1
|
Rim JH, Kim YG, Kim S, Choi R, Lee JS, Park S, Lee W, Song EY, Lee SY, Chun S. Clinical Pharmacogenetic Testing and Application: 2024 Updated Guidelines by the Korean Society for Laboratory Medicine. Ann Lab Med 2025; 45:121-132. [PMID: 39681357 PMCID: PMC11788703 DOI: 10.3343/alm.2024.0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
In the era of precision medicine, pharmacogenetics has substantial potential for addressing inter-individual variability in drug responses. Although pharmacogenetics has been a research focus for many years, resulting in the establishment of several formal guidelines, its clinical implementation remains limited to several gene-drug combinations in most countries, including Korea. The main causes of delayed implementation are technical challenges in genotyping and knowledge gaps among healthcare providers; therefore, clinical laboratories play a critical role in the timely implementation of pharmacogenetics. This paper presents an update of the Clinical Pharmacogenetic Testing and Application guidelines issued by the Korean Society for Laboratory Medicine and aims to provide the necessary information for clinical laboratories planning to implement or expand their pharmacogenetic testing. Current knowledge regarding nomenclature, gene-drug relationships, genotyping technologies, testing strategies, methods for clinically relevant information delivery, QC, and reimbursements has been curated and described in this guideline.
Collapse
Affiliation(s)
- John Hoon Rim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young-gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sollip Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Rihwa Choi
- Department of Laboratory Medicine, GC Labs, Yongin, Korea
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seungman Park
- Department of Laboratory Medicine, National Cancer Center, Goyang, Korea
| | - Woochang Lee
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sail Chun
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Lebreton L, Boyer J, Lafay‐Chebassier C, Hennart B, Baklouti S, Cunat S, Vilquin P, Medard Y, Gautier‐Veyret E, Laffitte‐Redondo C, Verstuyft C, Ait Tayeb AEK, Haufroid V, Wils J, Lamoureux F, Evrard A, Davaze‐Schneider J, Ben‐Sassi M, Picard N, Quaranta S, Ayme‐Dietrich E. French-Speaking Network of Pharmacogenetics (RNPGx) Recommendations for Clinical Use of Mavacamten. Clin Pharmacol Ther 2025; 117:387-397. [PMID: 39584620 PMCID: PMC11739748 DOI: 10.1002/cpt.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
Mavacamten, the first drug in the class of β-cardiac myosin modulator, is used for the treatment of patients with hypertrophic cardiomyopathy. This orally administered drug demonstrates wide interpatient variability in pharmacokinetics parameters, due in part to variant CYP2C19 alleles. Individuals who are CYP2C19 poor metabolizers have increased exposure and are at increased risk of reduced cardiac hypercontractility. To ensure the safety of all patients, European Medicines Agency recommends CYP2C19 preemptive genotyping, and consecutively, to adapt maintenance and initial mavacamten doses, and to manage drug-drug interactions, according to CYP2C19 phenotype. In this article, we summarize evidence from the literature supporting the association between CYP2C19 phenotype and pharmacological features of mavacamten and provide, beyond biologic guidelines, therapeutic recommendations for the use of mavacamten based on CYP2C19 and CYP3A4/CYP3A5 genotype.
Collapse
Affiliation(s)
- Louis Lebreton
- Département de Biochimie, Hôpital PellegrinCentre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Jean‐Christophe Boyer
- Laboratoire de Biochimie et Biologie MoléculaireCarémeau University HospitalNîmesFrance
| | | | | | - Sarah Baklouti
- Laboratoire de Pharmacocinétique et Toxicologie, Institut Fédératif de BiologieCHU de ToulouseToulouseFrance
- INTHERES, Inrae, ENVT, Université de ToulouseToulouseFrance
| | - Séverine Cunat
- Service d'Hématologie BiologiqueCHU de MontpellierMontpellierFrance
| | - Paul Vilquin
- Department of Tumor Genomics and Pharmacology, Université Paris‐Cité, INSERM UMR‐S 976Saint‐Louis Hospital, AP‐HP ParisParisFrance
| | - Yves Medard
- Department of Tumor Genomics and Pharmacology, Université Paris‐Cité, INSERM UMR‐S 976Saint‐Louis Hospital, AP‐HP ParisParisFrance
| | | | - Clara Laffitte‐Redondo
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Hôpital de BicêtreLe Kremlin BicêtreFrance
- MOODS Team, INSERM UMR 1018, CESP, Faculté de MédecineUniv Paris‐SaclayLe Kremlin BicêtreFrance
| | - Céline Verstuyft
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Hôpital de BicêtreLe Kremlin BicêtreFrance
- MOODS Team, INSERM UMR 1018, CESP, Faculté de MédecineUniv Paris‐SaclayLe Kremlin BicêtreFrance
| | - Abd El Kader Ait Tayeb
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Hôpital de BicêtreLe Kremlin BicêtreFrance
- INSERM UMR‐S U1185, Faculté de MédecineUniv Paris‐SaclayLe Kremlin BicêtreFrance
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP)Institut de Recherche Expérimentale et Clinique, UClouvainBrusselsBelgium
- Clinical Chemistry DepartmentCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Julien Wils
- Department of Pharmacology, UNIROUEN, INSERM U1096, CHU RouenNormandie UniversityRouenFrance
| | - Fabien Lamoureux
- Department of Pharmacology, UNIROUEN, INSERM U1096, CHU RouenNormandie UniversityRouenFrance
| | - Alexandre Evrard
- Institut du Cancer de Montpellier, ICM, Université de Montpellier, IRCM, Inserm U1194MontpellierFrance
- Laboratoire de Biochimie et Biologie MoléculaireCHU Nîmes‐CarémeauNîmesFrance
| | - Julie Davaze‐Schneider
- Département de Biochimie, Hôpital PellegrinCentre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Mouna Ben‐Sassi
- Department of Clinical PharmacologyNational Centre Chalbi Belkahia of PharmacovigilanceTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Nicolas Picard
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, Centre de Biologie et de Recherche en Santé (CBRS)CHU de LimogesLimogesFrance
| | - Sylvie Quaranta
- Laboratoire de Biologie Moléculaire GENOPé, M2GM/Laboratoire de Pharmacocinétique et Toxicologie, PRISMHôpital de la Timone, AP‐HMMarseilleFrance
| | - Estelle Ayme‐Dietrich
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, UR7296Hopitaux Universitaires de Strasbourg, Université de StrasbourgStrasbourgFrance
| | | |
Collapse
|
3
|
Zhao Y, Hao Y, Wang Z, Liu S, Yuan S, Zhou C, Yu J. Effect of CYP3A5*3 genotype on exposure and efficacy of quetiapine: A retrospective, cohort study. J Affect Disord 2025; 370:134-139. [PMID: 39490424 DOI: 10.1016/j.jad.2024.10.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The involvement of cytochrome P450 3A5 (CYP3A5) in the metabolism of quetiapine has been proposed, though conclusive evidence is lacking. This study aimed to quantitatively assess the impact of CYP3A5 genetic variability on quetiapine exposure in a Chinese patient population. METHODS Patient data were retrospectively collected from the database of the Mental Health Centre at the First Hospital of Hebei Medical University, covering the period from September 1, 2019, to July 1, 2023. The study included patients genotyped for CYP3A5 who were treated with quetiapine. Inclusion criteria for the analysis of pharmacokinetic parameters, such as serum concentrations of the drug and its metabolites, included oral administration of quetiapine, availability of information on the prescribed daily dose and concomitant medications, and the determination of steady-state blood levels at the time of sampling (after at least 3 days of continuous administration at the same dose). Exclusion criteria comprised polypharmacy with known CYP3A4 inducers or inhibitors, as well as patients with hepatic or renal insufficiency. The primary endpoint was the exposure to quetiapine and N-dealkylquetiapine, measured using dose-corrected concentrations (C/D). The secondary endpoint was the metabolism of quetiapine to N-dealkylquetiapine, assessed by the ratio of metabolite to parent drug concentrations. The third endpoint is the differences in adverse reactions, QTc intervals, and biochemical parameters among patients with different CYP3A5 genotypes. RESULT Based on the inclusion and exclusion criteria, clinical data from 207 patients were ultimately included in the study. Of these, 20 patients had the CYP3A5*1/*1 genotype, 78 had the CYP3A5*1/*3 genotype, and 109 had the CYP3A5*3/*3 genotype. The CYP3A5*3 variant was found to significantly impact the metabolism of quetiapine. The C/D values for both quetiapine and N-dealkyl quetiapine were notably higher in individuals with the *3/*3 genotype compared to those with the *1/*1 and *1/*3 genotypes (P1 < 0.001 and P2 = 0.002, respectively). A comparison of the variability in metabolic ratios among different genotype groups revealed no significant difference (P = 0.067). However, a post hoc analysis indicated that the metabolic ratio in poor metabolizers was significantly lower than that in intermediate metabolizers (P = 0.021). The analysis of adverse reaction incidence and QTc intervals among different genotypes showed no statistically significant differences (P = 0.652, P = 0.486). However, comparison of biochemical parameters across different genotype groups revealed that alanine aminotransferase, uric acid, hemoglobin, and gamma-glutamyl transferase levels were significantly higher in patients with the CYP3A5*3/*3 genotype compared to those with the CYP3A5*1/*1 and CYP3A5*1/*3 genotypes. CONCLUSION The results indicated that the genetic polymorphism of CYP3A5*3 significantly influences the metabolism of quetiapine. Specifically, carriers of the CYP3A5*3/*3 genotype exhibited higher blood levels of quetiapine, with a greater likelihood of these levels exceeding the therapeutic range. This finding underscores the need for clinicians to pay special attention to the efficacy and occurrence of adverse reactions when prescribing quetiapine to patients carrying the CYP3A5*3/*3 genotype.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yupei Hao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziyi Wang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuai Liu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shizhao Yuan
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhua Zhou
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jing Yu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Mas S, Julià L, Cuesta MJ, Crespo-Facorro B, Vázquez-Bourgon J, Spuch C, Gonzalez-Pinto A, Ibañez A, Usall J, Romero-López-Alberca C, Catalan A, Mané A, Bernardo M. Applied pharmacogenetics to predict response to treatment of first psychotic episode: study protocol. Front Psychiatry 2025; 15:1497565. [PMID: 39839139 PMCID: PMC11747510 DOI: 10.3389/fpsyt.2024.1497565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
The application of personalized medicine in patients with first-episode psychosis (FEP) requires tools for classifying patients according to their response to treatment, considering both treatment efficacy and toxicity. However, several limitations have hindered its translation into clinical practice. Here, we describe the rationale, aims and methodology of Applied Pharmacogenetics to Predict Response to Treatment of First Psychotic Episode (the FarmaPRED-PEP project), which aims to develop and validate predictive algorithms to classify FEP patients according to their response to antipsychotics, thereby allowing the most appropriate treatment strategy to be selected. These predictors will integrate, through machine learning techniques, pharmacogenetic (measured as polygenic risk scores) and epigenetic data together with clinical, sociodemographic, environmental, and neuroanatomical data. To do this, the FarmaPRED-PEP project will use data from two already recruited cohorts: the PEPS cohort from the "Genotype-Phenotype Interaction and Environment. Application to a Predictive Model in First Psychotic Episodes" study (the PEPs study from the Spanish abbreviation) (N=335) and the PAFIP cohort from "Clinical Program on Early Phases of Psychosis" (PAFIP from the Spanish abbreviation) (N = 350). These cohorts will be used to create the predictor, which will then be validated in a new cohort, the FarmaPRED cohort (N = 300). The FarmaPRED-PEP project has been designed to overcome several of the limitations identified in pharmacogenetic studies in psychiatry: (1) the sample size; (2) the phenotype heterogeneity and its definition; (3) the complexity of the phenotype and (4) the gender perspective. The global reach of the FarmaPRED-PEP project is to facilitate the effective deployment of precision medicine in national health systems.
Collapse
Affiliation(s)
- Sergi Mas
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - Laura Julià
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
| | - Manuel J. Cuesta
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Psiquiatría, Hospital Universitario de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario VIrgen del Rocio/Centro Superior de Investigaciones Cinetíficas (HUVR/CSIC)/Universidad de Sevilla, Seville, Spain
- Department of Psychiatry, Universidad de Sevilla, Seville, Spain
| | - Javier Vázquez-Bourgon
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Psiquaitria, Marqués de Valdecilla University Hospital – IDIVAL, Santander, Spain
- Departamento de Medicina y Psiquiatria, Universidad de Cantabria, Santander, Spain
| | - Carlos Spuch
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), Servizo Galego de Saúde/Universidad de Vigo (SERGAS-UVIGO), Vigo, Spain
| | - Ana Gonzalez-Pinto
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- BIOARABA, Department Psychiatry, Hospital Universitario Alava, Universidad del País Vasco/Euskal Herriko Unibertsitatea Vitoria (UPV/EHU), Vitoria, Spain
| | - Angela Ibañez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Judith Usall
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centre de Salut Mental, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Cristina Romero-López-Alberca
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Department of Psychology, University of Cadiz, Cádiz, Spain
| | - Ana Catalan
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Psychiatry Department, Basurto University Hospital, Osakidetza, Basque Health Service, Bilbao, Spain
- Biobizkaia Health Research Institute, OSI Bilbao-Basurto, Bilbao, Spain
- Neuroscience Department, University of the Basque Country, Leioa, Spain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Anna Mané
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Institut de Salud Mental, Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miquel Bernardo
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Goh SE, Jamuar SS, Chua SE, Yeo DCK, Goh JHY, Chin CH, Karuvetil MZ, Lee EL, Fung DSS, Tan GMY. Pharmacogenomics in psychiatry: Practice recommendations from an Asian perspective (2024). ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2024; 53:734-741. [PMID: 39748172 DOI: 10.47102/annals-acadmedsg.2024217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Introduction Pharmacogenomic testing in psychiatry is an emerging area with potential clinical application of guiding medication choice and dosing. Interest has been fanned by commercial pharmacogenomic providers who have commonly marketed combinatorial panels that are direct-to-consumer. However, this has not been adopted widely due to a combination of barriers that include a varying evidence base, clinician and patient familiarity and acceptance, uncertainty about cost-effectiveness, and regulatory requirements. This review aims to examine recent updates in this field and provide a contextualised summary and recom-mendations for Asian populations in order to guide healthcare professionals in psychiatric practice. Method A review of recent literature about current evidence and guidelines surrounding pharmacoge-nomics in psychiatric practice was carried out with particular attention paid to literature evaluating Asian populations. The Grading of Recommendations Assessment, Development and Evaluation Evidence to Decision framework was applied. Consensus meetings comprising workgroup psychiatrists from the public and private sectors were held prior to arriving at the key recommendations. Results Pharmacogenomic testing should be mainly limited to drug-gene pairs with established clinical evidence, such as antidepressants and CYP2C19/ CYP2D6. Direct-to-consumer pharmacogenomic panels that assay multiple genes and analyse them via proprietary algorithms, are not presently recommended in Singapore's psychiatric setting due to inconclusive evidence on clinical outcomes. Conclusion Pharmacogenomic testing in psychiatry is not recommended as standard clinical practice. Exceptions may include concerns about drug concentrations or potential severe adverse drug reactions. Studies investigating newly identified drug-gene associations, and clinical effectiveness and cost-effectiveness of utilising pharmacogenomic testing in psychiatry is encouraged.
Collapse
Affiliation(s)
| | - Saumya Shekhar Jamuar
- KK Women's and Children's Hospital, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Siew Eng Chua
- Raffles Counselling Centre, Raffles Specialist Centre, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mou F, Huang Z, Cheng Y, Zhao X, Sun X, Li H, Yu S. Physiologically based pharmacokinetic modeling to predict the effect of risperidone on aripiprazole pharmacokinetics in subjects with different CYP2D6 genotypes and individuals with hepatic impairment. Ther Adv Drug Saf 2024; 15:20420986241303432. [PMID: 39703773 PMCID: PMC11656427 DOI: 10.1177/20420986241303432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
Background Aripiprazole and risperidone, widely used atypical antipsychotics, are commonly adjunctively prescribed in clinical practice. When aripiprazole was combined with risperidone, the genotype of drug-metabolizing enzymes and liver impairment may lead to complex pharmacokinetic changes. The Physiologically Based Pharmacokinetic (PBPK) model can predict the influence of these factors on plasma concentration and optimize dosage regimens. Objectives This study aims to investigate the pharmacokinetic changes of aripiprazole caused by various influencing factors when it was co-administered with risperidone through PBPK models. Design The PBPK models of aripiprazole and risperidone were developed by gathering physicochemical parameters and drug-specific parameters. Then, by combining the inhibitory parameters, the enzymatic kinetic parameters of CYP2D6 genotypes, and the changes in anatomical and physiological parameters when liver function is damaged, the corresponding PBPK models were further established. Finally, this study put forward dosage optimization recommendations for situations where risks may exist. Methods The comparison between predicted and observed plasma concentration data, along with the assessment of pharmacokinetic parameters, was utilized to evaluate the fit performance of the models. Results The simulations of the PBPK model revealed that co-administration of risperidone did not result in significant changes in aripiprazole pharmacokinetics. However, in individuals with mild hepatic impairment and CYP2D6 normal metabolizer, a dose reduction of approximately 11% was advised when aripiprazole was combined with risperidone. When individuals with mild liver damage have CYP2D6 genotypes of intermediate metabolizer (IM) and poor metabolizer (PM), aripiprazole doses should be further reduced to 61% and 51%, respectively. Conclusion The co-administration of aripiprazole and risperidone is generally considered safe from a pharmacokinetic perspective. However, if individuals have a CYP2D6 genotype of IM or PM and/or if they have mild hepatic impairment, adjusting the dose of aripiprazole is advisable to mitigate potential risks when combining it with risperidone.
Collapse
Affiliation(s)
- Fan Mou
- Genetics and Biochemistry Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Huang
- Drug Clinical Trial Institution, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Cheng
- Genetics and Biochemistry Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhao
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujia Sun
- Genetics and Biochemistry Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafang Li
- Drug Clinical Trial Institution, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Genetics and Biochemistry Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| |
Collapse
|
7
|
Gerlach S, Maruf AA, Shaheen SM, McCloud R, Heintz M, McAusland L, Arnold PD, Bousman CA. Prevalence Estimates of Cytochrome P450 Phenoconversion in Youth Receiving Pharmacotherapy for Mental Health Conditions. Clin Pharmacol Ther 2024. [PMID: 39686785 DOI: 10.1002/cpt.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024]
Abstract
Pharmacogenetics-predicted drug metabolism may not match clinically observed metabolism due to a phenomenon known as phenoconversion. Phenoconversion can occur when an inhibitor or inducer of a drug-metabolizing enzyme is present. Although estimates of phenoconversion in adult populations are available, prevalence estimates in youth populations are limited. To address this gap, we estimated the prevalence of phenoconversion in 1281 youth (6-24 years) receiving pharmacotherapy for mental health conditions and who had pharmacogenetics testing completed for four genes (CYP2B6, CYP2C19, CYP2D6, CYP3A4). Self-reported medication and cannabidiol/cannabis use were collected at the time of pharmacogenetics testing. Nearly, half (46%) of the cohort was estimated to be phenoconverted for one of the four genes examined. Comparison of metabolizer phenotype frequencies before and after adjustment for phenoconversion showed significantly more youth had actionable phenotypes for CYP2C19 (60.3% vs. 69.1%; P =< 0.001), CYP2D6 (49.3% vs. 63.0%; P =< 0.001), and CYP3A4 (8.5% vs.12.2%; P = 0.003) after phenoconversion adjustment. Of youth who were phenoconverted, 24% had a change in their metabolizer phenotype that would lead to current pharmacogenetics-based prescribing guidelines recommending a change to standard prescribing (dose adjustment, alternative medication). Our findings indicate a high prevalence of cytochrome P450 phenoconversion among youth receiving pharmacotherapy for mental health conditions. Adjustment for phenoconversion should be considered when implementing pharmacogenetics testing in youth populations to improve the clinical utility of this testing in practice.
Collapse
Affiliation(s)
- Samuel Gerlach
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Abdullah Al Maruf
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Sarker M Shaheen
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Ryden McCloud
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Madison Heintz
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Laina McAusland
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chad A Bousman
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Khorassani F, Azevedo R, Farokhpay R. Therapeutic drug monitoring vs. pharmacogenetic testing in the context of elevated olanzapine concentrations and prior clozapine intolerability: a case study. BMC Psychiatry 2024; 24:885. [PMID: 39633320 PMCID: PMC11616304 DOI: 10.1186/s12888-024-06319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Strong evidence for therapeutic drug monitoring exists for olanzapine and clozapine, however, olanzapine therapeutic drug monitoring is often underutilized. Evidence for pharmacogenomic-guided dosing of antipsychotics is not as robust, especially for cytochrome P450 1A2 metabolized agents such as olanzapine and clozapine. Herein, we present a case involving a patient suspected of having poor CYP1A2 metabolism. Therapeutic drug monitoring of olanzapine was employed to guide the titration of clozapine following olanzapine failure. Despite pursuing pharmacogenetic testing, no meaningful results were obtained due to the omission of CYP1A2 variants associated with poor metabolism. CASE PRESENTATION A 32-year-old Caucasian male with schizoaffective disorder-bipolar type, ADHD, and autism spectrum disorder presented with extrapyramidal symptoms due to antipsychotic polypharmacy, resulting in multiple falls. He experienced a partial response to olanzapine 40 mg, thus his dose was increased to 50 mg. Sampling an olanzapine trough revealed a supratherapeutic level of 152 ng/mL. Given his history of EPS and other reported adverse effects from antipsychotics, including clozapine, pharmacogenomic testing was pursued. The patient cross-tapered to clozapine slowly, with the knowledge that the patient would likely exhibit elevated levels of olanzapine. Clozapine was efficacious and tolerated well. As expected, the patient exhibited higher clozapine trough concentrations for someone of his age, ethnicity, and gender. Pharmacogenomic testing yielded no relevant findings relating to olanzapine or clozapine metabolism. CONCLUSION This case highlights the utility of TDM over pharmacogenetic testing for patients on these medications with a suspected alteration in CYP1A2 metabolism. therapeutic drug monitoring emerges as a more practical approach with stronger evidence for its use, particularly in cases of suspected reduced CYP1A2 activity, where suballeles resulting in decreased enzyme function are not readily detectable on standard commercial pharmacogenomic panels.
Collapse
Affiliation(s)
- Farah Khorassani
- University of California, Irvine, School of Pharmacy and Pharmaceutical Sciences, 802 W Peltason Dr, Irvine, CA, 92617, USA.
| | - Ricardo Azevedo
- University of California, Irvine, School of Medicine, 1001 Health Sciences Road, Irvine, CA, 92697, USA
| | - Reza Farokhpay
- University of California, Irvine, School of Medicine, 1001 Health Sciences Road, Irvine, CA, 92697, USA
| |
Collapse
|
9
|
Bao S, Yang S, Hua Z, Li J, Zang Y, Li X. Ziprasidone population pharmacokinetics and co-medication effects in Chinese patients. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9811-9821. [PMID: 38918237 DOI: 10.1007/s00210-024-03244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Ziprasidone is widely used in the treatment of psychiatric disorders. Despite its prevalence, there is a notable lack of population pharmacokinetics (PPK) studies on ziprasidone in serum, both domestically and internationally. This study aimed to comprehensively investigate the various factors influencing the PPK characteristics of Ziprasidone, thereby providing a scientific basis for personalized treatment strategies in clinical settings. This is a retrospective study. A non-linear mixed-effects modeling method was used for data analysis, with the ziprasidone PPK model established using the Phoenix NLME 8.1 software. Model evaluation employed goodness-of-fit plots, visual predictive checks, and Bootstrap methods to ensure reliability and accuracy. To further validate the model's applicability, data from an additional 30 patients meeting the same inclusion criteria but not included in the final model were collected for external validation. Simulations were performed to explore the personalized dosage regimens. This retrospective analysis collected 547 drug concentration data points from 185 psychiatric disorder patients, along with related medical records. The data included detailed demographic information (such as age, gender, weight), dosing regimens, laboratory test results, and concomitant medication details. In the final model, Ka was fixed at 0.5 h-1 based on literature, and the population typical values for ziprasidone clearance (CL) and volume of distribution (V) were 18.74 L/h and 110.24 L, respectively. Co-administration of lorazepam and valproic acid significantly influenced the clearance of ziprasidone. Moreover, the model evaluation indicated good stability and predictive accuracy. A simple to use dosage regimen table was derived based on the results of simulations. This study successfully established and validated a PPK model for ziprasidone in Chinese patients with psychiatric disorders. The model provides a scientific reference for individualized dosing of ziprasidone and holds the potential to optimize treatment strategies, thereby enhancing therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Shuang Bao
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China
- Department of Pharmacy, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Hutong, Xicheng District, Beijing, 100088, China
| | - Siyu Yang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zixin Hua
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Jiqian Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Yannan Zang
- Department of Pharmacy, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Hutong, Xicheng District, Beijing, 100088, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
10
|
De Brabander EY, van Amelsvoort T, van Westrhenen R. Unidentified CYP2D6 genotype does not affect pharmacological treatment for patients with first episode psychosis. J Psychopharmacol 2024; 38:1111-1121. [PMID: 39344086 PMCID: PMC11528939 DOI: 10.1177/02698811241279022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Research on the pharmacogenetic influence of hepatic CYP450 enzyme 2D6 (CYP2D6) on metabolism of drugs for psychosis and associated outcome has been inconclusive. Some results suggest increased risk of adverse reactions in poor and intermediate metabolizers, while others find no relationship. However, retrospective designs may fail to account for the long-term pharmacological treatment of patients. Previous studies found that clinicians adapted risperidone dose successfully without knowledge of patient CYP2D6 phenotype. AIM Here, we aimed to replicate the results of those studies in a Dutch cohort of patients with psychosis (N = 418) on pharmacological treatment. METHOD We compared chlorpromazine-equivalent dose between CYP2D6 metabolizer phenotypes and investigated which factors were associated with dosage. This was repeated in two smaller subsets; patients prescribed pharmacogenetics-actionable drugs according to published guidelines, and risperidone-only as done previously. RESULTS We found no relationship between chlorpromazine-equivalent dose and phenotype in any sample (complete sample: p = 0.3, actionable-subset: p = 0.82, risperidone-only: p = 0.34). Only clozapine dose was weakly associated with CYP2D6 phenotype (p = 0.03). CONCLUSION Clinicians were thus not intuitively adapting dose to CYP2D6 activity in this sample, nor was CYP2D6 activity associated with prescribed dose. Although the previous studies could not be replicated, this study may provide support for existing and future pharmacogenetic research.
Collapse
Affiliation(s)
- Emma Y De Brabander
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University Medical Centre, The Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University Medical Centre, The Netherlands
| | - Roos van Westrhenen
- Department of Psychiatry, Parnassia Groep BV, The Netherlands
- Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, UK
- St. John’s National Academy of Health Sciences, Bangalore, India
| | | |
Collapse
|
11
|
De Brabander EY, Breddels E, van Amelsvoort T, van Westrhenen R. Clinical effects of CYP2D6 phenoconversion in patients with psychosis. J Psychopharmacol 2024; 38:1095-1110. [PMID: 39310932 PMCID: PMC11528948 DOI: 10.1177/02698811241278844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND Pharmacogenetics is considered a promising avenue for improving treatment outcomes, yet evidence arguing for the use of pharmacogenetics in the treatment of psychotic disorders is mixed and clinical usefulness is under debate. Many patients with psychosis use multiple medications, which can alter the metabolic capacity of CYP enzymes, a process called phenoconversion. In clinical studies, treatment outcomes of drugs for psychosis management may have been influenced by phenoconversion. AIM Here we evaluate the impact and predictive value of CYP2D6 phenoconversion in patients with psychotic disorders under pharmacological treatment. METHOD Phenoconversion-corrected phenotype was determined by accounting for inhibitor strength. Phenoconversion-corrected and genotype-predicted phenotypes were compared in association with side effects, subjective well-being and symptom severity. RESULTS Phenoconversion led to a large increase in poor metabolizers (PMs; 17-82, 16% of sample), due to concomitant use of the serotonin reuptake inhibitors fluoxetine and paroxetine. Neither CYP2D6-predicted nor phenoconversion-corrected phenotype was robustly associated with outcome measures. Risperidone, however, was most affected by the CYP2D6 genotype. CONCLUSION Polypharmacy and phenoconversion were prevalent and accounted for a significant increase in PMs. CYP2D6 may play a limited role in side effects, symptoms and well-being measures. However, due to the high frequency of occurrence, phenoconversion should be considered in future clinical trials.
Collapse
Affiliation(s)
- Emma Y De Brabander
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience, Maastricht University (Medical Center), Maastricht, The Netherlands
| | - Esmee Breddels
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience, Maastricht University (Medical Center), Maastricht, The Netherlands
| | - Roos van Westrhenen
- Outpatient Clinic Pharmacogenetics, Parnassia Groep, Amsterdam, The Netherlands
- Institute of Psychiatry, Psychology, and Neurosciences, King’s College London, London, UK
- St. John’s National Academy of Health Sciences, Bangalore, India
| | | |
Collapse
|
12
|
Li D, Al-Dahleh K, Murphy DA, Georgieva S, Matthews N, Shovlin CL. Endogenous plasma resuspension of peripheral blood mononuclear cells prevents preparative-associated stress that modifies polyA-enriched RNA responses to subsequent acute stressors. Cell Stress 2024; 11:112-124. [PMID: 39628848 PMCID: PMC11613960 DOI: 10.15698/cst2024.11.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 12/06/2024] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are used to examine biological processes and disease, when basal variability in cellular activation and splicing is described and unexplained. Using isolation systems that maintained buffy coat cells (PBMCs, platelets) in their own plasma, poly-A enriched RNA-sequencing (RNASeq) detected 42,720 Ensembl gene IDs, including >95% of the top 100 Genotype Tissue Expression Project (GTEx)-expressed genes in lung, colon, heart, skeletal muscle and liver, and 10/17 clinically-actionable genes listed by the Pharmacogenomics Knowledgebase. Transcriptome changes were defined after 1h treatment with 32°C hypothermia (hsp70 family member change), 10 μmol/L ferric citrate that had no discernible effect, and 100 μg/mL cycloheximide leading to induction of primary response (immediate early) genes including IL1B and TNF. Same-donor PBMCs prepared conventionally using washes then resuspension in serum-supplemented media demonstrated basal upregulation of stress signalling pathway genes that masked and overlapped differential gene expression profiles after 100 µg/L cycloheximide. Plasma-resuspended PBMCs demonstrated minor transcriptome changes after 40 μmol/L ferric citrate, whereas consistent and greater magnitude changes were observed for washed/media-resuspended PBMCs. We conclude that endogenous plasma-maintained PBMCs provide a more robust platform to interrogate acute cellular perturbations triggering innate immunity, and that varying susceptibility of PBMCs to preparative stresses is an important component of experimental variability.
Collapse
Affiliation(s)
- Dongyang Li
- National Heart and Lung Institute, Imperial College LondonLondon, W12 ONNUK
- National Institute for Health Research (NIHR) Imperial Biomedical Research CentreLondon, W2 1NYUK
| | - Karina Al-Dahleh
- National Heart and Lung Institute, Imperial College LondonLondon, W12 ONNUK
- National Institute for Health Research (NIHR) Imperial Biomedical Research CentreLondon, W2 1NYUK
| | - Daniel A Murphy
- National Institute for Health Research (NIHR) Imperial Biomedical Research CentreLondon, W2 1NYUK
- Pharmacy, Imperial College Healthcare NHS TrustLondon, W12 OHSUK
| | - Sonya Georgieva
- National Heart and Lung Institute, Imperial College LondonLondon, W12 ONNUK
| | - Nik Matthews
- NIHR Imperial BRC Genomic Facility, Faculty of Medicine, Imperial College London
| | - Claire L Shovlin
- National Heart and Lung Institute, Imperial College LondonLondon, W12 ONNUK
- National Institute for Health Research (NIHR) Imperial Biomedical Research CentreLondon, W2 1NYUK
- Specialist Medicine , Imperial College Healthcare NHS TrustLondon, W12 OHSUK
| |
Collapse
|
13
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Beunk L, Nijenhuis M, Soree B, de Boer-Veger NJ, Buunk AM, Guchelaar HJ, Houwink EJF, Risselada A, Rongen GAPJM, van Schaik RHN, Swen JJ, Touw D, Deneer VHM, van Westrhenen R. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP2C19 and non-SSRI/non-TCA antidepressants. Eur J Hum Genet 2024; 32:1371-1377. [PMID: 38956296 DOI: 10.1038/s41431-024-01648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate pharmacogenetics implementation in clinical practice by developing evidence-based guidelines to optimize pharmacotherapy based on pharmacogenetic test results. The current guideline describes the gene-drug interaction between CYP2D6 and venlafaxine, mirtazapine and duloxetine. In addition, the interaction between CYP2C19 and mirtazapine and moclobemide is presented. The DPWG identified a gene-drug interaction that requires therapy adjustment for CYP2D6 and venlafaxine. However, as the side effects do not appear to be related to plasma concentrations, it is not possible to offer a substantiated advice for dose reduction. Therefore, the DPWG recommends avoiding venlafaxine for CYP2D6 poor and intermediate metabolisers. Instead, an alternative antidepressant, which is not, or to a lesser extent, metabolized by CYP2D6 is recommended. When it is not possible to avoid venlafaxine and side effects occur, it is recommended to reduce the dose and monitor the effect and side effects or plasma concentrations. No action is required for ultra-rapid metabolisers as kinetic effects are minimal and no clinical effect has been demonstrated. In addition, a gene-drug interaction was identified for CYP2D6 and mirtazapine and CYP2C19 and moclobemide, but no therapy adjustment is required as no effect regarding effectiveness or side effects has been demonstrated for these gene-drug interactions. Finally, no gene-drug interaction and need for therapy adjustment between CYP2C19 and mirtazapine and CYP2D6 and duloxetine were identified. The DPWG classifies CYP2D6 genotyping as being "potentially beneficial" for venlafaxine, indicating that genotyping prior to treatment can be considered on an individual patient basis.
Collapse
Affiliation(s)
- Lianne Beunk
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands
| | - Marga Nijenhuis
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands.
| | - Bianca Soree
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands
| | | | | | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arne Risselada
- Department of Clinical Pharmacy, Wilhelmina Hospital, Assen, The Netherlands
| | - Gerard A P J M Rongen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daan Touw
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vera H M Deneer
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Roos van Westrhenen
- Department of Psychiatry, Parnassia Group, Amsterdam, Netherlands
- Institute of Psychiatry, Psychology&Neuroscience (IoPPN), King's College London, London, UK
- St. John's National Academy of health Sciences, Bangalore, India
| |
Collapse
|
15
|
Amaro-Álvarez L, Cordero-Ramos J, Calleja-Hernández MÁ. Exploring the impact of pharmacogenetics on personalized medicine: A systematic review. FARMACIA HOSPITALARIA 2024; 48:299-309. [PMID: 38341366 DOI: 10.1016/j.farma.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Pharmacogenetics evaluates how genetic variations influence drug responses. Nowadays, genetic tests have advanced, becoming more affordable, and its integration is supported by stronger clinical evidence. Guidelines such as those from CPIC (Clinical Pharmacogenetics Implementation Consortium) and resources like PharmGKB facilitate genotype-based prescribing; and organizations like the FDA promote genetic testing before initiating certain medications. Preventive pharmacogenetic panels seem promising, but further research on biomarkers and diverse populations is needed. The aim of this review is to analyze recent evidence on the genotype-drug response relationship to examine how the genetic profile of patients influences the clinical response to treatments, and analyze the areas of research that need further study to advance towards a genetic-based precision medicine. MATERIALS AND METHODS A systematic search was conducted on PubMed to identify articles investigating the genotype-drug response relationship. The search strategy included terms such as "pharmacogenetics", "personalized treatment", "precision medicine", "dose adjustment", "individualizing dosing", "clinical routine", and "clinical practice." Clinical trials, observational studies, and meta-analyses published in English or Spanish between 2013 and 2023 were included. The initial search resulted in a total of 136 articles for analysis. RESULTS 49 articles were included for the final analysis following review by 2 investigators. A relationship between genetic polymorphisms and drug response or toxicity was found for drugs such as opioids, GLP-1 agonists, tacrolimus, oral anticoagulants, antineoplastics, atypical antipsychotics, efavirenz, clopidogrel, lamotrigine, anti-TNFα agents, voriconazole, antidepressants, or statins. However, for drugs like metformin, quetiapine, irinotecan, bisoprolol, and anti-VEGF agents, no statistically significant association between genotype and response was found. CONCLUSION The studies analyzed in this review suggest a strong correlation between genetic variability and individual drug responses, supporting the use of pharmacogenetics for treatment optimization. However, for certain drugs like metformin or quetiapine, the influence of genotype on their response remains unclear. More studies with larger sample sizes, greater ethnic diversity, and consideration of non-genetic factors are needed. The lack of standardization in analysis methods and accessibility to genetic testing are significant challenges in this field. As a conclusion, pharmacogenetics shows immense potential in personalized medicine, but further research is required.
Collapse
|
16
|
Ciocotișan IM, Muntean DM, Vlase L. Bupropion Increased More than Five Times the Systemic Exposure to Aripiprazole: An In Vivo Study in Wistar albino Rats. Metabolites 2024; 14:588. [PMID: 39590825 PMCID: PMC11596549 DOI: 10.3390/metabo14110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: In psychiatric disorders, antipsychotics and antidepressant medication are often administered together. Aripiprazole, a third-generation antipsychotic drug, is extensively metabolized by CYP2D6 and CYP3A4 isoenzymes, while bupropion, used in depressive disorders, is known as a moderate or strong CYP2D6 enzyme inhibitor. This in vivo experiment aimed to assess the presence of a pharmacokinetic drug interaction between aripiprazole and bupropion and its magnitude on the systemic exposure of aripiprazole. Methods: 24 healthy Wistar albino male rats were included in two study groups. A single dose of 8 mg/kg aripiprazole was given to rats in the reference group, while the test group received repeated doses of bupropion for 6 days, followed by a single dose of aripiprazole. An LC-MS/MS method was developed for the concomitant quantification of aripiprazole and its active metabolite, dehydroaripiprazole, and non-compartmental analysis was employed to assess their pharmacokinetic parameters. Results: The mean AUC0-∞ of aripiprazole increased 5.65-fold (1117.34 ± 931.41 vs. 6311.66 ± 2978.71 hr·ng/mL), the mean Cmax increased by 96.76% and the apparent systemic clearance decreased over 9-fold after bupropion repeated doses. The exposure to aripiprazole's active metabolite increased as well, having a 4-fold increase in the mean AUC0-∞ (from 461.13 ± 339.82 to 1878.66 ± 1446.91 hr·ng/mL) and a 2-fold increase in the mean Cmax. Conclusions: The total exposure to the aripiprazole parent compound and active moiety significantly increased after bupropion pretreatment in this preclinical in vivo experiment. Clinical studies should further establish the significance of this interaction in humans.
Collapse
Affiliation(s)
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (I.-M.C.); (L.V.)
| | | |
Collapse
|
17
|
Das S, Kalita M, Makhal M, Devaraja M, Bagepally BS, Cherian JJ, Aadityan R, Bhattacharjee M, Mondal S, Sen S, Mondal M, Basu A, Dutta AK, Saha I, Saha A, Chakrabarti A. Pharmacogenomics-assisted treatment versus standard of care in schizophrenia: a systematic review and meta-analysis. BMC Psychiatry 2024; 24:663. [PMID: 39379847 PMCID: PMC11463053 DOI: 10.1186/s12888-024-06104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Pharmacogenomic (PGx) factors significantly influence how patients respond to antipsychotic medications This systematic review was performed to synthesize the clinical utility of PGx-assisted treatment versus standard of care in schizophrenia. METHODS PubMed, Embase, and Cochrane CENTRAL databases were searched for randomized controlled trials (RCTs) from inception till June 2024 that had compared the clinical utility of PGx-assisted intervention as compared to the standard of care in schizophrenia. The primary outcome was safety, and the secondary outcomes were efficacy and medication adherence. Pooled standardized mean differences (SMD) along with a 95% confidence interval (CI) were calculated (random-effects model) wherever feasible. RESULTS A total of 18,821 studies were screened, and five were included for review. All the RCTs had a high risk of bias. Four studies included the commonly used antipsychotics. Three studies reported negative outcomes (safety, efficacy, and medication adherence) and two reported positive outcomes (safety) using different scales. In the meta-analysis, there were significant differences in the total Udvalg for Kliniske Undersogelser Side-Effect Rating scale score [SMD 0.95 (95% CI: 0.76-1.13), p < 0.001); I2 = 0%] and the total Positive and Negative Syndrome Scale score [SMD 10.65 (95% CI: 2.37-18.93), p = 0.01); I2 = 100%] between the PGx-assisted treatment and standard of care arms. However, the results were inconsistent, and the certainty of evidence (GRADE criteria) was very low. CONCLUSION Current evidence on the clinical utility of PGx-assisted treatment in schizophrenia is limited and inconsistent and further evidence is required in this regard.
Collapse
Affiliation(s)
- Saibal Das
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India.
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
| | - Manoj Kalita
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
| | - Manabendra Makhal
- Department of Psychiatry, Calcutta National Medical College and Hospital, Kolkata, India
| | - M Devaraja
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
| | | | - Jerin Jose Cherian
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Indian Council of Medical Research, New Delhi, India
| | | | | | - Sarnendu Mondal
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
| | - Sreyashi Sen
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
| | - Manaswini Mondal
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
| | - Aniruddha Basu
- Department of Psychiatry, All India Institute of Medical Sciences, Kalyani, India
| | - Atanu Kumar Dutta
- Department of Biochemistry, All India Institute of Medical Sciences, Kalyani, India
| | - Indranil Saha
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
| | - Asim Saha
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
| | - Amit Chakrabarti
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
| |
Collapse
|
18
|
Inshutiyimana S, Ramadan N, Razzak RA, Al Maaz Z, Wojtara M, Uwishema O. Pharmacogenomics revolutionizing cardiovascular therapeutics: A narrative review. Health Sci Rep 2024; 7:e70139. [PMID: 39435035 PMCID: PMC11491551 DOI: 10.1002/hsr2.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Background and Aim Among the cardiovascular diseases (CVDs), heart failure, hypertension, and myocardial infarction are associated with the greatest number of disability-adjusted life years due to lifestyle changes and the failure of therapeutic approaches, especially the one-size-fits-all interventions. As a result, there has been advances in defining genetic variants responsible for different responses to cardiovascular drugs such as antiplatelets, anticoagulants, statins, and beta-blockers, which has led to their usage in guiding treatment plans. This study comprehensively reviews the current state-of-the-art potential of pharmacogenomics in dramatically altering CVD treatment. It stresses the applicability of pharmacogenomic technology, the threats associated with its adoption in the clinical setting, and proffers relevant solutions. Methods Literature search strategies were used to retrieve articles from various databases: PubMed, Google Scholar, and EBSCOhost. Articles with information relevant to pharmacogenomics, DNA variants, cardiovascular diseases, sequencing techniques, and drug responses were reviewed and analyzed. Results DNA-based technologies such as next generation sequencing, whole genome sequencing, whole exome sequencing, and targeted segment sequencing can identify variants in the human genome. This has played a substantial role in identifying different genetic variants governing the poor response and adverse effects associated with cardiovascular drugs. Thus, this has reduced patients' number of emergency visits and hospitalization. Conclusion Despite the emergence of pharmacogenomics, its implementation has been threatened by factors including patient compliance and a low adoption rate by clinicians. Education and training programs targeting both healthcare professionals and patients should be established to increase the acceptance and application of the emerging pharmacogenomic technologies in reducing the burden of CVDs.
Collapse
Affiliation(s)
- Samuel Inshutiyimana
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health SciencesUnited States International University‐AfricaNairobiKenya
| | - Nagham Ramadan
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Medicine, Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Rawane Abdul Razzak
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Zeina Al Maaz
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Medicine, Faculty of MedicineBeirut Arab University (BAU)BeirutLebanon
| | - Magda Wojtara
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Olivier Uwishema
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
| |
Collapse
|
19
|
Korczeniewska OA, Dakshinamoorthy J, Prabhakar V, Lingaiah U. Genetics Affecting the Prognosis of Dental Treatments. Dent Clin North Am 2024; 68:659-692. [PMID: 39244250 DOI: 10.1016/j.cden.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Genetics plays a significant role in determining an individual's susceptibility to dental diseases, the response to dental treatments, and the overall prognosis of dental interventions. Here, the authors explore the various genetic factors affecting the prognosis of dental treatments focusing on dental caries, orthodontic treatment, oral cancer, prosthodontic treatment, periodontal disease, developmental disorders, pharmacogenetics, and genetic predisposition to faster wound healing. Understanding the genetic underpinnings of dental health can help personalize treatment plans, predict outcomes, and improve the overall quality of dental care.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, Room D-880, Newark, NJ 07101, USA
| | - Janani Dakshinamoorthy
- GeneAura Pvt. Ltd, AP1166, 4th street, Anna Nagar, Thendral Colony, Chennai 600040, India.
| | - Vaishnavi Prabhakar
- Department of Dental Sciences Dr. M.G.R. Educational And Research Institute Periyar E.V.R. High Road, (NH 4 Highway) Maduravoyal, Chennai 600095, India
| | - Upasana Lingaiah
- Upasana Lingaiah, Department of Oral Medicine and Radiology, V S Dental College and Hospital, Room number 1, K R Road, V V Puram, Bengaluru, Karnataka 560004, India
| |
Collapse
|
20
|
Størset E, Bråten LS, Ingelman-Sundberg M, Johansson I, Molden E, Kringen MK. Impact of CYP2D6*2, CYP2D6*35, rs5758550, and related haplotypes on risperidone clearance in vivo. Eur J Clin Pharmacol 2024; 80:1531-1541. [PMID: 38963454 PMCID: PMC11393095 DOI: 10.1007/s00228-024-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE The CYP2D6 gene exhibits significant polymorphism, contributing to variability in responses to drugs metabolized by CYP2D6. While CYP2D6*2 and CYP2D6*35 are presently designated as alleles encoding normal metabolism, this classification is based on moderate level evidence. Additionally, the role of the formerly called "enhancer" single nucleotide polymorphism (SNP) rs5758550 is unclear. In this study, the impacts of CYP2D6*2, CYP2D6*35 and rs5758550 on CYP2D6 activity were investigated using risperidone clearance as CYP2D6 activity marker. METHODS A joint parent-metabolite population pharmacokinetic model was used to describe 1,565 serum concentration measurements of risperidone and 9-hydroxyrisperidone in 512 subjects. Risperidone population clearance was modeled as the sum of a CYP2D6-independent clearance term and the partial clearances contributed from each individually expressed CYP2D6 allele or haplotype. In addition to the well-characterized CYP2D6 alleles (*3-*6, *9, *10 and *41), *2, *35 and two haplotypes assigned as CYP2D6*2-rs5758550G and CYP2D6*2-rs5758550A were evaluated. RESULTS Each evaluated CYP2D6 allele was associated with significantly lower risperidone clearance than the reference normal function allele CYP2D6*1 (p < 0.001). Further, rs5758550 differentiated the effect of CYP2D6*2 (p = 0.005). The haplotype-specific clearances for CYP2D6*2-rs5758550A, CYP2D6*2-rs5758550G and CYP2D6*35 were estimated to 30%, 66% and 57%, respectively, relative to the clearance for CYP2D6*1. Notably, rs5758550 is in high linkage disequilibrium (R2 > 0.85) with at least 24 other SNPs and cannot be assigned as a functional SNP. CONCLUSION CYP2D6*2 and CYP2D6*35 encode reduced risperidone clearance, and the extent of reduction for CYP2D6*2 is differentiated by rs5758550. Genotyping of these haplotypes might improve the precision of genotype-guided prediction of CYP2D6-mediated clearance.
Collapse
Affiliation(s)
- Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.
- Department of Pharmacy, University of Oslo, Oslo, Norway.
| | | | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Inger Johansson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Marianne Kristiansen Kringen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Life Science and Health, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
21
|
Rodríguez-Lopez A, Ochoa D, Soria-Chacartegui P, Martín-Vilchez S, Navares-Gómez M, González-Iglesias E, Luquero-Bueno S, Román M, Mejía-Abril G, Abad-Santos F. An Investigational Study on the Role of CYP2D6, CYP3A4 and UGTs Genetic Variation on Fesoterodine Pharmacokinetics in Young Healthy Volunteers. Pharmaceuticals (Basel) 2024; 17:1236. [PMID: 39338398 PMCID: PMC11435314 DOI: 10.3390/ph17091236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Fesoterodine is one of the most widely used antimuscarinic drugs to treat an overactive bladder. Fesoterodine is extensively hydrolyzed by esterases to 5-hydroxymethyl tolterodine (5-HMT), the major active metabolite. CYP2D6 and CYP3A4 mainly metabolize 5-HMT and are, therefore, the primary pharmacogenetic candidate biomarkers. Materials and Methods: This is a candidate gene study designed to investigate the effects of 120 polymorphisms in 33 genes (including the CYP, COMT, UGT, NAT2, and CES enzymes, ABC and SLC transporters, and 5-HT receptors) on fesoterodine pharmacokinetics and their safety in 39 healthy volunteers from three bioequivalence trials. Results: An association between 5-HMT exposure (dose/weight corrected area under the curve (AUC/DW) and dose/weight corrected maximum plasma concentration (Cmax/DW)), elimination (terminal half-life (T1/2) and the total drug clearance adjusted for bioavailability (Cl/F)), and CYP2D6 activity was observed. Poor/intermediate metabolizers (PMs/IMs) had higher 5-HMT AUC/DW (1.5-fold) and Cmax/DW (1.4-fold) values than the normal metabolizers (NMs); in addition, the normal metabolizers (NMs) had higher 5-HMT AUC/DW (1.7-fold) and Cmax/DW (1.3-fold) values than the ultrarapid metabolizers (UMs). Lower 5-HMT exposure and higher T1/2 were observed for the CYP3A4 IMs compared to the NMs, contrary to our expectations. Conclusions: CYP2D6 might have a more important role than CYP3A4 in fesoterodine pharmacokinetics, and its phenotype might be a better predictor of variation in its pharmacokinetics. An association was observed between different genetic variants of different genes of the UGT family and AUC, Cmax, and CL/F of 5-HMT, which should be confirmed in other studies.
Collapse
Affiliation(s)
- Andrea Rodríguez-Lopez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Paula Soria-Chacartegui
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Samuel Martín-Vilchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Eva González-Iglesias
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Sergio Luquero-Bueno
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
22
|
Kaptsis D, Lewis M, Sorich M, Battersby M. Long-read sequencing of CYP2D6 may improve psychotropic prescribing and treatment outcomes: A systematic review and meta-analysis. J Psychopharmacol 2024; 38:771-783. [PMID: 39262167 PMCID: PMC11447996 DOI: 10.1177/02698811241268899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
BACKGROUND The enzyme expression (i.e. phenotype) of the Cytochrome P450 2D6 (CYP2D6) gene is highly relevant to the metabolism of psychotropic medications, and therefore to precision medicine (i.e. personalised prescribing). AIMS This review aims to assess the improvement in CYP2D6 phenotyping sensitivity (IPS) and accuracy (IPA) offered by long-read sequencing (LRS), a new genetic testing technology. METHODS Human DNA samples that underwent LRS genotyping of CYP2D6 in published, peer-reviewed clinical research were eligible for inclusion. A systematic literature search was conducted until 30 September 2023. CYP2D6 genotypes were translated into phenotypes using the international consensus method. IPS was the percentage of non-normal LRS CYP2D6 phenotypes undetectable with FDA-approved testing (AmpliChip). IPA was the percentage of LRS CYP2D6 phenotypes mischaracterised by non-LRS genetic tests (for samples with LRS and non-LRS data). RESULTS Six studies and 1411 samples were included. In a meta-analysis of four studies, IPS was 10% overall (95% CI = (2, 18); n = 1385), 20% amongst Oceanians (95% CI = (17, 23); n = 582) and 2% amongst Europeans (95% CI = (1, 4); n = 803). IPA was 4% in a large European cohort (95% CI = (2, 7); n = 567). When LRS was used selectively (e.g. for novel or complex CYP2D6 genotypes), very high figures were observed for IPS (e.g. 88%; 95% CI = (72, 100); n = 17; country = Japan) and IPA (e.g. 76%; 95% CI = (55, 98); n = 17; country = Japan). CONCLUSIONS LRS improves CYP2D6 phenotyping compared to established genetic tests, particularly amongst Oceanian and Japanese individuals, and those with novel or complex genotypes. LRS may therefore assist in optimising personalised prescribing of psychotropic medications. Further research is needed to determine associated clinical benefits, such as increased medication safety and efficacy.
Collapse
Affiliation(s)
- Dean Kaptsis
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Martin Lewis
- Neuropsychiatric Laboratory, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Michael Sorich
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Malcolm Battersby
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
23
|
Belančić A, Pavešić Radonja A, Ganoci L, Vitezić D, Božina N. Challenging pharmacotherapy management of a psychotic disorder due to a delicate pharmacogenetic profile and drug-drug interactions: a case report and literature review. Croat Med J 2024; 65:383-395. [PMID: 39219201 PMCID: PMC11399719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
This report presents challenging psychopharmacotherapy management of a psychotic disorder in a patient with a delicate pharmacogenetic profile and drug-drug interactions. A 31-year old woman diagnosed with schizophrenia in 2017 was referred by her psychiatrist to a clinical pharmacologist for interpretation of a pharmacogenetic test and advice regarding optimal psychopharmacotherapy. In spite of adherence to aripiprazole, olanzapine, risperidone, and levomepromazine, and rational anxiolytic therapy, she still experienced anxiety, anhedonia, loss of appetite, sleeping problems, and auditory hallucinations with commands to harm herself. Due to a lack of alternative therapeutic steps, low aripiprazole serum concentrations, and a lack of explanation for pharmacotherapy unresponsiveness, pharmacogenetic testing was performed. The patient was defined as CYP2D6 *1/*1, CYP1A2 *1F/*1F, CYP3A4 *1/*1B, CYP3A5 *1/*3, and having increased activity of the enzymes UGT1A4 and UGT2B7, intermediate activity of ABCB1 transporter, and low activity of COMT. Carbamazepine was discontinued, aripiprazole was increased to a maximum of 30 mg/day orally with long-acting injection (400 mg monthly), and olanzapine was increased to a daily dose of 35 mg orally. These changes led to an optimal therapeutic drug concentration and improved clinical status. At the last follow-up, the patient was without severe auditory hallucinations, became more engaged in daily life, had more interaction with others, had found a job, and even had started an emotional relationship. In psychiatry, pharmacogenetic testing is an important tool for guiding pharmacological therapy, particularly in patients with an unsatisfactory clinical response and a lack of alternative therapeutic steps for pharmacotherapy unresponsiveness.
Collapse
Affiliation(s)
- Andrej Belančić
- Andrej Belančić, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia,
| | | | | | | | | |
Collapse
|
24
|
Okpete UE, Byeon H. Challenges and prospects in bridging precision medicine and artificial intelligence in genomic psychiatric treatment. World J Psychiatry 2024; 14:1148-1164. [PMID: 39165556 PMCID: PMC11331387 DOI: 10.5498/wjp.v14.i8.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Precision medicine is transforming psychiatric treatment by tailoring personalized healthcare interventions based on clinical, genetic, environmental, and lifestyle factors to optimize medication management. This study investigates how artificial intelligence (AI) and machine learning (ML) can address key challenges in integrating pharmacogenomics (PGx) into psychiatric care. In this integration, AI analyzes vast genomic datasets to identify genetic markers linked to psychiatric conditions. AI-driven models integrating genomic, clinical, and demographic data demonstrated high accuracy in predicting treatment outcomes for major depressive disorder and bipolar disorder. This study also examines the pressing challenges and provides strategic directions for integrating AI and ML in genomic psychiatry, highlighting the importance of ethical considerations and the need for personalized treatment. Effective implementation of AI-driven clinical decision support systems within electronic health records is crucial for translating PGx into routine psychiatric care. Future research should focus on developing enhanced AI-driven predictive models, privacy-preserving data exchange, and robust informatics systems to optimize patient outcomes and advance precision medicine in psychiatry.
Collapse
Affiliation(s)
- Uchenna Esther Okpete
- Department of Digital Anti-aging Healthcare (BK21), Inje University, Gimhae 50834, South Korea
| | - Haewon Byeon
- Department of Digital Anti-aging Healthcare (BK21), Inje University, Gimhae 50834, South Korea
- Department of Medical Big Data, Inje University, Gimhae 50834, South Korea
| |
Collapse
|
25
|
Manson LEN, Nijenhuis M, Soree B, de Boer-Veger NJ, Buunk AM, Houwink EJF, Risselada A, Rongen GAPJM, van Schaik RHN, Swen JJ, Touw DJ, van Westrhenen R, Deneer VHM, Guchelaar HJ. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction of CYP2C9, HLA-A and HLA-B with anti-epileptic drugs. Eur J Hum Genet 2024; 32:903-911. [PMID: 38570725 PMCID: PMC11291682 DOI: 10.1038/s41431-024-01572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
By developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy, the Dutch Pharmacogenetics Working Group (DPWG) aims to advance the implementation of pharmacogenetics (PGx). This guideline outlines the gene-drug interaction of CYP2C9 and HLA-B with phenytoin, HLA-A and HLA-B with carbamazepine and HLA-B with oxcarbazepine and lamotrigine. A systematic review was performed and pharmacotherapeutic recommendations were developed. For CYP2C9 intermediate and poor metabolisers, the DPWG recommends lowering the daily dose of phenytoin and adjust based on effect and serum concentration after 7-10 days. For HLA-B*15:02 carriers, the risk of severe cutaneous adverse events associated with phenytoin, carbamazepine, oxcarbazepine, and lamotrigine is strongly increased. For carbamazepine, this risk is also increased in HLA-B*15:11 and HLA-A*31:01 carriers. For HLA-B*15:02, HLA-B*15:11 and HLA-A*31:01 positive patients, the DPWG recommends choosing an alternative anti-epileptic drug. If not possible, it is recommended to advise the patient to report any rash while using carbamazepine, lamotrigine, oxcarbazepine or phenytoin immediately. Carbamazepine should not be used in an HLA-B*15:02 positive patient. DPWG considers CYP2C9 genotyping before the start of phenytoin "essential" for toxicity prevention. For patients with an ancestry in which the abovementioned HLA-alleles are prevalent, the DPWG considers HLA-B*15:02 genotyping before the start of carbamazepine, phenytoin, oxcarbazepine, and lamotrigine "beneficial", as well as genotyping for HLA-B*15:11 and HLA-A*31:01 before initiating carbamazepine.
Collapse
Affiliation(s)
- Lisanne E N Manson
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marga Nijenhuis
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands.
| | - Bianca Soree
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands
| | | | | | | | - Arne Risselada
- Department of Clinical Pharmacy, Wilhelmina Hospital, Assen, The Netherlands
| | - Gerard A P J M Rongen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Roos van Westrhenen
- Department of Psychiatry, Parnassia Group, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK
| | - Vera H M Deneer
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Floris M, Moschella A, Alcalay M, Montella A, Tirelli M, Fontana L, Idda ML, Guarnieri P, Capasso M, Mammì C, Nicoletti P, Miozzo M. Pharmacogenetics in Italy: current landscape and future prospects. Hum Genomics 2024; 18:78. [PMID: 38987819 PMCID: PMC11234611 DOI: 10.1186/s40246-024-00612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Pharmacogenetics investigates sequence of genes that affect drug response, enabling personalized medication. This approach reduces drug-induced adverse reactions and improves clinical effectiveness, making it a crucial consideration for personalized medical care. Numerous guidelines, drawn by global consortia and scientific organizations, codify genotype-driven administration for over 120 active substances. As the scientific community acknowledges the benefits of genotype-tailored therapy over traditionally agnostic drug administration, the push for its implementation into Italian healthcare system is gaining momentum. This evolution is influenced by several factors, including the improved access to patient genotypes, the sequencing costs decrease, the growing of large-scale genetic studies, the rising popularity of direct-to-consumer pharmacogenetic tests, and the continuous improvement of pharmacogenetic guidelines. Since EMA (European Medicines Agency) and AIFA (Italian Medicines Agency) provide genotype information on drug leaflet without clear and explicit clinical indications for gene testing, the regulation of pharmacogenetic testing is a pressing matter in Italy. In this manuscript, we have reviewed how to overcome the obstacles in implementing pharmacogenetic testing in the clinical practice of the Italian healthcare system. Our particular emphasis has been on germline testing, given the absence of well-defined national directives in contrast to somatic pharmacogenetics.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - Antonino Moschella
- Unit of Medical Genetics, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Annalaura Montella
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Laura Fontana
- Medical Genetics Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Maria Laura Idda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Corrado Mammì
- Unit of Medical Genetics, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monica Miozzo
- Medical Genetics Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
27
|
Milosavljević F, Leucht S. Living systematic review and meta-analysis of plasma-concentrations of antipsychotic drugs in carriers and non-carriers of variant CYP450 genotypes: Living systematic review protocol. F1000Res 2024; 13:452. [PMID: 39091645 PMCID: PMC11292185 DOI: 10.12688/f1000research.147794.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Carriers of variant alleles of genes that encode liver CYP450 and UGT enzymes may experience abnormal plasma levels of antipsychotics and, consequently, worse efficacy or tolerability. Although pharmacogenomics is a rapidly developing field, current guidelines often rely on limited, underpowered evidence. We have previously demonstrated that meta-analysis is a viable strategy for overcoming this problem. Here, we propose a project that will expand our previous work and create a living systematic review and meta-analysis of drug plasma level differences between carriers and non-carriers of variant genotype-predicted phenotypes for every pharmacokinetic drug-gene interaction relevant to commonly used antipsychotic drugs. Protocol First, a baseline systematic review and meta-analysis will be conducted by searching for observational pharmacogenomics-pharmacokinetic studies. Data on dose-adjusted drug plasma levels will be extracted, and participants will be grouped based on their genotype for each drug-gene pair separately. Differences in plasma drug levels between different phenotypes will be compared using a random-effect ratio-of-means meta-analysis. The risk of bias will be assessed using ROBINS-I, and the certainty of evidence will be assessed using GRADE. Following the establishment of baseline results, the literature search will be re-run at least once every six months, and the baseline data will be updated and re-evaluated as new evidence is published. A freely available website will be designated to present up-to-date results and conclusions. Discussion This systematic review will provide evidence-based results that are continuously updated with evidence as it emerges in the rapidly developing field of pharmacogenomics. These results may help psychiatrists in their decision-making, as clinicians are becoming increasingly aware of the patients' genetic data as testing becomes more widespread and cheaper. In addition, the results may serve as a scientific basis for the development of evidence-based pharmacogenomics algorithms for personalized dosing of antipsychotics to mitigate potentially harmful drug-gene interactions.
Collapse
Affiliation(s)
- Filip Milosavljević
- Department of physiology, Faculty of Pharmacy, Univerzitet u Beogradu, Belgrade, 11221, Serbia
- Section Evidence-Based Medicine in Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Bavaria, 81675, Germany
| | - Stefan Leucht
- Section Evidence-Based Medicine in Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Bavaria, 81675, Germany
| |
Collapse
|
28
|
Elgarhy FM, Borham A, Alziny N, AbdElaal KR, Shuaib M, Musaibah AS, Hussein MA, Abdelnaser A. From Drug Discovery to Drug Approval: A Comprehensive Review of the Pharmacogenomics Status Quo with a Special Focus on Egypt. Pharmaceuticals (Basel) 2024; 17:881. [PMID: 39065732 PMCID: PMC11279872 DOI: 10.3390/ph17070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Pharmacogenomics (PGx) is the hope for the full optimization of drug therapy while minimizing the accompanying adverse drug events that cost billions of dollars annually. Since years before the century, it has been known that inter-individual variations contribute to differences in specific drug responses. It is the bridge to what is well-known today as "personalized medicine". Addressing the drug's pharmacokinetics and pharmacodynamics is one of the features of this science, owing to patient characteristics that vary on so many occasions. Mainly in the liver parenchymal cells, intricate interactions between the drug molecules and enzymes family of so-called "Cytochrome P450" occur which hugely affects how the body will react to the drug in terms of metabolism, efficacy, and safety. Single nucleotide polymorphisms, once validated for a transparent and credible clinical utility, can be used to guide and ensure the succession of the pharmacotherapy plan. Novel tools of pharmacoeconomics science are utilized extensively to assess cost-effective pharmacogenes preceding the translation to the bedside. Drug development and discovery incorporate a drug-gene perspective and save more resources. Regulations and laws shaping the clinical PGx practice can be misconceived; however, these pre-/post approval processes ensure the product's safety and efficacy. National and international regulatory agencies seek guidance on maintaining conduct in PGx practice. In this patient-centric era, social and legal considerations manifest in a way that makes them unavoidable, involving patients and other stakeholders in a deliberate journey toward utmost patient well-being. In this comprehensive review, we contemporarily addressed the scientific leaps in PGx, along with various challenges that face the proper implementation of personalized medicine in Egypt. These informative insights were drawn to serve what the Egyptian population, in particular, would benefit from in terms of knowledge and know-how while maintaining the latest global trends. Moreover, this review is the first to discuss various modalities and challenges faced in Egypt regarding PGx, which we believe could be used as a pilot piece of literature for future studies locally, regionally, and internationally.
Collapse
Affiliation(s)
- Fadya M. Elgarhy
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 4435121, Egypt
| | - Abdallah Borham
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Noha Alziny
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Khlood R. AbdElaal
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt;
| | - Mahmoud Shuaib
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Abobaker Salem Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| |
Collapse
|
29
|
de Brabander E, Kleine Schaars K, van Amelsvoort T, van Westrhenen R. Influence of CYP2C19 and CYP2D6 on side effects of aripiprazole and risperidone: A systematic review. J Psychiatr Res 2024; 174:137-152. [PMID: 38631139 DOI: 10.1016/j.jpsychires.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Variability in hepatic cytochrome P450 (CYP) enzymes such as 2C19 and 2D6 may influence side-effect and efficacy outcomes for antipsychotics. Aripiprazole and risperidone are two commonly prescribed antipsychotics, metabolized primarily through CYP2D6. Here, we aimed to provide an overview of the effect of CYP2C19 and CYP2D6 on side-effects of aripiprazole and risperidone, and expand on existing literature by critically examining methodological issues associated with pharmacogenetic studies. A PRISMA compliant search of six electronic databases (Pubmed, PsychInfo, Embase, Central, Web of Science, and Google Scholar) identified pharmacogenetic studies on aripiprazole and risperidone. 2007 publications were first identified, of which 34 were included. Quality of literature was estimated using Newcastle-Ottowa Quality Assessment Scale (NOS) and revised Cochrane Risk of Bias tool. The average NOS score was 5.8 (range: 3-8) for risperidone literature and 5 for aripiprazole (range: 4-6). All RCTs on aripiprazole were rated as high risk of bias, and four out of six for risperidone literature. Study populations ranged from healthy volunteers to inpatient individuals in psychiatric units and included adult and pediatric samples. All n = 34 studies examined CYP2D6. Only one study genotyped for CYP2C19 and found a positive association with neurological side-effects of risperidone. Most studies did not report any relationship between CYP2D6 and any side-effect outcome. Heterogeneity between and within studies limited the ability to synthesize data and draw definitive conclusions. Studies lacked statistical power due to small sample size, selective genotyping methods, and study design. Large-scale randomized trials with multiple measurements, providing robust evidence on this topic, are suggested.
Collapse
Affiliation(s)
- Emma de Brabander
- Mental Health and Neuroscience Research Institute, Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, the Netherlands.
| | | | - Therese van Amelsvoort
- Mental Health and Neuroscience Research Institute, Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, the Netherlands
| | - Roos van Westrhenen
- Department of Psychiatry, Parnassia Groep BV, the Netherlands; Institute of Psychiatry, Psychology & Neurosciences, King's College London, United Kingdom
| |
Collapse
|
30
|
Ragia G, Pallikarou M, Manolopoulou Y, Vorvolakos T, Manolopoulos VG. Genetic diversity of cytochrome P450 in patients receiving psychiatric care in Greece: a step towards clinical implementation. Pharmacogenomics 2024; 25:217-229. [PMID: 38884939 PMCID: PMC11388136 DOI: 10.1080/14622416.2024.2346072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: We herein inferred the genetic diversity of CYP450 isoenzymes to predict the percentage of patients who need dose adjustment in drugs used in psychiatry.Materials & methods: Data of 784 Greek patients receiving psychiatric care who were genotyped for CYP2D6, CYP2C19, CYP1A2, CYP3A5 and CYP2C9 isoenzymes were inferred to gene-drug pairs according to the US FDA, Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group annotations and published literature.Results: Atypical metabolism was found for 36.8% of patients in CYP2D6, 49.2% in CYP2C19, 45% in CYP1A2, 16.7% in CYP3A5 and 41.8% in CYP2C9. Dosage adjustment need was estimated for 10.2% of venlafaxine, 10.0% of paroxetine, 6.4% of sertraline, 30.8% of citalopram, 52.1% of escitalopram, 18.2% of fluvoxamine, 54.1% of tricyclic antidepressants, 16.7% of zuclopenthixol, 10.6% of haloperidol and 13.3% of risperidone treated patients.Conclusion: Clinical psychiatric pharmacogenomic implementation holds promise to improve drug effectiveness and safety.
Collapse
Affiliation(s)
- Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, Alexandroupolis, 68100, Greece
- DNALEX S.A., Leontaridou 2, Alexandroupolis, 68100, Greece
| | - Myria Pallikarou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, Alexandroupolis, 68100, Greece
| | | | - Theofanis Vorvolakos
- Department of Psychiatry, Medical School, Academic General Hospital of Alexandroupolis, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, Alexandroupolis, 68100, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Dragana Campus, Alexandroupolis, 68100, Greece
| |
Collapse
|
31
|
Faisal MS, Hussain I, Ikram MA, Shah SB, Rehman A, Iqbal W. Irinotecan dosing and pharmacogenomics: a comprehensive exploration based on UGT1A1 variants and emerging insights. J Chemother 2024:1-14. [PMID: 38706404 DOI: 10.1080/1120009x.2024.2349444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Irinotecan is a critical anticancer drug used to treat metastatic colorectal cancer and advanced pancreatic ductal adenocarcinoma by obstructing topoisomerase 1; however, it can cause minor-to-severe and life-threatening adverse effects. UDP glucuronosyltransferase family 1 member A1 (UGT1A1) polymorphisms increase the risk of irinotecan-induced neutropenia and diarrhea. Hence, screening for UGT1A1 polymorphisms before irinotecan-based chemotherapy is recommended to minimize toxicity, whereas liposomes offer the potential to deliver irinotecan with fewer side effects in patients with pancreatic ductal adenocarcinoma. This review presents a comprehensive overview of the effects of genotype-guided dosing of irinotecan on UGT1A1*28 and UGT1A1*6 variants, incorporating pharmacogenomic research, optimal regimens for metastatic colorectal and pancreatic cancer treatment using irinotecan, guidelines for toxicity reduction, and an evaluation of the cost-effectiveness of UGT1A1 genotype testing.
Collapse
Affiliation(s)
- Muhammad Saleem Faisal
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Imran Hussain
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | | | - Syed Babar Shah
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Abdul Rehman
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Wajid Iqbal
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
32
|
Wiss FM, Allemann SS, Meyer zu Schwabedissen HE, Stäuble CK, Mikoteit T, Lampert ML. Recurrent high creatine kinase levels under clozapine treatment - a case report assessing a suspected adverse drug reaction. Front Psychiatry 2024; 15:1397876. [PMID: 38742124 PMCID: PMC11089194 DOI: 10.3389/fpsyt.2024.1397876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Suspected adverse drug reactions (ADRs) during treatment with clozapine often prompt therapeutic drug monitoring (TDM) in clinical practice. Currently, there is no official recommendation for pharmacogenetic (PGx) testing in the context of clozapine therapy. In this case report, we demonstrate and discuss the challenges of interpreting PGx and TDM results highlighting the possibilities and limitations of both analytical methods. A 36-year-old male patient with catatonic schizophrenia was treated with clozapine. He experienced multiple hospitalizations due to elevated creatine kinase (CK) levels (up to 9000 U/L, reference range: 30-200 U/L). With no other medical explanation found, physicians suspected clozapine-induced ADRs. However, plasma levels of clozapine were consistently low or subtherapeutic upon admission, prompting us to conduct a PGx analysis and retrospectively review the patient's TDM data, progress notes, and discharge reports. We investigated two possible hypotheses to explain the symptoms despite low clozapine plasma levels: Hypothesis i. suggested the formation and accumulation of a reactive intermediate metabolite due to increased activity in cytochrome P450 3A5 and reduced activity in glutathione S-transferases 1, leading to myotoxicity. Hypothesis ii. proposed under-treatment with clozapine, resulting in ineffective clozapine levels, leading to a rebound effect with increased catatonic symptoms and CK levels. After considering both data sources (PGx and TDM), hypothesis ii. appeared more plausible. By comprehensively assessing all available TDM measurements and examining them in temporal correlation with the drug dose and clinical symptoms, we observed that CK levels normalized when clozapine plasma levels were raised to the therapeutic range. This was achieved through hospitalization and closely monitored clozapine intake. Therefore, we concluded that the symptoms were not an ADR due to altered clozapine metabolism but rather the result of under-treatment. Interpreting TDM and PGx results requires caution. Relying solely on isolated PGx or single TDM values can result in misinterpretation of drug reactions. We recommend considering the comprehensive patient history, including treatment, dosages, laboratory values, clinic visits, and medication adherence.
Collapse
Affiliation(s)
- Florine M. Wiss
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler, Olten, Switzerland
| | - Samuel S. Allemann
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Céline K. Stäuble
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler, Olten, Switzerland
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Thorsten Mikoteit
- Psychiatric Services Solothurn, Solothurner Spitäler and Department of Medicine, University of Basel, Solothurn, Switzerland
| | - Markus L. Lampert
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler, Olten, Switzerland
| |
Collapse
|
33
|
Scherf-Clavel M, Weber H, Unterecker S, Müller DJ, Deckert J. Frequencies of CYP2C19 and CYP2D6 gene variants in a German inpatient sample with mood and anxiety disorders. World J Biol Psychiatry 2024; 25:214-221. [PMID: 38493365 DOI: 10.1080/15622975.2024.2321553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES Previous results demonstrated that CYP2D6 and CYP2C19 gene variants affect serum concentrations of antidepressants. We implemented a PGx service determining gene variants in CYP2D6 and CYP2C19 in our clinical routine care and report on our first patient cohort. METHODS We analysed CYP2D6 and CYP2C19 allele, genotype, and phenotype frequencies, and actionable pharmacogenetic variants in this German psychiatric inpatient cohort. Two-tailed z-test was used to investigate for differences in CYP2D6 and CYP2C19 phenotypes and actionable/non-actionable genetic variant frequencies between our cohort and reference cohorts. RESULTS Out of the 154 patients included, 44.8% of patients were classified as CYP2D6 normal metabolizer, 38.3% as intermediate metabolizers, 8.4% as poor metabolizers, and 2.6% as ultrarapid metabolizers. As for CYP2C19, 40.9% of patients were classified as normal metabolizers, 19.5% as intermediate metabolizers, 2.6% as poor metabolizers, 31.2% as rapid metabolizers, and 5.8% as ultrarapid metabolizers. Approximately, 80% of patients had at least one actionable PGx variant. CONCLUSION There is a high prevalence of actionable PGx variants in psychiatric inpatients which may affect treatment response. Physicians should refer to PGx-informed dosing guidelines in carriers of these variants. Pre-emptive PGx testing in general may facilitate precision medicine also for other drugs metabolised by CYP2D6 and/or CYP2C19.
Collapse
Affiliation(s)
- Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Jameson A, Faisal M, Fylan B, Bristow GC, Sohal J, Dalton C, Sagoo GS, Cardno AG, McLean SL. Proportion of Antipsychotics with CYP2D6 Pharmacogenetic (PGx) Associations Prescribed in an Early Intervention in Psychosis (EIP) Cohort: A Cross-Sectional Study. J Psychopharmacol 2024; 38:382-394. [PMID: 38494658 PMCID: PMC11010551 DOI: 10.1177/02698811241238283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Prescribing drugs for psychosis (antipsychotics) is challenging due to high rates of poor treatment outcomes, which are in part explained by an individual's genetics. Pharmacogenomic (PGx) testing can help clinicians tailor the choice or dose of psychosis drugs to an individual's genetics, particularly psychosis drugs with known variable response due to CYP2D6 gene variants ('CYP2D6-PGx antipsychotics'). AIMS This study aims to investigate differences between demographic groups prescribed 'CYP2D6-PGx antipsychotics' and estimate the proportion of patients eligible for PGx testing based on current pharmacogenomics guidance. METHODS A cross-sectional study took place extracting data from 243 patients' medical records to explore psychosis drug prescribing, including drug transitions. Demographic data such as age, sex, ethnicity, and clinical sub-team were collected and summarised. Descriptive statistics explored the proportion of 'CYP2D6-PGx antipsychotic' prescribing and the nature of transitions. We used logistic regression analysis to investigate associations between demographic variables and prescription of 'CYP2D6-PGx antipsychotic' versus 'non-CYP2D6-PGx antipsychotic'. RESULTS Two-thirds (164) of patients had been prescribed a 'CYP2D6-PGx antipsychotic' (aripiprazole, risperidone, haloperidol or zuclopenthixol). Over a fifth (23%) of patients would have met the suggested criteria for PGx testing, following two psychosis drug trials. There were no statistically significant differences between age, sex, or ethnicity in the likelihood of being prescribed a 'CYP2D6-PGx antipsychotic'. CONCLUSIONS This study demonstrated high rates of prescribing 'CYP2D6-PGx-antipsychotics' in an EIP cohort, providing a rationale for further exploration of how PGx testing can be implemented in EIP services to personalise the prescribing of drugs for psychosis.
Collapse
Affiliation(s)
- Adam Jameson
- Bradford District Care NHS Foundation Trust, Bradford, UK
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
| | - Muhammad Faisal
- Wolfson Centre for Applied Health Research, Bradford, UK
- Faculty of Health Studies, University of Bradford, Bradford, UK
- NIHR Yorkshire and Humber Patient Safety Research Collaboration (YH PSRC), Bradford, UK
| | - Beth Fylan
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
- NIHR Yorkshire and Humber Patient Safety Research Collaboration (YH PSRC), Bradford, UK
| | - Greg C Bristow
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford, UK
| | - Jaspreet Sohal
- Bradford District Care NHS Foundation Trust, Bradford, UK
| | - Caroline Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gurdeep S Sagoo
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alastair G Cardno
- Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Samantha L McLean
- School of Pharmacy & Medical Sciences, University of Bradford, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
| |
Collapse
|
35
|
O'Neill JR, Jameson A, McLean SL, Dixon M, Cardno AG, Lawrence C. A proposal for reducing maximum target doses of drugs for psychosis: Reviewing dose-response literature. J Psychopharmacol 2024; 38:344-352. [PMID: 38494791 DOI: 10.1177/02698811241239543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Presently, there is limited guidance on the maximal dosing of psychosis drugs that is based on effectiveness rather than safety or toxicity. Current maximum dosing recommendations may far exceed the necessary degree of dopamine D2 receptor blockade required to treat psychosis. This may lead to excess harm through cognitive impairment and side effects. AIMS This analysis aimed to establish guidance for prescribers by optimally dosing drugs for psychosis based on efficacy and benefit. METHODS We used data from two dose-response meta-analyses and reviewed seven of the most prescribed drugs for psychosis in the UK. Where data were not available, we used appropriate comparison techniques based on D2 receptor occupancy to extrapolate our recommendations. RESULTS We found that the likely threshold dose for achieving remission of psychotic symptoms was often significantly below the currently licensed dose for these drugs. We therefore recommend that clinicians are cautious about exceeding our recommended doses. Individual factors, however, should be accounted for. We outline potentially relevant factors including age, ethnicity, sex, smoking status and pharmacogenetics. Additionally, we recommend therapeutic drug monitoring as a tool to determine individual pharmacokinetic variation. CONCLUSIONS In summary, we propose a new set of maximum target doses for psychosis drugs based on efficacy. Further research through randomised controlled trials should be undertaken to evaluate the effect of reducing doses from current licensing maximums or from doses that are above our recommendations. However, dose reductions should be implemented in a manner that accounts for and reduces the effects of drug withdrawal.
Collapse
Affiliation(s)
- James R O'Neill
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
- South West Yorkshire Partnership NHS Foundation Trust, Wakefield, UK
- Leeds and York Partnership NHS Foundation Trust, Leeds, UK
| | - Adam Jameson
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
- Bradford District Care NHS Foundation Trust, Shipley, UK
| | - Samantha L McLean
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
- Wolfson Centre for Applied Health Research, Bradford, UK
| | - Michael Dixon
- Leeds and York Partnership NHS Foundation Trust, Leeds, UK
| | | | - Christopher Lawrence
- Southern Health NHS Foundation Trust, Southampton, UK
- University of Southampton, Southampton, UK
| |
Collapse
|
36
|
Ward K, Citrome L. Tolerability and safety outcomes of first-line oral second-generation antipsychotics in patients with schizophrenia. Expert Opin Drug Saf 2024; 23:399-409. [PMID: 38467517 DOI: 10.1080/14740338.2024.2328812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Antipsychotics are the foundation of pharmacologic treatment for schizophrenia. There are many oral antipsychotics available and given that these medications are generally considered comparably efficacious when titrated to an adequate dose, their varied tolerability, and safety profiles become critically important for medication selection. AREAS COVERED This paper reviews tolerability and safety considerations for first-line second-generation oral antipsychotics currently approved for the treatment of schizophrenia in the USA. Excluded from consideration are clozapine and non-oral formulations. EXPERT OPINION Among antipsychotics, there are many differences in adverse reactions observed in clinical trials, such as variable likelihood to cause sedation vs insomnia, weight gain and abnormalities in glucose/lipid metabolism, hyperprolactinemia, potential for impact on the QT interval, and motoric adverse effects. Additional safety data that can help with medication selection include safety in pregnancy and lactation, and potential for drug-drug interactions. Ultimately, working with patients to personalize treatment by focusing on safety and individual tolerability considerations for various adverse effects can help in building a therapeutic alliance and improving patients' outcomes.
Collapse
Affiliation(s)
- Kristen Ward
- Clinical Pharmacy Department, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Leslie Citrome
- Department of Psychiatry and Behavioral Science, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
37
|
Shen C, Yang H, Shao W, Zheng L, Zhang W, Xie H, Jiang X, Wang L. Physiologically Based Pharmacokinetic Modeling to Unravel the Drug-gene Interactions of Venlafaxine: Based on Activity Score-dependent Metabolism by CYP2D6 and CYP2C19 Polymorphisms. Pharm Res 2024; 41:731-749. [PMID: 38443631 DOI: 10.1007/s11095-024-03680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Venlafaxine (VEN) is a commonly utilized medication for alleviating depression and anxiety disorders. The presence of genetic polymorphisms gives rise to considerable variations in plasma concentrations across different phenotypes. This divergence in phenotypic responses leads to notable differences in both the efficacy and tolerance of the drug. PURPOSE A physiologically based pharmacokinetic (PBPK) model for VEN and its metabolite O-desmethylvenlafaxine (ODV) to predict the impact of CYP2D6 and CYP2C19 gene polymorphisms on VEN pharmacokinetics (PK). METHODS The parent-metabolite PBPK models for VEN and ODV were developed using PK-Sim® and MoBi®. Leveraging prior research, derived and implemented CYP2D6 and CYP2C19 activity score (AS)-dependent metabolism to simulate exposure in the drug-gene interactions (DGIs) scenarios. The model's performance was evaluated by comparing predicted and observed values of plasma concentration-time (PCT) curves and PK parameters values. RESULTS In the base models, 91.1%, 94.8%, and 94.6% of the predicted plasma concentrations for VEN, ODV, and VEN + ODV, respectively, fell within a twofold error range of the corresponding observed concentrations. For DGI scenarios, these values were 81.4% and 85% for VEN and ODV, respectively. Comparing CYP2D6 AS = 2 (normal metabolizers, NM) populations to AS = 0 (poor metabolizers, PM), 0.25, 0.5, 0.75, 1.0 (intermediate metabolizers, IM), 1.25, 1.5 (NM), and 3.0 (ultrarapid metabolizers, UM) populations in CYP2C19 AS = 2.0 group, the predicted DGI AUC0-96 h ratios for VEN were 3.65, 3.09, 2.60, 2.18, 1.84, 1.56, 1.34, 0.61, and for ODV, they were 0.17, 0.35, 0.51, 0.64, 0.75, 0.83, 0.90, 1.11, and the results were similar in other CYP2C19 groups. It should be noted that PK differences in CYP2C19 phenotypes were not similar across different CYP2D6 groups. CONCLUSIONS In clinical practice, the impact of genotyping on the in vivo disposition process of VEN should be considered to ensure the safety and efficacy of treatment.
Collapse
Affiliation(s)
- Chaozhuang Shen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China
| | - Hongyi Yang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Wei Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Sichuan University, Chengdu, 610064, West China, China.
| |
Collapse
|
38
|
Korošec Hudnik L, Blagus T, Redenšek Trampuž S, Dolžan V, Bon J, Pjevac M. Case report: Avoiding intolerance to antipsychotics through a personalized treatment approach based on pharmacogenetics. Front Psychiatry 2024; 15:1363051. [PMID: 38566958 PMCID: PMC10985247 DOI: 10.3389/fpsyt.2024.1363051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The standard approach to treatment in psychiatry is known as "treatment as usual" (TAU), in which the same types of treatment are administered to a group of patients. TAU often requires numerous dose adjustments and medication changes due to ineffectiveness and/or the occurrence of adverse drug reactions (ADRs). This process is not only time-consuming but also costly. Antipsychotic medications are commonly used to treat various psychiatric disorders such as schizophrenia and mood disorders. Some of the inter-individual differences in efficacy and ADRs observed in psychopharmacotherapy can be explained by genetic variability in the pharmacokinetics and pharmacodynamics of antipsychotics. A better understanding of (in)efficacy and possible ADRs can be achieved by pharmacogenetic analysis of genes involved in the metabolism of antipsychotics. Most psychotropic drugs are metabolized by genetically variable CYP2D6, CYP1A2, CYP3A4, and CYP2C19 enzymes. To demonstrate the utility of pharmacogenetic testing for tailoring antipsychotic treatment, in this paper, we present the case of a patient in whom a pharmacogenetic approach remarkably altered an otherwise intolerant or ineffective conventional TAU with antipsychotics. Methods In this case report, we present a 60-year-old patient with psychotic symptoms who suffered from severe extrapyramidal symptoms and a malignant neuroleptic syndrome during treatment with risperidone, fluphenazine, aripiprazole, brexpiprazole, and olanzapine. Therefore, we performed a pharmacogenetic analysis by genotyping common functional variants in genes involved in the pharmacokinetic pathways of prescribed antipsychotics, namely, CYP2D6, CYP3A4, CYP3A5, CYP1A2, ABCB1, and ABCG2. Treatment recommendations for drug-gene pairs were made according to available evidence-based pharmacogenetic recommendations from the Dutch Pharmacogenetics Working Group (DPWG) or Clinical Pharmacogenetics Implementation Consortium (CPIC). Results Pharmacogenetic testing revealed a specific metabolic profile and pharmacokinetic phenotype of the patient, which in retrospect provided possible explanations for the observed ADRs. Based on the pharmacogenetic results, the choice of an effective and safe medication proved to be much easier. The psychotic symptoms disappeared after treatment, while the negative symptoms persisted to a lesser extent. Conclusion With the case presented, we have shown that taking into account the pharmacogenetic characteristics of the patient can explain the response to antipsychotic treatment and associated side effects. In addition, pharmacogenetic testing enabled an informed choice of the most appropriate drug and optimal dose adjustment. This approach makes it possible to avoid or minimize potentially serious dose-related ADRs and treatment ineffectiveness. However, due to the complexity of psychopathology and the polypharmacy used in this field, it is of great importance to conduct further pharmacokinetic and pharmacogenetic studies to better assess gene-drug and gene-gene-drug interactions.
Collapse
Affiliation(s)
- Liam Korošec Hudnik
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Bon
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Milica Pjevac
- Centre for Clinical Psychiatry, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
McNeill A. Solving medical mysteries with genomics. Eur J Hum Genet 2024; 32:249-250. [PMID: 38459175 PMCID: PMC10924079 DOI: 10.1038/s41431-024-01568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Affiliation(s)
- Alisdair McNeill
- Division of Neuroscience and Neuroscience Institute, The University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
40
|
Hernandez M, Cullell N, Cendros M, Serra-Llovich A, Arranz MJ. Clinical Utility and Implementation of Pharmacogenomics for the Personalisation of Antipsychotic Treatments. Pharmaceutics 2024; 16:244. [PMID: 38399298 PMCID: PMC10893329 DOI: 10.3390/pharmaceutics16020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Decades of pharmacogenetic research have revealed genetic biomarkers of clinical response to antipsychotics. Genetic variants in antipsychotic targets, dopamine and serotonin receptors in particular, and in metabolic enzymes have been associated with the efficacy and toxicity of antipsychotic treatments. However, genetic prediction of antipsychotic response based on these biomarkers is far from accurate. Despite the clinical validity of these findings, the clinical utility remains unclear. Nevertheless, genetic information on CYP metabolic enzymes responsible for the biotransformation of most commercially available antipsychotics has proven to be effective for the personalisation of clinical dosing, resulting in a reduction of induced side effects and in an increase in efficacy. However, pharmacogenetic information is rarely used in psychiatric settings as a prescription aid. Lack of studies on cost-effectiveness, absence of clinical guidelines based on pharmacogenetic biomarkers for several commonly used antipsychotics, the cost of genetic testing and the delay in results delivery hamper the implementation of pharmacogenetic interventions in clinical settings. This narrative review will comment on the existing pharmacogenetic information, the clinical utility of pharmacogenetic findings, and their current and future implementations.
Collapse
Affiliation(s)
- Marta Hernandez
- PHAGEX Research Group, University Ramon Llull, 08022 Barcelona, Spain;
- School of Health Sciences Blanquerna, University Ramon Llull, 08022 Barcelona, Spain
| | - Natalia Cullell
- Fundació Docència i Recerca Mútua Terrassa, 08221 Terrassa, Spain; (N.C.); (A.S.-L.)
- Department of Neurology, Hospital Universitari Mútua Terrassa, 08221 Terrassa, Spain
| | - Marc Cendros
- EUGENOMIC Genómica y Farmacogenética, 08029 Barcelona, Spain;
| | | | - Maria J. Arranz
- PHAGEX Research Group, University Ramon Llull, 08022 Barcelona, Spain;
- Fundació Docència i Recerca Mútua Terrassa, 08221 Terrassa, Spain; (N.C.); (A.S.-L.)
| |
Collapse
|
41
|
Biswas M, Vanwong N, Sukasem C. Pharmacogenomics and non-genetic factors affecting drug response in autism spectrum disorder in Thai and other populations: current evidence and future implications. Front Pharmacol 2024; 14:1285967. [PMID: 38375208 PMCID: PMC10875059 DOI: 10.3389/fphar.2023.1285967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Autism spectrum disorder (ASD) may affect family and social life profoundly. Although there is no selective pharmacotherapy for ASD, the Food and Drug Administration (FDA) has recommended risperidone/aripiprazole to treat the associated symptoms of ASD, such as agitation/irritability. Strong associations of some pharmacokinetic/pharmacodynamic gene variants, e.g., CYP2D6 and DRD2, with risperidone-induced hyperprolactinemia have been found in children with ASD, but such strong genetic associations have not been found directly for aripiprazole in ASD. In addition to pharmacogenomic (PGx) factors, drug-drug interactions (DDIs) and possibly cumulative effects of DDIs and PGx may affect the safety or effectiveness of risperidone/aripiprazole, which should be assessed in future clinical studies in children with ASD. Reimbursement, knowledge, and education of healthcare professionals are the key obstacles preventing the successful implementation of ASD pharmacogenomics into routine clinical practice. The preparation of national and international PGx-based dosing guidelines for risperidone/aripiprazole based on robust evidence may advance precision medicine for ASD.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Mueang, Thailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
42
|
Kanu AA, Johnston MM, Poweleit EA, Vaughn SE, Strawn JR, Ramsey LB. Influence of CYP2D6 Metabolizer Status on Risperidone and Paliperidone Tolerability in Children and Adolescents. J Child Adolesc Psychopharmacol 2024; 34:34-41. [PMID: 38377522 DOI: 10.1089/cap.2023.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background: Risperidone and, to a lesser extent, paliperidone are metabolized by CYP2D6; however, there are limited data related to variation in CYP2D6 phenotypes and the tolerability of these medications in children and adolescents. Furthermore, the impact of CYP2D6 on the association of risperidone and paliperidone with hyperprolactinemia in youth is not well understood. Methods: A retrospective chart review was performed in psychiatrically hospitalized children and adolescents prescribed risperidone (n = 263, age = 3-18 years, mean age = 13 ± 3 years, 49% female) or paliperidone (n = 124, age = 5-18 years, mean age = 15 ± 2 years, 44% female) who had CYP2D6 genotyping performed as part of routine care. CYP2D6 phenotypes were determined based on Clinical Pharmacogenetics Implementation Consortium guidelines and CYP2D6 inhibitors causing phenoconversion. Adverse effects were obtained from a review of the electronic health record, and patients were selected, in part, to enrich non-normal metabolizers. Results: Among risperidone-treated patients, 45% experienced an adverse effect, whereas 36% of paliperidone-treated patients experienced adverse effects. Discontinuation of risperidone due to lack of efficacy was more frequent in the CYP2D6 normal metabolizers and ultrarapid metabolizers compared with intermediate metabolizers (IMs) and phenoconverted poor metabolizers (pPMs) (54.5% vs. 32.7%, p < 0.001). Discontinuation due to weight gain was more common among risperidone- than paliperidone-treated patients (17% vs. 7%, p = 0.011). Among those taking paliperidone, CYP2D6 was associated with discontinuation due to side effects (p = 0.008), and youth with slower CYP2D6 metabolism (i.e., pPMs and IMs) were more likely to discontinue. Hyperprolactinemia was found in 10% of paliperidone-treated patients and 5% of risperidone-treated patients, and slower CYP2D6 metabolizers required higher risperidone doses to cause hyperprolactinemia (p = 0.011). Conclusions: CYP2D6 phenotype is associated with discontinuation of risperidone due to lack of efficacy and the dose of risperidone that induced hyperprolactinemia, as well as discontinuation of paliperidone due to adverse effects. Future studies should evaluate exposure-response and toxicity relationships in risperidone- and paliperidone-treated youth.
Collapse
Affiliation(s)
- Amarachi A Kanu
- Divisions of Research in Patient Services and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michelle M Johnston
- Divisions of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ethan A Poweleit
- Divisions of Research in Patient Services and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Divisions of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Divisions of Clinical Pharmacology, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Samuel E Vaughn
- Divisions of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeffrey R Strawn
- Divisions of Clinical Pharmacology, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Divisions of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura B Ramsey
- Divisions of Research in Patient Services and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Divisions of Clinical Pharmacology, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
43
|
Pelgrim TAD, Philipsen A, Young AH, Juruena M, Jimenez E, Vieta E, Jukić M, Van der Eycken E, Heilbronner U, Moldovan R, Kas MJH, Jagesar RR, Nöthen MM, Hoffmann P, Shomron N, Kilarski LL, van Amelsvoort T, Campforts B, van Westrhenen R. A New Intervention for Implementation of Pharmacogenetics in Psychiatry: A Description of the PSY-PGx Clinical Study. Pharmaceuticals (Basel) 2024; 17:151. [PMID: 38399366 PMCID: PMC10892863 DOI: 10.3390/ph17020151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background Pharmacological treatment for psychiatric disorders has shown to only be effective in about one-third of patients, as it is associated with frequent treatment failure, often because of side effects, and a long process of trial-and-error pharmacotherapy until an effective and tolerable treatment is found. This notion emphasizes the urgency for a personalized medicine approach in psychiatry. (2) Methods This prospective patient- and rater-blinded, randomized, controlled study will investigate the effect of dose-adjustment of antidepressants escitalopram and sertraline or antipsychotics risperidone and aripiprazole according to the latest state-of-the-art international dosing recommendations for CYP2C19 and CYP2D6 metabolizer status in patients with mood, anxiety, and psychotic disorders. A total sample of N = 2500 will be recruited at nine sites in seven countries (expected drop-out rate of 30%). Patients will be randomized to a pharmacogenetic group or a dosing-as-usual group and treated over a 24-week period with four study visits. The primary outcome is personal recovery using the Recovery Assessment Scale as assessed by the patient (RAS-DS), with secondary outcomes including clinical effects (response or symptomatic remission), side effects, general well-being, digital phenotyping, and psychosocial functioning. (3) Conclusions This is, to our knowledge, the first international, multi-center, non-industry-sponsored randomized controlled trial (RCT) that may provide insights into the effectiveness and utility of implementing pharmacogenetic-guided treatment of psychiatric disorders, and as such, results will be incorporated in already available dosing guidelines.
Collapse
Affiliation(s)
- Teuntje A. D. Pelgrim
- Department of Psychiatry, Parnassia Psychiatric Institute, 1062HN Amsterdam, The Netherlands
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, 53105 Bonn, Germany
| | - Allan H. Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road Beckenham, Kent BR3 3BX, UK
| | - Mario Juruena
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road Beckenham, Kent BR3 3BX, UK
| | - Ester Jimenez
- Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Hospital Clinic & Institute of Neurosciences (UBNeuro), IDIBAPS, CIBERSAM, ISCIII, University of Barcelona, 08036 Catalonia, Spain
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Department of Psychiatry and Psychology, Hospital Clinic & Institute of Neurosciences (UBNeuro), IDIBAPS, CIBERSAM, ISCIII, University of Barcelona, 08036 Catalonia, Spain
| | - Marin Jukić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
- Department of Physiology & Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Erik Van der Eycken
- Global Alliance of Mental Illness Advocacy Networks-Europe (GAMIAN-Europe), 1050 Brussels, Belgium
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Ramona Moldovan
- Department of Psychology, Babeş-Bolyai University, 400015 Cluj-Napoca, Romania
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
- Manchester Center for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC Groningen, The Netherlands
| | - Raj R. Jagesar
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC Groningen, The Netherlands
| | - Markus M. Nöthen
- Institute of Human Genetics, University Hospital of Bonn and University of Bonn, 53127 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University Hospital of Bonn and University of Bonn, 53127 Bonn, Germany
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Laura L. Kilarski
- Department of Psychiatry and Psychotherapy, University of Bonn, 53105 Bonn, Germany
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, 6226NB Maastricht, The Netherlands
| | - Bea Campforts
- Department of Psychiatry and Neuropsychology, Maastricht University, 6226NB Maastricht, The Netherlands
| | | | - Roos van Westrhenen
- Department of Psychiatry, Parnassia Psychiatric Institute, 1062HN Amsterdam, The Netherlands
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road Beckenham, Kent BR3 3BX, UK
- Department of Psychiatry and Neuropsychology, Maastricht University, 6226NB Maastricht, The Netherlands
- St. John’s National Academy of Health Sciences, Bangalore 560034, India
| |
Collapse
|
44
|
McCarley SC, Murphy DA, Thompson J, Shovlin CL. Pharmacogenomic Considerations for Anticoagulant Prescription in Patients with Hereditary Haemorrhagic Telangiectasia. J Clin Med 2023; 12:7710. [PMID: 38137783 PMCID: PMC10744266 DOI: 10.3390/jcm12247710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia that commonly results in bleeding but with frequent indications for therapeutic anticoagulation. Our aims were to advance the understanding of drug-specific intolerance and evaluate if there was an indication for pharmacogenomic testing. Genes encoding proteins involved in the absorption, distribution, metabolism, and excretion of warfarin, heparin, and direct oral anticoagulants (DOACs) apixaban, rivaroxaban, edoxaban, and dabigatran were identified and examined. Linkage disequilibrium with HHT genes was excluded, before variants within these genes were examined following whole genome sequencing of general and HHT populations. The 44 genes identified included 5/17 actionable pharmacogenes with guidelines. The 76,156 participants in the Genome Aggregation Database v3.1.2 had 28,446 variants, including 9668 missense substitutions and 1076 predicted loss-of-function (frameshift, nonsense, and consensus splice site) variants, i.e., approximately 1 in 7.9 individuals had a missense substitution, and 1 in 71 had a loss-of-function variant. Focusing on the 17 genes relevant to usually preferred DOACs, similar variant profiles were identified in HHT patients. With HHT patients at particular risk of haemorrhage when undergoing anticoagulant treatment, we explore how pre-emptive pharmacogenomic testing, alongside HHT gene testing, may prove beneficial in reducing the risk of bleeding and conclude that HHT patients are well placed to be at the vanguard of personalised prescribing.
Collapse
Affiliation(s)
- Sarah C. McCarley
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.C.M.); (J.T.)
| | - Daniel A. Murphy
- Pharmacy Department, Imperial College Healthcare NHS Trust, London W2 1NY, UK;
- Social, Genetic and Envionmental Determinants of Health Theme, NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
| | - Jack Thompson
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.C.M.); (J.T.)
| | - Claire L. Shovlin
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.C.M.); (J.T.)
- Social, Genetic and Envionmental Determinants of Health Theme, NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
- Specialist Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| |
Collapse
|
45
|
Bousman CA, Maruf AA, Marques DF, Brown LC, Müller DJ. The emergence, implementation, and future growth of pharmacogenomics in psychiatry: a narrative review. Psychol Med 2023; 53:7983-7993. [PMID: 37772416 PMCID: PMC10755240 DOI: 10.1017/s0033291723002817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Psychotropic medication efficacy and tolerability are critical treatment issues faced by individuals with psychiatric disorders and their healthcare providers. For some people, it can take months to years of a trial-and-error process to identify a medication with the ideal efficacy and tolerability profile. Current strategies (e.g. clinical practice guidelines, treatment algorithms) for addressing this issue can be useful at the population level, but often fall short at the individual level. This is, in part, attributed to interindividual variation in genes that are involved in pharmacokinetic (i.e. absorption, distribution, metabolism, elimination) and pharmacodynamic (e.g. receptors, signaling pathways) processes that in large part, determine whether a medication will be efficacious or tolerable. A precision prescribing strategy know as pharmacogenomics (PGx) assesses these genomic variations, and uses it to inform selection and dosing of certain psychotropic medications. In this review, we describe the path that led to the emergence of PGx in psychiatry, the current evidence base and implementation status of PGx in the psychiatric clinic, and finally, the future growth potential of precision psychiatry via the convergence of the PGx-guided strategy with emerging technologies and approaches (i.e. pharmacoepigenomics, pharmacomicrobiomics, pharmacotranscriptomics, pharmacoproteomics, pharmacometabolomics) to personalize treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Chad A. Bousman
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Departments of Physiology and Pharmacology, and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- AB Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Abdullah Al Maruf
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, AB, Canada
- College of Pharmacy, Rady Faculty of Health Sciences, Winnipeg, MB, Canada
| | | | | | - Daniel J. Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wurzburg, Wurzburg, Germany
| |
Collapse
|
46
|
Shang X. A response to "Effect of CYP2D6 pharmacogenetic phenotype and phenoconversion on serum concentrations of antidepressants and antipsychotics: a retrospective cohort study". Int J Clin Pharm 2023; 45:1307-1308. [PMID: 37318752 DOI: 10.1007/s11096-023-01613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Affiliation(s)
- Xiang Shang
- Department of Pharmacy, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
47
|
van der Drift D, Simoons M, Koch BCP, Brufau G, Bindels P, Matic M, van Schaik RHN. Implementation of Pharmacogenetics in First-Line Care: Evaluation of Its Use by General Practitioners. Genes (Basel) 2023; 14:1841. [PMID: 37895189 PMCID: PMC10606701 DOI: 10.3390/genes14101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Pharmacogenetics (PGx) can explain/predict drug therapy outcomes. There is, however, unclarity about the use and usefulness of PGx in primary care. In this study, we investigated PGx tests ordered by general practitioners (GPs) in 2021 at Dept. Clinical Chemistry, Erasmus MC, and analyzed the gene tests ordered, drugs/drug groups, reasons for testing and single-gene versus panel testing. Additionally, a survey was sent to 90 GPs asking about their experiences and barriers to implementing PGx. In total, 1206 patients and 6300 PGx tests were requested by GPs. CYP2C19 was requested most frequently (17%), and clopidogrel was the most commonly indicated drug (23%). Regarding drug groups, antidepressants (51%) were the main driver for requesting PGx, followed by antihypertensives (26%). Side effects (79%) and non-response (27%) were the main indicators. Panel testing was preferred over single-gene testing. The survey revealed knowledge on when and how to use PGx as one of the main barriers. In conclusion, PGx is currently used by GPs in clinical practice in the Netherlands. Side effects are the main reason for testing, which mostly involves antidepressants. Lack of knowledge is indicated as a major barrier, indicating the need for more education on PGx for GPs.
Collapse
Affiliation(s)
- Denise van der Drift
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Mirjam Simoons
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Gemma Brufau
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Clinical Chemistry, Result Laboratory, 3318 AT Dordrecht, The Netherlands
| | - Patrick Bindels
- Department of General Practice, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
48
|
Scott SA. The Genetic Testing Reference Materials Coordination Program: Over 10 Years of Support for Pharmacogenomic Testing. J Mol Diagn 2023; 25:630-633. [PMID: 37481236 PMCID: PMC10488323 DOI: 10.1016/j.jmoldx.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Affiliation(s)
- Stuart A Scott
- Department of Pathology, Stanford University, Stanford, California; Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, California.
| |
Collapse
|
49
|
May GB, de Souza BR, Gueuvoghlanian-Silva BY, Dos Reis EC, Mostardeiro SR, Boabaid May PP, Mateo EC, Vietta GG, Hoss GW. Distribution of pharmacogene allele and phenotype frequencies in Brazilian psychiatric patients. Pharmacogenomics 2023; 24:747-760. [PMID: 37846556 DOI: 10.2217/pgs-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Purpose: This work was designed to identify the pharmacogenetic profile of Brazilian psychiatric patients receiving psychoactive drug treatment according to ethnicity. Methods: Based on the GnTech® database, this cross-sectional study analyzed data from self-reported sociodemographic and genetic results from the next-generation sequencing panel composed of 26 pharmacogenes from 359 psychotropic drug users. Results: Variant frequencies of multiple pharmacogenes presented differences between ethnicities (CYP3A5, CYP2D6, CYP1A2, CYP2B6, CYP3A4, UGT1A4, UGT2B15, ABCB1 rs1045642, ADRA2A rs1800544, COMT rs4680, GRIK4 rs1954787, GSK3B rs334558, GSK3B rs6438552, HTR1A rs6295, HTR2A rs7997012, HTR2C rs1414334, MTHFR rs1801131, OPRM1 rs1799971 and 5-HTTLPR), endorsing the necessity of individual-level analyses in drug treatment. Conclusion: A discussion of pharmacogenomic test implementation in psychiatric clinical practice is needed to improve treatment choices, especially in Brazil, a multiethnic country.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Rech Mostardeiro
- Universidade do Sul de Santa Catarina (UNISUL)-Campus Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | | | | | | | | |
Collapse
|
50
|
den Uil MG, Hut HW, Wagelaar KR, Abdullah-Koolmees H, Cahn W, Wilting I, Deneer VHM. Pharmacogenetics and phenoconversion: the influence on side effects experienced by psychiatric patients. Front Genet 2023; 14:1249164. [PMID: 37693320 PMCID: PMC10486269 DOI: 10.3389/fgene.2023.1249164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Preventing side effects is important to ensure optimal psychopharmacotherapy and therapeutic adherence among psychiatric patients. Obtaining the pharmacogenetic profile of CYP2C19 and CYP2D6 can play an important role in this. When the genotype-predicted phenotype shifts because of the use of co-medication, this is called phenoconversion. The aim was to study the influence of the pharmacogenetic (PGx) profile and phenoconversion on side effects experienced by psychiatric patients. Methods: A retrospective cohort study was performed using data from 117 patients from a psychiatric outpatient clinic. Patients were genotyped with a psychiatric PGx panel and side effects were evaluated using the Udvalg for Kliniske Undersølgelser side effects rating scale (UKU). Results: Of all patients, 10.3% and 9.4% underwent phenoconversion (any shift in predicted phenotype) for CYP2C19 and CYP2D6 respectively. No significant associations were found between the phenotype and UKU-score. 75% of the patients with an Intermediate metabolizer (IM) or Poor metabolizer (PM) phenoconverted phenotype of CYP2C19 experienced nausea and vomiting compared to 9.1% of the Normal metabolizer (NM) and Ultrarapid metabolizer (UM) patients (p = 0.033). 64% of the patients with an IM or PM phenoconverted phenotype of CYP2D6 experienced the side effect depression compared to 30.4% NMs and UMs (p = 0.020). CYP2D6 IM and PM patients had a higher concentration-dose ratio than NM patients (p < 0.05). Discussion: This study underlines the importance to consider phenoconversion when looking at a patient's genotype. This is important for a better prediction of the phenotype and preventing possible side effects under a specific psychopharmacotherapy.
Collapse
Affiliation(s)
- Manon G. den Uil
- Division Laboratories, Pharmacy and Biomedical Genetics, Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Hannelotte W. Hut
- Division Laboratories, Pharmacy and Biomedical Genetics, Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Kay R. Wagelaar
- Division Laboratories, Pharmacy and Biomedical Genetics, Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, Netherlands
- Department of Clinical Pharmacy, Medisch Spectrum Twente, Enschede, Netherlands
| | - Heshu Abdullah-Koolmees
- Pharmacy and Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ingeborg Wilting
- Division Laboratories, Pharmacy and Biomedical Genetics, Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Vera H. M. Deneer
- Division Laboratories, Pharmacy and Biomedical Genetics, Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|