMCID: PMC8754599 DOI: 10.1155/2022/4378413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/24/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
Background Vascular calcification (VC) constitutes subclinical vascular burden and increases cardiovascular mortality. Effective therapeutics for VC remains to be procured. We aimed to use a deep learning-based strategy to screen and uncover plant compounds that potentially can be repurposed for managing VC. Methods We integrated drugome, interactome, and diseasome information from Comparative Toxicogenomic Database (CTD), DrugBank, PubChem, Gene Ontology (GO), and BioGrid to analyze drug-disease associations. A deep representation learning was done using a high-level description of the local network architecture and features of the entities, followed by learning the global embeddings of nodes derived from a heterogeneous network using the graph neural network architecture and a random forest classifier established for prediction. Predicted results were tested in an in vitro VC model for validity based on the probability scores. Results We collected 6,790 compounds with available Simplified Molecular-Input Line-Entry System (SMILES) data, 11,958 GO terms, 7,238 diseases, and 25,482 proteins, followed by local embedding vectors using an end-to-end transformer network and a node2vec algorithm and global embedding vectors learned from heterogeneous network via the graph neural network. Our algorithm conferred a good distinction between potential compounds, presenting as higher prediction scores for the compound categories with a higher potential but lower scores for other categories. Probability score-dependent selection revealed that antioxidants such as sulforaphane and daidzein were potentially effective compounds against VC, while catechin had low probability. All three compounds were validated in vitro. Conclusions Our findings exemplify the utility of deep learning in identifying promising VC-treating plant compounds. Our model can be a quick and comprehensive computational screening tool to assist in the early drug discovery process.
Collapse
|
24
|
Nagarajan M, Maadurshni GB, Tharani GK, Udhayakumar I, Kumar G, Mani KP, Sivasubramanian J, Manivannan J. Exposure to zinc oxide nanoparticles (ZnO-NPs) induces cardiovascular toxicity and exacerbates pathogenesis - Role of oxidative stress and MAPK signaling. Chem Biol Interact 2021; 351:109719. [PMID: 34699767 DOI: 10.1016/j.cbi.2021.109719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
The precise toxico-pathogenic effects of zinc oxide nanoparticles (ZnO-NPs) on the cardiovascular system under normal and cardiovascular disease (CVD) risk factor milieu are unclear. In this study, we have investigated the dose-dependent effects of ZnO-NPs on developing chicken embryo and cell culture (H9c2 cardiomyoblast, HUVEC and aortic VSMC) models. In addition, the potentiation effect of ZnO-NPs on simulated risk factor conditions was evaluated using; 1. Reactive oxygen species (ROS) induced cardiac remodeling, 2. Angiotensin-II induced cardiac hypertrophy, 3. TNF-α induced HUVEC cell death and 4. Inorganic phosphate (Pi) induced aortic VSMC calcification models. The observed results illustrates that ZnO-NPs exposure down regulates vascular development and elevates oxidative stress in heart tissue. At the cellular level, ZnO-NPs exposure reduced the cell viability and increased the intracellular ROS generation, lipid peroxidation and caspase-3 activity in a dose-dependent manner in all three cell types. In addition, ZnO-NPs exposure significantly suppressed the endothelial nitric oxide (NO) generation, cardiac Ca2+ - ATPase activity and enhanced the cardiac mitochondrial swelling. Moreover, inhibition of p38 MAPK and JNK signaling pathways influence the cytotoxicity. Overall, ZnO-NPs exposure affects the cardiovascular system under normal conditions and it exacerbates the cardiovascular pathogenesis under selected risk factor milieu.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Ganeshmurthy Kanniamal Tharani
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Inbamani Udhayakumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Gayathri Kumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Krishna Priya Mani
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
25
|
Sadgrove NJ. The ‘bald’ phenotype (androgenetic alopecia) is caused by the high glycaemic, high cholesterol and low mineral ‘western diet’. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Wu PY, Lee SY, Chang KV, Chao CT, Huang JW. Gender-Related Differences in Chronic Kidney Disease-Associated Vascular Calcification Risk and Potential Risk Mediators: A Scoping Review. Healthcare (Basel) 2021; 9:healthcare9080979. [PMID: 34442116 PMCID: PMC8394860 DOI: 10.3390/healthcare9080979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular calcification (VC) involves the deposition of calcium apatite in vascular intima or media. Individuals of advanced age, having diabetes mellitus or chronic kidney disease (CKD) are particularly at risk. The pathogenesis of CKD-associated VC evolves considerably. The core driver is the phenotypic change involving vascular wall constituent cells toward manifestations similar to that undergone by osteoblasts. Gender-related differences are observed regarding the expressions of osteogenesis-regulating effectors, and presumably the prevalence/risk of CKD-associated VC exhibits gender-related differences as well. Despite the wealth of data focusing on gender-related differences in the risk of atherosclerosis, few report whether gender modifies the risk of VC, especially CKD-associated cases. We systematically identified studies of CKD-associated VC or its regulators/modifiers reporting data about gender distributions, and extracted results from 167 articles. A significantly higher risk of CKD-associated VC was observed in males among the majority of original investigations. However, substantial heterogeneity exists, since multiple large-scale studies yielded neutral findings. Differences in gender-related VC risk may result from variations in VC assessment methods, the anatomical segments of interest, study sample size, and even the ethnic origins of participants. From a biological perspective, plausible mediators of gender-related VC differences include body composition discrepancies, alterations involving lipid profiles, inflammatory severity, diversities in matrix Gla protein (MGP), soluble Klotho, vitamin D, sclerostin, parathyroid hormone (PTH), fibroblast growth factor-23 (FGF-23), and osteoprotegerin levels. Based on our findings, it may be inappropriate to monotonously assume that male patients with CKD are at risk of VC compared to females, and we should consider more background in context before result interpretation.
Collapse
Affiliation(s)
- Patrick Yihong Wu
- School of Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Szu-Ying Lee
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County 640, Taiwan; (S.-Y.L.); (J.-W.H.)
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
| | - Chia-Ter Chao
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan
- Correspondence: ; Tel.: +886-2-23717101 (ext. 6531); Fax: +886-2-23717101
| | - Jenq-Wen Huang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County 640, Taiwan; (S.-Y.L.); (J.-W.H.)
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| |
Collapse
|
27
|
Chao CT, Lin SH. Uremic Toxins and Frailty in Patients with Chronic Kidney Disease: A Molecular Insight. Int J Mol Sci 2021; 22:ijms22126270. [PMID: 34200937 PMCID: PMC8230495 DOI: 10.3390/ijms22126270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
The accumulation of uremic toxins (UTs) is a prototypical manifestation of uremic milieu that follows renal function decline (chronic kidney disease, CKD). Frailty as a potential outcome-relevant indicator is also prevalent in CKD. The intertwined relationship between uremic toxins, including small/large solutes (phosphate, asymmetric dimethylarginine) and protein-bound ones like indoxyl sulfate (IS) and p-cresyl sulfate (pCS), and frailty pathogenesis has been documented recently. Uremic toxins were shown in vitro and in vivo to induce noxious effects on many organ systems and likely influenced frailty development through their effects on multiple preceding events and companions of frailty, such as sarcopenia/muscle wasting, cognitive impairment/cognitive frailty, osteoporosis/osteodystrophy, vascular calcification, and cardiopulmonary deconditioning. These organ-specific effects may be mediated through different molecular mechanisms or signal pathways such as peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), mitogen-activated protein kinase (MAPK) signaling, aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Runt-related transcription factor 2 (RUNX2), bone morphogenic protein 2 (BMP2), osterix, Notch signaling, autophagy effectors, microRNAs, and reactive oxygen species induction. Anecdotal clinical studies also suggest that frailty may further accelerate renal function decline, thereby augmenting the accumulation of UTs in affected individuals. Judging from these threads of evidence, management strategies aiming for uremic toxin reduction may be a promising approach for frailty amelioration in patients with CKD. Uremic toxin lowering strategies may bear the potential of improving patients’ outcomes and restoring their quality of life, through frailty attenuation. Pathogenic molecule-targeted therapeutics potentially disconnect the association between uremic toxins and frailty, additionally serving as an outcome-modifying approach in the future.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100255, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Shih-Hua Lin
- Nephrology Division, Department of Internal Medicine, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: or
| |
Collapse
|
28
|
Protective Effects of Fucoxanthin on Hydrogen Peroxide-Induced Calcification of Heart Valve Interstitial Cells. Mar Drugs 2021; 19:md19060307. [PMID: 34073219 PMCID: PMC8227531 DOI: 10.3390/md19060307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases such as atherosclerosis and aortic valve sclerosis involve inflammatory reactions triggered by various stimuli, causing increased oxidative stress. This increased oxidative stress causes damage to the heart cells, with subsequent cell apoptosis or calcification. Currently, heart valve damage or heart valve diseases are treated by drugs or surgery. Natural antioxidant products are being investigated in related research, such as fucoxanthin (Fx), which is a marine carotenoid extracted from seaweed, with strong antioxidant, anti-inflammatory, and anti-tumor properties. This study aimed to explore the protective effect of Fx on heart valves under high oxidative stress, as well as the underlying mechanism of action. Rat heart valve interstitial cells under H2O2-induced oxidative stress were treated with Fx. Fx improved cell survival and reduced oxidative stress-induced DNA damage, which was assessed by cell viability analysis and staining with propidium iodide. Alizarin Red-S analysis indicated that Fx has a protective effect against calcification. Furthermore, Western blotting revealed that Fx abrogates oxidative stress-induced apoptosis via reducing the expression of apoptosis-related proteins as well as modulate Akt/ERK-related protein expression. Notably, in vivo experiments using 26 dogs treated with 60 mg/kg of Fx in combination with medical treatment for 0.5 to 2 years showed significant recovery in their echocardiographic parameters. Collectively, these in vitro and in vivo results highlight the potential of Fx to protect heart valve cells from high oxidative stress-induced damage.
Collapse
|
29
|
Balogh E, Chowdhury A, Ababneh H, Csiki DM, Tóth A, Jeney V. Heme-Mediated Activation of the Nrf2/HO-1 Axis Attenuates Calcification of Valve Interstitial Cells. Biomedicines 2021; 9:biomedicines9040427. [PMID: 33920891 PMCID: PMC8071288 DOI: 10.3390/biomedicines9040427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Calcific aortic valve stenosis (CAVS) is a heart disease characterized by the progressive fibro-calcific remodeling of the aortic valves, an actively regulated process with the involvement of the reactive oxygen species-mediated differentiation of valvular interstitial cells (VICs) into osteoblast-like cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of a variety of antioxidant genes, and plays a protective role in valve calcification. Heme oxygenase-1 (HO-1), an Nrf2-target gene, is upregulated in human calcified aortic valves. Therefore, we investigated the effect of Nrf2/HO-1 axis in VIC calcification. We induced osteogenic differentiation of human VICs with elevated phosphate and calcium-containing osteogenic medium (OM) in the presence of heme. Heme inhibited Ca deposition and OM-induced increase in alkaline phosphatase and osteocalcin (OCN) expression. Heme induced Nrf2 and HO-1 expression in VICs. Heme lost its anti-calcification potential when we blocked transcriptional activity Nrf2 or enzyme activity of HO-1. The heme catabolism products bilirubin, carbon monoxide, and iron, and also ferritin inhibited OM-induced Ca deposition and OCN expression in VICs. This study suggests that heme-mediated activation of the Nrf2/HO-1 pathway inhibits the calcification of VICs. The anti-calcification effect of heme is attributed to the end products of HO-1-catalyzed heme degradation and ferritin.
Collapse
Affiliation(s)
- Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
| | - Arpan Chowdhury
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Haneen Ababneh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dávid Máté Csiki
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (E.B.); (A.C.); (H.A.); (D.M.C.); (A.T.)
- Correspondence:
| |
Collapse
|
30
|
Prevention of Vascular Calcification by Magnesium and Selected Polyphenols. Adv Prev Med 2021; 2021:6686597. [PMID: 33927901 PMCID: PMC8053061 DOI: 10.1155/2021/6686597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Arterial vascular calcification (VC) represents formation of calcium phosphate deposits on the interior of arteries, which could restrict blood flow leading to heart health problems, including morbidity and mortality. VC is a complex and tightly regulated process that involves transformation of vascular smooth muscle cells (VSMCs) to bone-like cells and subsequent deposition of calcium as hydroxyapatite. Natural bioactives, including quercetin (Q), curcumin (C), resveratrol (R), and magnesium (Mg), have been reported to inhibit VC. Thus, we conducted an in vitro study using rat vascular smooth muscle cells (rVSMCs) to evaluate the protective effect of natural bioactives found in OptiCel, that is, Mg combined with polyphenols (PPs), Q, C, and R. Calcification was induced by culturing rVSMCs in a high phosphate (HP) medium. The addition of Mg and Q + C + R separately decreased the HP-induced calcium deposition by 37.55% and 42.78%, respectively. In contrast, when Mg was combined with Q, C, and R, the inhibition of calcium deposition was decreased by 92.88%, which is greater than their calculated additive inhibition (80.33%). These results demonstrate that the combination of Mg with selected PPs (Q, C, and R) is more effective than when used separately. The findings also suggest the combination has a synergistic effect in inhibiting VC, which is a risk factor for cardiovascular disease. Thus, regular consumption of these natural bioactives could have a beneficial effect in reducing the development of heart diseases.
Collapse
|
31
|
Phadwal K, Vrahnas C, Ganley IG, MacRae VE. Mitochondrial Dysfunction: Cause or Consequence of Vascular Calcification? Front Cell Dev Biol 2021; 9:611922. [PMID: 33816463 PMCID: PMC8010668 DOI: 10.3389/fcell.2021.611922] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are crucial bioenergetics powerhouses and biosynthetic hubs within cells, which can generate and sequester toxic reactive oxygen species (ROS) in response to oxidative stress. Oxidative stress-stimulated ROS production results in ATP depletion and the opening of mitochondrial permeability transition pores, leading to mitochondria dysfunction and cellular apoptosis. Mitochondrial loss of function is also a key driver in the acquisition of a senescence-associated secretory phenotype that drives senescent cells into a pro-inflammatory state. Maintaining mitochondrial homeostasis is crucial for retaining the contractile phenotype of the vascular smooth muscle cells (VSMCs), the most prominent cells of the vasculature. Loss of this contractile phenotype is associated with the loss of mitochondrial function and a metabolic shift to glycolysis. Emerging evidence suggests that mitochondrial dysfunction may play a direct role in vascular calcification and the underlying pathologies including (1) impairment of mitochondrial function by mineral dysregulation i.e., calcium and phosphate overload in patients with end-stage renal disease and (2) presence of increased ROS in patients with calcific aortic valve disease, atherosclerosis, type-II diabetes and chronic kidney disease. In this review, we discuss the cause and consequence of mitochondrial dysfunction in vascular calcification and underlying pathologies; the role of autophagy and mitophagy pathways in preventing mitochondrial dysfunction during vascular calcification and finally we discuss mitochondrial ROS, DRP1, and HIF-1 as potential novel markers and therapeutic targets for maintaining mitochondrial homeostasis in vascular calcification.
Collapse
Affiliation(s)
- Kanchan Phadwal
- Functional Genetics and Development Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Midlothian, United Kingdom
| | - Christina Vrahnas
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Ian G. Ganley
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Vicky E. MacRae
- Functional Genetics and Development Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
32
|
Tsai YT, Yeh HY, Chao CT, Chiang CK. Superoxide Dismutase 2 (SOD2) in Vascular Calcification: A Focus on Vascular Smooth Muscle Cells, Calcification Pathogenesis, and Therapeutic Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6675548. [PMID: 33728027 PMCID: PMC7935587 DOI: 10.1155/2021/6675548] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC) describes the pathophysiological phenotype of calcium apatite deposition within the vascular wall, leading to vascular stiffening and the loss of compliance. VC is never benign; the presence and severity of VC correlate closely with the risk of myocardial events and cardiovascular mortality in multiple at-risk populations such as patients with diabetes and chronic kidney disease. Mitochondrial dysfunction involving each of vascular wall constituents (endothelia and vascular smooth muscle cells (VSMCs)) aggravates various vascular pathologies, including atherosclerosis and VC. However, few studies address the pathogenic role of mitochondrial dysfunction during the course of VC, and mitochondrial reactive oxygen species (ROS) seem to lie in the pathophysiologic epicenter. Superoxide dismutase 2 (SOD2), through its preferential localization to the mitochondria, stands at the forefront against mitochondrial ROS in VSMCs and thus potentially modifies the probability of VC initiation or progression. In this review, we will provide a literature-based summary regarding the relationship between SOD2 and VC in the context of VSMCs. Apart from the conventional wisdom of attenuating mitochondrial ROS, SOD2 has been found to affect mitophagy and the formation of the autophagosome, suppress JAK/STAT as well as PI3K/Akt signaling, and retard vascular senescence, all of which underlie the beneficial influences on VC exerted by SOD2. More importantly, we outline the therapeutic potential of a novel SOD2-targeted strategy for the treatment of VC, including an ever-expanding list of pharmaceuticals and natural compounds. It is expected that VSMC SOD2 will become an important druggable target for treating VC in the future.
Collapse
Affiliation(s)
- You-Tien Tsai
- 1Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- 2School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Chia-Ter Chao
- 1Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
- 3Nephrology Division, Department of Internal Medicine, National Taiwan University School of Medicine, Taipei, Taiwan
- 4Graduate Institute of Toxicology, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- 4Graduate Institute of Toxicology, National Taiwan University School of Medicine, Taipei, Taiwan
| |
Collapse
|
33
|
Chao CT, Lin SH. Uremic Vascular Calcification: The Pathogenic Roles and Gastrointestinal Decontamination of Uremic Toxins. Toxins (Basel) 2020; 12:toxins12120812. [PMID: 33371477 PMCID: PMC7767516 DOI: 10.3390/toxins12120812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Uremic vascular calcification (VC) commonly occurs during advanced chronic kidney disease (CKD) and significantly increases cardiovascular morbidity and mortality. Uremic toxins are integral within VC pathogenesis, as they exhibit adverse vascular influences ranging from atherosclerosis, vascular inflammation, to VC. Experimental removal of these toxins, including small molecular (phosphate, trimethylamine-N-oxide), large molecular (fibroblast growth factor-23, cytokines), and protein-bound ones (indoxyl sulfate, p-cresyl sulfate), ameliorates VC. As most uremic toxins share a gut origin, interventions through gastrointestinal tract are expected to demonstrate particular efficacy. The “gastrointestinal decontamination” through the removal of toxin in situ or impediment of toxin absorption within the gastrointestinal tract is a practical and potential strategy to reduce uremic toxins. First and foremost, the modulation of gut microbiota through optimizing dietary composition, the use of prebiotics or probiotics, can be implemented. Other promising strategies such as reducing calcium load, minimizing intestinal phosphate absorption through the optimization of phosphate binders and the inhibition of gut luminal phosphate transporters, the administration of magnesium, and the use of oral toxin adsorbent for protein-bound uremic toxins may potentially counteract uremic VC. Novel agents such as tenapanor have been actively tested in clinical trials for their potential vascular benefits. Further advanced studies are still warranted to validate the beneficial effects of gastrointestinal decontamination in the retardation and treatment of uremic VC.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Shih-Hua Lin
- Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
34
|
Lofaro FD, Boraldi F, Garcia-Fernandez M, Estrella L, Valdivielso P, Quaglino D. Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts. Front Cell Dev Biol 2020; 8:610266. [PMID: 33392199 PMCID: PMC7773789 DOI: 10.3389/fcell.2020.610266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic disease considered as a paradigm of ectopic mineralization disorders, being characterized by multisystem clinical manifestations due to progressive calcification of skin, eyes, and the cardiovascular system, resembling an age-related phenotype. Although fibroblasts do not express the pathogenic ABCC6 gene, nevertheless these cells are still under investigation because they regulate connective tissue homeostasis, generating the "arena" where cells and extracellular matrix components can promote pathologic calcification and where activation of pro-osteogenic factors can be associated to pathways involving mitochondrial metabolism. The aim of the present study was to integrate structural and bioenergenetic features to deeply investigate mitochondria from control and from PXE fibroblasts cultured in standard conditions and to explore the role of mitochondria in the development of the PXE fibroblasts' pathologic phenotype. Proteomic, biochemical, and morphological data provide new evidence that in basal culture conditions (1) the protein profile of PXE mitochondria reveals a number of differentially expressed proteins, suggesting changes in redox balance, oxidative phosphorylation, and calcium homeostasis in addition to modified structure and organization, (2) measure of oxygen consumption indicates that the PXE mitochondria have a low ability to cope with a sudden increased need for ATP via oxidative phosphorylation, (3) mitochondrial membranes are highly polarized in PXE fibroblasts, and this condition contributes to increased reactive oxygen species levels, (4) ultrastructural alterations in PXE mitochondria are associated with functional changes, and (5) PXE fibroblasts exhibit a more abundant, branched, and interconnected mitochondrial network compared to control cells, indicating that fusion prevail over fission events. In summary, the present study demonstrates that mitochondria are modified in PXE fibroblasts. Since mitochondria are key players in the development of the aging process, fibroblasts cultured from aged individuals or aged in vitro are more prone to calcify, and in PXE, calcified tissues remind features of premature aging syndromes; it can be hypothesized that mitochondria represent a common link contributing to the development of ectopic calcification in aging and in diseases. Therefore, ameliorating mitochondrial functions and cell metabolism could open new strategies to positively regulate a number of signaling pathways associated to pathologic calcification.
Collapse
Affiliation(s)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Lara Estrella
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Pedro Valdivielso
- Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga, University of Malaga, Málaga, Spain
- Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
35
|
Chao CT, Yeh HY, Tsai YT, Yuan TH, Liao MT, Huang JW, Chen HW. Astaxanthin Counteracts Vascular Calcification In Vitro Through an Early Up-Regulation of SOD2 Based on a Transcriptomic Approach. Int J Mol Sci 2020; 21:ijms21228530. [PMID: 33198315 PMCID: PMC7698184 DOI: 10.3390/ijms21228530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is a critical contributor to the rising cardiovascular risk among at-risk populations such as those with diabetes or renal failure. The pathogenesis of VC involves an uprising of oxidative stress, for which antioxidants can be theoretically effective. However, astaxanthin, a potent antioxidant, has not been tested before for the purpose of managing VC. To answer this question, we tested the efficacy of astaxanthin against VC using the high phosphate (HP)-induced vascular smooth muscle cell (VSMC) calcification model. RNAs from treated groups underwent Affymetrix microarray screening, with intra-group consistency and inter-group differential expressions identified. Candidate hub genes were selected, followed by validation in experimental models and functional characterization. We showed that HP induced progressive calcification among treated VSMCs, while astaxanthin dose-responsively and time-dependently ameliorated calcification severities. Transcriptomic profiling revealed that 3491 genes exhibited significant early changes during VC progression, among which 26 potential hub genes were selected based on closeness ranking and biologic plausibility. SOD2 was validated in the VSMC model, shown to drive the deactivation of cellular senescence and enhance antioxidative defenses. Astaxanthin did not alter intracellular reactive oxygen species (ROS) levels without HP, but significantly lowered ROS production in HP-treated VSMCs. SOD2 knockdown prominently abolished the anti-calcification effect of astaxanthin on HP-treated VSMCs, lending support to our findings. In conclusion, we demonstrated for the first time that astaxanthin could be a potential candidate treatment for VC, through inducing the up-regulation of SOD2 early during calcification progression and potentially suppressing vascular senescence.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan; (C.-T.C.); (Y.-T.T.)
- Geriatric and Community Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei 11102, Taiwan;
| | - You-Tien Tsai
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan; (C.-T.C.); (Y.-T.T.)
| | - Tzu-Hang Yuan
- Genome and Systems Biology Degree Program, Academia Sinica, Taipei 11529, Taiwan;
| | - Min-Tser Liao
- Department of Pediatrics, Armed Force Taoyuan General Hospital, Taoyuan County 32551, Taiwan;
| | - Jenq-Wen Huang
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital YunLin Branch, YunLin County 640203, Taiwan
- Correspondence: ; Tel.: +886-5-5323911 (ext. 5675)
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| |
Collapse
|
36
|
Cho N, Lee SG, Kim JO, Kim YA, Kim EM, Park C, Ji JH, Kim KK. Identification of Differentially Expressed Genes Associated with Extracellular Matrix Degradation and Inflammatory Regulation in Calcific Tendinopathy Using RNA Sequencing. Calcif Tissue Int 2020; 107:489-498. [PMID: 32776213 DOI: 10.1007/s00223-020-00743-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Calcific tendinopathy (CT), developed due to calcium hydroxyapatite deposition in the rotator cuff tendon, mostly affects women in their 40 s and 50 s and causes severe shoulder pain. However, the molecular basis of its pathogenesis and appropriate treatment methods are largely unknown. In this study, we identified 202 differentially expressed genes (DEGs) between calcific and adjacent normal tendon tissues of rotator cuff using RNA sequencing-based transcriptome analysis. The DEGs were highly enriched in extracellular matrix (ECM) degradation and inflammation-related processes. Further, matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 13 (MMP13), two of the enzymes associated with ECM degradation, were found to be highly upregulated 25.85- and 19.40-fold, respectively, in the calcific tendon tissues compared to the adjacent normal tendon tissues. Histopathological analyses indicated collagen degradation and macrophage infiltration at the sites of calcific deposit in the rotator cuff tendon. Our study acts as a foundation that may help in better understanding of the pathogenesis associated with CT, and thus in better management of the disease.
Collapse
Affiliation(s)
- Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Sung-Gwon Lee
- School of Biological Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jong Ok Kim
- Department of Pathology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Yong-An Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Jong-Hun Ji
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
37
|
Regulation of Vascular Calcification by Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9100963. [PMID: 33049989 PMCID: PMC7599480 DOI: 10.3390/antiox9100963] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.
Collapse
|
38
|
Lee S, Chao C, Huang J, Huang K. Vascular Calcification as an Underrecognized Risk Factor for Frailty in 1783 Community-Dwelling Elderly Individuals. J Am Heart Assoc 2020; 9:e017308. [PMID: 32875940 PMCID: PMC7727009 DOI: 10.1161/jaha.120.017308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Background Vascular calcification (VC) is associated with high morbidity and mortality among older adults, a population that exhibits a higher tendency for developing frailty at the same time. Whether VC serves as a risk factor for the development of frailty in this population remains unclear. Methods and Results We analyzed a prospectively assembled cohort of community-dwelling older adults between 2014 and 2017 (n=1783). Frailty and prefrailty were determined on the basis of the Study of Osteoporotic Fractures criteria, and VC was measured using semiquantitative aortic arch calcification (AAC) and abdominal aortic calcification scoring. We conducted multiple logistic regression with prefrailty or frailty as the dependent variable, incorporating sociodemographic profiles, comorbidities, medications, laboratory data, AAC status/severity, and other geriatric phenotypes. Among all participants, 327 (18.3%) exhibited either prefrailty (15.3%) or frailty (3.1%), and 648 (36.3%) exhibited AAC. After adjusting for multiple confounders, we found that AAC incidence was associated with a substantially higher probability of prefrailty or frailty (odds ratio [OR], 11.9; 95% CI, 7.9-15.4), with a dose-responsive relationship (OR for older adults with AAC categories 1, 2, and 3 was 9.3, 13.6, and 52.5, respectively). Similar association was observed for older adults with abdominal aortic calcification (OR, 5.0; 95% CI, 1.3-19.5), and might be replicable in another cohort of patients with end-stage renal disease. Conclusions Severity of VC exhibited a linear positive relationship with frailty in older adults. Our findings suggest that a prompt diagnosis and potential management of VC may assist in risk mitigation for patients with frailty.
Collapse
Affiliation(s)
- Szu‐Ying Lee
- Nephrology Division, Department of Internal MedicineNational Taiwan University Hospital Yunlin BranchYunlin CountyTaiwan
| | - Chia‐Ter Chao
- Nephrology Division, Department of Internal MedicineNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Geriatric and Community Medicine Research CenterNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Graduate Institute of ToxicologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Jenq‐Wen Huang
- Nephrology Division, Department of Internal MedicineNational Taiwan University Hospital Yunlin BranchYunlin CountyTaiwan
| | - Kuo‐Chin Huang
- Nephrology Division, Department of Internal MedicineNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
- Geriatric and Community Medicine Research CenterNational Taiwan University Hospital BeiHu BranchTaipeiTaiwan
| |
Collapse
|
39
|
Chen SI, Chiang CL, Chao CT, Chiang CK, Huang JW. Gustatory Function and the Uremic Toxin, Phosphate, Are Modulators of the Risk of Vascular Calcification among Patients with Chronic Kidney Disease: A Pilot Study. Toxins (Basel) 2020; 12:toxins12060420. [PMID: 32630499 PMCID: PMC7354456 DOI: 10.3390/toxins12060420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have an increased risk of vascular calcification (VC), including aortic arch calcification (AAC). Few investigated the influence of gustatory function on the probability of having VC. We examined whether gustatory function results modulated the probability of having VC in patients with CKD. We prospectively enrolled adults with CKD (estimated glomerular filtration rate <60 mL/min/1.73 m2), with their AAC rated semi-quantitatively and gustatory function assessed by objective and subjective approaches. Multiple logistic regression was used to analyze the relationship between gustatory function results and AAC. Those with AAC had significantly better objective gustatory function in aggregate scores (p = 0.039) and categories (p = 0.022) and less defective bitter taste (p = 0.045) and scores (p = 0.037) than those without. Multiple regression analyses showed that higher aggregate scores (odds ratio (OR) 1.288, p = 0.032), or better gustatory function, and higher bitter taste scores (OR 2.558, p = 0.019) were each associated with a higher probability of having AAC among CKD patients; such an association was modulated by serum phosphate levels. In conclusion, better gustatory function was independently correlated with having AAC among CKD patients. A follow-up of VC severity may be an underrecognized component of care for CKD patients with a preserved gustatory function.
Collapse
Affiliation(s)
- Shih-I Chen
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Beihu Branch, Taipei 108, Taiwan;
- Geriatric and Community Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei 108, Taiwan
| | - Chin-Ling Chiang
- Department of Nursing, National Taiwan University Hospital Beihu Branch, Taipei 108, Taiwan;
| | - Chia-Ter Chao
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Beihu Branch, Taipei 108, Taiwan;
- Geriatric and Community Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei 108, Taiwan
- Graduate Institute of Toxicology, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence: Chia-Ter Chao, ; Tel.: +886-2-23717101-5307; Fax: +886-2-23123456
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University, Taipei 10617, Taiwan;
- Department of Integrative Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Jenq-Wen Huang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County 260, Taiwan;
| |
Collapse
|
40
|
Xu SN, Zhou X, Zhu CJ, Qin W, Zhu J, Zhang KL, Li HJ, Xing L, Lian K, Li CX, Sun Z, Wang ZQ, Zhang AJ, Cao HL. Nϵ-Carboxymethyl-Lysine Deteriorates Vascular Calcification in Diabetic Atherosclerosis Induced by Vascular Smooth Muscle Cell-Derived Foam Cells. Front Pharmacol 2020; 11:626. [PMID: 32499695 PMCID: PMC7243476 DOI: 10.3389/fphar.2020.00626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Nϵ-carboxymethyl-lysine (CML), an advanced glycation end product, is involved in vascular calcification (VC) in diabetic atherosclerosis. This study aimed to investigate the effects of CML on VC in diabetic atherosclerosis induced by vascular smooth muscle cell (VSMC)–derived foam cells. Human studies, animal studies and cell studies were performed. The human study results from 100 patients revealed a poor blood glucose and lipid status and more severe coronary lesions and stenosis in patients with coronary artery disease and diabetes mellitus. Intraperitoneal injection of streptozotocin combined with a high-fat diet was used to build a diabetic atherosclerosis model in ApoE−/− mice. The animal study results indicated that CML accelerated VC progression in diabetic atherosclerosis by accelerating the accumulation of VSMC-derived foam cells in ApoE−/− mice. The cell study results illustrated that CML induced VSMC-derived foam cells apoptosis and aggravated foam cells calcification. Consistent with this finding, calcium content and the expression levels of alkaline phosphatase, bone morphogenetic protein 2 and runt-related transcription factor 2 were significantly elevated in A7r5 cells treated with oxidation-low-density lipoprotein and CML. Thus, we concluded that CML promoted VSMC-derived foam cells calcification to aggravate VC in diabetic atherosclerosis, providing evidence for the contribution of foam cells to diabetic VC.
Collapse
Affiliation(s)
- Sui-Ning Xu
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xin Zhou
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Cun-Jun Zhu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Jie Zhu
- Department of Cardiology, Affiliated Luan Hospital of Anhui Medical University, Luan, China
| | - Ke-Lin Zhang
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Jin Li
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu Xing
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng-Xiang Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - An-Ji Zhang
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Ling Cao
- Department of Cardiology, The First Affiliated Hospital, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
41
|
Zununi Vahed S, Mostafavi S, Hosseiniyan Khatibi SM, Shoja MM, Ardalan M. Vascular Calcification: An Important Understanding in Nephrology. Vasc Health Risk Manag 2020; 16:167-180. [PMID: 32494148 PMCID: PMC7229867 DOI: 10.2147/vhrm.s242685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular calcification (VC) is a life-threatening state in chronic kidney disease (CKD). High cardiovascular mortality and morbidity of CKD cases may root from medial VC promoted by hyperphosphatemia. Vascular calcification is an active, highly regulated, and complex biological process that is mediated by genetics, epigenetics, dysregulated form of matrix mineral metabolism, hormones, and the activation of cellular signaling pathways. Moreover, gut microbiome as a source of uremic toxins (eg, phosphate, advanced glycation end products and indoxyl-sulfate) can be regarded as a potential contributor to VC in CKD. Here, an update on different cellular and molecular processes involved in VC in CKD is discussed to elucidate the probable therapeutic pathways in the future.
Collapse
Affiliation(s)
| | - Soroush Mostafavi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammadali M Shoja
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
42
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|