1
|
Bosic-Reiniger J, Martin JL, Brown KE, Anderson HD, Blackburn H, Kao DP, Trinkley KE, Woodahl EL, Aquilante CL. Barriers and facilitators of the use of clinical informatics resources to facilitate pharmacogenomic implementation in resource-limited settings. JAMIA Open 2024; 7:ooae101. [PMID: 39399271 PMCID: PMC11471000 DOI: 10.1093/jamiaopen/ooae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Objective Understand perceived barriers to and facilitators of using clinical informatics applications for pharmacogenomic (PGx) implementation in resource-limited settings. Materials and Methods We conducted a qualitative research study using a semi-structured interview guide informed by the Consolidated Framework for Implementation Research (CFIR). Interview questions assessed CFIR contextual determinants related to: electronic health record (EHR) infrastructure; clinical informatics personnel and resources; EHR integration of PGx test results; PGx clinical decision support (CDS) tools; institutional resources; and partner receptivity. Transcripts were coded and analyzed to identify themes. Results We interviewed 24 clinical informaticists and executive leaders working in rural or underserved health care settings in Montana (n = 15) and Colorado (n = 9) and identified three major themes: (1) EHR infrastructure limitations, (2) insufficient supporting resources, and (3) unique contextual considerations for resource-limited settings. EHR infrastructure limitations included limited agency related to EHR build and interoperability concerns. Theme 1 highlighted challenges associated with integrating structured data into the EHR and inadequate vendor support. Theme 2 included limited familiarity with PGx across the care team, cost concerns, and allocation of non-financial resources. Theme 3 highlighted perceptions about the clinical utility of PGx within rural and underrepresented populations. Potential facilitators, such as being able to act nimbly, were found to coexist among the reported barriers. Discussion and Conclusion Our results provide insight into the clinical informatics infrastructure in resource-limited settings and identify unique considerations for clinical informatics-facilitated PGx implementation. Future efforts in these settings should consider innovative partnerships and strategies to leverage facilitators and minimize barriers associated with integrating PGx CDS applications.
Collapse
Affiliation(s)
- Jade Bosic-Reiniger
- L.S. Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, United States
- Department of Pharmacy Practice, University of Montana, Missoula, MT 59812, United States
| | - James L Martin
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, United States
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Karen E Brown
- L.S. Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana Skaggs School of Pharmacy, Missoula, MT 59812, United States
| | - Heather D Anderson
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, United States
| | - Hayley Blackburn
- L.S. Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, United States
- Department of Pharmacy Practice, University of Montana, Missoula, MT 59812, United States
| | - David P Kao
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Katy E Trinkley
- Department of Family Medicine, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Erica L Woodahl
- L.S. Skaggs Institute for Health Innovation, University of Montana, Missoula, MT 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana Skaggs School of Pharmacy, Missoula, MT 59812, United States
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, United States
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
2
|
Wu WW, Guo HL, Li Y, Hu YH, He H, Xu J, Wang XL, Chen F. A national-wide survey on clinical implementation of PGx testing into precision therapeutics for Chinese children: a long way before standard clinical practice. BMC Health Serv Res 2024; 24:1089. [PMID: 39294738 PMCID: PMC11409549 DOI: 10.1186/s12913-024-11535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Pharmacogenetics/pharmacogenomics (PGx) focuses on the genetic variation that causes the heterogeneity of pharmacokinetics and drug response among individuals and has the potential to predict individual efficacy and/or side effects. This study aims to investigate and understand the implementation of genetic testing for the personalized medication (GTPM) in children's hospitals in Mainland China. METHODS A survey was conducted on 50 children's hospitals from 31 provinces, municipalities, and autonomous regions across Mainland China, and statistical analysis and recommendations were made. RESULTS Questionnaire response was rate of 76.0% (38/50). Data from 15 hospitals conducting GTPM were included in this study, but only 6 hospitals had offered PGx tests for no less than five drug-related genes, and only 5 hospitals had covered more than ten drugs, which was a small scale overall. 20.0% of the laboratories did not conduct internal quality control, and 33.3% did not participate in inter-laboratory quality assessment. 46.7% of the practitioners did not receive external training. The primary goal for GTPM was to optimize drug dosage in the 15 hospitals, while the main challenge for GTPM was the implementation cost. CONCLUSION Although GTPM in pediatrics has made major progress in Mainland China in recent years, there were still various problems in terms of software, hardware configuration, personnel allocation, business scale, quality control, and result interpretation. This requires joint efforts of health administration, medical insurance departments, researchers, and hospitals to promote and improve GTPM.
Collapse
Affiliation(s)
- Wen-Wen Wu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Li
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Huan He
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiao-Ling Wang
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Wu A, Raack EJ, Ross CJD, Carleton BC. Implementation and Evaluation Strategies for Pharmacogenetic Testing in Hospital Settings: A Scoping Review. Ther Drug Monit 2024:00007691-990000000-00266. [PMID: 39264345 DOI: 10.1097/ftd.0000000000001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/01/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Pharmacogenetic testing in clinical settings has improved the safety and efficacy of drug treatment. There is a growing number of studies evaluating pharmacogenetic implementation and identifying barriers and facilitators. However, no review has focused on bridging the gap between identifying barriers and facilitators of testing and the clinical strategies adopted in response. This review was conducted to understand the implementation and evaluation strategies of pharmacogenetic testing programs. METHODS A PRISMA-compliant scoping review was conducted. The included studies discussed pharmacogenetic testing programs implemented in a hospital setting. Quantitative, qualitative, and mixed design methods were included. RESULTS A total of 232 of the 7043 articles that described clinical pharmacogenetic programs were included. The most common specialties that described pharmacogenetic implementation were psychiatry (26%) and oncology (16%), although many studies described institutional programs implemented across multiple specialties (19%). Different specialties reported different clinical outcomes, but all reported similar program performance indicators, such as test uptake and the number of times the test recommendations were followed. There were benefits and drawbacks to delivering test results through research personnel, pharmacists, and electronic alerts, but active engagement of physicians was necessary for the incorporation of pharmacogenetic results into clinical decision making. CONCLUSIONS Further research is required on the maintenance and sustainability of pharmacogenetic testing initiatives. These findings provide an overview of the implementation and evaluation strategies of different specialties that can be used to improve pharmacogenetic testing.
Collapse
Affiliation(s)
- Angela Wu
- Department of Experimental Medicine, University of British Columbia
- BC Children's Hospital Research Institute
| | - Edward J Raack
- BC Children's Hospital Research Institute
- Department of Medical Genetics, University of British Columbia
| | - Colin J D Ross
- BC Children's Hospital Research Institute
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia; and
| | - Bruce C Carleton
- BC Children's Hospital Research Institute
- Department of Medical Genetics, University of British Columbia
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia; and
- Therapeutic Evaluation Unit, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Delabays B, Trajanoska K, Walonoski J, Mooser V. Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test. Pharmacol Rev 2024; 76:791-827. [PMID: 39122647 DOI: 10.1124/pharmrev.123.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024] Open
Abstract
Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., "actionable"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.
Collapse
Affiliation(s)
- Benoît Delabays
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Joshua Walonoski
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| |
Collapse
|
5
|
Aquilante CL, Trinkley KE, Lee YM, Crooks KR, Hearst EC, Heckman SM, Hess KW, Kudron EL, Martin JL, Swartz CT, Kao DP. Implementation of clopidogrel pharmacogenetic clinical decision support for a preemptive return of results program. Am J Health Syst Pharm 2024; 81:555-562. [PMID: 38253063 PMCID: PMC11519030 DOI: 10.1093/ajhp/zxae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE To describe our experiences implementing and iterating CYP2C19 genotype-guided clopidogrel pharmacogenetic clinical decision support (CDS) tools over time in the setting of a large health system-wide, preemptive pharmacogenomics program. SUMMARY Clopidogrel-treated patients who are genetically predicted cytochrome P450 isozyme 2C19 (CYP2C19) intermediate or poor metabolizers have an increased risk of atherothrombotic events, some of which can be life-threatening. The Clinical Pharmacogenetics Implementation Consortium provides guidance for the use of clopidogrel based on CYP2C19 genotype in patients with cardiovascular and cerebrovascular diseases. Our multidisciplinary team implemented an automated, interruptive alert that fires when clopidogrel is ordered or refilled for biobank participants with structured CYP2C19 intermediate or poor metabolizer genomic indicators in the electronic health record. The implementation began with a narrow cardiovascular indication and setting and was then scaled in 4 primary dimensions: (1) clinical indication; (2) availability across health-system locations; (3) care venue (e.g., inpatient vs outpatient); and (4) provider groups (eg, cardiology and neurology). We iterated our approach over time based on evolving clinical evidence and proactive strategies to optimize CDS maintenance and sustainability. A key facilitator of expansion was socialization of the broader pharmacogenomics initiative among our academic medical center community, accompanied by clinician acceptance of pharmacogenetic alerts in practice. CONCLUSION A multidisciplinary collaboration is recommended to facilitate the use of CYP2C19 genotype-guided antiplatelet therapy in patients with cardiovascular and cerebrovascular diseases. Evolving clopidogrel pharmacogenetic evidence necessitates thoughtful iteration of implementation efforts and strategies to optimize long-term maintenance and sustainability.
Collapse
Affiliation(s)
- Christina L Aquilante
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katy E Trinkley
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Family Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yee Ming Lee
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristy R Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily C Hearst
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- UCHealth, Aurora, CO, USA
| | | | | | - Elizabeth L Kudron
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James L Martin
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - David P Kao
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Drent M, Wijnen PA, Jessurun NT, Harmsze AM, Bekers O, Bast A. Drug-Gene Risk Stratification in Patients with Suspected Drug-Induced Interstitial Lung Disease. Drug Saf 2024; 47:355-363. [PMID: 38460070 PMCID: PMC10955005 DOI: 10.1007/s40264-024-01400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Pulmonary toxicity has been associated with drug use. This is often not recognized in clinical practice, and underestimated. OBJECTIVE We aimed to establish whether polymorphisms in certain genes corresponding with a metabolic pathway of drug(s) used are associated with pulmonary toxicity in patients with suspected drug-induced interstitial lung disease (DI-ILD). METHODS This retrospective observational study explored genetic variations in three clinically relevant cytochrome P450 (CYP) iso-enzymes (i.e., CYP2D6, CYP2C9, and CYP2C19) in a group of patients with a fibroticinterstitial lung disease, either non-specific interstitial pneumonia (n = 211) or idiopathic pulmonary fibrosis (n = 256), with a suspected drug-induced origin. RESULTS Of the 467 patients, 79.0% showed one or more polymorphisms in the tested genes accompanied by the use of drug(s) metabolized by a corresponding affected metabolic pathway (60.0% poor metabolizers and/or using two or more drugs [likely DI-ILD], 37.5% using three or more [highly likely DI-ILD]). Most commonly used drugs were statins (63.1%) with a predominance among men (69.4 vs 47.1%, p < 0.0001). Nitrofurantoin, not metabolized by the tested pathways, was prescribed more frequently among women (51.9 vs 4.5%, p < 0.00001). CONCLUSIONS In our cohort with suspected DI-ILD, 79% carried one or more genetic variants accompanied by the use of drugs metabolized by a corresponding affected pathway. In 60%, the diagnosis of DI-ILD was likely, whereas in 37.5%, it was highly likely, based on CYP analyses. This study underlines the importance of considering both drug use and genetic make-up as a possible cause, or at least a contributing factor, in the development and/or progression of fibrotic lung diseases. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier NCT00267800, registered in 2005.
Collapse
Affiliation(s)
- Marjolein Drent
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Science, Maastricht University, Maastricht, The Netherlands.
- ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, The Netherlands.
- Research Team, ILD Care Foundation, Heideoordlaan 8, 6711NR, Ede, The Netherlands.
| | - Petal A Wijnen
- ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, The Netherlands
- Research Team, ILD Care Foundation, Heideoordlaan 8, 6711NR, Ede, The Netherlands
- Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Centre, P Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Naomi T Jessurun
- Research Team, ILD Care Foundation, Heideoordlaan 8, 6711NR, Ede, The Netherlands
- Netherlands Pharmacovigilance Centre Lareb, Goudsbloemvallei 7, 5237 MH, 's-Hertogenbosch, The Netherlands
| | - Ankie M Harmsze
- ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, The Netherlands
- Department of Clinical Pharmacology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Otto Bekers
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Science, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Centre, P Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine, and Life Science, Maastricht University, Maastricht, The Netherlands
- Research Team, ILD Care Foundation, Heideoordlaan 8, 6711NR, Ede, The Netherlands
| |
Collapse
|
7
|
Zhou Y, Lauschke VM. Next-generation sequencing in pharmacogenomics - fit for clinical decision support? Expert Rev Clin Pharmacol 2024; 17:213-223. [PMID: 38247431 DOI: 10.1080/17512433.2024.2307418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION The technological advances of sequencing methods during the past 20 years have fuelled the generation of large amounts of sequencing data that comprise common variations, as well as millions of rare and personal variants that would not be identified by conventional genotyping. While comprehensive sequencing is technically feasible, its clinical utility for guiding personalized treatment decisions remains controversial. AREAS COVERED We discuss the opportunities and challenges of comprehensive sequencing compared to targeted genotyping for pharmacogenomic applications. Current pharmacogenomic sequencing panels are heterogeneous and clinical actionability of the included genes is not a major focus. We provide a current overview and critical discussion of how current studies utilize sequencing data either retrospectively from biobanks, databases or repurposed diagnostic sequencing, or prospectively using pharmacogenomic sequencing. EXPERT OPINION While sequencing-based pharmacogenomics has provided important insights into genetic variations underlying the safety and efficacy of a multitude pharmacological treatments, important hurdles for the clinical implementation of pharmacogenomic sequencing remain. We identify gaps in the interpretation of pharmacogenetic variants, technical challenges pertaining to complex loci and variant phasing, as well as unclear cost-effectiveness and incomplete reimbursement. It is critical to address these challenges in order to realize the promising prospects of pharmacogenomic sequencing.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Kanegusuku ALG, Chan CW, O'Donnell PH, Yeo KTJ. Implementation of pharmacogenomics testing for precision medicine. Crit Rev Clin Lab Sci 2024; 61:89-106. [PMID: 37776898 DOI: 10.1080/10408363.2023.2255279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
Great strides have been made in the past decade to lower barriers to clinical pharmacogenomics implementation. Nevertheless, PGx consultation prior to prescribing therapeutics is not yet mainstream. This review addresses the current climate surrounding PGx implementation, focusing primarily on strategies for implementation at academic institutions, particularly at The University of Chicago, and provides an up-to-date guide of resources supporting the development of PGx programs. Remaining challenges and recent strategies for overcoming these challenges to implementation are discussed.
Collapse
Affiliation(s)
| | - Clarence W Chan
- Departments of Pathology, The University of Chicago, Chicago, IL, USA
| | - Peter H O'Donnell
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL, USA
| | - Kiang-Teck J Yeo
- Departments of Pathology, The University of Chicago, Chicago, IL, USA
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Li LJ, Legeay S, Gagnon AL, Frigon MP, Tessier L, Tremblay K. Moving towards the implementation of pharmacogenetic testing in Quebec. Front Genet 2024; 14:1295963. [PMID: 38234998 PMCID: PMC10791884 DOI: 10.3389/fgene.2023.1295963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Clinical implementation of pharmacogenetics (PGx) into routine care will elevate the current paradigm of treatment decisions. However, while PGx tests are increasingly becoming reliable and affordable, several barriers have limited their widespread usage in Canada. Globally, over ninety successful PGx implementors can serve as models. The purpose of this paper is to outline the PGx implementation barriers documented in Quebec (Canada) to suggest efficient solutions based on existing PGx clinics and propose an adapted clinical implementation model. We conclude that the province of Quebec is ready to implement PGx.
Collapse
Affiliation(s)
- Ling Jing Li
- Centre Intégré Universitaire de Santé et de Services Sociaux Du Saguenay-Lac-Saint-Jean (Chicoutimi University Hospital), Research Center, Saguenay, QC, Canada
- Medicine Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, QC, Canada
| | - Samuel Legeay
- Centre Intégré Universitaire de Santé et de Services Sociaux Du Saguenay-Lac-Saint-Jean (Chicoutimi University Hospital), Research Center, Saguenay, QC, Canada
- Medicine Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, QC, Canada
- University Angers, [CHU Angers], Inserm, CNRS, MINT, Angers, France
| | - Ann-Lorie Gagnon
- Centre Intégré Universitaire de Santé et de Services Sociaux Du Saguenay-Lac-Saint-Jean (Chicoutimi University Hospital), Research Center, Saguenay, QC, Canada
| | - Marie-Pier Frigon
- Centre Intégré Universitaire de Santé et de Services Sociaux Du Saguenay-Lac-Saint-Jean (Chicoutimi University Hospital), Research Center, Saguenay, QC, Canada
- Pediatrics Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurence Tessier
- Centre Intégré Universitaire de Santé et de Services Sociaux Du Saguenay-Lac-Saint-Jean (Chicoutimi University Hospital), Research Center, Saguenay, QC, Canada
- Pharmacology-Physiology Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, QC, Canada
| | - Karine Tremblay
- Centre Intégré Universitaire de Santé et de Services Sociaux Du Saguenay-Lac-Saint-Jean (Chicoutimi University Hospital), Research Center, Saguenay, QC, Canada
- Pharmacology-Physiology Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Saguenay, QC, Canada
- Centre de Recherche Du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Mosley SA, Cicali E, Del Cueto A, Portman DG, Donovan KA, Gong Y, Langaee T, Gopalan P, Schmit J, Starr JS, Silver N, Chang YD, Rajasekhara S, Smith JE, Soares HP, Clare-Salzler M, Starostik P, George TJ, McLeod HL, Fillingim RB, Hicks JK, Cavallari LH. CYP2D6-guided opioid therapy for adults with cancer pain: A randomized implementation clinical trial. Pharmacotherapy 2023; 43:1286-1296. [PMID: 37698371 PMCID: PMC10840965 DOI: 10.1002/phar.2875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION The CYP2D6 enzyme metabolizes opioids commonly prescribed for cancer-related pain, and CYP2D6 polymorphisms may contribute to variability in opioid response. We evaluated the feasibility of implementing CYP2D6-guided opioid prescribing for patients with cancer and reported pilot outcome data. METHODS Adult patients from two cancer centers were prospectively enrolled into a hybrid implementation-effectiveness clinical trial and randomized to CYP2D6-genotype-guided opioid selection, with clinical recommendations, or usual care. Implementation metrics, including provider response, medication changes consistent with recommendations, and patient-reported pain and symptom scores at baseline and up to 8 weeks, were assessed. RESULTS Most (87/114, 76%) patients approached for the study agreed to participate. Of 85 patients randomized, 71% were prescribed oxycodone at baseline. The median (range) time to receive CYP2D6 test results was 10 (3-37) days; 24% of patients had physicians acknowledge genotype results in a clinic note. Among patients with CYP2D6-genotype-guided recommendations to change therapy (n = 11), 18% had a change congruent with recommendations. Among patients who completed baseline and follow-up questionnaires (n = 48), there was no difference in change in mean composite pain score (-1.01 ± 2.1 vs. -0.41 ± 2.5; p = 0.19) or symptom severity at last follow-up (3.96 ± 2.18 vs. 3.47 ± 1.78; p = 0.63) between the usual care arm (n = 26) and genotype-guided arm (n = 22), respectively. CONCLUSION Our study revealed high acceptance of pharmacogenetic testing as part of a clinical trial among patients with cancer pain. However, provider response to genotype-guided recommendations was low, impacting assessment of pain-related outcomes. Addressing barriers to utility of pharmacogenetics results and clinical recommendations will be critical for implementation success.
Collapse
Affiliation(s)
- Scott A Mosley
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
- Department of Clinical Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Emily Cicali
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Alex Del Cueto
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Diane G Portman
- Department of Supportive Care Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kristine A Donovan
- Department of Supportive Care Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Taimour Langaee
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Priya Gopalan
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jessica Schmit
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jason S Starr
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Natalie Silver
- Department of Otolaryngology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Young D Chang
- Department of Supportive Care Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sahana Rajasekhara
- Department of Supportive Care Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Joshua E Smith
- Department of Supportive Care Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Heloisa P Soares
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michael Clare-Salzler
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Petr Starostik
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Thomas J George
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, College of Dentistry, Gainesville, Florida, USA
- Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, USA
| | - J Kevin Hicks
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Bousman CA, Maruf AA, Marques DF, Brown LC, Müller DJ. The emergence, implementation, and future growth of pharmacogenomics in psychiatry: a narrative review. Psychol Med 2023; 53:7983-7993. [PMID: 37772416 PMCID: PMC10755240 DOI: 10.1017/s0033291723002817] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Psychotropic medication efficacy and tolerability are critical treatment issues faced by individuals with psychiatric disorders and their healthcare providers. For some people, it can take months to years of a trial-and-error process to identify a medication with the ideal efficacy and tolerability profile. Current strategies (e.g. clinical practice guidelines, treatment algorithms) for addressing this issue can be useful at the population level, but often fall short at the individual level. This is, in part, attributed to interindividual variation in genes that are involved in pharmacokinetic (i.e. absorption, distribution, metabolism, elimination) and pharmacodynamic (e.g. receptors, signaling pathways) processes that in large part, determine whether a medication will be efficacious or tolerable. A precision prescribing strategy know as pharmacogenomics (PGx) assesses these genomic variations, and uses it to inform selection and dosing of certain psychotropic medications. In this review, we describe the path that led to the emergence of PGx in psychiatry, the current evidence base and implementation status of PGx in the psychiatric clinic, and finally, the future growth potential of precision psychiatry via the convergence of the PGx-guided strategy with emerging technologies and approaches (i.e. pharmacoepigenomics, pharmacomicrobiomics, pharmacotranscriptomics, pharmacoproteomics, pharmacometabolomics) to personalize treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Chad A. Bousman
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Departments of Physiology and Pharmacology, and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- AB Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Abdullah Al Maruf
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, AB, Canada
- College of Pharmacy, Rady Faculty of Health Sciences, Winnipeg, MB, Canada
| | | | | | - Daniel J. Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wurzburg, Wurzburg, Germany
| |
Collapse
|
12
|
McDermott JH, Newman W. Introduction to pharmacogenetics. Drug Ther Bull 2023; 61:168-172. [PMID: 37788890 DOI: 10.1136/dtb.2023.000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
There is considerable interindividual variability in the effectiveness and safety of medicines. Although the reasons for this are multifactorial, it is well recognised that genetic changes impacting the absorption or metabolism of these drugs play a significant contributory role. Understanding how these pharmacogenetic variants impact response to medicines, and leveraging this knowledge to guide prescribing, could have significant benefits for patients and health services. This article provides an introduction to the field of pharmacogenetics, including its nomenclature, the existing evidence base and the current state of implementation globally. We discuss the challenges in translating pharmacogenetic research into clinical practice and highlight the considerable benefits which can emerge in those health services where implementation is successful.
Collapse
Affiliation(s)
- John Henry McDermott
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - William Newman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Norris M, Dalton R, Alam B, Eddy E, Nguyen KA, Cavallari LH, Sumfest J, Wiisanen K, Cicali EJ. Lessons from clinical implementation of a preemptive pharmacogenetic panel as part of a testing pilot program with an employer-sponsored medical plan. Front Genet 2023; 14:1249003. [PMID: 37680199 PMCID: PMC10482099 DOI: 10.3389/fgene.2023.1249003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction: This manuscript reports on a pilot program focused on implementing pharmacogenetic testing within the framework of an employer-sponsored medical plan at University of Florida (UF) Health. The aim was to understand the challenges associated with program implementation and to gather insights into patient attitudes towards PGx testing. Methods: The pilot program adopted a partially preemptive approach, targeting patients on current prescriptions for medications with relevant gene-drug associations. Patients were contacted via phone or through the MyChart system and offered pharmacogenetic testing with no additional direct costs. Results: Of 244 eligible patients, 110 agreed to participate. However, only 61 returned the mailed DNA collection kits. Among these, 89% had at least one potentially actionable genotype-based phenotype. Post-test follow-up revealed that while the majority viewed the process positively, 71% preferred a consultation with a pharmacogenetic specialist for better understanding of their results. Barriers to implementation ranged from fatigue with the healthcare system to a lack of understanding of the pharmacogenetic testing and concerns about privacy and potential misuse of genetic data. Conclusion: The findings underscore the need for clearer patient education on pharmacogenetic results and suggest the importance of the role of pharmacogenetic-trained pharmacists in delivering this education. They also highlight issues with relying on incomplete or inaccurate medication lists in patients' electronic health record. The implementation revealed less obvious challenges, the understanding of which could be beneficial for the success of future preemptive pharmacogenetic implementation programs. The insights from the pilot program served to bridge the information gap between patients, providers, and pharmacogenetic -specialists, with the ultimate goal of improving patient care.
Collapse
Affiliation(s)
- Madeline Norris
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Rachel Dalton
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Benish Alam
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Elizabeth Eddy
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Khoa A. Nguyen
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, United States
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, United States
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Jill Sumfest
- GatorCare Health Management Corporation, University of Florida Health, Gainesville, FL, United States
| | - Kristin Wiisanen
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, United States
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Emily J. Cicali
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, United States
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Oni-Orisan A, Tuteja S, Hoffecker G, Smith DM, Castrichini M, Crews KR, Murphy WA, Nguyen NHK, Huang Y, Lteif C, Friede KA, Tantisira K, Aminkeng F, Voora D, Cavallari LH, Whirl-Carrillo M, Duarte JD, Luzum JA. An Introductory Tutorial on Cardiovascular Pharmacogenetics for Healthcare Providers. Clin Pharmacol Ther 2023; 114:275-287. [PMID: 37303270 PMCID: PMC10406163 DOI: 10.1002/cpt.2957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Pharmacogenetics can improve clinical outcomes by reducing adverse drug effects and enhancing therapeutic efficacy for commonly used drugs that treat a wide range of cardiovascular diseases. One of the major barriers to the clinical implementation of cardiovascular pharmacogenetics is limited education on this field for current healthcare providers and students. The abundance of pharmacogenetic literature underscores its promise, but it can also be challenging to learn such a wealth of information. Moreover, current clinical recommendations for cardiovascular pharmacogenetics can be confusing because they are outdated, incomplete, or inconsistent. A myriad of misconceptions about the promise and feasibility of cardiovascular pharmacogenetics among healthcare providers also has halted clinical implementation. Therefore, the main goal of this tutorial is to provide introductory education on the use of cardiovascular pharmacogenetics in clinical practice. The target audience is any healthcare provider (or student) with patients that use or have indications for cardiovascular drugs. This tutorial is organized into the following 6 steps: (1) understand basic concepts in pharmacogenetics; (2) gain foundational knowledge of cardiovascular pharmacogenetics; (3) learn the different organizations that release cardiovascular pharmacogenetic guidelines and recommendations; (4) know the current cardiovascular drugs/drug classes to focus on clinically and the supporting evidence; (5) discuss an example patient case of cardiovascular pharmacogenetics; and (6) develop an appreciation for emerging areas in cardiovascular pharmacogenetics. Ultimately, improved education among healthcare providers on cardiovascular pharmacogenetics will lead to a greater understanding for its potential in improving outcomes for a leading cause of morbidity and mortality.
Collapse
Affiliation(s)
- Akinyemi Oni-Orisan
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Sony Tuteja
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Glenda Hoffecker
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D. Max Smith
- MedStar Health, Columbia, Maryland, USA
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Matteo Castrichini
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristine R. Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nam H. K. Nguyen
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Yimei Huang
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Christelle Lteif
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin A. Friede
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kelan Tantisira
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | - Folefac Aminkeng
- Departments of Medicine and Biomedical Informatics (DBMI), Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Centre for Precision Health (CPH), National University Health System (NUHS), Singapore City, Singapore
| | - Deepak Voora
- Precision Medicine Program, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Julio D. Duarte
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Jasmine A. Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
- Center for Individualized and Genomic Medicine Research, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
15
|
Williams GR, Tsongalis GJ, Lewis LD, Barney RE, Cook LJ, Geno KA, Nerenz RD. Potential Impact of Pharmacogenomic Single Nucleotide Variants in a Rural Caucasian Population. J Appl Lab Med 2023; 8:251-263. [PMID: 36611001 PMCID: PMC10539040 DOI: 10.1093/jalm/jfac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND In the US adverse drug reactions (ADRs) are estimated to cause 100 000 fatalities and cost over $136 billion annually. A patient's genes play a significant role in their response to a drug. Pharmacogenomics aims to optimize drug choice and dose for individual patients by characterizing patients' pharmacologically relevant genes to identify variants of known impact. METHODS DNA was extracted from randomly selected remnant whole blood samples from Caucasian patients with previously performed complete blood counts. Samples were genotyped by mass spectrometry using a customized pharmacogenomics panel. A third-party result interpretation service used genotypic results to predict likely individual responses to frequently prescribed drugs. RESULTS Complete genotypic and phenotypic calls for all tested Cytochrome P450 isoenzymes and other genes were obtained from 152 DNA samples. Of these 152 unique genomic DNA samples, 140 had genetic variants suggesting dose adjustment for at least one drug. Cardiovascular and psychiatry drugs had the highest number of recommendations, which included United States Food and Drug Administration warnings for highly prescribed drugs metabolized by CYP2C19, CYP2C9, CYP2D6, HLA-A, and VKORC1. CONCLUSIONS Risk for each drug:gene pairing primarily depends upon the degree of predicted enzyme impairment or activation, width of the therapeutic window, and whether parent compound or metabolite is pharmacologically active. The resulting metabolic variations range from risk of toxicity to therapeutic failure. Pharmacogenomic profiling likely reduces ADR potential by allowing up front drug/dose selection to fit a patient's unique drug-response profile.
Collapse
Affiliation(s)
- Grace R. Williams
- Department of Pathology, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Lionel D. Lewis
- Department of Medicine, The Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Rachael E. Barney
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Leanne J. Cook
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - K. Aaron Geno
- Department of Pathology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Robert D. Nerenz
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
16
|
Obeng AO, Scott SA, Kaszemacher T, Ellis SB, Mejia A, Gomez A, Nadukuru R, Abul-Husn NS, Vega A, Waite E, Gottesman O, Cho J, Bottinger EP. Prescriber Adoption of SLCO1B1 Genotype-Guided Simvastatin Clinical Decision Support in a Clinical Pharmacogenetics Program. Clin Pharmacol Ther 2023; 113:321-327. [PMID: 36372942 DOI: 10.1002/cpt.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/08/2022] [Indexed: 11/15/2022]
Abstract
Pharmacogenetic implementation programs are increasingly feasible due to the availability of clinical guidelines for implementation research. The utilization of these resources has been reported with selected drug-gene pairs; however, little is known about how prescribers respond to pharmacogenetic recommendations for statin therapy. We prospectively assessed prescriber interaction with point-of-care clinical decision support (CDS) to guide simvastatin therapy for a diverse cohort of primary care patients enrolled in a clinical pharmacogenetics program. Of the 1,639 preemptively genotyped patients, 298 (18.2%) had an intermediate function (IF) OATP1B1 phenotype and 25 (1.53%) had a poor function (PF) phenotype, predicted by a common single nucleotide variant in the SLCO1B1 gene (c.521T>C; rs4149056). Clinicians were presented with CDS when simvastatin was prescribed for patients with IF or PF through the electronic health record. Importantly, 64.2% of the CDS deployed at the point-of-care was accepted by the prescribers and resulted in prescription changes. Statin intensity was found to significantly influence prescriber adoption of the pharmacogenetic-guided CDS, whereas patient gender or race, prescriber type, or pharmacogenetic training status did not significantly influence adoption. This study demonstrates that primary care providers readily adopt pharmacogenetic information to guide statin therapy for the majority of patients with preemptive genotype data.
Collapse
Affiliation(s)
- Aniwaa Owusu Obeng
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Pharmacy Department, The Mount Sinai Hospital, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stuart A Scott
- Department of Pathology, Stanford University, Stanford, California, USA.,Clinical Genomics Laboratory, Stanford Health Care, Palo Alto, California, USA
| | - Tom Kaszemacher
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen B Ellis
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ana Mejia
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alanna Gomez
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rajiv Nadukuru
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,23andMe Inc., Sunnyvale, California, USA
| | - Aida Vega
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Faculty Practice Associates, Primary Care Program, The Mount Sinai Health system, New York, New York, USA
| | - Eva Waite
- Mount Sinai Faculty Practice Associates, Primary Care Program, The Mount Sinai Health system, New York, New York, USA
| | - Omri Gottesman
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Empirico Inc., San Diego, California, USA
| | - Judy Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erwin P Bottinger
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| |
Collapse
|
17
|
Pasternak AL, Ward K, Irwin M, Okerberg C, Hayes D, Fritsche L, Zoellner S, Virzi J, Choe HM, Ellingrod V. Identifying the prevalence of clinically actionable drug-gene interactions in a health system biorepository to guide pharmacogenetics implementation services. Clin Transl Sci 2023; 16:292-304. [PMID: 36510710 PMCID: PMC9926071 DOI: 10.1111/cts.13449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding patterns of drug-gene interactions (DGIs) is important for advancing the clinical implementation of pharmacogenetics (PGx) into routine practice. Prior studies have estimated the prevalence of DGIs, but few have confirmed DGIs in patients with known genotypes and prescriptions, nor have they evaluated clinician characteristics associated with DGI-prescribing. This retrospective chart review assessed prevalence of DGI, defined as a medication prescription in a patient with a PGx phenotype that has a clinical practice guideline recommendation to adjust therapy or monitor drug response, for patients enrolled in a research genetic biorepository linked to electronic health records (EHRs). The prevalence of prescriptions for medications with pharmacogenetic (PGx) guidelines, proportion of prescriptions with DGI, location of DGI prescription, and clinical service of the prescriber were evaluated descriptively. Seventy-five percent (57,058/75,337) of patients had a prescription for a medication with a PGx guideline. Up to 60% (n = 26,067/43,647) of patients had at least one DGI when considering recommendations to adjust or monitor therapy based on genotype. The majority (61%) of DGIs occurred in outpatient prescriptions. Proton pump inhibitors were the most common DGI medication for 11 of 12 clinical services. Almost 25% of patients (n = 10,706/43,647) had more than one unique DGI, and, among this group of patients, 61% had a DGI with more than one gene. These findings can inform future clinical implementation by identifying key stakeholders for initial DGI prescriptions, helping to inform workflows. The high prevalence of multigene interactions identified also support the use of panel PGx testing as an implementation strategy.
Collapse
Affiliation(s)
- Amy L. Pasternak
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
- Michigan MedicineUniversity of Michigan HealthAnn ArborMichiganUSA
| | - Kristen Ward
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
- Michigan MedicineUniversity of Michigan HealthAnn ArborMichiganUSA
| | - Madison Irwin
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
- Michigan MedicineUniversity of Michigan HealthAnn ArborMichiganUSA
| | - Carl Okerberg
- Michigan MedicineUniversity of Michigan HealthAnn ArborMichiganUSA
| | - David Hayes
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Lars Fritsche
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
| | - Sebastian Zoellner
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMichiganUSA
| | - Jessica Virzi
- Michigan MedicineUniversity of Michigan HealthAnn ArborMichiganUSA
| | - Hae Mi Choe
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
- Michigan MedicineUniversity of Michigan HealthAnn ArborMichiganUSA
| | - Vicki Ellingrod
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| |
Collapse
|
18
|
Case Report: Performing a Medication Safety Review Assisted by Pharmacogenomics to Explain a Prescribing Cascade Resulting in a Patient Fall. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010118. [PMID: 36676742 PMCID: PMC9863497 DOI: 10.3390/medicina59010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Pharmacotherapy for major depressive disorder (MDD) typically consists of trial-and-error and clinician preference approaches, where patients often fail one or more antidepressants before finding an optimal regimen. Pharmacogenomics (PGx) can assist in prescribing appropriate antidepressants, thereby reducing the time to MDD remission and occurrence of adverse drug events. Since many antidepressants are metabolized by and/or inhibit cytochrome P450 enzymes (e.g., CYP2C19 or CYP2D6), drug-induced phenoconversion is common in patients on antidepressant combinations. This condition influences the interpretation of a patient's PGx results, overall risk of ineffective/adverse medication response due to multi-drug interactions, and the recommendations. This complex case describes a patient with MDD, generalized anxiety disorder, and chronic pain who experienced a fall due to excessive sedation following a prescribing cascade of fluoxetine, bupropion, and doxepin. These antidepressants delivered a significant additive sedative effect and interacted with the patient's hydrocodone, potentially contributing to uncontrolled pain, upward dose titration of hydrocodone, and a higher overall sedative burden. The PGx results and drug-induced phenoconversion described in this case report explain the patient's excessive sedation and possibly ineffective/toxic antidepressant and opioid treatment. This case report also illustrates how a more timely multi-drug interaction assessment (preferably in conjunction with preemptive PGx testing) may have informed a different prescribing pattern, reduced/avoided a prescribing cascade, and potentially prevented a drug-related fall.
Collapse
|
19
|
Mosley SA, Pevnick JM. Medication reconciliation to support pharmacogenomics implementation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1258. [PMID: 36618811 PMCID: PMC9816836 DOI: 10.21037/atm-2022-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Scott A. Mosley
- Department of Clinical Pharmacy, University of Southern California (USC) School of Pharmacy, Los Angeles, CA, USA
| | - Joshua M. Pevnick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
20
|
Validation of Pharmacogenomic Interaction Probability (PIP) Scores in Predicting Drug-Gene, Drug-Drug-Gene, and Drug-Gene-Gene Interaction Risks in a Large Patient Population. J Pers Med 2022; 12:jpm12121972. [PMID: 36556194 PMCID: PMC9783707 DOI: 10.3390/jpm12121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Utilizing pharmacogenomic (PGx) testing and integrating evidence-based guidance in drug therapy enables an improved treatment response and decreases the occurrence of adverse drug events. We conducted a retrospective analysis to validate the YouScript® PGx interaction probability (PIP) algorithm, which predicts patients for whom PGx testing would identify one or more evidence-based, actionable drug-gene, drug-drug-gene, or drug-gene-gene interactions (EADGIs). PIP scores generated for 36,511 patients were assessed according to the results of PGx multigene panel testing. PIP scores versus the proportion of patients in whom at least one EADGI was found were 22.4% vs. 22.4% (p = 1.000), 23.5% vs. 23.4% (p = 0.6895), 30.9% vs. 29.4% (p = 0.0667), and 27.3% vs. 26.4% (p = 0.3583) for patients tested with a minimum of 3-, 5-, 14-, and 25-gene panels, respectively. These data suggest a striking concordance between the PIP scores and the EAGDIs found by gene panel testing. The ability to identify patients most likely to benefit from PGx testing has the potential to reduce health care costs, enable patient access to personalized medicine, and ultimately improve drug efficacy and safety.
Collapse
|
21
|
Raymond M, Critchlow E, Rice SM, Wodoslawsky S, Berger SI, Hegde M, Empey PE, Al-Kouatly HB. Fetal pharmacogenomics: A promising addition to complex neonatal care. Mol Genet Metab 2022; 137:140-145. [PMID: 36029725 DOI: 10.1016/j.ymgme.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Pharmacogenomics (PGx) characterizes genetic variation in medication response. 85-95% of the population carries actionable PGx variants. No prior studies have demonstrated the application and feasibility of PGx in prenatal testing. We assessed parental desire for PGx findings from fetal exome sequencing (ES), evaluated PGx variants, and reviewed implications for medically complex neonates. METHODS A prospective cohort undergoing ES for nonimmune hydrops fetalis were offered PGx results as a secondary finding. Seven pharmacogenes with Level A evidence, defined by Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines, were tested and reported to patients and referring providers. Medication administration records were reviewed. RESULTS Most participants (36/40, 90%) desired PGx testing. 32/36 (89%) had potentially actionable PGx diplotypes in six genes: CYP2C19 (20/36, 56%), CYP2C9 (16/36, 44%), CYP2D6 (10/36, 28%), SLCO1B1 (13/36, 36%), TPMT (6/36, 17%), UGT1A1 (4/36, 11%). 12/13 (92%) live births had PGx variants. Neonatal chart review indicated that three medications with CPIC Level A evidence were administered to four neonates. None of the patients received a medication that aligned with an actionable pharmacogenetic variant as defined by Level A CPIC guidance. CONCLUSION Most participants opted to receive PGx results. 89% had actionable variants, consistent with population estimates. Obtaining fetal PGx data is feasible for medically complex neonates. Further studies are needed for broad clinical application of PGx in fetuses with major congenital abnormalities. Our study demonstrates the potential of PGx as useful preemptive clinical information that could be obtained at the time of fetal exome sequencing for other indications. CLINICALTRIALS gov Registration: NCT03911531.
Collapse
Affiliation(s)
- Megan Raymond
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elizabeth Critchlow
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephanie M Rice
- Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sascha Wodoslawsky
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Seth I Berger
- Center for Genetic Medicine Research at Children's National, Washington, DC, USA
| | | | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Haidar CE, Crews KR, Hoffman JM, Relling MV, Caudle KE. Advancing Pharmacogenomics from Single-Gene to Preemptive Testing. Annu Rev Genomics Hum Genet 2022; 23:449-473. [PMID: 35537468 PMCID: PMC9483991 DOI: 10.1146/annurev-genom-111621-102737] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacogenomic testing can be an effective tool to enhance medication safety and efficacy. Pharmacogenomically actionable medications are widely used, and approximately 90-95% of individuals have an actionable genotype for at least one pharmacogene. For pharmacogenomic testing to have the greatest impact on medication safety and clinical care, genetic information should be made available at the time of prescribing (preemptive testing). However, the use of preemptive pharmacogenomic testing is associated with some logistical concerns, such as consistent reimbursement, processes for reporting preemptive results over an individual's lifetime, and result portability. Lessons can be learned from institutions that have implemented preemptive pharmacogenomic testing. In this review, we discuss the rationale and best practices for implementing pharmacogenomics preemptively.
Collapse
Affiliation(s)
- Cyrine E Haidar
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , ,
| | - Kristine R Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , ,
| | - James M Hoffman
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , ,
- Office of Quality and Safety, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , ,
| | - Kelly E Caudle
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , ,
| |
Collapse
|
23
|
McDermott JH, Wright S, Sharma V, Newman WG, Payne K, Wilson P. Characterizing pharmacogenetic programs using the consolidated framework for implementation research: A structured scoping review. Front Med (Lausanne) 2022; 9:945352. [PMID: 36059837 PMCID: PMC9433561 DOI: 10.3389/fmed.2022.945352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/29/2022] [Indexed: 12/11/2022] Open
Abstract
Several healthcare organizations have developed pre-emptive pharmacogenetic testing programs, where testing is undertaken prior to the prescription of a medicine. This review characterizes the barriers and facilitators which influenced the development of these programs. A bidirectional citation searching strategy identified relevant publications before a standardized data extraction approach was applied. Publications were grouped by program and data synthesis was undertaken using the Consolidated Framework for Implementation Research (CFIR). 104 publications were identified from 40 programs and 4 multi-center initiatives. 26 (66%) of the programs were based in the United States and 95% in high-income countries. The programs were heterogeneous in their design and scale. The Characteristics of the Intervention, Inner Setting, and Process domains were referenced by 92.5, 80, and 77.5% of programs, respectively. A positive institutional culture, leadership engagement, engaging stakeholders, and the use of clinical champions were frequently described as facilitators to implementation. Clinician self-efficacy, lack of stakeholder knowledge, and the cost of the intervention were commonly cited barriers. Despite variation between the programs, there were several similarities in approach which could be categorized via the CFIR. These form a resource for organizations planning the development of pharmacogenetic programs, highlighting key facilitators which can be leveraged to promote successful implementation.
Collapse
Affiliation(s)
- John H. McDermott
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- *Correspondence: John H. McDermott,
| | - Stuart Wright
- Division of Population Health, Manchester Centre for Health Economics, Health Services Research and Primary Care, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Videha Sharma
- Division of Informatics, Centre for Health Informatics, Imaging and Data Science, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - William G. Newman
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Katherine Payne
- Division of Population Health, Manchester Centre for Health Economics, Health Services Research and Primary Care, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Paul Wilson
- Division of Population Health, Centre for Primary Care and Health Services Research, Health Services Research and Primary Care, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Maruf AA, Bousman CA. Approaches and hurdles of implementing pharmacogenetic testing in the psychiatric clinic. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e26. [PMID: 38868642 PMCID: PMC11114389 DOI: 10.1002/pcn5.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 06/14/2024]
Abstract
Pharmacogenetic (PGx) testing has emerged as a tool for predicting a person's ability to process and react to drugs. Despite the growing evidence-base, enthusiasm, and successful efforts to implement PGx testing in psychiatry, a consensus on how best to implement PGx testing into practice has not been established and numerous hurdles to widespread adoption remain to be overcome. In this article, we summarize the most used approaches and commonly encountered hurdles when implementing PGx testing into routine psychiatric care. We also highlight effective strategies that have been used to overcome hurdles. These strategies include the development of user-friendly clinical workflows for test ordering, use, and communication of results, establishment of test standardization and reimbursement policies, and development of tailored curriculums for educating health-care providers and the public. Although knowledge and awareness of these approaches and strategies to overcome hurdles alone may not be sufficient for successful implementation, they are necessary to ensure the effective spread, scale, and sustainability of PGx testing in psychiatry and other areas of medicine.
Collapse
Affiliation(s)
- Abdullah Al Maruf
- Rady Faculty of Health Sciences, College of PharmacyUniversity of ManitobaWinnipegManitobaCanada
- Children's Hospital Research Institute of ManitobaWinnipegManitobaCanada
- Centre on AgingUniversity of ManitobaWinnipegManitobaCanada
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Departments of Psychiatry and Physiology & PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Chad A. Bousman
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Departments of Psychiatry and Physiology & PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical GeneticsUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
25
|
Salloum RG, Bishop JR, Elchynski AL, Smith DM, Rowe E, Blake KV, Limdi NA, Aquilante CL, Bates J, Beitelshees AL, Cipriani A, Duong BQ, Empey PE, Formea CM, Hicks JK, Mroz P, Oslin D, Pasternak AL, Petry N, Ramsey LB, Schlichte A, Swain SM, Ward KM, Wiisanen K, Skaar TC, Van Driest SL, Cavallari LH, Tuteja S. Best-worst scaling methodology to evaluate constructs of the Consolidated Framework for Implementation Research: application to the implementation of pharmacogenetic testing for antidepressant therapy. Implement Sci Commun 2022; 3:52. [PMID: 35568931 PMCID: PMC9107643 DOI: 10.1186/s43058-022-00300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Despite the increased demand for pharmacogenetic (PGx) testing to guide antidepressant use, little is known about how to implement testing in clinical practice. Best–worst scaling (BWS) is a stated preferences technique for determining the relative importance of alternative scenarios and is increasingly being used as a healthcare assessment tool, with potential applications in implementation research. We conducted a BWS experiment to evaluate the relative importance of implementation factors for PGx testing to guide antidepressant use. Methods We surveyed 17 healthcare organizations that either had implemented or were in the process of implementing PGx testing for antidepressants. The survey included a BWS experiment to evaluate the relative importance of Consolidated Framework for Implementation Research (CFIR) constructs from the perspective of implementing sites. Results Participating sites varied on their PGx testing platform and methods for returning recommendations to providers and patients, but they were consistent in ranking several CFIR constructs as most important for implementation: patient needs/resources, leadership engagement, intervention knowledge/beliefs, evidence strength and quality, and identification of champions. Conclusions This study demonstrates the feasibility of using choice experiments to systematically evaluate the relative importance of implementation determinants from the perspective of implementing organizations. BWS findings can inform other organizations interested in implementing PGx testing for mental health. Further, this study demonstrates the application of BWS to PGx, the findings of which may be used by other organizations to inform implementation of PGx testing for mental health disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s43058-022-00300-7.
Collapse
Affiliation(s)
- Ramzi G Salloum
- University of Florida Clinical and Translational Science Institute, Gainesville, FL, USA.,University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Bishop
- University of Minnesota Medical School, Minneapolis, MN, USA.,University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | | | - D Max Smith
- MedStar Health, Georgetown University Medical Center, Washington, DC, USA
| | - Elizabeth Rowe
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Nita A Limdi
- University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | | | - Jill Bates
- Durham VA Healthcare System, Durham, NC, USA
| | | | - Amber Cipriani
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | | | - Philip E Empey
- University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | | | | | - Pawel Mroz
- University of Minnesota Medical School, Minneapolis, MN, USA
| | - David Oslin
- Corporal Michael J. Cresenz VA Medical Center, Philadelphia, PA, USA
| | - Amy L Pasternak
- University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Natasha Petry
- North Dakota State University/Sanford Health, Fargo, ND, USA
| | - Laura B Ramsey
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Sandra M Swain
- MedStar Health, Georgetown University Medical Center, Washington, DC, USA
| | - Kristen M Ward
- University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | | | - Todd C Skaar
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Larisa H Cavallari
- University of Florida Clinical and Translational Science Institute, Gainesville, FL, USA.,University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Sony Tuteja
- University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Bldg. 421 11th Floor, Room 143, Philadelphia, PA, 19104-5158, USA.
| |
Collapse
|
26
|
Hertz DL, McShane LM, Hayes DF. Defining Clinical Utility of Germline Indicators of Toxicity Risk: A Perspective. J Clin Oncol 2022; 40:1721-1731. [PMID: 35324346 PMCID: PMC9148690 DOI: 10.1200/jco.21.02209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
| | - Lisa M McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Daniel F Hayes
- Stuart B. Padnos Professor of Breast Cancer Research, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| |
Collapse
|
27
|
Ratner L, Zhu J‘D, Gower MN, Patel T, Miller JA, Cipriani A, Stouffer GA, Crona DJ, Lee CR. Pharmacogenomic prescribing opportunities in percutaneous coronary intervention and bone marrow transplant patients. Pharmacogenomics 2022; 23:183-194. [PMID: 35083934 PMCID: PMC8914581 DOI: 10.2217/pgs-2021-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: To evaluate the potential impact of preemptive multigene pharmacogenomic (PGx) testing on medication prescribing in real-world clinical settings. Patients & methods: Prescription frequencies for 65 medications with actionable PGx recommendations were collected in 215 percutaneous coronary intervention (PCI) and 131 allogeneic hematopoietic cell transplant (allo-HCT) patients. A simulation projected the number of PGx-guided prescribing opportunities. Results: In PCI and allo-HCT patients, respectively, 66.5 and 90.1% were prescribed at least one medication with actionable PGx prescribing recommendations. Simulations projected 26.5 and 41.2 total PGx-guided prescribing opportunities per 100 PCI and allo-HCT patients, respectively, if multigene PGx results were available. Conclusion: A multigene PGx testing strategy offers potential to optimize medication prescribing beyond clopidogrel and tacrolimus in PCI and allo-HCT patients.
Collapse
Affiliation(s)
- Lindsay Ratner
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jing ‘Daisy’ Zhu
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Megan N Gower
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Tejendra Patel
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jordan A Miller
- Department of Pharmacy, University of North Carolina Hospitals & Clinics, Chapel Hill, NC, USA
| | - Amber Cipriani
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacy, University of North Carolina Hospitals & Clinics, Chapel Hill, NC, USA
| | - George A Stouffer
- Division of Cardiology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA,McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel J Crona
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacy, University of North Carolina Hospitals & Clinics, Chapel Hill, NC, USA,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Craig R Lee
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA,Division of Cardiology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA,McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA,Author for correspondence: Tel.: +1 919 843 7673;
| |
Collapse
|
28
|
Voora D, Baye J, McDermaid A, Gowda SN, Wilke RA, Myrmoe AN, Hajek C, Larson EA. SLCO1B1*5 allele is associated with atorvastatin discontinuation and adverse muscle symptoms in the context of routine care. Clin Pharmacol Ther 2022; 111:1075-1083. [PMID: 35034348 PMCID: PMC9303592 DOI: 10.1002/cpt.2527] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/13/2021] [Accepted: 12/29/2021] [Indexed: 11/06/2022]
Abstract
SLCO1B1 genotype is known to influence patient adherence to statin therapy, in part by increasing the risk for statin-associated musculoskeletal symptoms (SAMS). The SLCO1B1*5 allele has previously been associated with simvastatin discontinuation and SAMS. Prior analyses of the relationship between SLCO1B1*5 and atorvastatin muscle side effects have been inconclusive due to insufficient power. We now quantify the impact of SLCO1B1*5 on atorvastatin discontinuation and SAMS in a large observational cohort using electronic medical record (EMR) data from a single health care system. In our study cohort (n = 1,627 patients exposed to atorvastatin during the course of routine clinical care), 56% (n = 912 of 1,627 patients) discontinued atorvastatin and 18% (n = 303 of 1,627 patients) developed SAMS. A univariate model revealed that SLCO1B1*5 increased the likelihood that patients would stop atorvastatin during routine care (Odds Ratio 1.2, 95% confidence interval [C.I.]: 1.1 - 1.5, p = 0.04). A multivariate Cox proportional hazards model further demonstrated that this same variant was associated with time to atorvastatin discontinuation (Hazard Ratio 1.2, C.I. 1.1 - 1.4, p = 0.004). Additional time-to-event analyses also revealed that SCLO1B1*5 was associated with SAMS (Hazard Ratio 1.4, C.I. 1.1 - 1.7, p = 0.02). Atorvastatin discontinuation was associated with SAMS (Odds Ratio 1.67, p = 0.0001) in our cohort.
Collapse
Affiliation(s)
- Deepak Voora
- Department of Medicine, Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, Durham, 27710
| | | | - Adam McDermaid
- Sanford Imagenetics, Sioux Falls, 57105.,Department of Internal Medicine, University of South Dakota, Sanford School of Medicine, Sioux Falls, 57105
| | - Smitha Narayana Gowda
- Department of Internal Medicine, University of South Dakota, Sanford School of Medicine, Sioux Falls, 57105
| | - Russell A Wilke
- Department of Internal Medicine, University of South Dakota, Sanford School of Medicine, Sioux Falls, 57105
| | - Anna Nicole Myrmoe
- Department of Internal Medicine, University of South Dakota, Sanford School of Medicine, Sioux Falls, 57105
| | - Catherine Hajek
- Sanford Imagenetics, Sioux Falls, 57105.,Department of Internal Medicine, University of South Dakota, Sanford School of Medicine, Sioux Falls, 57105
| | - Eric A Larson
- Sanford Imagenetics, Sioux Falls, 57105.,Department of Internal Medicine, University of South Dakota, Sanford School of Medicine, Sioux Falls, 57105
| |
Collapse
|