1
|
Yang C, Zhao X, Ai C, Luo Z, Liu M. Transcription factor ZjABF1 promotes sugar accumulation and abiotic resistance by positively regulating the expression of sugar transport protein ZjSWEET11 and ZjSWEET18 in Chinese jujube. Int J Biol Macromol 2025; 291:138799. [PMID: 39708885 DOI: 10.1016/j.ijbiomac.2024.138799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) exhibits a remarkable resilience to both drought and salinity. Additionally, it is characterized by a high sugar content, with sucrose being the predominant component of its soluble sugars. However, the molecular mechanisms linking robust abiotic stress resistance, sugar accumulation and sugar transport proteins ZjSWEETs remain poorly understood in jujube. In this study, we identified two critical sugar transport proteins, ZjSWEET11 and ZjSWEET18, in Chinese jujube through comprehensive assays and established a positive correlation between sucrose accumulation and the expression of these genes. Furthermore, we discovered that the key transcription factor ZjABF1 within the ABA signaling pathway positively regulated the transcriptional expression of ZjSWEET11 and ZjSWEET18 and increased the sugar contents, consequently improving the drought and salt stress resistance of plants. Basing on these results, we proposed a working module that ZjABF1 promotes sugar accumulation and improves stress resistance by targeting and up-regulating of ZjSWEET11 and ZjSWEET18. Our findings provide valuable insights into the mechanisms underlying sugar accumulation and abiotic stress adaptation in Chinese jujube.
Collapse
Affiliation(s)
- Chong Yang
- National Engineering Research Center for Agriculture in Northern Mountainous Areas, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xuan Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Changfeng Ai
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhi Luo
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
2
|
Li M, Mao Z, Zhao Z, Gao S, Luo Y, Liu Z, Sheng X, Zhai X, Liu JH, Li C. CBL1/CIPK23 phosphorylates tonoplast sugar transporter TST2 to enhance sugar accumulation in sweet orange (Citrus sinensis). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:327-344. [PMID: 39611527 DOI: 10.1111/jipb.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Fruit taste quality is greatly influenced by the content of soluble sugars, which are predominantly stored in the vacuolar lumen. However, the accumulation and regulation mechanisms of sugars in most fruits remain unclear. Recently, we established the citrus fruit vacuole proteome and discovered the major transporters localized in the vacuole membrane. Here, we demonstrated that the expression of tonoplast sugar transporter 2 (CsTST2) is closely associated with sugar accumulation during sweet orange (Citrus sinensis) ripening. It was further demonstrated that CsTST2 had the function of transporting hexose and sucrose into the vacuole. Overexpression of CsTST2 resulted in an elevation of sugar content in citrus juice sac, calli, and tomato fruit, whereas the downregulation of its expression led to the reduction in sugar levels. CsTST2 was identified as interacting with CsCIPK23, which binds to the upstream calcium signal sensor protein CsCBL1. The phosphorylation of the three serine residues (Ser277, Ser337, and Ser354) in the loop region of CsTST2 by CsCIPK23 is crucial for maintaining the sugar transport activity of CsTST2. Additionally, the expression of CsCIPK23 is positively correlated with sugar content. Genetic evidence further confirmed that calcium and CsCIPK23-mediated increase in sugar accumulation depends on CsTST2 and its phosphorylation level. These findings not only unveil the functional mechanism of CsTST2 in sugar accumulation, but also explore a vital calcium signal regulation module of CsCBL1/CIPK23 for citrus sweetness quality.
Collapse
Affiliation(s)
- Mengdi Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zuolin Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeqi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siyang Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanrou Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiawei Sheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiawan Zhai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Liu J, Jiang X, Yang L, Zhao D, Wang Y, Zhang Y, Sun H, Chen L, Li Y. Characterization of the SWEET Gene Family in Blueberry ( Vaccinium corymbosum L.) and the Role of VcSWEET6 Related to Sugar Accumulation in Fruit Development. Int J Mol Sci 2025; 26:1055. [PMID: 39940826 PMCID: PMC11817227 DOI: 10.3390/ijms26031055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Sugars will eventually be exported transporters (SWEETs) are essential transmembrane proteins involved in plant growth, stress responses, and plant-pathogen interactions. Despite their importance, systematic studies on SWEETs in blueberries (Vaccinium corymbosum L.) are limited. Blueberries are recognized for their rapid growth and the significant impact of sugar content on fruit flavor, yet the role of the SWEET gene family in sugar accumulation during fruit development remains unclear. In this study, 23 SWEET genes were identified in blueberry, and their phylogenetic relationships, duplication events, gene structures, cis-regulatory elements, and expression profiles were systematically analyzed. The VcSWEET gene family was classified into four clades. Structural and motif analysis revealed conserved exon-intron organization within each clade. RT-qPCR analysis showed widespread expression of VcSWEETs across various tissues and developmental stages, correlating with promoter cis-elements. VcSWEET6a, in particular, was specifically expressed in fruit and showed reduced expression during fruit maturation. Subcellular localization indicated that VcSWEET6a is located in the endoplasmic reticulum. Functional assays in yeast confirmed its role in glucose and fructose uptake, with transport activity inhibited at higher sugar concentrations. Overexpression of VcSWEET6a in blueberries resulted in reduced sugar accumulation. These findings offer valuable insights into the role of VcSWEETs in blueberry sugar metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Chen
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (J.L.); (X.J.); (L.Y.); (D.Z.); (Y.W.); (Y.Z.); (H.S.)
| | - Yadong Li
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (J.L.); (X.J.); (L.Y.); (D.Z.); (Y.W.); (Y.Z.); (H.S.)
| |
Collapse
|
4
|
Li W, Chen J, Li C, Huang D, Huang Y, Zhang W, Pan X. Genome-wide identification of SWEET gene family and the sugar transport function of three candidate genes during female flower bud induction stage of Juglans sigillata Dode. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109288. [PMID: 39566115 DOI: 10.1016/j.plaphy.2024.109288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) transports sugar to sink organs and regulates intercellular sugar transport to provide energy for plant growth and development. In this study, twenty-two SWEET genes were identified and distributed on eleven chromosomes. Phylogenetic tree analysis showed that these genes could be divided into four subfamilies. Metabolism and transcriptome analysis showed that sucrose and fructose were accumulated in female flower buds at physiological differentiation stage (PDS). The third branch of JsSWEET1 and the fourth branch of JsSWEET9 and JsSWEET17 were highly expressed in female flower buds at undifferentiated stage (UDS) and PDS, which promoted sugar accumulation in female flower bud differentiation, so these three candidate SWEET genes were considered to be involved in the accumulation of sugar in the flower bud differentiation of Juglans sigillata. The subcellular localization showed that all three candidate genes were located on the cell membrane, and JsSWEET17 was also expressed and functioned in the vacuolar membrane. Through overexpression in callus and silencing in female flower buds at UDS and PDS, it was found that JsSWEET1 positively regulated the accumulation of sucrose in female flower buds, and JsSWEET9 and JsSWEET17 are involved in the transport and accumulation of fructose during flower bud differentiation. These results could provide a comprehensive understanding of the JsSWEETs gene family and provide theoretical guidance for further study of the function of SWEET-induced sugar accumulation in plant flower development.
Collapse
Affiliation(s)
- Wenwen Li
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jinyan Chen
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Chunxiang Li
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Dong Huang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yuanqi Huang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Wen'e Zhang
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Xuejun Pan
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China; College of Agriculture, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Kong L, Sun J, Zhang W, Zhan Z, Piao Z. Functional analysis of the key BrSWEET genes for sugar transport involved in the Brassica rapa-Plasmodiophora brassicae interaction. Gene 2024; 927:148708. [PMID: 38885818 DOI: 10.1016/j.gene.2024.148708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Plasmodiophora brassicae, the causative agent of clubroot disease, establishes a long-lasting parasitic relationship with its host by inducing the expression of sugar transporters. Previous studies have indicated that most BrSWEET genes in Chinese cabbage are up-regulated upon infection with P. brassicae. However, the key BrSWEET genes responsive to P. brassicae have not been definitively identified. In this study, we selected five BrSWEET genes and conducted a functional analysis of them. These five BrSWEET genes showed a notable up-regulation in roots after P. brassicae inoculation. Furthermore, these BrSWEET proteins were localized to the plasma membrane. Yeast functional complementation assays confirmed transport activity for glucose, fructose, or sucrose in four BrSWEETs, with the exception of BrSWEET2a. Mutants and silenced plants of BrSWEET1a, -11a, and -12a showed lower clubroot disease severity compared to wild-type plants, while gain-of-function Arabidopsis thaliana plants overexpressing these three BrSWEET genes exhibited significantly higher disease incidence and severity. Our findings suggested that BrSWEET1a, BrSWEET11a, and BrSWEET12a play pivotal roles in P. brassicae-induced gall formation, shedding light on the role of sugar transporters in host-pathogen interactions.
Collapse
Affiliation(s)
- Liyan Kong
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jiadi Sun
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wenjun Zhang
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
6
|
Han X, Jiang C, GuipingWang, Wang J, Nie P, Xue X. The changes in sugar content and the selection of key genes at different developmental stages of 'Katy' and 'Kuijin' apricots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109280. [PMID: 39541863 DOI: 10.1016/j.plaphy.2024.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
'Katy' and 'Kuijin' apricots are the main cultivated varieties in Shandong province. The flavor of the fruit is mainly determined by sugars and acids, with soluble sugar components serving as important nutritional elements in fruits as well as crucial indicators of fruit sweetness and flavor quality. However, little is known about the changes in soluble sugar content, especially sucrose content, and the sucrose metabolism mechanism during the entire fruit growth and development process of 'Katy' and 'Kuijin' apricots. In this study, we first detected the changes in sucrose, fructose, and glucose content at nine fruit development stages of 'Katy' and 'Kuijin' apricots, and found that the stage of rapid accumulation of sucrose and fructose was from 56 days after full bloom (DAF) to 63 DAF. Therefore, we identified the key gene PaSS1 of sucrose synthase through transcriptome data screening, and further analyzed the function of the PaSS1 gene in fruit sucrose metabolism process using virus-induced gene silencing (VIGS) technology. Silencing the PaSS1 gene reduced the breakdown activity of sucrose synthase, increasing sucrose content while decreasing glucose and fructose content, delaying fruit coloring and ripening, indicating that the PaSS1 gene may regulate the ripening of apricot fruits. This study provides a theoretical basis for further research on the molecular mechanism of the PaSS1 gene in apricot fruit ripening process.
Collapse
Affiliation(s)
- Xueping Han
- Shandong Institute of Pomology, Taian, 271000, China
| | - Caina Jiang
- College of Horticulture, China Agricultural University, Beijing, 100000, China
| | - GuipingWang
- Shandong Institute of Pomology, Taian, 271000, China
| | - Jinzheng Wang
- Shandong Institute of Pomology, Taian, 271000, China
| | - Peixian Nie
- Shandong Institute of Pomology, Taian, 271000, China
| | - Xiaomin Xue
- Shandong Institute of Pomology, Taian, 271000, China.
| |
Collapse
|
7
|
Zhang Q, Wang X, Zhao T, Luo J, Liu X, Jiang J. CYTOSOLIC INVERTASE2 regulates flowering and reactive oxygen species-triggered programmed cell death in tomato. PLANT PHYSIOLOGY 2024; 196:1110-1125. [PMID: 38991558 DOI: 10.1093/plphys/kiae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
Cytosolic invertase (CIN) in plants hydrolyzes sucrose into fructose and glucose, influencing flowering time and organ development. However, the underlying molecular mechanisms remain elusive. Through expressional, genetic, and histological analyses, we identified a substantially role of SlCIN2 (localized in mitochondria) in regulating flowering and pollen development in tomato (Solanum lycopersicum). The overexpression of SlCIN2 resulted in increased hexose accumulation and decreased sucrose and starch content. Our findings indicated that SlCIN2 interacts with Sucrose transporter2 (SlSUT2) to inhibit the sucrose transport activity of SlSUT2, thereby suppressing sucrose content in flower buds and delaying flowering. We found that higher levels of glucose in SlCIN2-overexpressing anthers result in the accumulation of abscisic acid (ABA) and reactive oxygen species (ROS), thereby disrupting programmed cell death (PCD) in anthers and delaying the end of tapetal degradation. Exogenous sucrose partially restored fertility in SlCIN2-overexpressing plants. This study revealed the mechanism by which SlCIN2 regulates pollen development and demonstrated a strategy for creating sugar-regulated gene male sterility lines for tomato hybrid seed production.
Collapse
Affiliation(s)
- Qiongqiong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianying Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Junfeng Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
8
|
Taveira IC, Carraro CB, Nogueira KMV, Pereira LMS, Bueno JGR, Fiamenghi MB, dos Santos LV, Silva RN. Structural and biochemical insights of xylose MFS and SWEET transporters in microbial cell factories: challenges to lignocellulosic hydrolysates fermentation. Front Microbiol 2024; 15:1452240. [PMID: 39397797 PMCID: PMC11466781 DOI: 10.3389/fmicb.2024.1452240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
The production of bioethanol from lignocellulosic biomass requires the efficient conversion of glucose and xylose to ethanol, a process that depends on the ability of microorganisms to internalize these sugars. Although glucose transporters exist in several species, xylose transporters are less common. Several types of transporters have been identified in diverse microorganisms, including members of the Major Facilitator Superfamily (MFS) and Sugars Will Eventually be Exported Transporter (SWEET) families. Considering that Saccharomyces cerevisiae lacks an effective xylose transport system, engineered yeast strains capable of efficiently consuming this sugar are critical for obtaining high ethanol yields. This article reviews the structure-function relationship of sugar transporters from the MFS and SWEET families. It provides information on several tools and approaches used to identify and characterize them to optimize xylose consumption and, consequently, second-generation ethanol production.
Collapse
Affiliation(s)
- Iasmin Cartaxo Taveira
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| | - Cláudia Batista Carraro
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| | - Karoline Maria Vieira Nogueira
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| | - Lucas Matheus Soares Pereira
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| | - João Gabriel Ribeiro Bueno
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mateus Bernabe Fiamenghi
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Leandro Vieira dos Santos
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Roberto N. Silva
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirao Preto Medical School (FMRP), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Chen L, Cai M, Liu J, Jiang X, Liu J, Zhenxing W, Wang Y, Li Y. Genome-wide identification and expression analyses of SWEET gene family reveal potential roles in plant development, fruit ripening and abiotic stress responses in cranberry ( Vaccinium macrocarpon Ait). PeerJ 2024; 12:e17974. [PMID: 39308825 PMCID: PMC11416763 DOI: 10.7717/peerj.17974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
The sugars will eventually be exported transporter (SWEET) family is a novel class of sugar transporters that play a crucial role in plant growth, development, and responses to stress. Cranberry (Vaccinium macrocarpon Ait.) is a nutritious berry with economic importance, but little is known about SWEET gene family functions in this small fruit. In this research, 13 VmSWEET genes belonging to four clades were identified in the cranberry genome for the first time. In the conserved domains, we observed seven phosphorylation sites and four amino acid residues that might be crucial for the binding function. The majority of VmSWEET genes in each clade shared similar gene structures and conserved motifs, showing that the VmSWEET genes were highly conserved during evolution. Chromosomal localization and duplication analyses showed that VmSWEET genes were unevenly distributed in eight chromosomes and two pairs of them displayed synteny. A total of 79 cis-acting elements were predicted in the promoter regions of VmSWEETs including elements responsive to plant hormones, light, growth and development and stress responses. qRT-PCR analysis showed that VmSWEET10.1 was highly expressed in flowers, VmSWEET16 was highly expressed in upright and runner stems, and VmSWEET3 was highly expressed in the leaves of both types of stems. In fruit, the expression of VmSWEET14 and VmSWEET16 was highest of all members during the young fruit stage and were downregulated as fruit matured. The expression of VmSWEET4 was higher during later developmental stages than earlier developmental stages. Furthermore, qRT-PCR results revealed a significant up-regulation of VmSWEET10.2, under osmotic, saline, salt-alkali, and aluminum stress conditions, suggesting it has a crucial role in mediating plant responses to various environmental stresses. Overall, these results provide new insights into the characteristics and evolution of VmSWEET genes. Moreover, the candidate VmSWEET genes involved in the growth, development and abiotic stress responses can be used for molecular breeding to improve cranberry fruit quality and abiotic stress resistance.
Collapse
Affiliation(s)
- Li Chen
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Mingyu Cai
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Jiaxin Liu
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Xuxin Jiang
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Jiayi Liu
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Wang Zhenxing
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yadong Li
- Jilin Agricultural University, College of Horticulture, Changchun, China
| |
Collapse
|
10
|
Zhang Z, Zhang H, Liu J, Chen K, Wang Y, Zhang G, Li L, Yue H, Weng Y, Li Y, Chen P. The mutation of CsSUN, an IQD family protein, is responsible for the short and fat fruit (sff) in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112177. [PMID: 38964612 DOI: 10.1016/j.plantsci.2024.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
The fruit shape of cucumber is an important agronomic trait, and mining regulatory genes, especially dominant ones, is vital for cucumber breeding. In this study, we identified a short and fat fruit mutant, named sff, from an EMS mutagenized population. Compared to the CCMC (WT), sff (MT) exhibited reduced fruit length and increased dimeter. Segregation analysis revealed that the sff phenotype is controlled by a semi-dominant single gene with dosage effects. Through map-based cloning, the SFF locus was narrowed down to a 52.6 kb interval with two SNPs (G651A and C1072T) in the second and third exons of CsaV3_1G039870, which encodes an IQD family protein, CsSUN. The G651A within the IQ domain of CsSUN was identified as the unique SNP among 114 cucumber accessions, and it was the primary cause of the functional alteration in CsSUN. By generating CsSUN knockout lines in cucumber, we confirmed that CsSUN was responsible for sff mutant phenotype. The CsSUN is localized to the plasma membrane. CsSUN exhibited the highest expression in the fruit with lower expression in sff compared to WT. Histological observations suggest that the sff mutant phenotype is due to increased transverse cell division and inhibited longitudinal cell division. Transcriptome analysis revealed that CsSUN significantly affected the expression of genes related to cell division, expansion, and auxin signal transduction. This study unveils CsSUN's crucial role in shaping cucumber fruit and offers novel insights for cucumber breeding.
Collapse
Affiliation(s)
- Zhengao Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kang Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI 53706, USA
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Geng K, Zhan Z, Xue X, Hou C, Li D, Wang Z. Genome‑wide identification of the SWEET gene family in grape ( Vitis vinifera L.) and expression analysis of VvSWEET14a in response to water stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1565-1579. [PMID: 39310704 PMCID: PMC11413283 DOI: 10.1007/s12298-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024]
Abstract
Sugars are considered primary metabolites that determine the flavor and quality of grape berries, also playing a crucial role in the plants to resist stress. Sugars Will Eventually be Exported Transporters (SWEETs) gene family has been previously reported to be involved in the growth and development of grape, while the changes in transcriptional levels under water stress remain unclear. In this study, sixteen grape SWEETs members were identified and annotated based on their homologous genes in Arabidopsis and tomato, they were classified into four clades (Clades I to IV) with VvSWEETs by phylogenetic analysis. The highly conserved motifs and gene structures of VvSWEETs indicate that they are closely evolutionary conservation. Chromosomal localization and synteny analysis found that VvSWEETs were unevenly distributed on 11 chromosomes, and the VvSWEET5a, VvSWEET5b, VvSWEET14b and VvSWEET14c existed a relatively recent evolutionary relationship. Promoter cis-acting elements showed that the clade III has more ABRE motif, especially the VvSWEET14a. The regulation of VvSWEETs is mainly influenced by the Dof and MYB families, which are associated with grape ripening, while VvSWEET14a is closely related to the bHLH, MYB, NAC, and bZIP families. RT-qPCR data and subcellular localization show that VvSWEET14a was highly induced under early water stress and is located in the vacuole membrane. The instantaneous transformation assay identified that this gene could promote to transport hexose in the vacuole to maintain normal osmotic pressure. In summary, our study provides a basis for further research on SWEET genes function and regulatory mechanism in the future, and lays the foundation for stress resistance breeding of Vitis vinifera. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01501-1.
Collapse
Affiliation(s)
- Kangqi Geng
- School of Life Sciences, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Zhennan Zhan
- School of Life Sciences, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Xiaobin Xue
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Chenyang Hou
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Dongmei Li
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| | - Zhenping Wang
- School of Life Sciences, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
- Agriculture of College, Ningxia University, Yinchuan, 750021 Ningxia People’s Republic of China
| |
Collapse
|
12
|
Wu P, Wu Y, Yu Z, Jiang H, Wu G, Chen Y. Functional Characterization of JcSWEET12 and JcSWEET17a from Physic Nut. Int J Mol Sci 2024; 25:8183. [PMID: 39125752 PMCID: PMC11311823 DOI: 10.3390/ijms25158183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Physic nut (Jatropha curcas L.) has attracted extensive attention because of its fast growth, easy reproduction, tolerance to barren conditions, and high oil content of seeds. SWEET (Sugar Will Eventually be Exported Transporter) family genes contribute to regulating the distribution of carbohydrates in plants and have great potential in improving yield and stress tolerance. In this study, we performed a functional analysis of the homology of these genes from physic nut, JcSWEET12 and JcSWEET17a. Subcellular localization indicated that the JcSWEET12 protein is localized on the plasma membrane and the JcSWEET17a protein on the vacuolar membrane. The overexpression of JcSWEET12 (OE12) and JcSWEET17a (OE17a) in Arabidopsis leads to late and early flowering, respectively, compared to the wild-type plants. The transgenic OE12 seedlings, but not OE17a, exhibit increased salt tolerance. In addition, OE12 plants attain greater plant height and greater shoot dry weight than the wild-type plants at maturity. Together, our results indicate that JcSWEET12 and JcSWEET17a play different roles in the regulation of flowering time and salt stress response, providing a novel genetic resource for future improvement in physic nut and other plants.
Collapse
Affiliation(s)
- Pingzhi Wu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (P.W.); (Z.Y.)
| | - Youting Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.W.); (H.J.); (G.W.)
| | - Zhu Yu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (P.W.); (Z.Y.)
| | - Huawu Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.W.); (H.J.); (G.W.)
| | - Guojiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.W.); (H.J.); (G.W.)
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.W.); (H.J.); (G.W.)
| |
Collapse
|
13
|
Cao L, Wang J, Wang L, Liu H, Wu W, Hou F, Liu Y, Gao Y, Cheng X, Li S, Xing G. Genome-wide analysis of the SWEET gene family in Hemerocallis citrina and functional characterization of HcSWEET4a in response to salt stress. BMC PLANT BIOLOGY 2024; 24:661. [PMID: 38987684 PMCID: PMC11238388 DOI: 10.1186/s12870-024-05376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Sugars will be eventually effluxed transporters (SWEETs) have been confirmed to play diverse physiological roles in plant growth, development and stress response. However, the characteristics and functions of the SWEET genes in Hemerocallis citrina remain unclear and poorly elucidated. In this study, the whole genome of Hemerocallis citrina was utilized to conduct bioinformatics analysis and a total of 19 HcSWEET genes were successfully identified. Analysis of the physicochemical properties indicated dominant differences among these HcSWEETs. A phylogenetic analysis revealed that HcSWEET proteins can be divided into 4 clades ranging from Clade I to IV, where proteins within the same clade exhibited shared conserved motifs and gene structures. Five to six exons were contained in the majority of HcSWEET genes, which were unevenly distributed across 11 chromosomes. The gene duplication analysis showed the presence of 4 gene pairs. Comparative syntenic maps revealed that the HcSWEET gene family might present more closed homology in monocotyledons than dicotyledons. Cis-acting element analysis of HcSWEET genes indicated key responsiveness to various hormones, light, and stresses. Additionally, transcriptome sequencing analysis suggested that most HcSWEET genes had a relatively higher expression in roots, and HcSWEET4a was significantly up-regulated under salt stress. Overexpression further verified the possibility that HcSWEET4a was involved in response to salt stress, which provides novel insights and facilitates in-depth studies of the functional analysis of HcSWEETs in resistance to abiotic stress.
Collapse
Affiliation(s)
- Lihong Cao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Jinyao Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Lixuan Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Huili Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Wenjing Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Feifan Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Yuting Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Yang Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Xiaojing Cheng
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China.
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China.
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China.
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China.
| |
Collapse
|
14
|
Du B, Cao Y, Zhou J, Chen Y, Ye Z, Huang Y, Zhao X, Zou X, Zhang L. Sugar import mediated by sugar transporters and cell wall invertases for seed development in Camellia oleifera. HORTICULTURE RESEARCH 2024; 11:uhae133. [PMID: 38974190 PMCID: PMC11226869 DOI: 10.1093/hr/uhae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Seed development and yield depend on the transport and supply of sugar. However, an insufficient supply of nutrients from maternal tissues to embryos results in seed abortion and yield reduction in Camellia oleifera. In this study, we systematically examined the route and regulatory mechanisms of sugar import into developing C. oleifera seeds using a combination of histological observations, transcriptome profiling, and functional analysis. Labelling with the tracer carboxyfluorescein revealed a symplasmic route in the integument and an apoplasmic route for postphloem transport at the maternal-filial interface. Enzymatic activity and histological observation showed that at early stages [180-220 days after pollination (DAP)] of embryo differentiation, the high hexose/sucrose ratio was primarily mediated by acid invertases, and the micropylar endosperm/suspensor provides a channel for sugar import. Through Camellia genomic profiling, we identified three plasma membrane-localized proteins including CoSWEET1b, CoSWEET15, and CoSUT2 and one tonoplast-localized protein CoSWEET2a in seeds and verified their ability to transport various sugars via transformation in yeast mutants and calli. In situ hybridization and profiling of glycometabolism-related enzymes further demonstrated that CoSWEET15 functions as a micropylar endosperm-specific gene, together with the cell wall acid invertase CoCWIN9, to support early embryo development, while CoSWEET1b, CoSWEET2a, and CoSUT2 function at transfer cells and chalazal nucellus coupled with CoCWIN9 and CoCWIN11 responsible for sugar entry in bulk into the filial tissue. Collectively, our findings provide the first comprehensive evidence of the molecular regulation of sugar import into and within C. oleifera seeds and provide a new target for manipulating seed development.
Collapse
Affiliation(s)
- Bingshuai Du
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuqing Chen
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhihua Ye
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yiming Huang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xinyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xinhui Zou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
15
|
Wu X, Lin T, Zhou X, Zhang W, Liu S, Qiu H, Birch PRJ, Tian Z. Potato E3 ubiquitin ligase StRFP1 positively regulates late blight resistance by degrading sugar transporters StSWEET10c and StSWEET11. THE NEW PHYTOLOGIST 2024; 243:688-704. [PMID: 38769723 DOI: 10.1111/nph.19848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.
Collapse
Affiliation(s)
- Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Tianyu Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Xiaoshuang Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Wenjun Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Paul R J Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| |
Collapse
|
16
|
Jia H, Xu Y, Deng Y, Xie Y, Gao Z, Lang Z, Niu Q. Key transcription factors regulate fruit ripening and metabolite accumulation in tomato. PLANT PHYSIOLOGY 2024; 195:2256-2273. [PMID: 38561990 PMCID: PMC11213253 DOI: 10.1093/plphys/kiae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Fruit ripening is a complex process involving dynamic changes to metabolites and is controlled by multiple factors, including transcription factors (TFs). Several TFs are reportedly essential regulators of tomato (Solanum lycopersicum) fruit ripening. To evaluate the effects of specific TFs on metabolite accumulation during fruit ripening, we combined CRISPR/Cas9-mediated mutagenesis with metabolome and transcriptome analyses to explore regulatory mechanisms. Specifically, we generated various genetically engineered tomato lines that differed regarding metabolite contents and fruit colors. The metabolite and transcript profiles indicated that the selected TFs have distinct functions that control fruit metabolite contents, especially carotenoids and sugars. Moreover, a mutation to ELONGATED HYPOCOTYL5 (HY5) increased tomato fruit fructose and glucose contents by approximately 20% (relative to the wild-type levels). Our in vitro assay showed that HY5 can bind directly to the G-box cis-element in the Sugars Will Eventually be Exported Transporter (SWEET12c) promoter to activate expression, thereby modulating sugar transport. Our findings provide insights into the mechanisms regulating tomato fruit ripening and metabolic networks, providing the theoretical basis for breeding horticultural crops that produce fruit with diverse flavors and colors.
Collapse
Affiliation(s)
- Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaping Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Yuanwei Deng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Yinhuan Xie
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Zhongshan Gao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| |
Collapse
|
17
|
Sun J, Wang M, Zhang X, Liu X, Jiang J. SlZIP11 mediates zinc accumulation and sugar storage in tomato fruits. PeerJ 2024; 12:e17473. [PMID: 38827312 PMCID: PMC11143971 DOI: 10.7717/peerj.17473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Background Zinc (Zn) is a vital micronutrient essential for plant growth and development. Transporter proteins of the ZRT/IRT-like protein (ZIP) family play crucial roles in maintaining Zn homeostasis. Although the acquisition, translocation, and intracellular transport of Zn are well understood in plant roots and leaves, the genes that regulate these pathways in fruits remain largely unexplored. In this study, we aimed to investigate the function of SlZIP11 in regulating tomato fruit development. Methods We used Solanum lycopersicum L. 'Micro-Tom' SlZIP11 (Solanum lycopersicum) is highly expressed in tomato fruit, particularly in mature green (MG) stages. For obtaining results, we employed reverse transcription-quantitative polymerase chain reaction (RT-qPCR), yeast two-hybrid assay, bimolecular fluorescent complementation, subcellular localization assay, virus-induced gene silencing (VIGS), SlZIP11 overexpression, determination of Zn content, sugar extraction and content determination, and statistical analysis. Results RT-qPCR analysis showed elevated SlZIP11 expression in MG tomato fruits. SlZIP11 expression was inhibited and induced by Zn deficiency and toxicity treatments, respectively. Silencing SlZIP11 via the VIGS technology resulted in a significant increase in the Zn content of tomato fruits. In contrast, overexpression of SlZIP11 led to reduced Zn content in MG fruits. Moreover, both silencing and overexpression of SlZIP11 caused alterations in the fructose and glucose contents of tomato fruits. Additionally, SlSWEEET7a interacted with SlZIP11. The heterodimerization between SlSWEET7a and SlZIP11 affected subcellular targeting, thereby increasing the amount of intracellularly localized oligomeric complexes. Overall, this study elucidates the role of SlZIP11 in mediating Zn accumulation and sugar transport during tomato fruit ripening. These findings underscore the significance of SlZIP11 in regulating Zn levels and sugar content, providing insights into its potential implications for plant physiology and agricultural practices.
Collapse
Affiliation(s)
- Jiaqi Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Manning Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xinsheng Zhang
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, Liaoning, China
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Sun L, Lian L, Yang R, Li T, Yang M, Zhao W, Huang H, Wang S. Sugar delivery at the tomato root and root galls after Meloidogyne incognita infestation. BMC PLANT BIOLOGY 2024; 24:451. [PMID: 38789940 PMCID: PMC11119304 DOI: 10.1186/s12870-024-05157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.
Collapse
Affiliation(s)
- Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China.
| | - Liqiang Lian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Tongtong Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Minghui Yang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenchao Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
19
|
Jia L, Zhang X, Zhang Z, Luo W, Nambeesan SU, Li Q, Qiao X, Yang B, Wang L, Zhang S. PbrbZIP15 promotes sugar accumulation in pear via activating the transcription of the glucose isomerase gene PbrXylA1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1392-1412. [PMID: 38044792 DOI: 10.1111/tpj.16569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
The composition and abundance of soluble sugars in mature pear (Pyrus) fruit are important for its acceptance by consumers. However, our understanding of the genes responsible for soluble sugar accumulation remains limited. In this study, a S1-group member of bZIP gene family, PbrbZIP15, was characterized from pear genome through the combined analyses of metabolite and transcriptome data followed by experimental validation. PbrbZIP15, located in nucleus, was found to function in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli. After analyzing the expression profiles of sugar-metabolism-related genes and the distribution of cis-acting elements in their promoters, the glucose isomerase 1 gene (PbrXylA1), whose corresponding protein catalyzed the isomerization of glucose and fructose in vitro, was identified as a downstream target gene of PbrbZIP15. PbrbZIP15 could directly bind to the G-box element in PbrXylA1 promoter and activate its transcription, as evidenced by chromatin immunoprecipitation-quantitative PCR, yeast one-hybrid, electrophoretic mobility shift assay, and dual-luciferase assay. PbrXylA1, featuring a leucine-rich signal peptide in its N-terminal, was localized to the endoplasmic reticulum. It was validated to play a significant role in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli, which was associated with the upregulated fructose/glucose ratio. Further studies revealed a positive correlation between the sucrose content and the expression levels of several sucrose-biosynthesis-related genes (PbrFRK3/8, PbrSPS1/3/4/8, and PbrSPP1) in PbrbZIP15-/PbrXylA1-transgenic fruit/calli. In conclusion, our results suggest that PbrbZIP15-induced soluble sugar accumulation during pear development is at least partly attributed to the activation of PbrXylA1 transcription.
Collapse
Affiliation(s)
- Luting Jia
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Weiqi Luo
- U.S. Horticultural Research Laboratory, ARS-USDA, Ft. Pierce, Florida, 34945, USA
- CIPM, NC State University, Raleigh, North Carolina, 27606, USA
| | | | - Qionghou Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xin Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Bing Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Libin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shaoling Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
20
|
Li Z, Guo Y, Jin S, Wu H. Genome-Wide Identification and Expression Profile Analysis of Sugars Will Eventually Be Exported Transporter ( SWEET) Genes in Zantedeschia elliottiana and Their Responsiveness to Pectobacterium carotovora subspecies Carotovora ( Pcc) Infection. Int J Mol Sci 2024; 25:2004. [PMID: 38396683 PMCID: PMC10888187 DOI: 10.3390/ijms25042004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
SWEET, sugars will eventually be exported transporter, is a novel class of sugar transporter proteins that can transport sugars across membranes down a concentration gradient. It plays a key role in plant photosynthetic assimilates, phloem loading, nectar secretion from nectar glands, seed grouting, pollen development, pathogen interactions, and adversity regulation, and has received widespread attention in recent years. To date, systematic analysis of the SWEET family in Zantedeschia has not been documented, although the genome has been reported in Zantedeschia elliottiana. In this study, 19 ZeSWEET genes were genome-wide identified in Z. elliottiana, and unevenly located in 10 chromosomes. They were further clustered into four clades by a phylogenetic tree, and almost every clade has its own unique motifs. Synthetic analysis confirmed two pairs of segmental duplication events of ZeSWEET genes. Heatmaps of tissue-specific and Pectobacterium carotovora subsp. Carotovora (Pcc) infection showed that ZeSWEET genes had different expression patterns, so SWEETs may play widely varying roles in development and stress tolerance in Zantedeschia. Moreover, quantitative reverse transcription-PCR (qRT-PCR) analysis revealed that some of the ZeSWEETs responded to Pcc infection, among which eight genes were significantly upregulated and six genes were significantly downregulated, revealing their potential functions in response to Pcc infection. The promoter sequences of ZeSWEETs contained 51 different types of the 1380 cis-regulatory elements, and each ZeSWEET gene contained at least two phytohormone responsive elements and one stress response element. In addition, a subcellular localization study indicated that ZeSWEET07 and ZeSWEET18 were found to be localized to the plasma membrane. These findings provide insights into the characteristics of SWEET genes and contribute to future studies on the functional characteristics of ZeSWEET genes, and then improve Pcc infection tolerance in Zantedeschia through molecular breeding.
Collapse
Affiliation(s)
- Ziwei Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Yanbing Guo
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Shoulin Jin
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China;
| | - Hongzhi Wu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
21
|
Zhao S, Rong J. Single-cell RNA-seq reveals a link of ovule abortion and sugar transport in Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2024; 15:1274013. [PMID: 38371413 PMCID: PMC10869455 DOI: 10.3389/fpls.2024.1274013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Camellia oleifera is the most important woody oil crop in China. Seed number per fruit is an important yield trait in C. oleifera. Ovule abortion is generally observed in C. oleifera and significantly decreases the seed number per fruit. However, the mechanisms of ovule abortion remain poorly understood at present. Single-cell RNA sequencing (scRNA-seq) was performed using mature ovaries of two C. oleifera varieties with different ovule abortion rates (OARs). In total, 20,526 high-quality cells were obtained, and 18 putative cell clusters were identified. Six cell types including female gametophyte, protoxylem, protophloem, procambium, epidermis, and parenchyma cells were identified from three main tissue types of ovule, placenta, and pericarp inner layer. A comparative analysis on scRNA-seq data between high- and low-OAR varieties demonstrated that the overall expression of CoSWEET and CoCWINV in procambium cells, and CoSTP in the integument was significantly upregulated in the low-OAR variety. Both the infertile ovule before pollination and the abortion ovule producing after compatible pollination might be attributed to selective abortion caused by low sugar levels in the apoplast around procambium cells and a low capability of hexose uptake in the integument. Here, the first single-cell transcriptional landscape is reported in woody crop ovaries. Our investigation demonstrates that ovule abortion may be related to sugar transport in placenta and ovules and sheds light on further deciphering the mechanism of regulating sugar transport and the improvement of seed yield in C. oleifera.
Collapse
Affiliation(s)
- Songzi Zhao
- Jiangxi Province Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Iqbal J, Zhang W, Fan Y, Dong J, Xie Y, Li R, Yang T, Zhang J, Che D. Genome-Wide Bioinformatics Analysis of SWEET Gene Family and Expression Verification of Candidate PaSWEET Genes in Potentilla anserina. PLANTS (BASEL, SWITZERLAND) 2024; 13:406. [PMID: 38337939 PMCID: PMC10856985 DOI: 10.3390/plants13030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Sugars act as the main energy sources in many fruit and vegetable crops. The biosynthesis and transportation of sugars are crucial and especially contribute to growth and development. SWEET is an important gene family that plays a vital role in plants' growth, development, and adaptation to various types of stresses (biotic and abiotic). Although SWEET genes have been identified in numerous plant species, there is no information on SWEETs in Potentilla anserina. In the present study, we performed a comprehensive genome-wide bioinformatics analysis and identified a total of 23 candidate PaSWEETs genes in the Potentilla anserina genome, which were randomly distributed on ten different chromosomes. The phylogenetic analysis, chromosomal location, gene structure, specific cis-elements, protein interaction network, and physiological characteristics of these genes were systematically examined. The identified results of the phylogenetic relationship with Arabidopsis thaliana revealed that these PaSWEET genes were divided into four clades (I, II, III, and IV). Moreover, tissue-specific gene expression through quantitative real-time polymerase chain reaction (qRT-PCR) validation exposed that the identified PaSWEETs were differentially expressed in various tissues (roots, stems, leaves, and flowers). Mainly, the relative fold gene expression in swollen and unswollen tubers effectively revealed that PaSWEETs (7, 9, and 12) were highly expressed (300-, 120-, and 100-fold) in swollen tubers. To further elucidate the function of PaSWEETs (7, 9, and 12), their subcellular location was confirmed by inserting them into tobacco leaves, and it was noted that these genes were present on the cell membrane. On the basis of the overall results, it is suggested that PaSWEETs (7, 9, and 12) are the candidate genes involved in swollen tuber formation in P. anserina. In crux, we speculated that our study provides a valuable theoretical base for further in-depth function analysis of the PaSWEET gene family and their role in tuber development and further enhancing the molecular breeding of Potentilla anserina.
Collapse
Affiliation(s)
- Javed Iqbal
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.I.); (W.Z.); (Y.F.); (Y.X.); (R.L.); (T.Y.); (J.Z.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Wuhua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.I.); (W.Z.); (Y.F.); (Y.X.); (R.L.); (T.Y.); (J.Z.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Yingdong Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.I.); (W.Z.); (Y.F.); (Y.X.); (R.L.); (T.Y.); (J.Z.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jie Dong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.I.); (W.Z.); (Y.F.); (Y.X.); (R.L.); (T.Y.); (J.Z.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Yangyang Xie
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.I.); (W.Z.); (Y.F.); (Y.X.); (R.L.); (T.Y.); (J.Z.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Ronghui Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.I.); (W.Z.); (Y.F.); (Y.X.); (R.L.); (T.Y.); (J.Z.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.I.); (W.Z.); (Y.F.); (Y.X.); (R.L.); (T.Y.); (J.Z.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.I.); (W.Z.); (Y.F.); (Y.X.); (R.L.); (T.Y.); (J.Z.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.I.); (W.Z.); (Y.F.); (Y.X.); (R.L.); (T.Y.); (J.Z.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| |
Collapse
|
23
|
Hu L, Tian J, Zhang F, Song S, Cheng B, Liu G, Liu H, Zhao X, Wang Y, He H. Functional Characterization of CsSWEET5a, a Cucumber Hexose Transporter That Mediates the Hexose Supply for Pollen Development and Rescues Male Fertility in Arabidopsis. Int J Mol Sci 2024; 25:1332. [PMID: 38279332 PMCID: PMC10816302 DOI: 10.3390/ijms25021332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading of sugars from anther tissues into symplasmically isolated developing pollen cells and thereby affect the sugar supply for pollen development. However, among the 17 CsSWEET genes identified in the cucumber (Cucumis sativus L.) genome, the CsSWEET gene involved in this process has not been identified. Here, a member of the SWEET gene family, CsSWEET5a, was identified and characterized. The quantitative real-time PCR and β-glucuronidase expression analysis revealed that CsSWEET5a is highly expressed in the anthers and pollen cells of male cucumber flowers from the microsporocyte stage (stage 9) to the mature pollen stage (stage 12). Its subcellular localization indicated that the CsSWEET5a protein is localized to the plasma membrane. The heterologous expression assays in yeast demonstrated that CsSWEET5a encodes a hexose transporter that can complement both glucose and fructose transport deficiencies. CsSWEET5a can significantly rescue the pollen viability and fertility of atsweet8 mutant Arabidopsis plants. The possible role of CsSWEET5a in supplying hexose to developing pollen cells via the apoplast is also discussed.
Collapse
Affiliation(s)
- Liping Hu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Jiaxing Tian
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (F.Z.)
| | - Feng Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (F.Z.)
| | - Shuhui Song
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Bing Cheng
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Guangmin Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Huan Liu
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Xuezhi Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Yaqin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| | - Hongju He
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (L.H.); (S.S.); (B.C.); (G.L.); (H.L.); (X.Z.)
| |
Collapse
|
24
|
Huang J, Fu X, Li W, Ni Z, Zhao Y, Zhang P, Wang A, Xiao D, Zhan J, He L. Molecular Cloning, Expression Analysis, and Functional Analysis of Nine IbSWEETs in Ipomoea batatas (L.) Lam. Int J Mol Sci 2023; 24:16615. [PMID: 38068939 PMCID: PMC10706379 DOI: 10.3390/ijms242316615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) genes play an important regulatory role in plants' growth and development, stress response, and sugar metabolism, but there are few reports on the role of SWEET proteins in sweet potato. In this study, nine IbSWEET genes were obtained via PCR amplification from the cDNA of sweet potato. Phylogenetic analysis showed that nine IbSWEETs separately belong to four clades (Clade I~IV) and contain two MtN3/saliva domains or PQ-loop superfamily and six~seven transmembrane domains. Protein interaction prediction showed that seven SWEETs interact with other proteins, and SWEETs interact with each other (SWEET1 and SWEET12; SWEET2 and SWEET17) to form heterodimers. qRT-PCR analysis showed that IbSWEETs were tissue-specific, and IbSWEET1b was highly expressed during root growth and development. In addition to high expression in leaves, IbSWEET15 was also highly expressed during root expansion, and IbSWEET7, 10a, 10b, and 12 showed higher expression in the leaves. The expression of SWEETs showed a significant positive/negative correlation with the content of soluble sugar and starch in storage roots. Under abiotic stress treatment, IbSWEET7 showed a strong response to PEG treatment, while IbSWEET10a, 10b, and 12 responded significantly to 4 °C treatment and, also, at 1 h after ABA, to NaCl treatment. A yeast mutant complementation assay showed that IbSWEET7 had fructose, mannose, and glucose transport activity; IbSWEET15 had glucose transport activity and weaker sucrose transport activity; and all nine IbSWEETs could transport 2-deoxyglucose. These results provide a basis for further elucidating the functions of SWEET genes and promoting molecular breeding in sweet potato.
Collapse
Affiliation(s)
- Jingli Huang
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning 530004, China
| | - Xuezhen Fu
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
| | - Wenyan Li
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
| | - Zhongwang Ni
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
| | - Yanwen Zhao
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
| | - Pinggang Zhang
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning 530004, China; (J.H.); (X.F.); (W.L.); (Z.N.); (Y.Z.); (P.Z.); (A.W.); (D.X.); (J.Z.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Longfei He
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
25
|
Liu H, Zou Y, Xuan Q, Tian R, Zhu J, Qu X, Sun M, Liu Y, Tang H, Deng M, Jiang Q, Xu Q, Peng Y, Chen G, Li W, Pu Z, Jiang Y, Wang J, Qi P, Zhang Y, Zheng Y, Wei Y, Ma J. Loss of ADP-glucose transporter in barley sex1 mutant caused shrunken endosperm but with elevated protein and β-glucan content in whole meal. Int J Biol Macromol 2023; 251:126365. [PMID: 37591421 DOI: 10.1016/j.ijbiomac.2023.126365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Grain shape and plumpness affect barley yield. Despite numerous studies on shrunken endosperm mutants in barley, their molecular mechanism and application potential in the food industry are largely unknown. Here, map-based cloning, co-segregation analyses, and allelic variant validation revealed that the loss of HORVU6Hr1G037950 encoding an ADP-glucose transporter caused the shrunken endosperm in sex1. Haplotype analysis suggested that hap4 in the promoter sequence was positively related to the hundred-grain weight showing a breeding potential. A pair of near-isogenic lines targeting HORVU6Hr1G037950 was produced and characterized to investigate molecular mechanisms that SEX1 regulates endosperm development. Results presented that the absence of the SEX1 gene led to the decrease of starch content and A-type granules size, the increase of β-glucan, protein, gelatinization temperature, soluble sugar content, amylopectin A chains, and B1 chains. Enzymatic activity, transcriptome and metabolome analyses revealed the loss of SEX1 results in an impaired ADP-glucose-to-starch conversion process, consequently leading to higher soluble sugar contents and lower starch accumulation, thereby inducing a shrunken-endosperm phenotype in sex1. Taken together, this study provides new insights into barley grain development, and the elevated protein and β-glucan contents of the whole meal in sex1 imply its promising application in the food industry.
Collapse
Affiliation(s)
- Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaya Zou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China; Yan'an Academy of Agricultural Sciences, Yan'an, China
| | - Qijing Xuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Rong Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Min Sun
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfi Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
26
|
Lin Z, Yi X, Ali MM, Zhang L, Wang S, Chen F. Transcriptome Insights into Candidate Genes of the SWEET Family and Carotenoid Biosynthesis during Fruit Growth and Development in Prunus salicina 'Huangguan'. PLANTS (BASEL, SWITZERLAND) 2023; 12:3513. [PMID: 37836253 PMCID: PMC10574959 DOI: 10.3390/plants12193513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The Chinese plum (Prunus salicina L.) is a fruit tree belonging to the Rosaceae family, native to south-eastern China and widely cultivated throughout the world. Fruit sugar metabolism and color change is an important physiological behavior that directly determines flavor and aroma. Our study analyzed six stages of fruit growth and development using RNA-seq, yielding a total of 14,973 DEGs, and further evaluation of key DEGs revealed a focus on sugar metabolism, flavonoid biosynthesis, carotenoid biosynthesis, and photosynthesis. Using GO and KEGG to enrich differential genes in the pathway, we selected 107 differential genes and obtained 49 significant differential genes related to glucose metabolism. The results of the correlation analyses indicated that two genes of the SWEET family, evm.TU.Chr1.3663 (PsSWEET9) and evm.TU.Chr4.676 (PsSWEET2), could be closely related to the composition of soluble sugars, which was also confirmed in the ethylene treatment experiments. In addition, analysis of the TOP 20 pathways between different growth stages and the green stage, as well as transient overexpression in chili, suggested that capsanthin/capsorubin synthase (PsCCS) of the carotenoid biosynthetic pathway contributed to the color change of plum fruit. These findings provide an insight into the molecular mechanisms involved in the ripening and color change of plum fruit.
Collapse
Affiliation(s)
- Zhimin Lin
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China
| | - Xiaoyan Yi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.)
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.)
| | - Lijuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.)
| | - Shaojuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.)
| |
Collapse
|
27
|
Nie P, Wang L, Li M, Lyu D, Qin S, Xue X. MdSWEET23, a sucrose transporter from apple ( Malus × domestica Borkh.), influences sugar metabolism and enhances cold tolerance in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1266194. [PMID: 37854110 PMCID: PMC10579938 DOI: 10.3389/fpls.2023.1266194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Photosynthetic products in most fleshy fruits are unloaded via the apoplasmic pathway. Sugar transporters play an important role in the apoplasmic unloading pathway and are involved in sugar transport for fruit development. The MdSWEET23, cloned from ''Hanfu'' apple (Malus × domestica Borkh.) fruits, belongs to Clade III of the SWEET family. Subcellular localization revealed that MdSWEET23 is localized on the plasma membrane. β-glucuronidase activity assays showed that MdSWEET23 was primarily expressed in the sepal and carpel vascular bundle of apple fruits. Heterologous expression assays in yeast showed that MdSWEET23 functions in sucrose transport. The overexpression of MdSWEET23 in the ''Orin" calli increased the soluble sugar content. The silencing of MdSWEET23 significantly reduced the contents of sucrose and sorbitol in apple fruits. Ectopic overexpression of MdSWEET23 in tomato altered sugar metabolism and distribution in leaves and fruits, causing a reduction in photosynthetic rates and plant height, enhanced cold stress tolerance, and increased the content of sucrose, fructose, and glucose in breaking color fruits, but did not increase sugar sink potency of tomato fruits.
Collapse
Affiliation(s)
- Peixian Nie
- Shandong Institute of Pomology, Taian, China
| | | | - Miao Li
- Shandong Institute of Pomology, Taian, China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Sijun Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaomin Xue
- Shandong Institute of Pomology, Taian, China
| |
Collapse
|
28
|
Fakher B, Ashraf MA, Wang L, Wang X, Zheng P, Aslam M, Qin Y. Pineapple SWEET10 is a glucose transporter. HORTICULTURE RESEARCH 2023; 10:uhad175. [PMID: 38025977 PMCID: PMC10660354 DOI: 10.1093/hr/uhad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 09/01/2023] [Accepted: 08/25/2023] [Indexed: 12/01/2023]
Abstract
SWEET transporters are a unique class of sugar transporters that play vital roles in various developmental and physiological processes in plants. While the functions of SWEETs have been well established in model plants such as Arabidopsis, their functions in economically important fruit crops like pineapple have not been well studied. Here we aimed to investigate the substrate specificity of pineapple SWEETs by comparing the protein sequences of known glucose and sucrose transporters in Arabidopsis with those in pineapple. Our genome-wide approach and 3D structure comparison showed that the Arabidopsis SWEET8 homolog in pineapple, AcSWEET10, shares similar sequences and protein properties responsible for glucose transport. To determine the functional conservation of AcSWEET10, we tested its ability to complement glucose transport mutants in yeast and analyzed its expression in stamens and impact on the microspore phenotype and seed set in transgenic Arabidopsis. The results showed that AcSWEET10 is functionally equivalent to AtSWEET8 and plays a critical role in regulating microspore formation through the regulation of the Callose synthase5 (CalS5), which highlights the importance of SWEET transporters in pineapple. This information could have important implications for improving fruit crop yield and quality by manipulating SWEET transporter activity.
Collapse
Affiliation(s)
- Beenish Fakher
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - M Arif Ashraf
- Department of Biology, Howard University, Washington DC 20059, USA
| | - Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530004, China
| | - Ping Zheng
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mohammad Aslam
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Yuan Qin
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
29
|
Khan MA, Liu DH, Alam SM, Zaman F, Luo Y, Han H, Ateeq M, Liu YZ. Molecular physiology for the increase of soluble sugar accumulation in citrus fruits under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108056. [PMID: 37783072 DOI: 10.1016/j.plaphy.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/24/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
To investigate the mechanism for drought promoting soluble sugar accumulation will be conducive to the enhancement of citrus fruit quality as well as stress tolerance. Fruit sucrose mainly derives from source leaves. Its accumulation in citrus fruit cell vacuole involves in two processes of unloading in the fruit segment membrane (SM) and translocating to the vacuole of fruit juice sacs (JS). Here, transcript levels of 47 sugar metabolism- and transport-related genes were compared in fruit SM or JS between drought and control treatments. Results indicated that transcript levels of cell wall invertase genes (CwINV2/6) and sucrose synthase genes (SUS2/6) in the SM were significantly increased by the drought. Moreover, transcript levels of SWEET genes (CsSWEET1/2/4/5/9) and monosaccharide transporter gene (CsPMT3) were significantly increased in SM under drought treatment. On the other hand, SUS1/3 and vacuolar invertase (VINV) transcript levels were significantly increased in JS by drought; CsPMT4, sucrose transporter gene 2 (CsSUT2), tonoplast monosaccharide transporter gene 2 (CsTMT2), sugar transport protein gene 1 (CsSTP1), two citrus type I V-PPase genes (CsVPP1, and CsVPP2) were also significantly increased in drought treated JS. Collectively, the imposition of drought stress resulted in more soluble sugar accumulation through enhancing sucrose download by enhancing sink strength- and transport ability-related genes, such as CwINV2/6, SUS2/6, CsSWEET1/2/4/5/9, and CsPMT3, in fruit SM, and soluble sugar storage ability by increasing transcript levels of genes, such as CsPMT4, VINV, CsSUT2, CsTMT2, CsSTP1, CsVPP1, and CsVPP2, in fruit JS.
Collapse
Affiliation(s)
- Muhammad Abbas Khan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Dong-Hai Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Shariq Mahmood Alam
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Fatima Zaman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yin Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Han Han
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Muhammad Ateeq
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yong-Zhong Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
30
|
Zhang M, Lu W, Yang X, Li Q, Lin X, Liu K, Yin C, Xiong B, Liao L, Sun G, He S, He J, Wang X, Wang Z. Comprehensive analyses of the citrus WRKY gene family involved in the metabolism of fruit sugars and organic acids. FRONTIERS IN PLANT SCIENCE 2023; 14:1264283. [PMID: 37780491 PMCID: PMC10540311 DOI: 10.3389/fpls.2023.1264283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Sugars and organic acids are the main factors determining the flavor of citrus fruit. The WRKY transcription factor family plays a vital role in plant growth and development. However, there are still few studies about the regulation of citrus WRKY transcription factors (CsWRKYs) on sugars and organic acids in citrus fruit. In this work, a genome-wide analysis of CsWRKYs was carried out in the citrus genome, and a total of 81 CsWRKYs were identified, which contained conserved WRKY motifs. Cis-regulatory element analysis revealed that most of the CsWRKY promoters contained several kinds of hormone-responsive and abiotic-responsive cis-elements. Furthermore, gene expression analysis and fruit quality determination showed that multiple CsWRKYs were closely linked to fruit sugars and organic acids with the development of citrus fruit. Notably, transcriptome co-expression network analysis further indicated that three CsWRKYs, namely, CsWRKY3, CsWRKY47, and CsWRKY46, co-expressed with multiple genes involved in various pathways, such as Pyruvate metabolism and Citrate cycle. These CsWRKYs may participate in the metabolism of fruit sugars and organic acids by regulating carbohydrate metabolism genes in citrus fruit. These findings provide comprehensive knowledge of the CsWRKY family on the regulation of fruit quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Jiang R, Wu L, Zeng J, Shah K, Zhang R, Hu G, Qin Y, Zhang Z. Identification of HuSWEET Family in Pitaya ( Hylocereus undatus) and Key Roles of HuSWEET12a and HuSWEET13d in Sugar Accumulation. Int J Mol Sci 2023; 24:12882. [PMID: 37629062 PMCID: PMC10454816 DOI: 10.3390/ijms241612882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The sugar composition and content of fruit have a significant impact on their flavor and taste. In pitaya, or dragon fruit, sweetness is a crucial determinant of fruit taste and consumer preference. The sugars will eventually be exported transporters (SWEETs), a novel group of sugar transporters that have various physiological functions, including phloem loading, seed filling, nectar secretion, and fruit development. However, the role of SWEETs in sugar accumulation in pitaya fruit is not yet clear. Here, we identified 19 potential members (HuSWEET genes) of the SWEET family in pitaya and analyzed their conserved motifs, physiochemical characteristics, chromosomal distribution, gene structure, and phylogenetic relationship. Seven highly conserved α-helical transmembrane domains (7-TMs) were found, and the HuSWEET proteins can be divided into three clades based on the phylogenetic analysis. Interestingly, we found two HuSWEET genes, HuSWEET12a and HuSWEET13d, that showed strong preferential expressions in fruits and an upward trend during fruit maturation, suggesting they have key roles in sugar accumulation in pitaya. This can be further roughly demonstrated by the fact that transgenic tomato plants overexpressing HuSWEET12a/13d accumulated high levels of sugar in the mature fruit. Together, our result provides new insights into the regulation of sugar accumulation by SWEET family genes in pitaya fruit, which also set a crucial basis for the further functional study of the HuSWEETs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (R.J.); (L.W.); (J.Z.); (K.S.); (R.Z.); (G.H.)
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (R.J.); (L.W.); (J.Z.); (K.S.); (R.Z.); (G.H.)
| |
Collapse
|
32
|
Ye Z, Du B, Zhou J, Cao Y, Zhang L. Camellia oleifera CoSWEET10 Is Crucial for Seed Development and Drought Resistance by Mediating Sugar Transport in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2818. [PMID: 37570971 PMCID: PMC10420866 DOI: 10.3390/plants12152818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Sugar transport from the source leaf to the sink organ is critical for seed development and crop yield, as well as for responding to abiotic stress. SWEETs (sugar will eventually be exported transporters) mediate sugar efflux into the reproductive sink and are therefore considered key candidate proteins for sugar unloading during seed development. However, the specific mechanism underlying the sugar unloading to seeds in Camellia oleifera remains elusive. Here, we identified a SWEET gene named CoSWEET10, which belongs to Clade III and has high expression levels in the seeds of C. oleifera. CoSWEET10 is a plasma membrane-localized protein. The complementation assay of CoSWEET10 in SUSY7/ura3 and EBY.VW4000 yeast strains showed that CoSWEET10 has the ability to transport sucrose, glucose, and fructose. Through the C. oleifera seeds in vitro culture, we found that the expression of CoSWEET10 can be induced by hexose and sucrose, and especially glucose. By generating the restoration lines of CoSWEET10 in Arabidopsis atsweet10, we found that CoSWEET10 restored the seed defect phenotype of the mutant by regulating soluble sugar accumulation and increased plant drought tolerance. Collectively, our study demonstrates that CoSWEET10 plays a dual role in promoting seed development and enhancing plant drought resistance as a sucrose and hexose transporter.
Collapse
Affiliation(s)
| | | | | | | | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (B.D.); (J.Z.); (Y.C.)
| |
Collapse
|
33
|
Zhang S, Wang H, Wang T, Zhang J, Liu W, Fang H, Zhang Z, Peng F, Chen X, Wang N. Abscisic acid and regulation of the sugar transporter gene MdSWEET9b promote apple sugar accumulation. PLANT PHYSIOLOGY 2023; 192:2081-2101. [PMID: 36815241 PMCID: PMC10315282 DOI: 10.1093/plphys/kiad119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Enhancing fruit sugar contents, especially for high-flavonoid apples with a sour taste, is one of the main goals of horticultural crop breeders. This study analyzed sugar accumulation and the underlying mechanisms in the F2 progenies of a hybridization between the high-sugar apple (Malus × domestica) variety "Gala" and high-flavonoid apple germplasm "CSR6R6". We revealed that MdSWEET9b (sugars will eventually be exported transporter) helps mediate sugar accumulation in fruits. Functional characterization of MdSWEET9b in yeast mutants lacking sugar transport as well as in overexpressing and CRISPR/Cas9 knockdown apple calli revealed MdSWEET9b could transport sucrose specifically, ultimately promoting normal yeast growth and accumulation of total sugar contents. Moreover, MdWRKY9 bound to the MdSWEET9b promoter and regulated its activity, which responded to abscisic acid (ABA) signaling. Furthermore, MdWRKY9 interacted with MdbZIP23 (basic leucine zipper) and MdbZIP46, key ABA signal transducers, at the protein and DNA levels to enhance its regulatory effect on MdSWEET9b expression, thereby influencing sugar accumulation. Based on the contents of ABA in lines with differing sugar contents and the effects of ABA treatments on fruits and calli, we revealed ABA as one of the main factors responsible for the diversity in apple fruit sugar content. The results of this study have clarified how MdSWEET9b influences fruit sugar accumulation, while also further elucidating the regulatory effects of the ABA-signaling network on fruit sugar accumulation. This work provides a basis for future explorations of the crosstalk between hormone and sugar metabolism pathways.
Collapse
Affiliation(s)
- Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Hui Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Tong Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | | | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| |
Collapse
|
34
|
Fang H, Shi Y, Liu S, Jin R, Sun J, Grierson D, Li S, Chen K. The transcription factor CitZAT5 modifies sugar accumulation and hexose proportion in citrus fruit. PLANT PHYSIOLOGY 2023; 192:1858-1876. [PMID: 36911987 PMCID: PMC10315291 DOI: 10.1093/plphys/kiad156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Sugars are fundamental to plant developmental processes. For fruits, the accumulation and proportion of sugars play crucial roles in the development of quality and attractiveness. In citrus (Citrus reticulata Blanco.), we found that the difference in sweetness between mature fruits of "Gongchuan" and its bud sport "Youliang" is related to hexose contents. Expression of a SuS (sucrose synthase) gene CitSUS5 and a SWEET (sugars will eventually be exported transporter) gene CitSWEET6, characterized by transcriptome analysis at different developmental stages of these 2 varieties, revealed higher expression levels in "Youliang" fruit. The roles of CitSUS5 and CitSWEET6 were investigated by enzyme activity and transient assays. CitSUS5 promoted the cleavage of sucrose to hexoses, and CitSWEET6 was identified as a fructose transporter. Further investigation identified the transcription factor CitZAT5 (ZINC FINGER OF ARABIDOPSIS THALIANA) that contributes to sucrose metabolism and fructose transportation by positively regulating CitSUS5 and CitSWEET6. The role of CitZAT5 in fruit sugar accumulation and hexose proportion was investigated by homologous transient CitZAT5 overexpression, -VIGS, and -RNAi. CitZAT5 modulates the hexose proportion in citrus by mediating CitSUS5 and CitSWEET6 expression, and the molecular mechanism explained the differences in sugar composition of "Youliang" and "Gongchuan" fruit.
Collapse
Affiliation(s)
- Heting Fang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Shengchao Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Rong Jin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Department of Horticulture and Agricultural Experiment Station, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Jun Sun
- Zhejiang Agricultural Technology Extension Center, Hangzhou 310029, China
| | - Donald Grierson
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
35
|
Chai L, Wang H, Yu H, Pang E, Lu T, Li Y, Jiang W, Li Q. Girdling promotes tomato fruit enlargement by enhancing fruit sink strength and triggering cytokinin accumulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1174403. [PMID: 37396637 PMCID: PMC10312241 DOI: 10.3389/fpls.2023.1174403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Girdling is a horticultural technique that enhances fruit size by allocating more carbohydrates to fruits, yet its underlying mechanisms are not fully understood. In this study, girdling was applied to the main stems of tomato plants 14 days after anthesis. Following girdling, there was a significant increase in fruit volume, dry weight, and starch accumulation. Interestingly, although sucrose transport to the fruit increased, the fruit's sucrose concentration decreased. Girdling also led to an increase in the activities of enzymes involved in sucrose hydrolysis and AGPase, and to an upregulation in the expression of key genes related to sugar transport and utilization. Moreover, the assay of carboxyfluorescein (CF) signal in detached fruit indicated that girdled fruits exhibited a greater ability to take up carbohydrates. These results indicate that girdling improves sucrose unloading and sugar utilization in fruit, thereby enhancing fruit sink strength. In addition, girdling induced cytokinin (CK) accumulation, promoted cell division in the fruit, and upregulated the expression of genes related to CK synthesis and activation. Furthermore, the results of a sucrose injection experiment suggested that increased sucrose import induced CK accumulation in the fruit. This study sheds light on the mechanisms by which girdling promotes fruit enlargement and provides novel insights into the interaction between sugar import and CK accumulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiang Li
- *Correspondence: Qiang Li, ; Weijie Jiang,
| |
Collapse
|
36
|
Wang X, Zhang Q, Luo J, Liu X, Jiang J. Major-effect quantitative trait locus qLKR4.1 encodes a phospholipase Dδ protein associated with low-K + stress tolerance by promoting root length. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:88. [PMID: 36973446 DOI: 10.1007/s00122-023-04351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
qLKR4.1, controlling low K+ resistance in tomato, was fine-mapped to an interval of 67.5 kb on chromosome A04, and one gene encoding phospholipase Dδ was identified as a candidate gene. In plants, changes in root length are an important morphological response to low K+ (LK) stress; however, the underlying genetics in tomato remain unclear. Here, we combined bulked segregant analysis-based whole-genome sequencing, single-nucleotide polymorphism haplotyping, and fine genetic mapping to identify a candidate gene as a major-effect quantitative trait loci (QTL), i.e., qLKR4.1, which was associated with LK tolerance due to increased root elongation in the tomato line JZ34. Through multiple analyses, we found that Solyc04g082000 is the most likely candidate for qLKR4.1, which encodes phospholipase Dδ (PLDδ). Increased root elongation under LK in JZ34 may be attributed to a non-synonymous single-nucleotide polymorphism in the Ca2+-binding domain region of this gene. Solyc04g082000 increases root length through its PLDδ activity. Silencing of Solyc04g082000Arg in JZ34 led to a significant decrease in root length compared with silencing of Solyc04g082000His allele in JZ18 under LK conditions. Mutation of a Solyc04g082000 homologue in Arabidopsis, pldδ, resulted in decreased primary root lengths under LK conditions, compared to the wild type. Transgenic tomato expressing the qLKR4.1Arg allele from JZ34 exhibited a significant increase in root length compared with the wild type expressing the allele from JZ18 under LK conditions. Taken together, our results confirm that the PLDδ gene Solyc04g082000 exerts important functions in increasing tomato root length and LK tolerance.
Collapse
Affiliation(s)
- Xi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Qiongqiong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Junfeng Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
37
|
Wang C, Zhou J, Zhang S, Gao X, Yang Y, Hou J, Chen G, Tang X, Wu J, Yuan L. Combined Metabolome and Transcriptome Analysis Elucidates Sugar Accumulation in Wucai ( Brassica campestris L.). Int J Mol Sci 2023; 24:ijms24054816. [PMID: 36902245 PMCID: PMC10003340 DOI: 10.3390/ijms24054816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Wucai (Brassica campestris L.) is a leafy vegetable that originated in China, its soluble sugars accumulate significantly to improve taste quality during maturation, and it is widely accepted by consumers. In this study, we investigated the soluble sugar content at different developmental stages. Two periods including 34 days after planting (DAP) and 46 DAP, which represent the period prior to and after sugar accumulation, respectively, were selected for metabolomic and transcriptomic profiling. Differentially accumulated metabolites (DAMs) were mainly enriched in the pentose phosphate pathway, galactose metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and fructose and mannose metabolism. By orthogonal projection to latent structures-discriminant s-plot (OPLS-DA S-plot) and MetaboAnalyst analyses, D-galactose and β-D-glucose were identified as the major components of sugar accumulation in wucai. Combined with the transcriptome, the pathway of sugar accumulation and the interact network between 26 DEGs and the two sugars were mapped. CWINV4, CEL1, BGLU16, and BraA03g023380.3C had positive correlations with the accumulation of sugar accumulation in wucai. The lower expression of BraA06g003260.3C, BraA08g002960.3C, BraA05g019040.3C, and BraA05g027230.3C promoted sugar accumulation during the ripening of wucai. These findings provide insights into the mechanisms underlying sugar accumulation during commodity maturity, providing a basis for the breeding of sugar-rich wucai cultivars.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jiajie Zhou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shengnan Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xun Gao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yitao Yang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Jianqiang Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Correspondence: ; Tel./Fax: +86-0551-65786212
| |
Collapse
|
38
|
Jiang M, Zhang Y, Yang X, Li X, Lang H. Brassica rapa orphan gene BR1 delays flowering time in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1135684. [PMID: 36909380 PMCID: PMC9998908 DOI: 10.3389/fpls.2023.1135684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Orphan genes are essential to the emergence of species-specific traits and the process of evolution, lacking sequence similarity to any other identified genes. As they lack recognizable domains or functional motifs, however, efforts to characterize these orphan genes are often difficult. Flowering is a key trait in Brassica rapa, as premature bolting can have a pronounced adverse impact on plant quality and yield. Bolting resistance-related orphan genes, however, have yet to be characterized. In this study, an orphan gene designated BOLTING RESISTANCE 1 (BR1) was identified and found through gene structural variation analyses to be more highly conserved in Chinese cabbage than in other available accessions. The expression of BR1 was increased in bolting resistant Chinese cabbage and decreased in bolting non-resistant type, and the expression of some mark genes were consist with bolting resistance phenotype. BR1 is primarily expressed in leaves at the vegetative growth stage, and the highest BR1 expression levels during the flowering stage were observed in the flower buds and silique as compared to other tissue types. The overexpression of BR1 in Arabidopsis was associated with enhanced bolting resistance under long day (LD) conditions, with these transgenic plants exhibiting significant decreases in stem height, rosette radius, and chlorophyll content. Transcriptomic sequencing of WT and BR1OE plants showed the association of BR1 with other bolting resistance genes. Transcriptomic sequencing and qPCR revealed that six flowering integrator genes and one chlorophyll biosynthesis-related gene were downregulated following BR1 overexpression. Six key genes in photoperiodic flowering pathway exhibited downward expression trends in BR1OE plants, while the expression of floral repressor AtFLC gene was upregulated. The transcripts of these key genes were consistent with observed phenotypes in BR1OE plants, and the results indicated that BR1 may function through vernalization and photoperiodic pathway. Instead, the protein encoded by BR1 gene was subsequently found to localize to the nucleus. Taken together, we first propose that orphan gene BR1 functions as a novel regulator of flowering time, and these results suggested that BR1 may represent a promising candidate gene to support the selective breeding of Chinese cabbage cultivars with enhanced bolting resistance.
Collapse
Affiliation(s)
- Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| | - Yuting Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
39
|
Vegetable biology and breeding in the genomics era. SCIENCE CHINA. LIFE SCIENCES 2023; 66:226-250. [PMID: 36508122 DOI: 10.1007/s11427-022-2248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Vegetable crops provide a rich source of essential nutrients for humanity and represent critical economic values to global rural societies. However, genetic studies of vegetable crops have lagged behind major food crops, such as rice, wheat and maize, thereby limiting the application of molecular breeding. In the past decades, genome sequencing technologies have been increasingly applied in genetic studies and breeding of vegetables. In this review, we recapitulate recent progress on reference genome construction, population genomics and the exploitation of multi-omics datasets in vegetable crops. These advances have enabled an in-depth understanding of their domestication and evolution, and facilitated the genetic dissection of numerous agronomic traits, which jointly expedites the exploitation of state-of-the-art biotechnologies in vegetable breeding. We further provide perspectives of further directions for vegetable genomics and indicate how the ever-increasing omics data could accelerate genetic, biological studies and breeding in vegetable crops.
Collapse
|
40
|
Zhang B, Li YN, Wu BH, Yuan YY, Zhao ZY. Plasma Membrane-Localized Transporter MdSWEET12 Is Involved in Sucrose Unloading in Apple Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15517-15530. [PMID: 36468541 DOI: 10.1021/acs.jafc.2c05102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sugar content is an important factor determining the flavor in apple fruit. Sugar unloading is a prerequisite step for sugar accumulation. However, little is known about sugar unloading mechanisms in apple. Transcriptomic sequencing of two apple varieties, "Envy" and "Pacific Rose," with significantly different sugar content was performed. MdSWEET12a from the SWEET transporter family was differentially expressed. Further study of the MdSWEET12a showed that this plasma membrane-localized transporter protein-encoding gene was mainly expressed in sieve element-companion cells (SE-CC) in the fruit, which was positively correlated with the sucrose accumulation during the development of "Envy" apple. Consistently manipulating the gene expression through either transient overexpression or silencing significantly increased or decreased the sugar content in apple fruit, respectively. Complementary growth experiments in mutant yeast cells indicated that MdSWEET12a transported sucrose. Heterologous expression of MdSWEET12a in tomato increased the expression of genes related to sugar metabolism and transport, leading to increased sugar content. These findings underpin the involvement of MdSWEET12a in sugar unloading in apple fruit.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Ya-Nan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Bing-Hua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A&F University, Fuzhou 350002, China
| | - Yang-Yang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng-Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| |
Collapse
|
41
|
Yu J, Tseng Y, Pham K, Liu M, Beckles DM. Starch and sugars as determinants of postharvest shelf life and quality: some new and surprising roles. Curr Opin Biotechnol 2022; 78:102844. [PMID: 36410153 DOI: 10.1016/j.copbio.2022.102844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022]
Abstract
Starch and sugars account for most of the dry weight of horticultural crops and in many species, are known determinants of quality. However, we posit that these carbohydrates often have less-obvious roles in plant tissues with direct implications for the postharvest quality and produce shelf life. The latter has not been given as much attention, but with the recent interest in reducing the scale of postharvest waste and loss, we highlight how dynamic changes in the spatial-temporal accumulation of carbohydrates, can influence myriads of biological processes affecting postharvest attributes. Versatile roles, some surprising, that carbohydrates play in determining produce of high value to consumers, are highlighted, and gene targets for biotechnological improvement are specified.
Collapse
Affiliation(s)
- Jingwei Yu
- SUSTech-PKU Joint Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yute Tseng
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA; Graduate Group of Horticulture & Agronomy, University of California Davis, One Shields Avenue, CA 95616, USA
| | - Kien Pham
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA; Graduate Group of Horticulture & Agronomy, University of California Davis, One Shields Avenue, CA 95616, USA
| | - Margaret Liu
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA; Graduate Group of Horticulture & Agronomy, University of California Davis, One Shields Avenue, CA 95616, USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California Davis, One Shields Avenue, CA 95616, USA.
| |
Collapse
|
42
|
LoSWEET14, a Sugar Transporter in Lily, Is Regulated by Transcription Factor LoABF2 to Participate in the ABA Signaling Pathway and Enhance Tolerance to Multiple Abiotic Stresses in Tobacco. Int J Mol Sci 2022; 23:ijms232315093. [PMID: 36499419 PMCID: PMC9739489 DOI: 10.3390/ijms232315093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Sugar transport and distribution plays an important role in lily bulb development and resistance to abiotic stresses. In this study, a member of the Sugar Will Eventually be Exported Transporters (SWEET) gene family, LoSWEET14, from Oriental hybrid lily 'Sorbonne' was identified. LoSWEET14 encodes a protein of 278 amino acids and is capable of transporting sucrose and some types of hexoses. The transcript level of the LoSWEET14 gene was significantly increased under various stress conditions including drought, cold, salt stresses, and abscisic acid (ABA) treatment. Overexpression of LoSWEET14 in tobacco (Nicotiana tabacum) showed that the transgenic lines had larger leaves, accumulated more soluble sugars, and were more resistant to drought, cold, and salt stresses, while becoming more sensitive to ABA compared with wild-type lines. Promoter analysis revealed that multiple stress-related cis-acting elements were found in the promoter of LoSWEET14. According to the distribution of cis-acting elements, different lengths of 5'-deletion fragments were constructed and the LoSWEET14-pro3(-540 bp) was found to be able to drive GUS gene expression in response to abiotic stresses and ABA treatment. Furthermore, a yeast one hybrid (Y1H) assay proved that the AREB/ABF (ABRE-binding protein/ABRE-binding factor) from lilies (LoABF2) could bind to the promoter of LoSWEET14. These findings indicated that LoSWEET14 is induced by LoABF2 to participate in the ABA signaling pathway to promote soluble sugar accumulation in response to multiple abiotic stresses.
Collapse
|
43
|
Sun W, Wu G, Xu H, Wei J, Chen Y, Yao M, Zhan J, Yan J, Chen H, Bu T, Tang Z, Li Q. Malate-mediated CqMADS68 enhances aluminum tolerance in quinoa seedlings through interaction with CqSTOP6, CqALMT6 and CqWRKY88. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129630. [PMID: 35872459 DOI: 10.1016/j.jhazmat.2022.129630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/03/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) stress in acidic soils has severe negative effects on crop productivity. In this study, the alleviating effect and related mechanism of malate on Al stress in quinoa (Chenopodium quinoa) seedlings were investigated. The findings indicated that malate alleviated the growth inhibition of quinoa seedlings under Al stress, maintained the enzymatic and nonenzymatic antioxidant systems, and aided resistance to the damage caused by excessive reactive oxygen species (ROS). Under Al stress, malate significantly increased the contents of chlorophyll and carotenoids in quinoa shoots by 103.8% and 240.7%, and significantly increased the ratios of glutathione (GSH)/oxidized glutathione (GSSG), and ascorbate (AsA)/dehydroascorbate (DHA) in roots by 59.9% and 699.2%, respectively. However, malate significantly decreased the superoxide radical (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA) and Al contents in quinoa roots under Al stress by 32.7%, 60.9%, 63.1% and 49%, respectively. Moreover, the CqMADS family and the Al stress-responsive gene families (CqSTOP, CqALMT, and CqWRKY) were identified from the quinoa genome. Comprehensive expression profiling identified CqMADS68 as being involved in malate-mediated Al resistance. Transient overexpression of CqMADS68 increased Al tolerance in quinoa seedlings. More importantly, we found that CqMADS68 regulated the expression of CqSTOP6, CqALMT6 and CqWRKY88 and further demonstrated the interaction of CqMADS68 with CqSTOP6, CqALMT6 and CqWRKY88 by bimolecular fluorescence complementation (BIFC) experiments. Moreover, transient overexpression and physiological and biochemical analyses demonstrated that CqSTOP6, CqALMT6 and CqWRKY88 could also improve Al tolerance by maintaining the antioxidant capacity of quinoa seedlings. Taken together, these findings reveal that CqMADS68, CqSTOP6, CqALMT6 and CqWRKY88 may be important contributors to the Al tolerance regulatory network in quinoa, providing new insights into Al stress resistance.
Collapse
Affiliation(s)
- Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guoming Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Haishen Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianglan Wei
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Min Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Junyi Zhan
- College of Life Science, Nanjing Agricultural University, Nanjing 210032, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zizong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qingfeng Li
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
44
|
Gao Y, Yao Y, Chen X, Wu J, Wu Q, Liu S, Guo A, Zhang X. Metabolomic and transcriptomic analyses reveal the mechanism of sweet-acidic taste formation during pineapple fruit development. FRONTIERS IN PLANT SCIENCE 2022; 13:971506. [PMID: 36161024 PMCID: PMC9493369 DOI: 10.3389/fpls.2022.971506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Pineapple (Ananas comosus L.) is one of the most valuable subtropical fruit crop in the world. The sweet-acidic taste of the pineapple fruits is a major contributor to the characteristic of fruit quality, but its formation mechanism remains elusive. Here, targeted metabolomic and transcriptomic analyses were performed during the fruit developmental stages in two pineapple cultivars ("Comte de Paris" and "MD-2") to gain a global view of the metabolism and transport pathways involved in sugar and organic acid accumulation. Assessment of the levels of different sugar and acid components during fruit development revealed that the predominant sugar and organic acid in mature fruits of both cultivars was sucrose and citric acid, respectively. Weighted gene coexpression network analysis of metabolic phenotypes and gene expression profiling enabled the identification of 21 genes associated with sucrose accumulation and 19 genes associated with citric acid accumulation. The coordinated interaction of the 21 genes correlated with sucrose irreversible hydrolysis, resynthesis, and transport could be responsible for sucrose accumulation in pineapple fruit. In addition, citric acid accumulation might be controlled by the coordinated interaction of the pyruvate-to-acetyl-CoA-to-citrate pathway, gamma-aminobutyric acid pathway, and tonoplast proton pumps in pineapple. These results provide deep insights into the metabolic regulation of sweetness and acidity in pineapple.
Collapse
Affiliation(s)
- Yuyao Gao
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yanli Yao
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Xin Chen
- Taixing Institute of Agricultural Sciences, Taixing, China
| | - Jianyang Wu
- Department of Science Education, Zhanjiang Preschool Education College, Zhanjiang, China
| | - Qingsong Wu
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shenghui Liu
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Anping Guo
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Xiumei Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
45
|
Lu C, Ye J, Chang Y, Mi Z, Liu S, Wang D, Wang Z, Niu J. Genome-Wide Identification and Expression Patterns of the SWEET Gene Family in Bletilla striata and its Responses to Low Temperature and Oxidative Stress. Int J Mol Sci 2022; 23:ijms231710057. [PMID: 36077463 PMCID: PMC9456286 DOI: 10.3390/ijms231710057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
SWEETs (sugars will eventually be exported transporters), a well-known class of sugar transporters, are involved in plant growth and development, sugar transport, biotic and abiotic stresses, etc. However, to date, there have been few investigations of SWEETs in Orchidaceae. In this study, 23 SWEET genes were identified in Bletilla striata for the first time, with an MtN3/saliva conserved domain, and were divided into four subgroups by phylogenetic tree. The same subfamily members had similar gene structures and motifs. Multiple cis-elements related to sugar and environmental stresses were found in the promoter region. Further, 21 genes were localized on 11 chromosomes and 2 paralogous pairs were found via intraspecific collinearity analysis. Expression profiling results showed that BsSWEETs were tissue-specific. It also revealed that BsSWEET10 and BsSWEET18 were responsive to low temperature and oxidative stresses. In addition, subcellular localization study indicated that BsSWEET15 and BsSWEET16 were localized in the cell membrane. This study provided important clues for the in-depth elucidation of the sugar transport mechanism of BsSWEET genes and their functional roles in response to abiotic stresses.
Collapse
|
46
|
Li D, Liu B, Wang Z, Li X, Sun S, Ma C, Wang L, Wang S. Sugar accumulation may be regulated by a transcriptional cascade of ABA-VvGRIP55-VvMYB15-VvSWEET15 in grape berries under root restriction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111288. [PMID: 35717774 DOI: 10.1016/j.plantsci.2022.111288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
In the southern of China, precipitation is abundant during the grape growing season, which results in lower sugar content, and finally reduces the quality and yield of grape berries and leads to lower economic benefits. The root restriction cultivation method is an important abiotic stress that limits the disordered growth and development of roots, and it favors the accumulation of sugar and abscisic acid. However, the relationship between ABA and sugar accumulation under root restriction remains unclear. Here, we tested the expression levels of several transcription factors and sugar metabolism-related genes and found that root restriction cultivation could induce higher expression of VvMYB15 and VvSWEET15. The VvMYB15 transcription factor was found to bind to the promoter of VvSWEET15 and activate its expression, furthermore, transient overexpression of VvMYB15 in strawberry fruits and grape berries can promote sugar accumulation and increase the expression level of sugar metabolism-related genes, indicating that VvMYB15 is a positive regulator of sugar accumulation. In addition, the endogenous ABA content and expression level of VvGRIP55, which is highly responsive to ABA, were significantly increased under root restriction, and VvGRIP55 could bind to the promoter of VvMYB15 and activate its expression. Therefore, our results demonstrated that the ABA-responsive factor VvGRIP55 can promote sugar accumulation through VvMYB15 and VvSWEET15, suggesting a mechanism by which ABA regulates sugar accumulation under root restriction.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyang Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenping Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sijie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Agro-food Science and Technology, Key Laboratory of Agro-products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
47
|
Wu Y, Lv S, Zhao Y, Chang C, Hong W, Jiang J. SlHSP17.7 Ameliorates Chilling Stress-Induced Damage by Regulating Phosphatidylglycerol Metabolism and Calcium Signal in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1865. [PMID: 35890502 PMCID: PMC9324031 DOI: 10.3390/plants11141865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Tomatoes (Solanum lycopersicum L.) are sensitive to chilling temperatures between 0 °C and 12 °C owing to their tropical origin. SlHSP17.7, a cytoplasmic heat shock protein, interacts with cation/calcium exchanger 1-like (SlCCX1-like) protein and promotes chilling tolerance in tomato fruits (Zhang, et al., Plant Sci., 2020, 298, 1-12). The overexpression of SlHSP17.7 can also promote cold tolerance in tomato plants, but its specific mechanism remains unclear. In this study, we show that the overexpression of SlHSP17.7 in tomato plants enhances chilling tolerance with better activity of photosystem II (PSII). Metabolic analyses revealed that SlHSP17.7 improved membrane fluidity by raising the levels of polyunsaturated fatty acids. Transcriptome analyses showed that SlHSP17.7 activated Ca2+ signaling and induced the expression of C-repeat binding factor (CBF) genes, which in turn inhibited the production of reactive oxygen species (ROS). The gene coexpression network analysis showed that SlHSP17.7 is coexpressed with SlMED26b. SlMED26b silencing significantly lowered OE-HSP17.7 plants' chilling tolerance. Thus, SlHSP17.7 modulates tolerance to chilling via both membrane fluidity and Ca2+-mediated CBF pathway in tomato plants.
Collapse
Affiliation(s)
- Yuanyuan Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Institute of Vegetable Science, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Shuwen Lv
- Institute of Vegetable Science, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Yaran Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chenliang Chang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Hong
- Shenyang Institute of Technology, Shenyang 113122, China
| | - Jing Jiang
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang 110866, China
| |
Collapse
|
48
|
Sun L, Wang J, Lian L, Song J, Du X, Liu W, Zhao W, Yang L, Li C, Qin Y, Yang R. Systematic analysis of the sugar accumulation mechanism in sucrose- and hexose- accumulating cherry tomato fruits. BMC PLANT BIOLOGY 2022; 22:303. [PMID: 35729535 PMCID: PMC9215100 DOI: 10.1186/s12870-022-03685-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/09/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Sugar content is an important indicator of fruit quality. Except for a few wild tomato species that accumulate sucrose in the fruits, most cultivated tomato species accumulate hexose. Although several studies have focused on wild sucrose-accumulating tomato, the sucrose accumulation mechanism is still unclear. RESULTS Here, two homozygous inbred cherry tomato lines ('TB0023' and 'TB0278', which accumulated sucrose and hexose, respectively) were selected to analyze the sugar accumulation mechanism. Carbohydrate analysis, cytological observation, gene expression and enzyme activity analysis and proteomics methods were used in this study. The results indicated that glucose and fructose were absolutely dominant in the soluble sugar content of hexose-accumulating cherry tomato fruit, while sucrose and a certain proportion of hexose were the main forms of soluble sugar in sucrose-accumulating cherry tomato fruit. The phloem unloading pathway of the hexose-accumulating cherry tomato fruit switched from symplastic to apoplastic during fruit development, and the sucrose-accumulating cherry tomato probably had a mixed unloading pathway involving the symplastic and apoplastic. High activity of acid invertase (AI), sucrose phosphate synthase (SPS), sucrose synthase (SS) and sugar transporters LeSUT1, SlSWEET2a and SlSWEET12c were important factors for hexose accumulation in the hexose-accumulating cherry tomato fruit, while LeSUT2, SPS, SS, SlSWEET1b, SlSWEET5b, SlSWEET11b, SlSWEET7a, SlSWEET14 were responsible for solute sugar accumulation in the sucrose-accumulating cherry tomato. CONCLUSIONS This study provides detailed evidence for elucidation of the tomato sugar accumulation mechanism from the perspective of cell structure, physiology and molecular biology, providing a theoretical basis for the improvement of tomato quality and aiding the utilization of tomato genetic resources.
Collapse
Affiliation(s)
- Lulu Sun
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
| | - Jianli Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
| | - Liqiang Lian
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
| | - Jian Song
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
| | - Xueni Du
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
| | - Wenke Liu
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
| | - Wenchao Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
| | - Liu Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China
| | - Changbao Li
- Beijing Vegetable Research Centre, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, Haidian District, China
| | - Yong Qin
- Department of Forestry and Horticulture, Xinjiang Agricultural University, No.311 Nongda Dong Road, Urumqi, 830052, Xinjiang, China.
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, No.7 Beinong Road, Beijing, 102206, Changping District, China.
| |
Collapse
|
49
|
Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate ( Punica granatum). Int J Mol Sci 2022; 23:ijms23052471. [PMID: 35269614 PMCID: PMC8909982 DOI: 10.3390/ijms23052471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
Members of the sugars will eventually be exported transporter (SWEET) family regulate the transport of different sugars through the cell membrane and control the distribution of sugars inside and outside the cell. The SWEET gene family also plays important roles in plant growth and development and physiological processes. So far, there are no reports on the SWEET family in pomegranate. Meanwhile, pomegranate is rich in sugar, and three published pomegranate genome sequences provide resources for the study of the SWEET gene family. 20 PgSWEETs from pomegranate and the known Arabidopsis and grape SWEETs were divided into four clades (Ⅰ, Ⅱ, Ⅲ and Ⅳ) according to the phylogenetic relationships. PgSWEETs of the same clade share similar gene structures, predicting their similar biological functions. RNA-Seq data suggested that PgSWEET genes have a tissue-specific expression pattern. Foliar application of tripotassium phosphate significantly increased the total soluble sugar content of pomegranate fruits and leaves and significantly affected the expression levels of PgSWEETs. The plant growth hormone regulator assay also significantly affected the PgSWEETs expression both in buds of bisexual and functional male flowers. Among them, we selected PgSWEET17a as a candidate gene that plays a role in fructose transport in leaves. The 798 bp CDS sequence of PgSWEET17a was cloned, which encodes 265 amino acids. The subcellular localization of PgSWEET17a showed that it was localized to the cell membrane, indicating its involvement in sugar transport. Transient expression results showed that tobacco fructose content was significantly increased with the up-regulation of PgSWEET17a, while both sucrose and glucose contents were significantly down-regulated. The integration of the PgSWEET phylogenetic tree, gene structure and RNA-Seq data provide a genome-wide trait and expression pattern. Our findings suggest that tripotassium phosphate and plant exogenous hormone treatments could alter PgSWEET expression patterns. These provide a reference for further functional verification and sugar metabolism pathway regulation of PgSWEETs.
Collapse
|
50
|
Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, Lv H, Wang Y. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions. Biomolecules 2022; 12:biom12020205. [PMID: 35204707 PMCID: PMC8961523 DOI: 10.3390/biom12020205] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The SWEET (sugars will eventually be exported transporter) family was identified as a new class of sugar transporters that function as bidirectional uniporters/facilitators and facilitate the diffusion of sugars across cell membranes along a concentration gradient. SWEETs are found widely in plants and play central roles in many biochemical processes, including the phloem loading of sugar for long-distance transport, pollen nutrition, nectar secretion, seed filling, fruit development, plant–pathogen interactions and responses to abiotic stress. This review focuses on advances of the plant SWEETs, including details about their discovery, characteristics of protein structure, evolution and physiological functions. In addition, we discuss the applications of SWEET in plant breeding. This review provides more in-depth and comprehensive information to help elucidate the molecular basis of the function of SWEETs in plants.
Collapse
Affiliation(s)
- Jialei Ji
- Correspondence: ; Tel.: +86-10-82108756
| | | | | | | | | | | | | |
Collapse
|