1
|
Li LN, Wu JM, Zheng ZJ, Li SX, Cai MY, Zou MC. N6-methyladenosine modification of THBS1 induced by affluent WTAP promotes Graves' ophthalmopathy progression through glycolysis to affect Th17/Treg balance. Autoimmunity 2025; 58:2433628. [PMID: 39689341 DOI: 10.1080/08916934.2024.2433628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 12/19/2024]
Abstract
Graves' ophthalmopathy (GO) obvious manifestation is the imbalance of Th17/Treg. N6-methyladenosine (m6A) methylation is an important regulator of Th17/Treg balance. However, few reports narrate how m6A regulators mediate the role of genes in GO progression. We explored the m6A modification of THBS1 mediated by WTAP, and the mechanism by which THBS1 regulated glycolysis and Th17/Treg balance. A total of 12 peripheral blood (4 GO samples, 4 GH samples, and 4 health samples) were collected to measure the percentage of Th17/Treg in monocytes by flow cytometry. RNA sequencing (RNA-seq) combined with MeRIP sequencing (MeRIP-seq) was used to screen differentially expressed and methylated genes. MeRIP-qPCR was performed to evaluate the m6A abundance of THBS1 after WTAP silencing. Glycolysis of CD4+ T cells was reflected by the lactate content and glucose uptake. The number of Th17 cells was increased in GO peripheral blood, whereas the Treg cells decreased. RNA-seq acquired 679 differentially expressed genes (308 up-regulated, and 371 down-regulated) in the CD4+ T cells of GO compared to healthy control. MeRIP-seq identified 3277 m6A peaks between the GO group and the healthy control group, corresponding with 2744 genes (1143 hypermethylated and 1601 hypomethylated). Combined analysis of RNA-seq and MeRIP-seq showed 81 hypermethylated and up-regulated genes. Among the six candidate genes in the PI3K-signaling pathway, THBS1 was the most significantly differentially expressed and hypermethylated. THBS1 silencing resulted in decreased lactate content and glucose uptake in CD4+ T cells. WTAP was significantly upregulated in CD4+ T cells of GO, and WTAP silencing significantly reduced m6A abundance and expression of THBS1. Upregulated and hypermethylated THBS1 mediated by WTAP promoted glycolysis of CD4+ T cells, affected Th17/Treg balance, and facilitated GO progression. We provided a novel potential target for GO treatment and revealed the molecular mechanism of WTAP and THBS1 in GO under the m6A perspective.
Collapse
Affiliation(s)
- Lin-Na Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie-Man Wu
- Department of Health Management, Nanfang Hospital Zengcheng Campus, Guangzhou, China
| | - Zong-Ji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu-Xian Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng-Yi Cai
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng-Chen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Huang J, Hu Y, Wang S, Liu Y, Sun X, Wang X, Yu H. Single-cell RNA sequencing in autoimmune diseases: New insights and challenges. Pharmacol Ther 2025:108807. [PMID: 39894174 DOI: 10.1016/j.pharmthera.2025.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Autoimmune diseases involve a variety of cell types, yet the intricacies of their individual roles within molecular mechanisms and therapeutic strategies remain poorly understood. Single-cell RNA sequencing (scRNA-seq) offers detailed insights into transcriptional diversity at the single-cell level, significantly advancing research in autoimmune diseases. This article explores how scRNA-seq enhances the understanding of cellular heterogeneity and its potential applications in the etiology, diagnosis, treatment, and prognosis of autoimmune diseases. By revealing a comprehensive cellular landscape, scRNA-seq illuminates the functional regulation of different cell subtypes during disease progression. It aids in identifying diagnostic and prognostic markers, and analyzing cell communication networks to uncover potential therapeutic targets. Despite its valuable contributions, addressing the limitations of scRNA-seq is essential for making further advancements.
Collapse
Affiliation(s)
- Jialing Huang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Yuelin Hu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Shuqing Wang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Yuefang Liu
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China.
| |
Collapse
|
3
|
Chung SY, Yeh YC, Huang CJ, Chiang NJ, Hsu DSS, Chan MH, Lu ML, Hsu TS, Hung YP, Yeh CN, Hsiao M, Chang YC, Wang YC, Chen MH. Comparative impact of tertiary lymphoid structures and tumor-infiltrating lymphocytes in cholangiocarcinoma. J Immunother Cancer 2025; 13:e010173. [PMID: 39870490 PMCID: PMC11772930 DOI: 10.1136/jitc-2024-010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/01/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Cholangiocarcinoma is a challenging malignancy with limited responses to conventional therapies, particularly immune checkpoint inhibitor therapy. Tumor-infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLSs) are key components of the tumor microenvironment (TME) and have been implicated in the immune response to cancer. However, the role and difference of TLSs and TILs in patients with cholangiocarcinoma remains unclear. This study elucidates their contributions to the TME. METHODS We examined 16 tumor samples from a single-arm, phase II trial of nivolumab plus modified gemcitabine and S-1 and various datasets. Immunohistochemistry and RNA sequencing were employed to assess TLSs and TILs presence and activity. Differential gene expression and signature of immune cell composition were examined by GeoMx Digital Spatial Profiler and Cancer Transcriptome Altas analysis. RESULTS TLS-positive (N=7) patients demonstrated significantly better immunotherapy outcomes compared with TLS-negative (N=9) patients, including higher objective response rates (71% vs 0%) and disease control rates (100% vs 67%). The presence of TLSs correlated with improved progression-free and overall survival (p=0.03). TLSs were associated with "inflamed" tumors characterized by substantial immune infiltration, particularly involving T and B cells. Gene expression analyses identified significant upregulation of B cell-related genes in TLSs. Additionally, TLSs exhibited higher properties of memory B cells and myeloid dendritic cells but lower levels of innate immune cells compared with TILs. T cells within TLSs showed elevated expression of precursor-exhausted-related genes and lower cytotoxicity signature. Furthermore, TILs in TLS-positive tumors had higher levels of exhaustion signatures compared with TILs in TLS-negative tumors. Clinical data corroborated these findings, with higher PD-L1 and LAG-3 expression in TLS-positive tumors. CONCLUSION Our findings revealed that TILs in TLS-positive tumors have more exhausted T cell signature and PD-1 and LAG-3 protein expression in CCA which support our clinical finding. TLSs can predict favorable immunotherapy responses in patients with cholangiocarcinoma, highlighting their potential as a biomarker and therapeutic target to enhance treatment efficacy.
Collapse
Affiliation(s)
- Shin-Yi Chung
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Chen Yeh
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Jung Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Jung Chiang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | | | - Ming-Hsien Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Meng-Lun Lu
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Sheng Hsu
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ping Hung
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Nan Yeh
- General Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Chen J, Xie J, Deng F, Cai J, Chen S, Song X, Xia S, Shen Q, Guo X, Tang Y. Expansion of peripheral cytotoxic CD4+ T cells in Alzheimer's disease: New insights from multi-omics evidence. Genomics 2025; 117:110976. [PMID: 39657893 DOI: 10.1016/j.ygeno.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The significance of the adaptive immune response in Alzheimer's disease (AD) is increasingly recognized. We analyzed scRNA-Seq data from AD patients, revealing a notable rise in CD4 cytotoxic T cells (CD4-CTLs) in peripheral blood mononuclear cells (PBMCs), validated in vivo and in vitro. This rise correlates with cognitive decline in AD patients. We also identified transcription factors TBX21 and MYBL1 as key drivers of CD4-CTL expansion. Further analyses indicate these cells are terminally differentiated, showing clonal expansion, metabolic changes, and unique communication patterns. Mendelian randomization identified risk genes SRGN and ITGB1, suggesting their genetic regulation in CD4-CTLs may contribute to AD. To summarize, our findings characterize the expansion of CD4-CTLs in the PBMCs of AD patients, providing valuable understanding into the possible mechanisms involved in the expansion of CD4-CTLs in AD.
Collapse
Affiliation(s)
- Jiongxue Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fuyin Deng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sitai Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children Medical Center, Guangzhou 510623, China
| | - Shangzhou Xia
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Qingyu Shen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xinying Guo
- Department of Anesthesiology, Guangzhou Women and Children Medical Center, Guangzhou 510623, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-sen Memorial Hospital, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Kim DW, Kim S, Han J, Belday K, Li E, Mahoney N, Blackshaw S, Rajaii F. Transcriptomic profiling of thyroid eye disease orbital fat demonstrates differences in adipogenicity and IGF-1R pathway. JCI Insight 2024; 9:e182352. [PMID: 39704170 DOI: 10.1172/jci.insight.182352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Despite recent advances in the treatment of thyroid eye disease thyroid-related eye disease (TED), marked gaps remain in our understanding of the underlying molecular mechanisms, particularly concerning the insulin-like growth factor-1 receptor (IGF-1R) pathway. To dissect the pathophysiology of TED, we used single-nucleus RNA-Seq to analyze orbital fat specimens from both patients with TED and matched individuals acting as controls. The analysis demonstrated a marked increase in the proportion of fibroblasts transitioning to adipogenesis in the orbital fat of patients with TED compared with that in control patients. This was associated with diverse alterations in immune cell composition. Significant alterations in the IGF-1R signaling pathway were noted between TED specimens and those from control patients, indicating a potential pathological mechanism driven by IGF-1R signaling abnormalities. Additionally, our data showed that linsitinib, a small-molecule inhibitor of IGF-1R, effectively reduced adipogenesis in TED orbital fibroblasts in vitro, suggesting its potential utility as a therapeutic agent. Our findings reveal that, beyond immune dysfunction, abnormal IGF-1R signaling leading to enhanced adipogenesis is a crucial pathogenic mechanism in TED.
Collapse
Affiliation(s)
- Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, and
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Soohyun Kim
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeong Han
- Baylor College of Medicine, Houston, Texas, USA
| | - Karan Belday
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Li
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Mahoney
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology
- Institute for Cell Engineering, and
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Yang X, Zhen C, Huang H, Jiao Y, Fan X, Zhang C, Song J, Wang S, Zhou C, Yang X, Yuan J, Zhang J, Xu R, Wang FS. Implications of accumulation of clonally expanded and senescent CD4 +GNLY + T cells in immunological non-responders of HIV-1 infection. Emerg Microbes Infect 2024; 13:2396868. [PMID: 39239709 PMCID: PMC11441045 DOI: 10.1080/22221751.2024.2396868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Increased CD4+GNLY+ T cells have been confirmed to be inversely associated with CD4+ T cell count in immunological non-responders (INRs), however, the underlying mechanisms are unknown. This study aimed to elucidate the characteristics of CD4+GNLY+ T cells and their relationship with immune restoration. Single-cell RNA sequencing, single-cell TCR sequencing, and flow cytometry were used to analyze the frequency, phenotypes, and function of CD4+GNLY+ T cells. Moreover, Enzyme linked immunosorbent assay was performed to detect plasma cytokines production in patients. CD4+GNLY+ T cells were found to be highly clonally expanded, characterized by higher levels of cytotoxicity, senescence, P24, and HIV-1 DNA than CD4+GNLY- T cells. Additionally, the frequency of CD4+GNLY+ T cells increased after ART, and further increased in INRs, and were positively associated with the antiretroviral therapy duration in INR. Furthermore, increased IL-15 levels in INRs positively correlated with the frequency and senescence of CD4+GNLY+ T cells, suggesting that CD4+GNLY+ T cells may provide new insights for understanding the poor immune reconstitution of INRs. In conclusion, increased, highly clonally expanded, and senescent CD4+GNLY+ T cells may contribute to poor immune reconstitution in HIV-1 infection.
Collapse
Affiliation(s)
- Xiuhan Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Huihuang Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Yanmei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinwen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Songshan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chunbao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - XinXin Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinhong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jiyuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Ruonan Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Fu-Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Liu Z, Ke SR, Shi ZX, Zhou M, Sun L, Sun QH, Xiao B, Wang DL, Huang YJ, Lin JS, Wang HS, Zhang QK, Pan CN, Liang XW, Chen RX, Mao Z, Lin XC. Dynamic transition of Tregs to cytotoxic phenotype amid systemic inflammation in Graves' ophthalmopathy. JCI Insight 2024; 9:e181488. [PMID: 39365735 PMCID: PMC11601897 DOI: 10.1172/jci.insight.181488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Graves' disease (GD) is an autoimmune condition that can progress to Graves' ophthalmopathy (GO), leading to irreversible damage to orbital tissues and potential blindness. The pathogenic mechanism is not fully understood. In this study, we conducted single-cell multi-omics analyses on healthy individuals, patients with GD without GO, newly diagnosed patients with GO, and treated patients with GO. Our findings revealed gradual systemic inflammation during GO progression, marked by overactivation of cytotoxic effector T cell subsets, and expansion of specific T cell receptor clones. Importantly, we observed a decline in the immunosuppressive function of activated Treg (aTreg) accompanied by a cytotoxic phenotypic transition. In vitro experiments revealed that dysfunction and transition of GO-autoreactive Treg were regulated by the yin yang 1 (YY1) upon secondary stimulation of thyroid stimulating hormone receptor (TSHR) under inflammatory conditions. Furthermore, adoptive transfer experiments of the GO mouse model confirmed infiltration of these cytotoxic Treg into the orbital lesion tissues. Notably, these cells were found to upregulate inflammation and promote pathogenic fibrosis of orbital fibroblasts (OFs). Our results reveal the dynamic changes in immune landscape during GO progression and provide direct insights into the instability and phenotypic transition of Treg, offering potential targets for therapeutic intervention and prevention of autoimmune diseases.
Collapse
|
8
|
Wang M, Liu L. Advances of IGF-1R inhibitors in Graves' ophthalmopathy. Int Ophthalmol 2024; 44:435. [PMID: 39578269 DOI: 10.1007/s10792-024-03358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Graves' ophthalmopathy is the most common extra-thyroidal organ manifestation of Graves' disease. The mainstay of clinical treatment is glucocorticoids; however, side effects and relapse are common problems, and current treatment options cannot alter the disease progression. IGF-1R is an important component of the signaling pathway in Graves' ophthalmopathy, and downstream signaling of IGF-1 and IGF-1R plays a role in many immune-related diseases, possibly leading to disease occurrence through changes in immune phenotype and protein synthesis. Teprotumumab is a human monoclonal antibody targeting the insulin-like growth factor-I receptor (IGF-1R). Clinical trials have shown that teprotumumab reduces proptosis better than placebo, and may be beneficial for patients with worsening disease after steroid cessation. In this review, we discuss the role and prospects of IGF-1R inhibitors in thyroid-associated ophthalmopathy.
Collapse
Affiliation(s)
- Meilan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
9
|
Zhang H, Zhou Y, Yu B, Deng Y, Wang Y, Fang S, Song X, Fan X, Zhou H. Multi-Omics Approaches to Discover Biomarkers of Thyroid Eye Disease: A Systematic Review. Int J Biol Sci 2024; 20:6038-6055. [PMID: 39664569 PMCID: PMC11628329 DOI: 10.7150/ijbs.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Thyroid eye disease (TED) is an organ-specific autoimmune disorder that significantly impacts patients' visual function, appearance, and well-being. Despite existing clinical evaluation methods, there remains a need for objective biomarkers to facilitate clinical management and pathogenesis investigation. Rapid advances in multi-omics technologies have enabled the discovery and development of more informative biomarkers for clinical use. This systematic review synthesizes the current landscape of multi-omics approaches in TED research, highlighting the potential of genomics, transcriptomics, proteomics, metabolomics, and microbiomics to uncover novel biomarkers. Our review encompasses 69 studies involving 1,363 TED patients and 1,504 controls, revealing a wealth of biomarker candidates across various biological matrices. The identified biomarkers reflect alterations in gene expression, protein profiles, metabolic pathways, and microbial compositions, underscoring the systemic nature of TED. Notably, the integration of multi-omics data has been pivotal in enhancing our understanding of TED's molecular mechanisms and identifying diagnostic and prognostic markers with clinical potential.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, China
| | - Yuyu Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, China
| | - Baiguang Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, China
| | - Yuyang Deng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, China
| | - Yang Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, China
| | - Xuefei Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Huangpu District, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, China
| |
Collapse
|
10
|
Zhang C, Ren T, Zhao X, Su Y, Wang Q, Zhang T, He B, Chen Y, Wu LY, Sun L, Zhang B, Xia Z. Biologically informed machine learning modeling of immune cells to reveal physiological and pathological aging process. Immun Ageing 2024; 21:74. [PMID: 39449067 PMCID: PMC11515583 DOI: 10.1186/s12979-024-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The immune system undergoes progressive functional remodeling from neonatal stages to old age. Therefore, understanding how aging shapes immune cell function is vital for precise treatment of patients at different life stages. Here, we constructed the first transcriptomic atlas of immune cells encompassing human lifespan, ranging from newborns to supercentenarians, and comprehensively examined gene expression signatures involving cell signaling, metabolism, differentiation, and functions in all cell types to investigate immune aging changes. By comparing immune cell composition among different age groups, HLA highly expressing NK cells and CD83 positive B cells were identified with high percentages exclusively in the teenager (Tg) group, whereas unknown_T cells were exclusively enriched in the supercentenarian (Sc) group. Notably, we found that the biological age (BA) of pediatric COVID-19 patients with multisystem inflammatory syndrome accelerated aging according to their chronological age (CA). Besides, we proved that inflammatory shift- myeloid abundance and signature correlate with the progression of complications in Kawasaki disease (KD). The shift- myeloid signature was also found to be associated with KD treatment resistance, and effective therapies improve treatment outcomes by reducing this signaling. Finally, based on those age-related immune cell compositions, we developed a novel BA prediction model PHARE ( https://xiazlab.org/phare/ ), which can apply to both scRNA-seq and bulk RNA-seq data. Using this model, we found patients with coronary artery disease (CAD) also exhibit accelerated aging compared to healthy individuals. Overall, our study revealed changes in immune cell proportions and function associated with aging, both in health and disease, and provided a novel tool for successfully capturing features that accelerate or delay aging.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Boxiao He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yabing Chen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
11
|
Covre LP, Fantecelle CH, Garcia de Moura R, Oliveira Lopes P, Sarmento IV, Freire-de-Lima CG, Decote-Ricardo D, de Matos Guedes HL, da Fonsceca-Martins AM, de Carvalho LP, de Carvalho EM, Mosser DM, Falqueto A, Akbar AN, Gomes DCO. Lesional senescent CD4 + T cells mediate bystander cytolysis and contribute to the skin pathology of human cutaneous leishmaniasis. Front Immunol 2024; 15:1475146. [PMID: 39497830 PMCID: PMC11532160 DOI: 10.3389/fimmu.2024.1475146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Cytotoxic activity is a hallmark of the immunopathogenesis in human cutaneous leishmaniasis (CL). In this study, we identified accumulation of CD4+ granzyme B producing T cells with increased cytotoxic capacity in CL lesions. These cells showed enhanced expression of activating NK receptors (NKG2D and NKG2C), diminished expression of inhibitory NKG2A, along with the upregulation of the senescence marker CD57. Notably, CD4+ T cells freshly isolated from CL lesions demonstrated remarkable capacity to mediate NL-like bystander cytolysis. Phenotypic analyses revealed that lesional CD4+ T cells are mainly composed of late-differentiated effector (CD27-CD45RA-) and terminally differentiated (senescent) TEMRA (CD27-CD45RA+) subsets. Interestingly, the TEMRA CD4+ T cells exhibited higher expression of granzyme B and CD107a. Collectively, our results provide the first evidence that senescent cytotoxic CD4+ T cells may support the skin pathology of human cutaneous leishmaniasis and, together with our previous findings, support the notion that multiple subsets of cytotoxic senescent cells may be involved in inducing the skin lesions in these patients.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, United Kingdom
| | | | | | - Paola Oliveira Lopes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Debora Decote-Ricardo
- Departamento de Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - David M. Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne N. Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
12
|
Ahsanuddin S, Wu AY. Single-cell transcriptomics in thyroid eye disease. Taiwan J Ophthalmol 2024; 14:554-564. [PMID: 39803402 PMCID: PMC11717346 DOI: 10.4103/tjo.tjo-d-23-00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 01/16/2025] Open
Abstract
Thyroid eye disease (TED) is a poorly understood autoimmune condition affecting the retroorbital tissue. Tissue inflammation, expansion, and fibrosis can potentially lead to debilitating sequelae such as vision loss, painful eye movement, proptosis, and eyelid retraction. Current treatment modalities for TED include systemic glucocorticoids, thioamides, methimazole, teprotumumab, beta-blockers, and radioactive iodine; however, it has been reported that up to 10%-20% of TED patients relapse after treatment withdrawal and 20%-30% are unresponsive to mainstay therapy for reasons that have yet to be more clearly elucidated. In the past 4 years, vision researchers have harnessed high-throughput single-cell RNA sequencing to elucidate the diversity of cell types and molecular mechanisms driving the pathogenesis of TED at single-cell resolution. Such studies have provided unprecedented insight regarding novel biomarkers and therapeutic targets in TED. This timely review summarizes recent breakthroughs and emerging opportunities for using single-cell and single-nuclei transcriptomic data to characterize this highly complex disease state. We also provide an overview of current challenges and future applications of this technology to potentially improve patient quality of life and facilitate reversal of disease endpoints.
Collapse
Affiliation(s)
- Sofia Ahsanuddin
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Albert Y. Wu
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, Yang R. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res 2024; 12:110. [PMID: 39334490 PMCID: PMC11438019 DOI: 10.1186/s40364-024-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize the current status and challenges of applying single-cell multi-omics technologies to biological research and clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential strategies to address them.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunhan Dai
- Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
14
|
Hwang JY, Kim Y, Na K, Kim DK, Lee S, Kang SS, Baek S, Yang SM, Kim MH, Han H, Jeong SS, Lee CY, Han YJ, Sohn JO, Ye SK, Pyo KH. Exploring the Expression and Function of T Cell Surface Markers Identified through Cellular Indexing of Transcriptomes and Epitopes by Sequencing. Yonsei Med J 2024; 65:544-555. [PMID: 39193763 PMCID: PMC11359606 DOI: 10.3349/ymj.2023.0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 08/29/2024] Open
Abstract
PURPOSE By utilizing both protein and mRNA expression patterns, we can identify more detailed and diverse immune cells, providing insights into understanding the complex immune landscape in cancer ecosystems. MATERIALS AND METHODS This study was performed by obtaining publicly available Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) data of peripheral blood mononuclear cells (PBMCs) from the Gene Expression Omnibus database. A total of 94674 total cells were analyzed, of which 32412 were T cells. There were 228 protein features and 16262 mRNA features in the data. The Seurat package was used for quality control and preprocessing, principal component analysis was performed, and Uniform Manifold Approximation and Projection was used to visualize the clusters. Protein and mRNA levels in the CITE-seq were analyzed. RESULTS We observed that a subset of T cells in the clusters generated at the protein level divided better. By identifying mRNA markers that were highly correlated with the CD4 and CD8 proteins and cross-validating CD26 and CD99 markers using flow cytometry, we found that CD4+ and CD8+ T cells were better discriminated in PBMCs. Weighted Nearest Neighbor clustering results identified a previously unobserved T cell subset. CONCLUSION In this study, we used CITE-seq data to confirm that protein expression patterns could be used to identify cells more precisely. These findings will improve our understanding of the heterogeneity of immune cells in the future and provide valuable insights into the complexity of the immune response in health and disease.
Collapse
Affiliation(s)
- Joon Yeon Hwang
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Youngtaek Kim
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kwangmin Na
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Kwon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seong-San Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Korea
| | - Sujeong Baek
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Min Yang
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Hyun Kim
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Heekyung Han
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Su Jeong
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chai Young Lee
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jin Han
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jie-Ohn Sohn
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Sang-Kyu Ye
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Zhang H, Fang L, Cheng Y, Peng Y, Wang H, Jiang M, Zhu L, Li Y, Fang S, Zhou H, Sun J, Song X. Peripheral CD3 +CD4 + T cells as indicators of disease activity in thyroid eye disease: age-dependent significance. Graefes Arch Clin Exp Ophthalmol 2024; 262:2985-2997. [PMID: 38689122 DOI: 10.1007/s00417-024-06496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
PURPOSE To provide an in-depth analysis of the association of peripheral lymphocytes and the disease activity of thyroid eye disease (TED). METHODS This retrospective study enrolled 65 active TED patients and 46 inactive TED patients. Comparative analyses of peripheral lymphocyte subsets were conducted between active and inactive patients. Subgroup analyses were performed based on sex, age, disease duration, and severity. Correlation analyses explored the associations between lymphocyte subsets and TED activity indicators. Prediction models for TED activity were established using objective indicators. RESULTS Significantly elevated levels of CD3+CD4+ T cells were observed in active TED patients compared to inactive patients (P = 0.010). Subgroup analyses further revealed that this disparity was most prominent in females (P = 0.036), patients aged 50 years and younger (P = 0.003), those with long-term disease duration (P = 0.022), and individuals with moderate-to-severe disease (P = 0.021), with age exerting the most substantial impact. Subsequent correlation analysis confirmed the positive association between CD3+CD4+ T cells and the magnetic resonance imaging indicator of TED activity among patients aged 50 years and younger (P = 0.038). The combined prediction models for TED activity, established using objective indicators including CD3+CD4+ T cells, yielded areas under curve of 0.786 for all patients and 0.816 for patients aged 50 years and younger. CONCLUSIONS Peripheral CD3+CD4+ T cells are associated with disease activity of TED, especially in patients aged 50 years and younger. Our study has deepened the understanding of the peripheral T cell profiles in TED patients.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lianfei Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yumeng Cheng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuhang Peng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hui Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xuefei Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
16
|
Lee CR, Kim MJ, Park SH, Kim S, Kim SY, Koh SJ, Lee S, Choi M, Chae JH, Park SG, Moon J. Recurrent fever of unknown origin and unexplained bacteremia in a patient with a novel 4.5 Mb microdeletion in Xp11.23-p11.22. Sci Rep 2024; 14:17801. [PMID: 39090138 PMCID: PMC11294525 DOI: 10.1038/s41598-024-65341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
Fever of unknown origin (FUO) remains a formidable diagnostic challenge in the field of medicine. Numerous studies suggest an association between FUO and genetic factors, including chromosomal abnormalities. Here, we report a female patient with a 4.5 Mb Xp microdeletion, who presented with recurrent FUO, bacteremia, colitis, and hematochezia. To elucidate the underlying pathogenic mechanism, we employed a comprehensive approach involving single cell RNA sequencing, T cell receptor sequencing, and flow cytometry to evaluate CD4 T cells. Analysis of peripheral blood mononuclear cells revealed augmented Th1, Th2, and Th17 cell populations, and elevated levels of proinflammatory cytokines in serum. Notably, the patient exhibited impaired Treg cell function, possibly related to deletion of genes encoding FOPX3 and WAS. Single cell analysis revealed specific expansion of cytotoxic CD4 T lymphocytes, characterized by upregulation of various signature genes associated with cytotoxicity. Moreover, interferon-stimulated genes were upregulated in the CD4 T effector memory cluster. Further genetic analysis confirmed maternal inheritance of the Xp microdeletion. The patient and her mother exhibited X chromosome-skewed inactivation, a potential protective mechanism against extensive X chromosome deletions; however, the mother exhibited complete skewing and the patient exhibited incomplete skewing (85:15), which may have contributed to emergence of immunological symptoms. In summary, this case report describes an exceptional instance of FUO stemming from an incompletely inactivated X chromosome microdeletion, thereby increasing our understanding of the genetics underpinning FUO.
Collapse
Affiliation(s)
- Cho-Rong Lee
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang-Heon Park
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung-Gyoo Park
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jangsup Moon
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Neurology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
17
|
Wei L, Huang Q, Tu Y, Song S, Zhang X, Yu B, Liu Y, Li Z, Huang Q, Chen L, Liu B, Xu S, Li T, Liu X, Hu X, Liu W, Chi ZL, Wu W. Plasma exosomes from patients with active thyroid-associated orbitopathy induce inflammation and fibrosis in orbital fibroblasts. J Transl Med 2024; 22:546. [PMID: 38849907 PMCID: PMC11157872 DOI: 10.1186/s12967-024-05263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The pathogenesis of thyroid-associated orbitopathy (TAO) remains incompletely understand. The interaction between immunocytes and orbital fibroblasts (OFs) play a critical role in orbital inflammatory and fibrosis. Accumulating reports indicate that a significant portion of plasma exosomes (Pla-Exos) are derived from immune cells; however, their impact upon OFs function is unclear. METHODS OFs were primary cultured from inactive TAO patients. Exosomes isolated from plasma samples of patients with active TAO and healthy controls (HCs) were utilized for functional and RNA cargo analysis. Functional analysis in thymocyte differentiation antigen-1+ (Thy-1+) OFs measured expression of inflammatory and fibrotic markers (mRNAs and proteins) and cell activity in response to Pla-Exos. RNA cargo analysis was performed by RNA sequencing and RT-qPCR. Thy-1+ OFs were transfected with miR-144-3p mimics/inhibitors to evaluate its regulation of inflammation, fibrosis, and proliferation. RESULTS Pla-Exos derived from active TAO patients (Pla-ExosTAO-A) induced stronger production of inflammatory cytokines and hyaluronic acid (HA) in Thy-1+ OFs while inhibiting their proliferation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and single sample gene set enrichment analysis (ssGSEA) suggested that the difference in mRNA expression levels between Pla-ExosTAO-A and Pla-ExosHC was closely related to immune cells. Differential expression analysis revealed that 62 upregulated and 45 downregulated miRNAs in Pla-ExosTAO-A, with the elevation of miR-144-3p in both Pla-Exos and PBMCs in active TAO group. KEGG analysis revealed that the target genes of differentially expressed miRNA and miR-144-3p enriched in immune-related signaling pathways. Overexpression of the miR-144-3p mimic significantly upregulated the secretion of inflammatory cytokines and HA in Thy-1+ OFs while inhibiting their proliferation. CONCLUSION Pla-Exos derived from patients with active TAO were immune-active, which may be a long-term stimulus casual for inflammatory and fibrotic progression of TAO. Our finding suggests that Pla-Exos could be used as biomarkers or treatment targets in TAO patients.
Collapse
Affiliation(s)
- Li Wei
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinying Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunhai Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shihan Song
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaobo Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yufen Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ziwei Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shenglan Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tong Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiyuan Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaozhou Hu
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weijie Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zai-Long Chi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain health), Wenzhou, 32500, China.
| |
Collapse
|
18
|
Lin L, Ren R, Xiong Q, Zheng C, Yang B, Wang H. Remodeling of T-cell mitochondrial metabolism to treat autoimmune diseases. Autoimmun Rev 2024; 23:103583. [PMID: 39084278 DOI: 10.1016/j.autrev.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
T cells are key drivers of the pathogenesis of autoimmune diseases by producing cytokines, stimulating the generation of autoantibodies, and mediating tissue and cell damage. Distinct mitochondrial metabolic pathways govern the direction of T-cell differentiation and function and rely on specific nutrients and metabolic enzymes. Metabolic substrate uptake and mitochondrial metabolism form the foundational elements for T-cell activation, proliferation, differentiation, and effector function, contributing to the dynamic interplay between immunological signals and mitochondrial metabolism in coordinating adaptive immunity. Perturbations in substrate availability and enzyme activity may impair T-cell immunosuppressive function, fostering autoreactive responses and disrupting immune homeostasis, ultimately contributing to autoimmune disease pathogenesis. A growing body of studies has explored how metabolic processes regulate the function of diverse T-cell subsets in autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune hepatitis (AIH), inflammatory bowel disease (IBD), and psoriasis. This review describes the coordination of T-cell biology by mitochondrial metabolism, including the electron transport chain (ETC), oxidative phosphorylation, amino acid metabolism, fatty acid metabolism, and one‑carbon metabolism. This study elucidated the intricate crosstalk between mitochondrial metabolic programs, signal transduction pathways, and transcription factors. This review summarizes potential therapeutic targets for T-cell mitochondrial metabolism and signaling in autoimmune diseases, providing insights for future studies.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyu Ren
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Xiong
- Department of Infectious Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Li Q, An N, Liu C, Ding Y, Yang C, Ma X, Yang W, Piao J, Zhu J, Liu J. Single-cell BCR and transcriptome analysis reveals peripheral immune signatures in patients with thyroid-associated ophthalmopathy. Aging (Albany NY) 2024; 16:8217-8245. [PMID: 38728262 PMCID: PMC11132005 DOI: 10.18632/aging.205814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Thyroid-associated ophthalmopathy (TAO) is the most prevalent orbital disease in adults caused by an autoimmune disorder, which can lead to disfigurement and vision impairment. Developing effective treatments for this condition presents challenges due to our limited understanding of its underlying immune aberrations. In this study, we profiled the immune components in the peripheral blood of patients with TAO as well as healthy individuals, utilizing single-cell RNA sequencing and B-cell receptor repertoires (BCR) analysis. We observed a significant reduction in the proportions of regulatory B cells (Bregs) and type 2 conventional dendritic cells (DCs) in patients with TAO during the active phase. Conversely, there was a significant increase in the proportion of type 1 DCs. Further analysis of cell differentiation trajectory revealed potential impairment in the transition of B cells towards Breg phenotype during the active phase of TAO. Besides, the activation process of TAO appeared to involve inflammation and immune dysfunction, as indicated by the dynamic changes in the activities of key regulators. The abnormalities in the peripheral immune system, such as the reduced capacity of Bregs to suppress inflammation, were primarily driven by the enhanced interaction among Breg, DCs, and monocytes (i.e., CD22-PTPRC and BTLA-TNFRSF14). Collectively, our findings offer a comprehensive insight into the molecular regulation and cellular reconfiguration during the active phase of TAO at the single-cell level, in order to explore the pathogenesis of TAO and provide new ideas for the future treatment of TAO.
Collapse
Affiliation(s)
- Qian Li
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Ningyu An
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Cheng Liu
- Medical Science Research Institution of Ningxia Hui Autonomous Region, Medical Sci-Tech Research Center of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Yungang Ding
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Cuixia Yang
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Xiumei Ma
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Wei Yang
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Junfeng Piao
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, Guro-gu, Seoul 152–703, South Korea
| | - Jinyan Zhu
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Junxiu Liu
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| |
Collapse
|
20
|
Lu X, Hayashi H, Ishikawa E, Takeuchi Y, Dychiao JVT, Nakagami H, Yamasaki S. Early acquisition of S-specific Tfh clonotypes after SARS-CoV-2 vaccination is associated with the longevity of anti-S antibodies. eLife 2024; 12:RP89999. [PMID: 38716629 PMCID: PMC11078543 DOI: 10.7554/elife.89999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as 'sustainers'), but not in 'decliners'. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.
Collapse
Affiliation(s)
- Xiuyuan Lu
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka UniversitySuitaJapan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of MedicineSuitaJapan
| | - Eri Ishikawa
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka UniversitySuitaJapan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
| | - Yukiko Takeuchi
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka UniversitySuitaJapan
| | | | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of MedicineSuitaJapan
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka UniversitySuitaJapan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
| |
Collapse
|
21
|
Koga R, Maehara T, Aoyagi R, Munemura R, Murakami Y, Doi A, Kono M, Yamamoto H, Niiro H, Kiyoshima T, Tanabe M, Nakano T, Matsukuma Y, Kawano M, Stone JH, Pillai S, Nakamura S, Kawano S. Granzyme K- and amphiregulin-expressing cytotoxic T cells and activated extrafollicular B cells are potential drivers of IgG4-related disease. J Allergy Clin Immunol 2024; 153:1095-1112. [PMID: 38092138 DOI: 10.1016/j.jaci.2023.11.916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND IgG4-related disease (IgG4-RD), an example of a type I immune disease, is an immune-mediated fibrotic disorder characterized by dysregulated resolution of severe inflammation and wound healing. However, truly dominant or pathognomonic autoantibodies related to IgG4-RD are not identified. OBJECTIVE We sought to perform single-cell RNA sequencing and T-cell receptor and B-cell receptor sequencing to obtain a comprehensive, unbiased view of tissue-infiltrating T and B cells. METHODS We performed unbiased single-cell RNA-sequencing analysis for the transcriptome and T-cell receptor sequencing and B-cell receptor sequencing on sorted CD3+ T or CD19+ B cells from affected tissues of patients with IgG4-RD. We also conducted quantitative analyses of CD3+ T-cell and CD19+ B-cell subsets in 68 patients with IgG4-RD and 30 patients with Sjögren syndrome. RESULTS Almost all clonally expanded T cells in these lesions were either Granzyme K (GZMK)-expressing CD4+ cytotoxic T cells or GZMK+CD8+ T cells. These GZMK-expressing cytotoxic T cells also expressed amphiregulin and TGF-β but did not express immune checkpoints, and the tissue-infiltrating CD8+ T cells were phenotypically heterogeneous. MKI67+ B cells and IgD-CD27-CD11c-CXCR5- double-negative 3 B cells were clonally expanded and infiltrated affected tissue lesions. GZMK+CD4+ cytotoxic T cells colocalized with MKI67+ B cells in the extrafollicular area from affected tissue sites. CONCLUSIONS The above-mentioned cells likely participate in T-B collaborative events, suggesting possible avenues for targeted therapies. Our findings were validated using orthogonal approaches, including multicolor immunofluorescence and the use of comparator disease groups, to support the central role of cytotoxic CD4+ and CD8+ T cells expressing GZMK, amphiregulin, and TGF-β in the pathogenesis of inflammatory fibrotic disorders.
Collapse
Affiliation(s)
- Risako Koga
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, Kyushu, Japan.
| | - Ryuichi Aoyagi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryusuke Munemura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuka Murakami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidetaka Yamamoto
- Graduate School of Medicine, Dentistry & Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mika Tanabe
- Department of Ophthalmology, Graduate School of Medicine Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Matsukuma
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuhiro Kawano
- Division of Rheumatology, Department of Internal Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Harvard Medical School, Boston, Mass
| | - Shiv Pillai
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Goto M, Takahashi H, Yoshida R, Itamiya T, Nakano M, Nagafuchi Y, Harada H, Shimizu T, Maeda M, Kubota A, Toda T, Hatano H, Sugimori Y, Kawahata K, Yamamoto K, Shoda H, Ishigaki K, Ota M, Okamura T, Fujio K. Age-associated CD4 + T cells with B cell-promoting functions are regulated by ZEB2 in autoimmunity. Sci Immunol 2024; 9:eadk1643. [PMID: 38330141 DOI: 10.1126/sciimmunol.adk1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Aging is a significant risk factor for autoimmunity, and many autoimmune diseases tend to onset during adulthood. We conducted an extensive analysis of CD4+ T cell subsets from 354 patients with autoimmune disease and healthy controls via flow cytometry and bulk RNA sequencing. As a result, we identified a distinct CXCR3midCD4+ effector memory T cell subset that expands with age, which we designated "age-associated T helper (THA) cells." THA cells exhibited both a cytotoxic phenotype and B cell helper functions, and these features were regulated by the transcription factor ZEB2. Consistent with the highly skewed T cell receptor usage of THA cells, gene expression in THA cells from patients with systemic lupus erythematosus reflected disease activity and was affected by treatment with a calcineurin inhibitor. Moreover, analysis of single-cell RNA sequencing data revealed that THA cells infiltrate damaged organs in patients with autoimmune diseases. Together, our characterization of THA cells may facilitate improved understanding of the relationship between aging and autoimmune diseases.
Collapse
Affiliation(s)
- Manaka Goto
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ryochi Yoshida
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masahiro Nakano
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroaki Harada
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Meiko Maeda
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Akatsuki Kubota
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yusuke Sugimori
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kimito Kawahata
- Department of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Wang D, Ling J, Tan R, Wang H, Qu Y, Li X, Lin J, Zhang Q, Hu Q, Liu Z, Lu Z, Lin Y, Sun L, Wang D, Zhou M, Shi Z, Gao W, Ye H, Lin X. CD169 + classical monocyte as an important participant in Graves' ophthalmopathy through CXCL12-CXCR4 axis. iScience 2024; 27:109213. [PMID: 38439953 PMCID: PMC10910260 DOI: 10.1016/j.isci.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.
Collapse
Affiliation(s)
- Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jie Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - RongQiang Tan
- The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Huishi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yixin Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhaojing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wuyou Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
24
|
Lin M, Chen D, Shao Z, Liu Q, Hao Z, Xin Z, Chen Y, Wu W, Chen X, He T, Wu D, Wu P. Inflammatory dendritic cells restrain CD11b +CD4 + CTLs via CD200R in human NSCLC. Cell Rep 2024; 43:113767. [PMID: 38354085 DOI: 10.1016/j.celrep.2024.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
CD4+ cytotoxic T lymphocytes (CD4+ CTLs) are suggested to play a crucial role in inflammatory diseases, including cancer, but their characteristics in human non-small cell lung cancer (NSCLC) remain unknown. Here, using the cell surface marker CD11b, we identify CD11b+CD4+ CTLs as a cytotoxic subset of CD4+ T cells in multiple tissues of NSCLC patients. In addition, tumor-infiltrating CD11b+CD4+ CTLs show a dysfunctional phenotype with elevated expression of CD200 receptor (CD200R), a negatively immunomodulatory receptor. CD4+ regulatory T (Treg) cells restrain the anti-tumor role of CD11b+CD4+ CTLs via CD200. Mechanistically, inflammatory dendritic cells promote the CD200R expression of CD11b+CD4+ CTLs by secreting interleukin-1β (IL-1β). Finally, we demonstrate that CD200 blockade can revive the tumor-killing role of CD11b+CD4+ CTLs and prolong the survival of tumor-bearing mice. Taken together, our study identifies CD11b+CD4+ CTLs in NSCLC with decreased cytotoxicity that can be reinvigorated by CD200 blockade, suggesting that targeting CD200 is a promising immunotherapy strategy in NSCLC.
Collapse
Affiliation(s)
- Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wenxuan Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaoke Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Teng He
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Infectious Disease, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
25
|
Aoyagi R, Maehara T, Koga R, Munemura R, Tomonaga T, Murakami Y, Doi A, Yamamoto H, Kiyoshima T, Kawano S, Nakamura S. Single-cell transcriptomics reveals granzyme K-expressing cytotoxic Tfh cells in tertiary lymphoid structures in IgG4-RD. J Allergy Clin Immunol 2024; 153:513-520.e10. [PMID: 37652139 DOI: 10.1016/j.jaci.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Germinal center (GC) responses controlled by T follicular helper (Tfh) and T follicular regulatory (Tfr) cells are crucial for the generation of high-affinity antibodies. Acquired immune responses to tissue-released antigens might be mainly induced in tertiary lymphoid organs (TLOs) with GCs in affected tissues. IgG4-related disease (IgG4-RD) demonstrates polarized isotype switching and TLOs in affected tissues. We performed single-cell transcriptomics of tissue-infiltrating T cells from these TLOs to obtain a comprehensive, unbiased view of tissue-infiltrating GC-Tfh cells. OBJECTIVE To identify GC-Tfh-cell subsets in TLOs in patients with IgG4-RD using single-cell transcriptomics. METHODS Single-cell RNA sequencing of sorted CD3+ T cells and multicolor immunofluorescence analysis were used to investigate CD4+CXCR5+Bcl6+ GC-Tfh cells in affected lesions from patients with IgG4-RD. RESULTS Infiltrating CD4+CXCR5+Bcl6+ Tfh cells were divided into 5 main clusters. We detected HLA+ granzyme K+ (GZMK+) Tfh cells with cytotoxicity-associated features in patients with IgG4-RD. We also observed abundant infiltrating Tfr cells with suppressor-associated features in patients with IgG4-RD. These GZMK+ Tfh cells and Tfr cells clustered together in affected tissues from patients with IgG4-RD. CONCLUSIONS This single-cell data set revealed a novel subset of HLA+GZMK+ cytotoxic Tfh cells infiltrating affected organs in patients with IgG4-RD, suggesting that infiltrating Tfr cells might suppress cytotoxic Tfh cells.
Collapse
Affiliation(s)
- Ryuichi Aoyagi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan
| | - Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Risako Koga
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan
| | - Ryusuke Munemura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan
| | - Tadashi Tomonaga
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan
| | - Yuka Murakami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan
| | | | - Hidetaka Yamamoto
- Graduate School of Medicine, Dentistry & Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Fukuoka, Japan
| |
Collapse
|
26
|
Carmona EG, Callejas-Rubio JL, Raya E, Ríos-Fernández R, Villanueva-Martín G, Cid MC, Hernández-Rodríguez J, Ballestar E, Timmermann B, Ortego-Centeno N, Martín J, Márquez A. Single-cell transcriptomic profiling reveals a pathogenic role of cytotoxic CD4 + T cells in giant cell arteritis. J Autoimmun 2024; 142:103124. [PMID: 37952293 DOI: 10.1016/j.jaut.2023.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Giant cell arteritis (GCA) is a systemic vasculitis mediated by an aberrant immunological response against the blood vessel wall. Although the pathogenic mechanisms that drive GCA have not yet been elucidated, there is strong evidence that CD4+ T cells are key drivers of the inflammatory process occurring in this vasculitis. The aim of this study was to further delineate the role of CD4+ T cells in GCA by applying single-cell RNA sequencing and T cell receptor (TCR) repertoire profiling to 114.799 circulating CD4+ T cells from eight GCA patients in two different clinical states, active and in remission, and eight healthy controls. Our results revealed an expansion of cytotoxic CD4+ T lymphocytes (CTLs) in active GCA patients, which expressed higher levels of cytotoxic and chemotactic genes when compared to patients in remission and controls. Accordingly, differentially expressed genes in CTLs of active patients were enriched in pathways related to granzyme-mediated apoptosis, inflammation, and the recruitment of different immune cells, suggesting a role of this cell type in the inflammatory and vascular remodelling processes occurring in GCA. CTLs also exhibited a higher clonal expansion in active patients with respect to those in remission. Drug repurposing analysis prioritized maraviroc, which targeted CTLs, as potentially repositionable for this vasculitis. In addition, effector regulatory T cells (Tregs) were decreased in GCA and showed lower expression of genes involved in their suppressive activity. These findings provide further insights into the pathogenic role of CD4+ T cells in GCA and suggest targeting CTLs as a potential therapeutic option.
Collapse
Affiliation(s)
- Elio G Carmona
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain; Systemic Autoimmune Diseases Unit, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - José Luis Callejas-Rubio
- Systemic Autoimmune Diseases Unit, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Enrique Raya
- Rheumatology Department, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Raquel Ríos-Fernández
- Systemic Autoimmune Diseases Unit, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Gonzalo Villanueva-Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - María C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Hernández-Rodríguez
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | | | - Norberto Ortego-Centeno
- Department of Medicine, University of Granada, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain.
| |
Collapse
|
27
|
Herrera-De La Mata S, Ramírez-Suástegui C, Mistry H, Castañeda-Castro FE, Kyyaly MA, Simon H, Liang S, Lau L, Barber C, Mondal M, Zhang H, Arshad SH, Kurukulaaratchy RJ, Vijayanand P, Seumois G. Cytotoxic CD4 + tissue-resident memory T cells are associated with asthma severity. MED 2023; 4:875-897.e8. [PMID: 37865091 PMCID: PMC10964988 DOI: 10.1016/j.medj.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Patients with severe uncontrolled asthma represent a distinct endotype with persistent airway inflammation and remodeling that is refractory to corticosteroid treatment. CD4+ TH2 cells play a central role in orchestrating asthma pathogenesis, and biologic therapies targeting their cytokine pathways have had promising outcomes. However, not all patients respond well to such treatment, and their effects are not always durable nor reverse airway remodeling. This observation raises the possibility that other CD4+ T cell subsets and their effector molecules may drive airway inflammation and remodeling. METHODS We performed single-cell transcriptome analysis of >50,000 airway CD4+ T cells isolated from bronchoalveolar lavage samples from 30 patients with mild and severe asthma. FINDINGS We observed striking heterogeneity in the nature of CD4+ T cells present in asthmatics' airways, with tissue-resident memory T (TRM) cells making a dominant contribution. Notably, in severe asthmatics, a subset of CD4+ TRM cells (CD103-expressing) was significantly increased, comprising nearly 65% of all CD4+ T cells in the airways of male patients with severe asthma when compared to mild asthma (13%). This subset was enriched for transcripts linked to T cell receptor activation (HLA-DRB1, HLA-DPA1) and cytotoxicity (GZMB, GZMA) and, following stimulation, expressed high levels of transcripts encoding for pro-inflammatory non-TH2 cytokines (CCL3, CCL4, CCL5, TNF, LIGHT) that could fuel persistent airway inflammation and remodeling. CONCLUSIONS Our findings indicate the need to look beyond the traditional T2 model of severe asthma to better understand the heterogeneity of this disease. FUNDING This research was funded by the NIH.
Collapse
Affiliation(s)
| | | | - Heena Mistry
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | | | - Mohammad A Kyyaly
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shu Liang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Laurie Lau
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK.
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| | | |
Collapse
|
28
|
Maehara T, Koga R, Nakamura S. Immune dysregulation in immunoglobulin G4-related disease. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:1-7. [PMID: 36654676 PMCID: PMC9841035 DOI: 10.1016/j.jdsr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/10/2023] Open
Abstract
(IgG4-RD) is an immune-mediated fibrotic disorder characterized by severe resolution of inflammation and dysregulation of wound healing. IgG4-RD has been considered a unique disease since 2003, and significant progress has been achieved in the understanding of its essential features. The central role of B cells in IgG4-RD has been demonstrated by the robust clinical responsiveness of IgG4-RD to B cell depletion and the identification of multiple self-antigens that promote B cell expansion. Studies have increasingly revealed critical roles of these B cells and T cells in the pathogenesis of IgG4-RD, and we and other authors further identified CD4+ cytotoxic T lymphocytes as the main tissue-infiltrating CD4+ T cell subset in IgG4-RD tissues. Additionally, T follicular helper cell subsets that play a role in IgG4 isotype switching have been identified. In this review, we discuss research on IgG4-RD and the roles of B cell and T cell subsets, as well as the functions of CD4+ cytotoxic T cells in IgG4-RD pathogenesis. We highlight our findings from ongoing research using single-cell analysis of infiltrating CD4+ cytotoxic T cells, CD4+ follicular helper T cells, and infiltrating B cells in IgG4-RD and propose a model for the pathogenesis of IgG4-RD.
Collapse
Affiliation(s)
- Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan,Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan,Correspondence to: Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3–1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan.
| | - Risako Koga
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
30
|
Pillai S. A twist in the tail: Of T cell subsets and disease. J Exp Med 2023; 220:e20231423. [PMID: 37756675 PMCID: PMC10533361 DOI: 10.1084/jem.20231423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
In this issue of JEM, the work of Joachim et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20231028) on knockin mice with a specific tail mutation in LAT provides valuable insights about cytotoxic CD4+ T cells and human inflammatory diseases.
Collapse
Affiliation(s)
- Shiv Pillai
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
31
|
Wang L, Zhang M, Wang Y, Shi B. Graves' Orbitopathy Models: Valuable Tools for Exploring Pathogenesis and Treatment. Horm Metab Res 2023; 55:745-751. [PMID: 37903495 DOI: 10.1055/a-2161-5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Graves' orbitopathy (GO) is the most common extrathyroidal complication of Graves' disease (GD) and severely affects quality of life. However, its pathogenesis is still poorly understood, and therapeutic options are limited. Animal models are important tools for preclinical research. The animals in some previous models only exhibited symptoms of hyperthyroidism without ocular lesions. With the improvements achieved in modeling methods, some progressive animal models have been established. Immunization of mice with A subunit of the human thyroid stimulating hormone receptor (TSHR) by either adenovirus or plasmid (with electroporation) is widely used and convincing. These models are successful to identify that the gut microbiota influences the occurrence and severity of GD and GO, and sex-related risk factors may be key contributors to the female bias in the occurrence of GO rather than sex itself. Some data provide insight that macrophages and CD8+ T cells may play an important pathogenic role in the early stage of GO. Our team also replicated the time window from GD onset to GO onset and identified a group of CD4+ cytotoxic T cells. In therapeutic exploration, TSHR derived peptides, fingolimod, and rapamycin offer new potential options. Further clinical trials are needed to investigate these drugs. With the increasing use of these animal models and more in-depth studies of the new findings, scientists will gain a clearer understanding of the pathogenesis of GO and identify more treatments for patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Mo K, Chu Y, Liu Y, Zheng G, Song K, Song Q, Zheng H, Tang Y, Tian X, Yao W, Fang H, Wang K, Jiang Y, Yang D, Chen Y, Huang C, Li T, Qu H, Song X, Zhou J. Targeting hnRNPC suppresses thyroid follicular epithelial cell apoptosis and necroptosis through m 6A-modified ATF4 in autoimmune thyroid disease. Pharmacol Res 2023; 196:106933. [PMID: 37729957 DOI: 10.1016/j.phrs.2023.106933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Both environmental and genetic factors contribute to the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). However, the exact pathogenesis and interactions that occur between environmental factors and genes remain unclear, and therapeutic targets require further investigation due to limited therapeutic options. To solve such problems, this study utilized single-cell transcriptome, whole transcriptome, full-length transcriptome (Oxford nanopore technology), and metabolome sequencing to examine thyroid lesion tissues from 2 HT patients and 2 GD patients as well as healthy thyroid tissue from 1 control subject. HT patients had increased ATF4-positive thyroid follicular epithelial (ThyFoEp) cells, which significantly increased endoplasmic reticulum stress. The enhanced sustained stress resulted in cell death mainly including apoptosis and necroptosis. The ATF4-based global gene regulatory network and experimental validation revealed that N6-methyladenosine (m6A) reader hnRNPC promoted the transcriptional activity, synthesis, and translation of ATF4 through mediating m6A modification of ATF4. Increased ATF4 expression initiated endoplasmic reticulum stress signaling, which when sustained, caused apoptosis and necroptosis in ThyFoEp cells, and mediated HT development. Targeting hnRNPC and ATF4 notably decreased ThyFoEp cell death, thus ameliorating disease progression. Collectively, this study reveals the mechanisms by which microenvironmental cells in HT and GD patients trigger and amplify the thyroid autoimmune cascade response. Furthermore, we identify new therapeutic targets for the treatment of autoimmune thyroid disease, hoping to provide a potential way for targeted therapy.
Collapse
Affiliation(s)
- Ke Mo
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China; Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China
| | - Yongli Chu
- Department of Scientific Research, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Yang Liu
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Guibin Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Kaiyu Song
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Qiong Song
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China; Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China
| | - Haitao Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Yuxiao Tang
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Xinghan Tian
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Wenjie Yao
- Department of Endocrinology, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Han Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Kejian Wang
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, Shandong, China
| | - Yongqiang Jiang
- Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Dengfeng Yang
- Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yixuan Chen
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China; Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Chengyu Huang
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China; Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ting Li
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China; Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Hongmei Qu
- Departments of Obstetrics and Gynecology, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China.
| | - Xicheng Song
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China.
| | - Jin Zhou
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China; Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China.
| |
Collapse
|
33
|
Ren Z, Zhang H, Yu H, Zhu X, Lin J. Roles of four targets in the pathogenesis of graves' orbitopathy. Heliyon 2023; 9:e19250. [PMID: 37810014 PMCID: PMC10558314 DOI: 10.1016/j.heliyon.2023.e19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Graves' orbitopathy (GO) is an autoimmune disease that involves complex immune systems. The mainstays of clinical management for this disease are surgery, targeted drugs therapy, and no-targeted drugs drug therapy. targeted drugs can improve therapeutic efficacy and enhance the quality of life for GO patients. However, as a second-line treatment for GO, targeted drugs such as tocilizumab and rituximab have very limited therapeutic effects and may be accompanied by side effects. The introduction of Teprotumumab, which targets IGF-IR, has made significant progress in the clinical management of GO. The pathophysiology of GO still remains uncertain as it involves a variety of immune cells and fibroblast interactions as well as immune responses to relevant disease targets of action. Therfore, learning more about immune response feedback pathways and potential targets of action will assist in the treatment of GO. In this discussion, we explore the pathogenesis of GO and relevant work, and highlight four potential targets for GO: Interleukin-23 receptor (IL-23 R), Leptin receptor (LepR), Orbital fibroblast activating factors, and Plasminogen activator inhibitor-1 (PAI-1). A deeper understanding of the pathogenesis of GO and the role of potential target signaling pathways is crucial for effective treatment of this disease.
Collapse
Affiliation(s)
- Ziqiang Ren
- College of Life Sciences, Yantai University, Shandong, China
- Fengjin Biomedical Co., Ltd, Shandong, China
| | - Hailing Zhang
- College of Life Sciences, Yantai University, Shandong, China
| | - Haiwen Yu
- College of Life Sciences, Yantai University, Shandong, China
| | - Xiqiang Zhu
- Fengjin Biomedical Co., Ltd, Shandong, China
| | - Jian Lin
- College of Life Sciences, Yantai University, Shandong, China
| |
Collapse
|
34
|
Laphanuwat P, Gomes DCO, Akbar AN. Senescent T cells: Beneficial and detrimental roles. Immunol Rev 2023; 316:160-175. [PMID: 37098109 PMCID: PMC10952287 DOI: 10.1111/imr.13206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
As the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells. Although these cells, within both CD4 and CD8 compartments, lose proliferative activity after antigen-specific challenge, they acquire innate-like immune function. While this may confer broad immune protection during aging, these senescent T cells may also cause immunopathology, especially in the context of excessive inflammation in tissue microenvironments.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Division of MedicineUniversity College LondonLondonUK
- Department of PharmacologyFaculty of Medicine, Khon Kaen UniversityKhon KaenThailand
| | - Daniel Claudio Oliveira Gomes
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
- Núcleo de BiotecnologiaUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
35
|
Shen Y, Voigt A, Leng X, Rodriguez AA, Nguyen CQ. A current and future perspective on T cell receptor repertoire profiling. Front Genet 2023; 14:1159109. [PMID: 37408774 PMCID: PMC10319011 DOI: 10.3389/fgene.2023.1159109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
T cell receptors (TCR) play a vital role in the immune system's ability to recognize and respond to foreign antigens, relying on the highly polymorphic rearrangement of TCR genes. The recognition of autologous peptides by adaptive immunity may lead to the development and progression of autoimmune diseases. Understanding the specific TCR involved in this process can provide insights into the autoimmune process. RNA-seq (RNA sequencing) is a valuable tool for studying TCR repertoires by providing a comprehensive and quantitative analysis of the RNA transcripts. With the development of RNA technology, transcriptomic data must provide valuable information to model and predict TCR and antigen interaction and, more importantly, identify or predict neoantigens. This review provides an overview of the application and development of bulk RNA-seq and single-cell (SC) RNA-seq to examine the TCR repertoires. Furthermore, discussed here are bioinformatic tools that can be applied to study the structural biology of peptide/TCR/MHC (major histocompatibility complex) and predict antigenic epitopes using advanced artificial intelligence tools.
Collapse
Affiliation(s)
- Yiran Shen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Xuebing Leng
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Amy A. Rodriguez
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Morita R, Kubota-Koketsu R, Lu X, Sasaki T, Nakayama EE, Liu YC, Okuzaki D, Motooka D, Wing JB, Fujikawa Y, Ichida Y, Amo K, Goto T, Hara J, Shirano M, Yamasaki S, Shioda T. COVID-19 relapse associated with SARS-CoV-2 evasion from CD4 + T-cell recognition in an agammaglobulinemia patient. iScience 2023; 26:106685. [PMID: 37124420 PMCID: PMC10116114 DOI: 10.1016/j.isci.2023.106685] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
A 25-year-old patient with a primary immunodeficiency lacking immunoglobulin production experienced a relapse after a 239-day period of persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral genetic sequencing demonstrated that SARS-CoV-2 had evolved during the infection period, with at least five mutations associated with host cellular immune recognition. Among them, the T32I mutation in ORF3a was found to evade recognition by CD4+ T cells. The virus found after relapse showed an increased proliferative capacity in vitro. SARS-CoV-2 may have evolved to evade recognition by CD4+ T cells and increased in its proliferative capacity during the persistent infection, likely leading to relapse. These mutations may further affect viral clearance in hosts with similar types of human leukocyte antigens. The early elimination of SARS-CoV-2 in immunocompromised patients is therefore important not only to improve the condition of patients but also to prevent the emergence of mutants that threaten public health.
Collapse
Affiliation(s)
- Ryo Morita
- Department of Infectious Diseases, Osaka City General Hospital, Osaka 534-0021, Japan
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Ritsuko Kubota-Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Xiuyuan Lu
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Tadahiro Sasaki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - James Badger Wing
- Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yasunori Fujikawa
- Department of Medical Laboratory, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Yuji Ichida
- Department of Pharmacy, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Kiyoko Amo
- Department of Pediatric Emergency Medicine, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Tetsushi Goto
- Department of Infectious Diseases, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Junichi Hara
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Michinori Shirano
- Department of Infectious Diseases, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Zala A, Thomas R. Antigen-specific immunotherapy to restore antigen-specific tolerance in Type 1 diabetes and Graves' disease. Clin Exp Immunol 2023; 211:164-175. [PMID: 36545825 PMCID: PMC10019129 DOI: 10.1093/cei/uxac115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes and Graves' disease are chronic autoimmune conditions, characterized by a dysregulated immune response. In Type 1 diabetes, there is beta cell destruction and subsequent insulin deficiency whereas in Graves' disease, there is unregulated excessive thyroid hormone production. Both diseases result in significant psychosocial, physiological, and emotional burden. There are associated risks of diabetic ketoacidosis and hypoglycaemia in Type 1 diabetes and risks of thyrotoxicosis and orbitopathy in Graves' disease. Advances in the understanding of the immunopathogenesis and response to immunotherapy in Type 1 diabetes and Graves' disease have facilitated the introduction of targeted therapies to induce self-tolerance, and subsequently, the potential to induce long-term remission if effective. We explore current research surrounding the use of antigen-specific immunotherapies, with a focus on human studies, in Type 1 diabetes and Graves' disease including protein-based, peptide-based, dendritic-cell-based, and nanoparticle-based immunotherapies, including discussion of factors to be considered when translating immunotherapies to clinical practice.
Collapse
Affiliation(s)
- Aakansha Zala
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Ranjeny Thomas
- Correspondence: Ranjeny Thomas, Frazer Institute, The University of Queensland.
| |
Collapse
|
38
|
Zhang M, Chong KK, Chen ZY, Guo H, Liu YF, Kang YY, Li YJ, Shi TT, Lai KK, He MQ, Ye K, Kahaly GJ, Shi BY, Wang Y. Rapamycin improves Graves' orbitopathy by suppressing CD4+ cytotoxic T lymphocytes. JCI Insight 2023; 8:160377. [PMID: 36580373 PMCID: PMC9977423 DOI: 10.1172/jci.insight.160377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
CD4+ cytotoxic T lymphocytes (CTLs) were recently implicated in immune-mediated inflammation and fibrosis progression of Graves' orbitopathy (GO). However, little is known about therapeutic targeting of CD4+ CTLs. Herein, we studied the effect of rapamycin, an approved mTOR complex 1 (mTORC1) inhibitor, in a GO mouse model, in vitro, and in patients with refractory GO. In the adenovirus-induced model, rapamycin significantly decreased the incidence of GO. This was accompanied by the reduction of both CD4+ CTLs and the reduction of orbital inflammation, adipogenesis, and fibrosis. CD4+ CTLs from patients with active GO showed upregulation of the mTOR pathway, while rapamycin decreased their proportions and cytotoxic function. Low-dose rapamycin treatment substantially improved diplopia and the clinical activity score in steroid-refractory patients with GO. Single-cell RNA-Seq revealed that eye motility improvement was closely related to suppression of inflammation and chemotaxis in CD4+ CTLs. In conclusion, rapamycin is a promising treatment for CD4+ CTL-mediated inflammation and fibrosis in GO.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kelvin K.L. Chong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Science, The Prince of Wales Hospital, Hong Kong, China
| | - Zi-yi Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Guo
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu-feng Liu
- Biobank of The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yong-yong Kang
- Genome Institute and,Center for Mathematical Medical, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang-jun Li
- Department of Ophthalmology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Ting-ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kenneth K.H. Lai
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Ming-qian He
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Ye
- Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China.,School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China.,Faculty of Science, Leiden University, Leiden, Netherlands
| | - George J. Kahaly
- Molecular Thyroid Lab, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Bing-yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China.,Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and
| |
Collapse
|
39
|
Chen Z, Zhang M, Liu Y, Chen Z, Wang L, Wang W, Wang J, He M, Shi B, Wang Y. VEGF-A enhances the cytotoxic function of CD4 + cytotoxic T cells via the VEGF-receptor 1/VEGF-receptor 2/AKT/mTOR pathway. J Transl Med 2023; 21:74. [PMID: 36737819 PMCID: PMC9896805 DOI: 10.1186/s12967-023-03926-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND CD4+ cytotoxic T cells (CD4 CTLs) are CD4+ T cells with major histocompatibility complex-II-restricted cytotoxic function. Under pathologic conditions, CD4 CTLs hasten the development of autoimmune disease or viral infection by enhancing cytotoxicity. However, the regulators of the cytotoxicity of CD4 CTLs are not fully understood. METHODS To explore the potential regulators of the cytotoxicity of CD4 CTLs, bulk RNA and single-cell RNA sequencing (scRNA-seq), enzyme-linked immunosorbent assay, flow cytometry, quantitative PCR, and in-vitro stimulation and inhibition assays were performed. RESULTS In this study, we found that VEGF-A promoted the cytotoxicity of CD4 CTLs through scRNA-seq and flow cytometry. Regarding the specific VEGF receptor (R) involved, VEGF-R1/R2 signaling was activated in CD4 CTLs with increased cytotoxicity, and the VEGF-A effects were inhibited when anti-VEGF-R1/R2 neutralizing antibodies were applied. Mechanistically, VEGF-A treatment activated the AKT/mTOR pathway in CD4 CTLs, and the increases of cytotoxic molecules induced by VEGF-A were significantly reduced when the AKT/mTOR pathway was inhibited. CONCLUSION In conclusion, VEGF-A enhances the cytotoxicity of CD4 CTLs through the VEGF-R1/VEGF-R2/AKT/mTOR pathway, providing insights for the development of novel treatments for disorders associated with CD4 CTLs.
Collapse
Affiliation(s)
- Ziyi Chen
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Zhang
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Liu
- grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119Genome Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- grid.452452.00000 0004 1757 9282Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ling Wang
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenjuan Wang
- grid.452438.c0000 0004 1760 8119Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jincheng Wang
- grid.452438.c0000 0004 1760 8119Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mingqian He
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China. .,MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China. .,Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
40
|
Jiang M, Fu Y, Wang P, Yan Y, Zhao J, Wang Y, Yan S. Looking Beyond Th17 Cells: A Role for Th17.1 Cells in Thyroid-associated Ophthalmopathy? Endocrinology 2023; 164:6980482. [PMID: 36624983 DOI: 10.1210/endocr/bqad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO), an ordinary extrathyroid syndrome of Graves' disease (GD), is closely associated with immunity. T helper (Th) 17, Th1, and Th2 cells in Th lineages are thought to be related to the disease pathogenesis. Recently, there has been growing evidence that Th17.1 cells are involved in the development and progression of TAO. The characteristics of this pathology are similar to those of Th1 and Th17 lymphocytes, which secrete interferon (IFN)-γ and interleukin (IL)-17A. This paper reviews the potential role of the Th17.1 subgroup pathogenesis of TAO. The therapeutic effects of drugs that can modulate Th17.1 cell populations are also highlighted. Rich Th17.1 cells exist in peripheral blood and ocular tissues of patients suffering from thyroid eye disease (TED), especially those with severe or steroid-resistant TAO. The bias of Th17.1 cells to secrete cytokines partly determines the pathological outcome of TAO patients. Th17.1 cells are important in regulating fibrosis, adipocyte differentiation, and hyaluronic acid production. In summary, the Th17.1 subpopulation is essential in the onset and progression of TED, and targeting Th17.1 cell therapy may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Minmin Jiang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yu Fu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ping Wang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yan Yan
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jingxiao Zhao
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ying Wang
- International Medical Faculty, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
41
|
Zeng L, Yang K, Zhang T, Zhu X, Hao W, Chen H, Ge J. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: A review. J Autoimmun 2022; 133:102919. [PMID: 36242821 DOI: 10.1016/j.jaut.2022.102919] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
Autoimmunity refers to the phenomenon that the body's immune system produces antibodies or sensitized lymphocytes to its own tissues to cause an immune response. Immune disorders caused by autoimmunity can mediate autoimmune diseases. Autoimmune diseases have complicated pathogenesis due to the many types of cells involved, and the mechanism is still unclear. The emergence of single-cell research technology can solve the problem that ordinary transcriptome technology cannot be accurate to cell type. It provides unbiased results through independent analysis of cells in tissues and provides more mRNA information for identifying cell subpopulations, which provides a novel approach to study disruption of immune tolerance and disturbance of pro-inflammatory pathways on a cellular basis. It may fundamentally change the understanding of molecular pathways in the pathogenesis of autoimmune diseases and develop targeted drugs. Single-cell transcriptome sequencing (scRNA-seq) has been widely applied in autoimmune diseases, which provides a powerful tool for demonstrating the cellular heterogeneity of tissues involved in various immune inflammations, identifying pathogenic cell populations, and revealing the mechanism of disease occurrence and development. This review describes the principles of scRNA-seq, introduces common sequencing platforms and practical procedures, and focuses on the progress of scRNA-seq in 41 autoimmune diseases, which include 9 systemic autoimmune diseases and autoinflammatory diseases (rheumatoid arthritis, systemic lupus erythematosus, etc.) and 32 organ-specific autoimmune diseases (5 Skin diseases, 3 Nervous system diseases, 4 Eye diseases, 2 Respiratory system diseases, 2 Circulatory system diseases, 6 Liver, Gallbladder and Pancreas diseases, 2 Gastrointestinal system diseases, 3 Muscle, Bones and joint diseases, 3 Urinary system diseases, 2 Reproductive system diseases). This review also prospects the molecular mechanism targets of autoimmune diseases from the multi-molecular level and multi-dimensional analysis combined with single-cell multi-omics sequencing technology (such as scRNA-seq, Single cell ATAC-seq and single cell immune group library sequencing), which provides a reference for further exploring the pathogenesis and marker screening of autoimmune diseases and autoimmune inflammatory diseases in the future.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Tianqing Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaofei Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
42
|
He J, Shen J, Luo W, Han Z, Xie F, Pang T, Liao L, Guo Z, Li J, Li Y, Chen H. Research progress on application of single-cell TCR/BCR sequencing technology to the tumor immune microenvironment, autoimmune diseases, and infectious diseases. Front Immunol 2022; 13:969808. [PMID: 36059506 PMCID: PMC9434330 DOI: 10.3389/fimmu.2022.969808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell omics is the profiling of individual cells through sequencing and other technologies including high-throughput analysis for single-cell resolution, cell classification, and identification as well as time series analyses. Unlike multicellular studies, single-cell omics overcomes the problem of cellular heterogeneity. It provides new methods and perspectives for in-depth analyses of the behavior and mechanism of individual cells in the cell population and their relationship with the body, and plays an important role in basic research and precision medicine. Single-cell sequencing technologies mainly include single-cell transcriptome sequencing, single-cell assay for transposase accessible chromatin with high-throughput sequencing, single-cell immune profiling (single-cell T-cell receptor [TCR]/B-cell receptor [BCR] sequencing), and single-cell transcriptomics. Single-cell TCR/BCR sequencing can be used to obtain a large amount of single-cell gene expression and immunomics data at one time, and combined with transcriptome sequencing and TCR/BCR diversity data, can resolve immune cell heterogeneity. This paper summarizes the progress in applying single-cell TCR/BCR sequencing technology to the tumor immune microenvironment, autoimmune diseases, infectious diseases, immunotherapy, and chronic inflammatory diseases, and discusses its shortcomings and prospects for future application.
Collapse
Affiliation(s)
- Jinhua He
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Zeping Han
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Ting Pang
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Liyin Liao
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Zhonghui Guo
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
| | - Jianhao Li
- Institute of Cardiovascular Medicine, Central Hospital of Panyu District, Guangzhou, China
- *Correspondence: Hanwei Chen, ; Yuguang Li, ; Jianhao Li,
| | - Yuguang Li
- Administrative Office, He Xian Memorial Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hanwei Chen, ; Yuguang Li, ; Jianhao Li,
| | - Hanwei Chen
- Central Laboratory, Central Hospital of Panyu District, Guangzhou, China
- Medical Imaging Institute of Panyu, Central Hospital of Panyu District, Guangzhou, China
- *Correspondence: Hanwei Chen, ; Yuguang Li, ; Jianhao Li,
| |
Collapse
|
43
|
Single-cell RNA sequencing depicts the local cell landscape in thyroid-associated ophthalmopathy. Cell Rep Med 2022; 3:100699. [PMID: 35896115 PMCID: PMC9418739 DOI: 10.1016/j.xcrm.2022.100699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/18/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022]
Abstract
There is a specific reactivity and characteristic remodeling of the periocular tissue in thyroid-associated ophthalmopathy (TAO). However, local cell changes responsible for these pathological processes have not been sufficiently identified. Here, single-cell RNA sequencing is performed to characterize the transcriptional changes of cellular components in the orbital connective tissue in individuals with TAO. Our study shows that lipofibroblasts with RASD1 expression are highly involved in inflammation and adipogenesis during TAO. ACKR1+ endothelial cells and adipose tissue macrophages may engage in TAO pathogenesis. We find CD8+CD57+ cytotoxic T lymphocytes with the terminal differentiation phenotype to be another source of interferon-γ, a molecule actively engaging in TAO pathogenesis. Cell-cell communication analysis reveals increased activity of CXCL8/ACKR1 and TNFSF4/TNFRSF4 interactions in TAO. This study provides a comprehensive local cell landscape of TAO and may be valuable for future therapy investigation. A local transcriptional landscape of orbital connective tissue in TAO is developed RASD1-expressing lipofibroblasts are highly involved in adipogenesis and inflammation ACKR1+ endothelial cells contribute to inflammatory cell infiltration in TAO Adipose tissue macrophages engage in lipid metabolism and inflammatory response in TAO
Collapse
|
44
|
Huang Y, Wu Y, Zhang S, Lu Y, Wang Y, Liu X, Zhong S, Wang Y, Li Y, Sun J, Fang S, Zhou H. Immunophenotype of Lacrimal Glands in Graves Orbitopathy: Implications for the Pathogenesis of Th1 and Th17 Immunity. Thyroid 2022; 32:949-961. [PMID: 35469435 DOI: 10.1089/thy.2021.0671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Recent studies have reported a wide spectrum of ocular surface injuries in the context of autoimmune reactions in Graves' orbitopathy (GO). Increased expression of inflammatory mediators in tears of GO patients suggests that the lacrimal glands could be a target for immune responses. However, the immunophenotype for GO lacrimal microenvironment is not known. This study aimed to elucidate the pathological changes of GO lacrimal glands. Methods: In this case-control study, lacrimal glands were surgically collected from GO patients who underwent orbital decompression surgery and control subjects who underwent other ocular-related surgery. Bulk RNA-sequencing, flow cytometry with dimensional reduction, and immunohistochemical and multiplexed stainings were conducted. Western blotting and multipathway assays were performed in CD34+ fibroblasts derived from lacrimal and orbital tissues. Results: Increased expression of cytokines and chemokines accompanied by a variety of immune cell infiltrations mainly involving T cells, B cells, and monocytes was found in GO lacrimal glands. An in-depth investigation into T cell subsets revealed interferon (IFN)-γ-producing T helper (Th)1 and interleukin (IL)-17A-producing Th17 cell-dominated autoimmunity in the active GO lacrimal microenvironment. Both fibrosis and adipogenesis were observed in GO lacrimal tissue remodeling. IL-17A, not IFN-γ, stimulated transforming growth factor-β-initiated myofibroblast differentiation as well as 15-deoxy-Δ12,14-prostaglandin J2-initiated adipocyte differentiation in CD34+ lacrimal fibroblasts (LFs) and orbital fibroblasts (OFs), respectively. IL-17A activated many fibrotic and adipogenic-related signaling pathways in CD34+ LFs and OFs. A novel anti-IL-17A monoclonal antibody SHR-1314 could reverse the promoting effect of IL-17A on fibrosis and adipogenesis in CD34+ LFs and OFs. Conclusions: Our findings provide evidence for the infiltration of different lymphocytes into GO lacrimal microenvironment, where Th1 and Th17 cells characterize the onset of active lacrimal inflammation and contribute to tissue remodeling. These findings may have potential future therapeutic implications regarding the utility of anti-IL-17A therapy, which should be studied in future research.
Collapse
Affiliation(s)
- Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yu Wu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shuo Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xingtong Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sisi Zhong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yang Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
45
|
Preglej T, Ellmeier W. CD4 + Cytotoxic T cells - Phenotype, Function and Transcriptional Networks Controlling Their Differentiation Pathways. Immunol Lett 2022; 247:27-42. [PMID: 35568324 DOI: 10.1016/j.imlet.2022.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
The two major subsets of peripheral T cells are classically divided into the CD4+ T helper cells and the cytotoxic CD8+ T cell lineage. However, the appearance of some effector CD4+ T cell populations displaying cytotoxic activity, in particular during viral infections, has been observed, thus breaking the functional dichotomy of CD4+ and CD8+ T lymphocytes. The strong association of the appearance of CD4+ cytotoxic T lymphocytes (CD4 CTLs) with viral infections suggests an important role of this subset in antiviral immunity by controlling viral replication and infection. Moreover, CD4 CTLs have been linked with anti-tumor activity and might also cause immunopathology in autoimmune diseases. This raises interest into the molecular mechanisms regulating CD4 CTL differentiation, which are poorly understood in comparison to differentiation pathways of other Th subsets. In this review, we provide a brief overview about key features of CD4 CTLs, including their role in viral infections and cancer immunity, and about the link between CD4 CTLs and immune-mediated diseases. Subsequently, we will discuss the current knowledge about transcriptional and epigenetic networks controlling CD4 CTL differentiation and highlight recent data suggesting a role for histone deacetylases in the generation of CD4 CTLs.
Collapse
Affiliation(s)
- Teresa Preglej
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna.
| |
Collapse
|
46
|
Kaneko N, Boucau J, Kuo HH, Perugino C, Mahajan VS, Farmer JR, Liu H, Diefenbach TJ, Piechocka-Trocha A, Lefteri K, Waring MT, Premo KR, Walker BD, Li JZ, Gaiha G, Yu XG, Lichterfeld M, Padera RF, Pillai S. Temporal changes in T cell subsets and expansion of cytotoxic CD4+ T cells in the lungs in severe COVID-19. Clin Immunol 2022; 237:108991. [PMID: 35364330 PMCID: PMC8961941 DOI: 10.1016/j.clim.2022.108991] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023]
Abstract
Many studies have been performed in severe COVID-19 on immune cells in the circulation and on cells obtained by bronchoalveolar lavage. Most studies have tended to provide relative information rather than a quantitative view, and it is a combination of approaches by various groups that is helping the field build a picture of the mechanisms that drive severe lung disease. Approaches employed to date have not revealed information on lung parenchymal T cell subsets in severe COVID-19. Therefore, we sought to examine early and late T cell subset alterations in the lungs and draining lymph nodes in severe COVID-19 using a rapid autopsy protocol and quantitative imaging approaches. Here, we have established that cytotoxic CD4+ T cells (CD4 + CTLs) increase in the lungs, draining lymph nodes and blood as COVID-19 progresses. CD4 + CTLs are prominently expanded in the lung parenchyma in severe COVID-19. In contrast CD8+ T cells are not prominent, exhibit increased PD-1 expression, and no obvious increase is seen in the number of Granzyme B+ CD8+ T cells in the lung parenchyma in severe COVID-19. Based on quantitative evidence for re-activation in the lung milieu, CD4 + CTLs may be as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.
Collapse
Affiliation(s)
- Naoki Kaneko
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hsiao-Hsuan Kuo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Cory Perugino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jocelyn R Farmer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hang Liu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Kristina Lefteri
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Michael T Waring
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA; Department of Biology and Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gaurav Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Nicolet BP, Guislain A, Wolkers MC. CD29 Enriches for Cytotoxic Human CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:2966-2975. [PMID: 34782446 DOI: 10.4049/jimmunol.2100138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022]
Abstract
CD4+ T cells are key contributors in the induction of adaptive immune responses against pathogens. Even though CD4+ T cells are primarily classified as noncytotoxic helper T cells, it has become appreciated that a subset of CD4+ T cells is cytotoxic. However, tools to identify these cytotoxic CD4+ T cells are lacking. We recently showed that CD29 (integrin β1, ITGB1) expression on human CD8+ T cells enriches for the most potent cytotoxic T cells. In this study, we questioned whether CD29 expression also associates with cytotoxic CD4+ T cells. We show that human peripheral blood-derived CD29hiCD4+ T cells display a cytotoxic gene expression profile, which closely resembles that of CD29hi cytotoxic CD8+ T cells. This CD29hi cytotoxic phenotype was observed ex vivo and was maintained in in vitro cultures. CD29 expression enriched for CD4+ T cells, which effectively produced the proinflammatory cytokines IFN-γ, IL-2, and TNF-α, and cytotoxic molecules. Lastly, CD29-expressing CD4+ T cells transduced with a MART1-specific TCR showed target cell killing in vitro. In conclusion, we demonstrate in this study that CD29 can be employed to enrich for cytotoxic human CD4+ T cells.
Collapse
Affiliation(s)
- Benoît P Nicolet
- Department of Hematopoiesis, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands; and Oncode Institute, Amsterdam, the Netherlands
| | - Aurelie Guislain
- Department of Hematopoiesis, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands; and Oncode Institute, Amsterdam, the Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands; and Oncode Institute, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Kaneko N, Boucau J, Kuo HH, Perugino C, Mahajan VS, Farmer JR, Liu H, Diefenbach TJ, Piechocka-Trocha A, Lefteri K, Waring MT, Premo KR, Walker BD, Li JZ, Gaiha G, Yu XG, Lichterfeld M, Padera RF, Pillai S. Expansion of Cytotoxic CD4+ T cells in the lungs in severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33791730 DOI: 10.1101/2021.03.23.21253885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19. In Brief In severe COVID-19 cytotoxic CD4+ T cells accumulate in draining lymph nodes and in the lungs during the resolving phase of the disease. Re-activated cytotoxic CD4+ T cells and cytotoxic CD8+ T cells are present in roughly equivalent numbers in the lungs at this stage and these cells likely collaborate to eliminate virally infected cells and potentially induce fibrosis. A large fraction of epithelial and endothelial cells in the lung express HLA class II in COVID-19 and there is temporal convergence between CD4+CTL accumulation and apoptosis in the lung. Highlights In severe COVID-19, activated CD4+ CTLs accumulate in the lungs late in diseaseThese cells likely participate in SARS-CoV-2 clearance, collaborating with CD8+ T cells many of which exhibit an exhausted phenotypeT cells likely contribute to the late exacerbation of inflammationCD4+CTLs have been linked to fibrosis in many disorders and could also be responsible for the eventual induction of fibrosis in a subset of COVID-19 patients. Summary The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.
Collapse
|