1
|
Bertollo AG, Dalazen JB, Cassol JV, Hellmann MB, Mota TL, Ignácio ZM, Bagatini MD. Melatonin's Impact on Cytokine Storm and Modulation of Purinergic Receptors for COVID-19 Prognosis: A Mental Health Perspective. J Mol Neurosci 2024; 74:113. [PMID: 39636363 DOI: 10.1007/s12031-024-02292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
In 2019, coronavirus disease 2019 (COVID-19) started a global health crisis and was associated with high rates of depression and anxiety. Both mental disorders and COVID-19 exhibit similarities in pathophysiology, characterized by immune system overactivation, involvement of the purinergic system, and oxidative stress, besides additional factors and systems likely contributing to the complexities of these conditions. The purinergic system contributes to the disease-influenced immune response, an essential strategy for controlling pathophysiological effects. In this context, the hormone melatonin emerges as a substance that can modulate the purinergic system and contribute positively to the pathophysiology of SARS-CoV-2 infection and associated mental disorders. Melatonin is a hormone that regulates the body's circadian rhythms, plays an essential role in regulating sleep and mood, and modulates the purinergic system. Recent studies suggest melatonin's anti-inflammatory and antioxidant properties may benefit COVID-19. This review explores melatonin's impact on inflammatory cytokine storm in COVID-19 through purinergic system modulation.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Joana Bortolanza Dalazen
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Joana Vitória Cassol
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Mariélly Braun Hellmann
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Tiago Libério Mota
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Zuleide Maria Ignácio
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
2
|
Huang YS, Lu KC, Chang YT, Ka SM, Guo CY, Hsieh HY, Shih HM, Sytwu HK, Wu CC. Melatonin Alleviates Albumin-Induced Tubular Cell Injury by Activating Clock-Controlled Nuclear Enriched Abundant Transcript 1-Mediated Proliferation. ACS Pharmacol Transl Sci 2024; 7:3607-3617. [PMID: 39539256 PMCID: PMC11555500 DOI: 10.1021/acsptsci.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
The pleiotropic and protective effects of melatonin have been demonstrated in a variety of animal models of renal injury. While coding RNAs regulated by melatonin in renal tissues are well identified, the functional involvement of long noncoding RNAs (lncRNAs) in melatonin signaling remains undefined. This study identified nuclear enriched abundant transcript 1 (NEAT1), a clock-controlled lncRNA that was upregulated by melatonin through the BMAL1/CLOCK heterodimer in renal tubular epithelial cells (TECs). Mechanistic studies showed that melatonin enhanced NEAT1 expression via increasing BMAL1 stability and thereby the enrichment of BMAL1 on NEAT1's promoter. Further studies have revealed that NEAT1 promotes the proliferation of TECs by increasing levels of H3K27ac and H3K4me1 at the promoter regions of the proliferation gene MKI67. Treatment of albumin-injured TECs with melatonin promoted proliferation by transactivating NEAT1 and restoring the expression levels of core clock genes and MKI67. Moreover, melatonin treatment ameliorated proteinuria, hypoalbuminemia, and fibrotic lesions, which was correlated with increased levels of core clock genes, H3K27ac, Mki67, and Neat1 in experimental MN kidneys. Melatonin mediates a novel regulatory axis, BMAL1-NEAT1-MKI67, in TEC proliferation, establishing potential therapeutic targets for MN and other renal diseases.
Collapse
Affiliation(s)
- Yen-Sung Huang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Biomedical
Translation Research Center, Academia Sinica, Taipei 115021, Taiwan
- Graduate
Institute of Aerospace and Undersea Medicine, National Defense Medical Centerz, Taipei 114201, Taiwan
| | - Kuo-Cheng Lu
- Division
of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231016, Taiwan
| | - Yu-Tien Chang
- School
of Public Health, National Defense Medical
Center, Taipei 114201, Taiwan
| | - Shuk-Man Ka
- Graduate
Institute of Aerospace and Undersea Medicine, National Defense Medical Centerz, Taipei 114201, Taiwan
| | - Cheng-Yi Guo
- Division
of Nephrology, Department of Internal Medicine, Tri-Service General
Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Hsin-Yi Hsieh
- Division
of Nephrology, Department of Internal Medicine, Tri-Service General
Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Hsiu-Ming Shih
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Biomedical
Translation Research Center, Academia Sinica, Taipei 115021, Taiwan
| | - Huey-Kang Sytwu
- National
Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 350401, Taiwan
- Department
and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
| | - Chia-Chao Wu
- Division
of Nephrology, Department of Internal Medicine, Tri-Service General
Hospital, National Defense Medical Center, Taipei 114202, Taiwan
- Department
and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan
| |
Collapse
|
3
|
Zheng J, Zhao L, Zhang Y, He W, Guo X, Wang J. Melatonin alleviates high glucose-induced cardiomyocyte injury through suppressing mitochondrial FUNDC1-DRP1 axis. J Pharm Pharmacol 2024; 76:1431-1448. [PMID: 39306802 DOI: 10.1093/jpp/rgae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/21/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVES To use H9c2 cardiomyocytes to establish a diabetic cardiomyopathic model by exposing these cells to high glucose (HG), followed by treating them with melatonin (MEL) or plasmid vectors overexpressing FUN14 Domain Containing 1 (FUNDC1). METHODS We employed quantitative real-time PCR, mitochondrial staining, and biochemical assays to measure the activity of various antioxidant and mitochondrial complex functions under various treatment conditions. KEY FINDINGS Our results showed that HG induced the expression of FUNDC1 and increased mitochondrial oxidative stress and fragmentation, while MEL treatment reversed most of these pathological effects. Moreover, HG exposure activated dynamin-related protein 1 expression and its translocation to mitochondria. Modulation of AMP-activated protein kinase level was found to be another pathological hallmark. In silico molecular docking, analysis revealed that MEL could directly bind the catalytic groove of FUNDC1 through Van der Waal's force and hydrogen bonding. Finally, MEL ameliorated diabetic cardiomyopathy-induced mitochondrial injury through FUNDC1 in vivo. CONCLUSIONS Hyperglycemia induced mitochondrial fragmentation and altered electron transport chain complex functions, which could be ameliorated by MEL treatment, suggesting its potential as a cardiovascular therapeutic.
Collapse
Affiliation(s)
- Junyi Zheng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin 300222, China
- Tianjin Institute of Cardiovascular Disease, Tianjin 300222, China
| | - Lili Zhao
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin 300222, China
- Tianjin Institute of Cardiovascular Disease, Tianjin 300222, China
| | - Yingying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin 300222, China
- Tianjin Institute of Cardiovascular Disease, Tianjin 300222, China
| | - Wenbin He
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin 300222, China
- Tianjin Institute of Cardiovascular Disease, Tianjin 300222, China
| | - Xukun Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin 300222, China
- Tianjin Institute of Cardiovascular Disease, Tianjin 300222, China
| | - Jixiang Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin 300222, China
- Tianjin Institute of Cardiovascular Disease, Tianjin 300222, China
| |
Collapse
|
4
|
Luo R, Yang KT, Wang F, Zheng H, Yang T. Collecting Duct Pro(Renin) Receptor Contributes to Unilateral Ureteral Obstruction-Induced Kidney Injury via Activation of the Intrarenal RAS. Hypertension 2024; 81:2152-2161. [PMID: 39171392 PMCID: PMC11410543 DOI: 10.1161/hypertensionaha.123.21740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Although the concept of the intrarenal renin-angiotensin system (RAS) in renal disease is well-described in the literature, the precise pathogenic role and mechanism of this local system have not been directly assessed in the absence of confounding influence from the systemic RAS. The present study used novel mouse models of collecting duct (CD)-specific deletion of (pro)renin receptor (PRR) or renin together with pharmacological inhibition of soluble PRR production to unravel the precise contribution of the intrarenal RAS to renal injury induced by unilateral ureteral obstruction. METHODS We examined the impact of CD-specific deletion of PRR, CD-specific deletion of renin, and S1P (site-1 protease) inhibitor PF429242 treatment on renal fibrosis and inflammation and the indices of the intrarenal RAS in a mouse model of unilateral ureteral obstruction. RESULTS After 3 days of unilateral ureteral obstruction, the indices of the intrarenal RAS including the renal medullary renin content, activity and mRNA expression, and Ang (angiotensin) II content in obstructed kidneys of floxed mice were all increased. That effect was reversed with CD-specific deletion of PRR, CD-specific deletion of renin, and PF429242 treatment, accompanied by consistent improvement in renal fibrosis and inflammation. On the other hand, renal cortical renin levels were unaffected by unilateral ureteral obstruction, irrespective of the genotype. Similar results were obtained via pharmacological inhibition of S1P, the key protease for the generation of soluble PRR. CONCLUSIONS Our results reveal that PRR-dependent/soluble PRR-dependent activation of CD renin represents a key determinant of the intrarenal RAS and, thus, obstruction-induced renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Renfei Luo
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Kevin T. Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Fei Wang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Huaqing Zheng
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Mizdrak M, Smajic B, Mizdrak I, Ticinovic Kurir T, Kumric M, Paladin I, Batistic D, Bozic J. Endocrine Disorders in Nephrotic Syndrome-A Comprehensive Review. Biomedicines 2024; 12:1860. [PMID: 39200324 PMCID: PMC11351826 DOI: 10.3390/biomedicines12081860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Nephrotic syndrome is a clinical syndrome characterized by massive proteinuria, called nephrotic range proteinuria (over 3.5 g per day in adults or 40 mg/m2 per hour in children), hypoalbuminemia, oncotic edema, and hyperlipidemia, with an increasing incidence over several years. Nephrotic syndrome carries severe morbidity and mortality risk. The main pathophysiological event in nephrotic syndrome is increased glomerular permeability due to immunological, paraneoplastic, genetic, or infective triggers. Because of the marked increase in the glomerular permeability to macromolecules and the associated urinary loss of albumins and hormone-binding proteins, many metabolic and endocrine abnormalities are present. Some of them are well known, such as overt or subclinical hypothyroidism, growth hormone depletion, lack of testosterone, vitamin D, and calcium deficiency. The exact prevalence of these disorders is unknown because of the complexity of the human endocrine system and the differences in their prevalence. This review aims to comprehensively analyze all potential endocrine and hormonal complications of nephrotic syndrome and, vice versa, possible kidney complications of endocrine diseases that might remain unrecognized in everyday clinical practice.
Collapse
Affiliation(s)
- Maja Mizdrak
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.B.)
| | - Bozo Smajic
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia (T.T.K.)
| | - Ivan Mizdrak
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (I.P.)
| | - Tina Ticinovic Kurir
- Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia (T.T.K.)
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.B.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.B.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| | - Ivan Paladin
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (I.P.)
| | - Darko Batistic
- Department of Ophthalmology, University Hospital of Split, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (J.B.)
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
6
|
Vinothkanna A, Prathiviraj R, Sivakumar TR, Ma Y, Sekar S. GC-MS and Network Pharmacology Analysis of the Ayurvedic Fermented Medicine, Chandanasava, Against Chronic Kidney and Cardiovascular Diseases. Appl Biochem Biotechnol 2023; 195:2803-2828. [PMID: 36418713 PMCID: PMC9684947 DOI: 10.1007/s12010-022-04242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
Chandanasava is an Ayurvedic polyherbal fermented traditional medicine (FTM) used by traditional practitioners for millennia. Nevertheless, the mode of action and functional targets are still unknown. The current study includes a pharmacological network analysis to identify the Chandanasava compounds interacting with target proteins involved in chronic kidney disease (CKD) and cardiovascular disease (CVD). Sixty-one Chandanasava phytochemicals were obtained by GC-MS and screened using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). The disease target genes were obtained from DisGeNET and GeneCards databases. Forty-five phytocompounds and 135 potential targets were screened for CKD and CVD target proteins and protein interaction networks were constructed. The pharmacological network was deciphered employing target proteins involved in the mechanical action of Chandanasava. The results indicated that 10 bioactive compounds exhibited higher binding affinity patterns with the screened 42 CKD and CVD target proteins. Gene Ontology and KEGG analysis revealed target pathways involved in CKD and CVD, which were further explored by detailed analysis and network-coupled drug profile screening. The molecular docking results showed piperine and melatonin as effective inhibitors/regulators of the hub genes of CKD and CVD. The current study establishing authentic bioactive compounds in FTM is based on deeper insights into recognized Ayurvedic medicines. Representing the workflow of the network pharmacological analysis.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | | | - Thasma Raman Sivakumar
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Soundarapandian Sekar
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| |
Collapse
|
7
|
Murali R, Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Kannampuzha S, Namachivayam A, Madhyastha H, Renu K, Ganesan R. Crosstalk between COVID-19 Infection and Kidney Diseases: A Review on the Metabolomic Approaches. Vaccines (Basel) 2023; 11:vaccines11020489. [PMID: 36851366 PMCID: PMC9959335 DOI: 10.3390/vaccines11020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disorder. Various organ injuries have been reported in response to this virus, including kidney injury and, in particular, kidney tubular injury. It has been discovered that infection with the virus does not only cause new kidney disease but also increases treatment difficulty and mortality rates in people with kidney diseases. In individuals hospitalized with COVID-19, urinary metabolites from several metabolic pathways are used to distinguish between patients with acute kidney injury (AKI) and those without. This review summarizes the pathogenesis, pathophysiology, treatment strategies, and role of metabolomics in relation to AKI in COVID-19 patients. Metabolomics is likely to play a greater role in predicting outcomes for patients with kidney disease and COVID-19 with varying levels of severity in the near future as data on metabolic profiles expand rapidly. Here, we also discuss the correlation between COVID-19 and kidney diseases and the available metabolomics approaches.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (A.V.G.); (R.G.)
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kaviyarasi Renu
- Center of Molecular Medicine and Diagnostics (COMMAND), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (A.V.G.); (R.G.)
| |
Collapse
|
8
|
Elkamhawy A, Oh NK, Gouda NA, Abdellattif MH, Alshammari SO, Abourehab MAS, Alshammari QA, Belal A, Kim M, Al-Karmalawy AA, Lee K. Novel Hybrid Indole-Based Caffeic Acid Amide Derivatives as Potent Free Radical Scavenging Agents: Rational Design, Synthesis, Spectroscopic Characterization, In Silico and In Vitro Investigations. Metabolites 2023; 13:metabo13020141. [PMID: 36837759 PMCID: PMC9966950 DOI: 10.3390/metabo13020141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antioxidant small molecules can prevent or delay the oxidative damage caused by free radicals. Herein, a structure-based hybridization of two natural antioxidants (caffeic acid and melatonin) afforded a novel hybrid series of indole-based amide analogues which was synthesized with potential antioxidant properties. A multiple-step scheme of in vitro radical scavenging assays was carried out to evaluate the antioxidant activity of the synthesized compounds. The results of the DPPH assay demonstrated that the indole-based caffeic acid amides are more active free radical scavenging agents than their benzamide analogues. Compared to Trolox, a water-soluble analogue of vitamin E, compounds 3a, 3f, 3h, 3j, and 3m were found to have excellent DPPH radical scavenging activities with IC50 values of 95.81 ± 1.01, 136.8 ± 1.04, 86.77 ± 1.03, 50.98 ± 1.05, and 67.64 ± 1.02 µM. Three compounds out of five (3f, 3j, and 3m) showed a higher capacity to neutralize the radical cation ABTS•+ more than Trolox with IC50 values of 14.48 ± 0.68, 19.49 ± 0.54, and 14.92 ± 0.30 µM, respectively. Compound 3j presented the highest antioxidant activity with a FRAP value of 4774.37 ± 137.20 μM Trolox eq/mM sample. In a similar way to the FRAP assay, the best antioxidant activity against the peroxyl radicals was demonstrated by compound 3j (10,714.21 ± 817.76 μM Trolox eq/mM sample). Taken together, compound 3j was validated as a lead hybrid molecule that could be optimized to maximize its antioxidant potency for the treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
- College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Na Kyoung Oh
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
| | - Noha A. Gouda
- College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Turaba Branch P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saud O. Alshammari
- Department of Plant Chemistry and Natural Products, Faculty of Pharmacy, Northern Border University, Arar 91431, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Qamar A. Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Arar 91431, Saudi Arabia
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
- Correspondence: (A.A.A.-K.); (K.L.)
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University—Seoul, Goyang 10326, Republic of Korea
- Correspondence: (A.A.A.-K.); (K.L.)
| |
Collapse
|
9
|
Costello HM, Johnston JG, Juffre A, Crislip GR, Gumz ML. Circadian clocks of the kidney: function, mechanism, and regulation. Physiol Rev 2022; 102:1669-1701. [PMID: 35575250 PMCID: PMC9273266 DOI: 10.1152/physrev.00045.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
An intrinsic cellular circadian clock is located in nearly every cell of the body. The peripheral circadian clocks within the cells of the kidney contribute to the regulation of a variety of renal processes. In this review, we summarize what is currently known regarding the function, mechanism, and regulation of kidney clocks. Additionally, the effect of extrarenal physiological processes, such as endocrine and neuronal signals, on kidney function is also reviewed. Circadian rhythms in renal function are an integral part of kidney physiology, underscoring the importance of considering time of day as a key biological variable. The field of circadian renal physiology is of tremendous relevance, but with limited physiological and mechanistic information on the kidney clocks this is an area in need of extensive investigation.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Fatigue and Quality of Life in Children with Chronic Kidney Disease. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091414. [PMID: 36138723 PMCID: PMC9497575 DOI: 10.3390/children9091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022]
Abstract
Background: This study investigates the effect of chronic kidney disease (CKD) stage on fatigue and health-related quality of life (HRQoL) in the pediatric population. Material and Methods: The PedsQL (Pediatric Quality of Life Inventory) Multidimensional Fatigue Scale (subcategories: general, sleep/rest, and cognitive fatigue) and HRQoL Generic Core Scales (subcategories: physical, emotional, social, and school functioning) questionnaires were completed by 30 patients aged from 7 to 18 years old with CKD stage 2−4, CKD stage 5 on dialysis (CKD 5D), and kidney transplantation (KTx), as well as their parents. Results: Both low “Total Fatigue” and “Total HRQoL” scores were reported in 16.7% of patients. “Sleep/Rest Fatigue”, “Emotional Functioning”, and “School functioning” were the lowest scored subcategories. CKD 5D/KTx patients presented lower “Sleep/Rest Fatigue” (p = 0.022) and, more frequently, low “School Functioning” scores (p = 0.029). The “Total HRQoL” score was correlated to the “Total Fatigue” score (rs = 0.625, p < 0.001). A low “Sleep/Rest Fatigue” score was associated with low “Physical Functioning”, “School Functioning”, and “Total HRQoL” scores (p = 0.016, p = 0.001, and p = 0.047 respectively). Parents’ HRQoL score was lower than patients’ score on “Physical Functioning” (p = 0.040) and “School Functioning” subcategories (p = 0.045). Conclusions: Fatigue and disturbed HRQoL are mostly observed in CKD 5D and KTx pediatric patients, and are associated with sleep disorders and school dysfunction. Fatigue affects HRQoL, which is perceived as more deteriorated by the patients’ parents.
Collapse
|
11
|
Melatonin Alleviates Acute Kidney Injury by Inhibiting NRF2/Slc7a11 Axis-Mediated Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4776243. [PMID: 35979396 PMCID: PMC9377938 DOI: 10.1155/2022/4776243] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/21/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Acute kidney injury (AKI) is still a puzzling clinical problem; its pathophysiology is not completely understood. Up to now, an effective treatment for AKI is lacking. Ferroptosis is a novel form of regulated cell death characterized by the lethal accumulation of lipid hydroperoxides that are dependent on iron and reactive oxygen species and mitochondrial dysfunction. Recently, ferroptosis was shown to play a vital role in AKI such as ischemia-reperfusion kidney injury and folic acid-induced AKI. Melatonin (MT) is an antioxidant that regulates the sleep-wake cycle. While the therapeutic effect of melatonin on AKI has been reported, its mechanism for the treatment of renal ferroptosis remains unclear. We found that melatonin treatment significantly alleviated the serum biochemistry index and histopathological alterations in vivo AKI models induced by bilateral renal artery ischemia reperfusion and folic acid in mice. Ferroptosis induced by hypoxia and reoxygenation or erastin (Era) in mouse tubular epithelial cells (MTEC) was also rescued by melatonin treatment. RNA sequence analysis of ferroptosis-related genes showed that melatonin affects oxidative stress responses by inhibiting hypoxia and reoxygenation- (HR-) mediated downregulation of NRF2 and upregulation of Slc7a11 in MTEC. Specific knockdown of NRF2 increased the sensitivity of cells to ferroptosis, and melatonin failed to protect against ferroptosis in the HR condition. Together, our data indicate that melatonin prevents ferroptosis in AKI by acting on the NRF2/Slc7a11 axis.
Collapse
|
12
|
Turkyilmaz IB, Us H, Sezen Us A, Karabulut-Bulan O, Yanardag R. Protective effect of melatonin and carnosine against radiation induced kidney injury. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Fang Y, Son S, Yang J, Oh S, Jo SK, Cho W, Kim MG. Perturbation of Circadian Rhythm Is Associated with Increased Prevalence of Chronic Kidney Disease: Results of the Korean Nationwide Population-Based Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5732. [PMID: 35565131 PMCID: PMC9102791 DOI: 10.3390/ijerph19095732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Disturbances in circadian rhythms cause several health problems, such as psychosis, metabolic syndrome, and cancer; however, their effect on kidney disease remains unclear. This study aimed to evaluate the association between chronic kidney disease (CKD) and sleep disturbance in a Korean adult population. A total of 17,408 participants who completed the National Health and Nutrition Examination Survey from 2016 to 2018 were assessed for their sleep patterns and renal function. CKD was defined as an estimated glomerular filtration rate ≤ 60 mL/min/1.73 m² or a positive dipstick urinalysis. Sleep onset time and sleep duration showed significant differences between the control and CKD groups (p < 0.001). After adjusting for the covariates, sleep onset time rather than sleep duration was independently associated with incidence of CKD, and this association was more significant in people who were older, in women, and in those with low body mass index and no comorbidities. When comparing the prevalence of newly diagnosed CKD according to sleep onset time in a population with no CKD risk factors or no history of CKD, the early bedtime group showed an independent association with incidence of new CKD (odds ratio (OR), 1.535; 95% confidence interval (CI), 1.011−2.330) even after adjusting for covariates. Impaired circadian rhythm along with sleep disturbance could be associated with CKD development; therefore, sleep disturbance might be an important therapeutic target for CKD.
Collapse
Affiliation(s)
- Yina Fang
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Serhim Son
- Department of Biostatistics, Korea University College of Medicine, Seoul 02842, Korea;
| | - Jihyun Yang
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Sewon Oh
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Sang-Kyung Jo
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Wonyong Cho
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Myung-Gyu Kim
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| |
Collapse
|
14
|
Soldevila B, Puig-Domingo M, Marazuela M. Basic mechanisms of SARS-CoV-2 infection. What endocrine systems could be implicated? Rev Endocr Metab Disord 2022; 23:137-150. [PMID: 34333732 PMCID: PMC8325622 DOI: 10.1007/s11154-021-09678-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Although SARS-CoV-2 viral attacks starts by the interaction of spike protein (S Protein) to ACE2 receptor located at the cell surface of respiratory tract and digestive system cells, different endocrine targets, endocrine organs and metabolic conditions are of fundamental relevance for understanding disease progression and special outcomes, in particular those of fatal consequences for the patient. During pandemic, moreover, a specific phenotype of COVID-19 metabolic patient has been described, characterized by being at particular risk of worse outcomes. In the present paper we describe the mechanism of viral interaction with endocrine organs, emphasizing the specific endocrine molecules of particular relevance explaining COVID-19 disease evolution and outcomes.
Collapse
Affiliation(s)
- Berta Soldevila
- Endocrinology and Nutrition Service, Department of Medicine, Germans Trias i Pujol Research Institute and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Manel Puig-Domingo
- Endocrinology and Nutrition Service, Department of Medicine, Germans Trias i Pujol Research Institute and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de La Princesa, Instituto de Investigación de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
15
|
Elkamhawy A, Woo J, Gouda NA, Kim J, Nada H, Roh EJ, Park KD, Cho J, Lee K. Melatonin Analogues Potently Inhibit MAO-B and Protect PC12 Cells against Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101604. [PMID: 34679739 PMCID: PMC8533333 DOI: 10.3390/antiox10101604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase B (MAO-B) metabolizes dopamine and plays an important role in oxidative stress by altering the redox state of neuronal and glial cells. MAO-B inhibitors are a promising therapeutical approach for Parkinson’s disease (PD). Herein, 24 melatonin analogues (3a–x) were synthesized as novel MAO-B inhibitors with the potential to counteract oxidative stress in neuronal PC12 cells. Structure elucidation, characterization, and purity of the synthesized compounds were performed using 1H-NMR, 13C-NMR, HRMS, and HPLC. At 10 µM, 12 compounds showed >50% MAO-B inhibition. Among them, compounds 3n, 3r, and 3u–w showed >70% inhibition of MAO-B and IC50 values of 1.41, 0.91, 1.20, 0.66, and 2.41 µM, respectively. When compared with the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), compounds 3n, 3r, 3u, and 3v demonstrated better selectivity indices (SI > 71, 109, 83, and 151, respectively). Furthermore, compounds 3n and 3r exhibited safe neurotoxicity profiles in PC12 cells and reversed 6-OHDA- and rotenone-induced neuronal oxidative stress. Both compounds significantly up-regulated the expression of the anti-oxidant enzyme, heme oxygenase (HO)-1. Treatment with Zn(II)-protoporphyrin IX (ZnPP), a selective HO-1 inhibitor, abolished the neuroprotective effects of the tested compounds, suggesting a critical role of HO-1 up-regulation. Both compounds increased the nuclear translocation of Nrf2, which is a key regulator of the antioxidative response. Taken together, these data show that compounds 3n and 3r could be further exploited for their multi-targeted role in oxidative stress-related PD therapy.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jiyu Woo
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
| | - Noha A. Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (A.E.); (J.W.); (N.A.G.); (H.N.)
- Correspondence: (K.D.P.); (J.C.); (K.L.)
| |
Collapse
|
16
|
Local Inhibition of Indoleamine 2,3-Dioxygenase Mitigates Renal Fibrosis. Biomedicines 2021; 9:biomedicines9080856. [PMID: 34440060 PMCID: PMC8389588 DOI: 10.3390/biomedicines9080856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern and renal fibrosis is an integral part of the pathophysiological mechanism underlying disease progression. In CKD patients, the majority of metabolic pathways are in disarray and perturbations in enzyme activity most likely contribute to the wide variety of comorbidities observed in these patients. To illustrate, catabolism of tryptophan by indoleamine 2,3-dioxygenase (IDO) gives rise to numerous biologically active metabolites implicated in CKD progression. Here, we evaluated the effect of antagonizing IDO on renal fibrogenesis. To this end, we antagonized IDO using 1-methyl-D-tryptophan (1-MT) and BMS-98620 in TGF-β-treated murine precision-cut kidney slices (mPCKS) and in mice subjected to unilateral ureteral obstruction (UUO). The fibrotic response was evaluated on both the gene and protein level using qPCR and western blotting. Our results demonstrated that treatment with 1-MT or BMS-985205 markedly reduced TGF-β-mediated fibrosis in mPCKS, as seen by a decreased expression of collagen type 1, fibronectin, and α-smooth muscle actin. Moreover, IDO protein expression clearly increased following UUO, however, treatment of UUO mice with either 1-MT or BMS-986205 did not significantly affect the gene and protein expression of the tested fibrosis markers. However, both inhibitors significantly reduced the renal deposition of collagen in UUO mice as shown by Sirius red and trichrome staining. In conclusion, this study demonstrates that IDO antagonism effectively mitigates fibrogenesis in mPCKS and reduces renal collagen accumulation in UUO mice. These findings warrant further research into the clinical application of IDO inhibitors for the treatment of renal fibrosis.
Collapse
|
17
|
Moghadasi S, Elveny M, Rahman HS, Suksatan W, Jalil AT, Abdelbasset WK, Yumashev AV, Shariatzadeh S, Motavalli R, Behzad F, Marofi F, Hassanzadeh A, Pathak Y, Jarahian M. A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine. J Transl Med 2021; 19:302. [PMID: 34253242 PMCID: PMC8273572 DOI: 10.1186/s12967-021-02980-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) due to their pro-angiogenic, anti-apoptotic, and immunoregulatory competencies along with fewer ethical issues are presented as a rational strategy for regenerative medicine. Current reports have signified that the pleiotropic effects of MSCs are not related to their differentiation potentials, but rather are exerted through the release of soluble paracrine molecules. Being nano-sized, non-toxic, biocompatible, barely immunogenic, and owning targeting capability and organotropism, exosomes are considered nanocarriers for their possible use in diagnosis and therapy. Exosomes convey functional molecules such as long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs), proteins (e.g., chemokine and cytokine), and lipids from MSCs to the target cells. They participate in intercellular interaction procedures and enable the repair of damaged or diseased tissues and organs. Findings have evidenced that exosomes alone are liable for the beneficial influences of MSCs in a myriad of experimental models, suggesting that MSC- exosomes can be utilized to establish a novel cell-free therapeutic strategy for the treatment of varied human disorders, encompassing myocardial infarction (MI), CNS-related disorders, musculoskeletal disorders (e.g. arthritis), kidney diseases, liver diseases, lung diseases, as well as cutaneous wounds. Importantly, compared with MSCs, MSC- exosomes serve more steady entities and reduced safety risks concerning the injection of live cells, such as microvasculature occlusion risk. In the current review, we will discuss the therapeutic potential of MSC- exosomes as an innovative approach in the context of regenerative medicine and highlight the recent knowledge on MSC- exosomes in translational medicine, focusing on in vivo researches.
Collapse
Affiliation(s)
- Soudeh Moghadasi
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marischa Elveny
- DS & CI Research Group, Universitas Sumatera Utara, Medan, Indonesia
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farahnaz Behzad
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa Florida, USA
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses the hypertension-induced decrease in Ca 2+-activated K + channels in uterine arteries. Hypertens Res 2021; 44:1079-1086. [PMID: 34103696 DOI: 10.1038/s41440-021-00675-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 11/08/2022]
Abstract
Decreased secretion of melatonin was reported to be associated with an enhanced risk of hypertension and diabetes. However, the effect of melatonin on gestational hypertension (GH) and the underlying mechanism remain unclear. A GH mouse model was established via electrical stimulation. The hypertensive phenotypes were indicated by systolic blood pressure (SBP) and urinary protein levels. Uterine artery (UtA) endothelial function was detected by relaxation, peak systolic velocity (PSV), end-diastolic velocity (EDV), resistance index (RI) and pulsatility index (PI). Protein expression levels were determined using immunochemistry and Western blots. Pregnancy outcomes were indicated by the fetal live ratio, fetal weight and placental weight. Melatonin supplementation ameliorated hypertensive phenotypes in the mice with GH and enhanced UtA endothelial response to acetylcholine. The BKCa potassium channel was involved in the effect of melatonin on UtA endothelial function, and melatonin promoted BKCa potassium channel expression and function in UtAs. Finally, melatonin improved pregnancy outcomes in pregnant mice. In conclusion, melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses hypertension-induced decreases in Ca2+-activated K+ channels in uterine arteries.
Collapse
|
19
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
20
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Can Melatonin Be a Potential "Silver Bullet" in Treating COVID-19 Patients? Diseases 2020; 8:E44. [PMID: 33256258 PMCID: PMC7709121 DOI: 10.3390/diseases8040044] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
The therapeutic potential of melatonin as a chronobiotic cytoprotective agent to counteract the consequences of COVID-19 infections has been advocated. Because of its wide-ranging effects as an antioxidant, anti-inflammatory, and immunomodulatory compound, melatonin could be unique in impairing the consequences of SARS-CoV-2 infection. Moreover, indirect evidence points out to a possible antiviral action of melatonin by interfering with SARS-CoV-2/angiotensin-converting enzyme 2 association. Melatonin is also an effective chronobiotic agent to reverse the circadian disruption of social isolation and to control delirium in severely affected patients. As a cytoprotector, melatonin serves to combat several comorbidities such as diabetes, metabolic syndrome, and ischemic and non-ischemic cardiovascular diseases, which aggravate COVID-19 disease. In view of evidence on the occurrence of neurological sequels in COVID-19-infected patients, another putative application of melatonin emerges based on its neuroprotective properties. Since melatonin is an effective means to control cognitive decay in minimal cognitive impairment, its therapeutic significance for the neurological sequels of SARS-CoV-2 infection should be considered. Finally, yet importantly, exogenous melatonin can be an adjuvant capable of augmenting the efficacy of anti-SARS-CoV-2 vaccines. We discuss in this review the experimental evidence suggesting that melatonin is a potential "silver bullet" in the COVID 19 pandemic.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires 1007, Argentina;
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada;
| | | |
Collapse
|
21
|
Ramamoorthy H, Abraham P, Isaac B. Melatonin protects against tenofovir-induced nephrotoxicity in rats by targeting multiple cellular pathways. Hum Exp Toxicol 2020; 40:826-850. [PMID: 33146023 DOI: 10.1177/0960327120968860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nephrotoxicity is a dose-limiting side effect of long-term use of tenofovir, a reverse transcriptase inhibitor that is used for the treatment of HIV infection and chronic hepatitis B infection. Identifying an agent that prevents tenofovir disoproxil fumarate (TDF)-induced renal injury can lead to its better tolerance, and a more effective treatment can be achieved. The present study is aimed at investigating whether melatonin, a potent antioxidant and anti-inflammatory agent, protects against TDF nephrotoxicity in rats and to determine its cellular targets. Rats were divided into groups and treated as follows. Group I (control): Rats in this group (n = 6) received sterile water only by gavage for 35 days. Group II: Rats (n = 6) in this group received 600 mg/kg body weight TDF in sterile water by gavage for 35 days. Group III: Rats (n = 6) in this group received once daily 20 mg/kg bodyweight melatonin i.p. 2 h before the administration of 600 mg/kg body weight TDF in sterile water by gavage for 35 days. Group IV: Rats were pretreated daily with 20 mg/kg body weight melatonin i.p. 2 h before the administration of sterile water by gavage. All the rats were sacrificed on the 36th day, after overnight fast. Melatonin pretreatment protected the rats against TDF nephrotoxicity both histologically and biochemically. Biochemically, melatonin pretreatment attenuated TDF-induced, oxidative stress, nitrosative stress, mitochondrial pathway of apoptosis, PARP overactivation and preserved proximal tubular function (p < 0.01). This suggests that melatonin may be useful in ameliorating TDF nephrotoxicity.
Collapse
Affiliation(s)
| | - Premila Abraham
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Bina Isaac
- Department of Anatomy, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
22
|
Rysz J, Franczyk B, Ławiński J, Gluba-Brzózka A. Oxidative Stress in ESRD Patients on Dialysis and the Risk of Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:antiox9111079. [PMID: 33153174 PMCID: PMC7693989 DOI: 10.3390/antiox9111079] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease is highly prevalent worldwide. The decline of renal function is associated with inadequate removal of a variety of uremic toxins that exert detrimental effects on cells functioning, thus affecting the cardiovascular system. The occurrence of cardiovascular aberrations in CKD is related to the impact of traditional risk factors and non-traditional CKD-associated risk factors, including anemia; inflammation; oxidative stress; the presence of some uremic toxins; and factors related to the type, frequency of dialysis and the composition of dialysis fluid. Cardiovascular diseases are the most frequent cause for the deaths of patients with all stages of renal failure. The kidney is one of the vital sources of antioxidant enzymes, therefore, the impairment of this organ is associated with decreased levels of these enzymes as well as increased levels of pro-oxidants. Uremic toxins have been shown to play a vital role in the onset of oxidative stress. Hemodialysis itself also enhances oxidative stress. Elevated oxidative stress has been demonstrated to be strictly related to kidney and cardiac damage as it aggravates kidney dysfunction and induces cardiac hypertrophy. Antioxidant therapies may prove to be beneficial since they can decrease oxidative stress, reduce uremic cardiovascular toxicity and improve survival.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-419 Łódź, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-419 Łódź, Poland; (J.R.); (B.F.)
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-419 Łódź, Poland; (J.R.); (B.F.)
- Correspondence: ; Tel.: +48-42-639-3750
| |
Collapse
|
23
|
Elderly as a High-risk Group during COVID-19 Pandemic: Effect of Circadian Misalignment, Sleep Dysregulation and Melatonin Administration. ACTA ACUST UNITED AC 2020; 4:81-87. [PMID: 33015537 PMCID: PMC7519696 DOI: 10.1007/s41782-020-00111-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The association of age with a higher vulnerability to COVID-19 infection is a subject of major importance. Several factors, including higher stress due to social isolation, diminished melatonin levels with age, and higher exposure of individuals to light at the evening, which reduces melatonin levels and disrupts circadian rhythmicity are relevant for maintaining the circadian health in aged individuals. Properly administered, chronotherapy restores the optimal circadian pattern of the sleep–wake cycle in the elderly. It involves adequate sleep hygiene, timed light exposure, and the use of a chronobiotic medication like melatonin, which affects the output phase of circadian rhythms thus controlling the biological clock. Besides, the therapeutic potential of melatonin as an agent to counteract the consequences of COVID-19 infections has been advocated due to its wide-ranging effects as an antioxidant, anti-inflammatory, and as an immunomodulatory agent, as well as to a possible antiviral action. This article discusses how chronotherapy may reverse the detrimental circadian condition of the elderly in the COVID-19 pandemic.
Collapse
|
24
|
Wang SY, Shi XC, Laborda P. Indole-based melatonin analogues: Synthetic approaches and biological activity. Eur J Med Chem 2020; 185:111847. [DOI: 10.1016/j.ejmech.2019.111847] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
|