1
|
Liu X, Sun H, Hou X, Sun J, Tang M, Zhang YB, Zhang Y, Sun W, Liu C. Standard operating procedure combined with comprehensive quality control system for multiple LC-MS platforms urinary proteomics. Nat Commun 2025; 16:1051. [PMID: 39865094 PMCID: PMC11770173 DOI: 10.1038/s41467-025-56337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
Urinary proteomics is emerging as a potent tool for detecting sensitive and non-invasive biomarkers. At present, the comparability of urinary proteomics data across diverse liquid chromatography-mass spectrometry (LC-MS) platforms remains an area that requires investigation. In this study, we conduct a comprehensive evaluation of urinary proteome across multiple LC-MS platforms. To systematically analyze and assess the quality of large-scale urinary proteomics data, we develop a comprehensive quality control (QC) system named MSCohort, which extracted 81 metrics for individual experiment and the whole cohort quality evaluation. Additionally, we present a standard operating procedure (SOP) for high-throughput urinary proteome analysis based on MSCohort QC system. Our study involves 20 LC-MS platforms and reveals that, when combined with a comprehensive QC system and a unified SOP, the data generated by data-independent acquisition (DIA) workflow in urine QC samples exhibit high robustness, sensitivity, and reproducibility across multiple LC-MS platforms. Furthermore, we apply this SOP to hybrid benchmarking samples and clinical colorectal cancer (CRC) urinary proteome including 527 experiments. Across three different LC-MS platforms, the analyses report high quantitative reproducibility and consistent disease patterns. This work lays the groundwork for large-scale clinical urinary proteomics studies spanning multiple platforms, paving the way for precision medicine research.
Collapse
Grants
- 82170524 National Natural Science Foundation of China (National Science Foundation of China)
- 31901039 National Natural Science Foundation of China (National Science Foundation of China)
- 32171442 National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by grants from the National Key Research and Development Program of China (2021YFA1301602,2021YFA1301603, 2024YFA1307201 to C.L.), the National Natural Science Foundation of China (32171442 and 92474115 to C.L., 82170524 and 31901039 to W.S.), the Fundamental Research Funds for Central Universities, Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research Institutes (JYY2018-7), CAMS Innovation Fund for Medical Sciences (2021-I2M-1-016, 2022-I2M-1-020), Beijing Natural Science Foundation-Daxing Innovation Joint Fund (L246002) and Biologic Medicine Information Center of China, National Scientific Data Sharing Platform for Population and Health.
Collapse
Affiliation(s)
- Xiang Liu
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, China
| | - Haidan Sun
- Proteomics Center, Core Facility of Instrument, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xinhang Hou
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, China
| | - Jiameng Sun
- Proteomics Center, Core Facility of Instrument, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Min Tang
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, China
| | - Yong-Biao Zhang
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, China
| | - Yongqian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Wei Sun
- Proteomics Center, Core Facility of Instrument, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Chao Liu
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, China.
| |
Collapse
|
2
|
Burton JB, Gascard P, Pan D, Bons J, Bai R, Chen-Tanyolac C, Caruso JA, Hunter CL, Schilling B, Tlsty TD. Proteomic Analysis of Breast Cancer Subtypes Identifies Stromal Contributions that Dictate Aggressive Malignant Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634187. [PMID: 39896465 PMCID: PMC11785059 DOI: 10.1101/2025.01.21.634187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Breast cancer manifests as multiple subtypes with distinct patient outcomes and treatment strategies. Here, we optimized proteomic analysis of Formalin-Fixed Paraffin-Embedded (FFPE) specimens from patients diagnosed with five breast cancer subtypes, luminal A, luminal B, Her2, triple negative (TNBC) and metaplastic breast cancers (MBC), and from disease-free individuals undergoing reduction mammoplasty (RM). We identified and quantified ∼6,000 protein groups (with >2 peptides per protein) with significant changes in over 26% of proteins comparing each cancer subtype with control RM. Stringent statistical filters allowed us to deeply mine 576 significant conserved protein changes shared by all subtypes and protein changes unique to each subtype. The most aggressive subtype, MBC, revealed exacerbated stromal stress responses, as illustrated by a collagenolytic extracellular matrix (ECM) and immune participation biased towards neutrophils and eosinophils. Immunostaining of breast tissue sections confirmed differences across subtypes, in particular, a dramatic upregulation of SERPINH1, neutrophil-specific myeloperoxidase and eosinophil cationic protein in MBC. In summary, deep proteomic, digitalized protein abundance profiles, generated from FFPE breast cancer tissues, revealed significant changes in ECM and cellular proteins providing insight into clinically relevant states.
Collapse
|
3
|
Du H, Rose JP, Bons J, Guo L, Valentino TR, Wu F, Burton JB, Basisty N, Manwaring-Mueller M, Makhijani P, Chen N, Chang V, Winer S, Campisi J, Furman D, Nagy A, Schilling B, Winer DA. Substrate stiffness dictates unique doxorubicin-induced senescence-associated secretory phenotypes and transcriptomic signatures in human pulmonary fibroblasts. GeroScience 2025:10.1007/s11357-025-01507-x. [PMID: 39826027 DOI: 10.1007/s11357-025-01507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025] Open
Abstract
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood. Here, we show that mechanical tension, modeled using cell culture substrate rigidity, influences senescent cell markers like SA-β-gal and secretory phenotypes. Comparing human primary pulmonary fibroblasts (IMR-90) cultured on physiological (2 kPa), fibrotic (50 kPa), and plastic (approximately 3 GPa) substrates, followed by senescence induction using doxorubicin, we identified unique high-stiffness-driven secretory protein profiles using mass spectrometry and transcriptomic signatures, both showing an enrichment in collagen proteins. Consistently, clusters of p21 + cells are seen in fibrotic regions of bleomycin induced pulmonary fibrosis in mice. Computational meta-analysis of single-cell RNA sequencing datasets from human interstitial lung disease confirmed these stiffness SASP genes are highly expressed in disease fibroblasts and strongly correlate with mechanotransduction and senescence-related pathways. Thus, mechanical forces shape cell senescence and their secretory phenotypes.
Collapse
Affiliation(s)
- Huixun Du
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jacob P Rose
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Joanna Bons
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Li Guo
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | | | - Fei Wu
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Jordan B Burton
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Nathan Basisty
- Longitudinal Studies Section, Translational Gerontology Branch, NIA, NIH, Baltimore, MA, USA
| | | | - Priya Makhijani
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Nan Chen
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Veronica Chang
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, , Canada
| | - Judith Campisi
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - David Furman
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Birgit Schilling
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel A Winer
- Buck Institute for Research On Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Madhavan SS, Roa Diaz S, Peralta S, Nomura M, King CD, Ceyhan KE, Lin A, Bhaumik D, Foulger AC, Shah S, Blade T, Gray W, Chamoli M, Eap B, Panda O, Diaz D, Garcia TY, Stubbs BJ, Ulrich SM, Lithgow GJ, Schilling B, Verdin E, Chaudhuri AR, Newman JC. β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain. Cell Chem Biol 2025; 32:174-191.e8. [PMID: 39626664 PMCID: PMC11741930 DOI: 10.1016/j.chembiol.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024]
Abstract
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protein interactions. We demonstrate βHB-induced protein insolubility is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. This mechanism is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We generate libraries of the βHB-induced protein insolublome using mass spectrometry proteomics, and identify common protein domains and upstream regulators. We show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain. These data indicate a metabolically regulated mechanism of proteostasis relevant to aging and AD.
Collapse
Affiliation(s)
- Sidharth S Madhavan
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | - Stephanie Roa Diaz
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | - Sawyer Peralta
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | - Kaya E Ceyhan
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anwen Lin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Dipa Bhaumik
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anna C Foulger
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Thanh Blade
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Wyatt Gray
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Manish Chamoli
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Brenda Eap
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Oishika Panda
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Diego Diaz
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Thelma Y Garcia
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | | | - Scott M Ulrich
- Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
| | - Gordon J Lithgow
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA.
| |
Collapse
|
5
|
Pauper M, Hentschel A, Tiburcy M, Beltran S, Ruck T, Schara-Schmidt U, Roos A. Proteomic Profiling Towards a Better Understanding of Genetic Based Muscular Diseases: The Current Picture and a Look to the Future. Biomolecules 2025; 15:130. [PMID: 39858524 PMCID: PMC11763865 DOI: 10.3390/biom15010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Proteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying genetic defect based on the proteomic signature of muscle biopsies, (iii) analysis of pathophysiologies underlying different entities of muscular diseases, key for the definition of new intervention concepts, and (iv) patient stratification according to biochemical fingerprints as well as (v) monitoring the success of therapeutic interventions. This review presents-also through exemplary case studies-the various advantages of mass proteomics in the investigation of genetic muscle diseases, discusses technical limitations, and provides an outlook on possible future application concepts. Hence, proteomics is an excellent large-scale analytical tool for the diagnostic workup of (hereditary) muscle diseases and warrants systematic profiling of underlying pathophysiological processes. The steady development may allow to overcome existing limitations including a quenched dynamic range and quantification of different protein isoforms. Future directions may include targeted proteomics in diagnostic settings using not only muscle biopsies but also liquid biopsies to address the need for minimally invasive procedures.
Collapse
Affiliation(s)
- Marc Pauper
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain; (M.P.); (S.B.)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany;
- ZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain; (M.P.); (S.B.)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, University Duisburg-Essen, 45147 Essen, Germany;
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, University Duisburg-Essen, 45147 Essen, Germany;
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
6
|
Jadhav DB, Roy S. Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39777639 DOI: 10.1111/pce.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations. Chlamydomonas reinhardtii is a well-studied miniature plant model. We quantitatively probed the Chlamydomonas proteome for two subsequent circadian cycles using high throughput SWATH-DIA mass spectrometry. We quantified > 1000 proteins, half of which demonstrate circadian rhythms. Among these rhythmic proteins, > 90% peak around subjective midday or midnight. We uncovered key enzymes involved in Box C/D pathway, amino acid biosynthesis, fatty acid (FA) biosynthesis and peroxisomal β-oxidation of FAs are driven by the clock, which were undocumented from earlier transcriptomic studies. Proteins associated with key biological processes such as photosynthesis, redox, carbon fixation, glycolysis and TCA cycle show extreme temporal regulation. We conclude that circadian proteomics is required to complement transcriptomic studies to understand the complex clock regulation of organismal biology. We believe our study will not only refine and enrich the evaluation of temporal metabolic processes in C. reinhardtii but also provide a novel understanding of clock regulation across species.
Collapse
Affiliation(s)
| | - Sougata Roy
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India
| |
Collapse
|
7
|
Chiva C, Olivella R, Staes A, Mendes Maia T, Panse C, Stejskal K, Douché T, Lombard B, Schuhmann A, Loew D, Mechtler K, Matondo M, Rettel M, Helm D, Impens F, Devos S, Shevchenko A, Nanni P, Sabidó E. A Multiyear Longitudinal Harmonization Study of Quality Controls in Mass Spectrometry Proteomics Core Facilities. J Proteome Res 2025. [PMID: 39743223 DOI: 10.1021/acs.jproteome.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Quality control procedures play a pivotal role in ensuring the reliability and consistency of data generated in mass spectrometry-based proteomics laboratories. However, the lack of standardized quality control practices across laboratories poses challenges for data comparability and reproducibility. In response, we conducted a harmonization study within proteomics laboratories of the Core for Life alliance with the aim of establishing a common quality control framework, which facilitates comprehensive quality assessment and identification of potential sources of performance drift. Through collaborative efforts, we developed a consensus quality control standard for longitudinal assessment and adopted common processing software. We generated a 4-year longitudinal data set from multiple instruments and laboratories, which enabled us to assess intra- and interlaboratory variability, to identify causes of performance drift, and to establish community reference values for several quality control parameters. Our study enhances data comparability and reliability and fosters a culture of collaboration and continuous improvement within the proteomics community to ensure the integrity of proteomics data.
Collapse
Affiliation(s)
- Cristina Chiva
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
- Univeristat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Roger Olivella
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
- Univeristat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain
| | - An Staes
- VIB Proteomics Core, VIB, Ghent 9052, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent B-9000, Belgium
| | - Teresa Mendes Maia
- VIB Proteomics Core, VIB, Ghent 9052, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent B-9000, Belgium
| | - Christian Panse
- Functional Genomics Center Zurich, University/ETH Zurich, Zurich 8057, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
- IMBA Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Thibaut Douché
- Institut Pasteur, CNRS UAR 2024, Proteomics Platform, Mass Spectrometry for Biology Unit, Université Paris Cité, Paris F-75015, France
| | - Bérangère Lombard
- Institut Curie, Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris 75248, France
| | - Andrea Schuhmann
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Damarys Loew
- Institut Curie, Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris 75248, France
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
- IMBA Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Mariette Matondo
- Institut Pasteur, CNRS UAR 2024, Proteomics Platform, Mass Spectrometry for Biology Unit, Université Paris Cité, Paris F-75015, France
| | - Mandy Rettel
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Dominic Helm
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Francis Impens
- VIB Proteomics Core, VIB, Ghent 9052, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent B-9000, Belgium
| | - Simon Devos
- VIB Proteomics Core, VIB, Ghent 9052, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent B-9000, Belgium
| | - Anna Shevchenko
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Paolo Nanni
- Functional Genomics Center Zurich, University/ETH Zurich, Zurich 8057, Switzerland
| | - Eduard Sabidó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
- Univeristat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
8
|
Begelman DV, Dixit B, Truong C, King CD, Watson MA, Schilling B, Brand MD, Boominathan A. Exogenous expression of ATP8, a mitochondrial encoded protein, from the nucleus in vivo. Mol Ther Methods Clin Dev 2024; 32:101372. [PMID: 39659757 PMCID: PMC11629202 DOI: 10.1016/j.omtm.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Replicative errors, inefficient repair, and proximity to sites of reactive oxygen species production make mitochondrial DNA (mtDNA) susceptible to damage with time. We explore in vivo allotopic expression (re-engineering mitochondrial genes and expressing them from the nucleus) as an approach to rescue defects arising from mtDNA mutations. We used a mouse strain C57BL/6J(mtFVB) with a natural polymorphism (m.7778 G>T) in the mitochondrial ATP8 gene that encodes a protein subunit of the ATP synthase. We generated a transgenic mouse with an epitope-tagged recoded mitochondrial-targeted ATP8 gene expressed from the ROSA26 locus in the nucleus and used the C57BL/6J(mtFVB) strain to verify successful incorporation. The allotopically expressed ATP8 protein in transgenic mice was constitutively expressed across all tested tissues, successfully transported into the mitochondria, and incorporated into ATP synthase. The ATP synthase with transgene had similar activity to non-transgenic control, suggesting successful integration and function. Exogenous ATP8 protein had no negative impact on measured mitochondrial function, metabolism, or behavior. Successful allotopic expression of a mitochondrially encoded protein in vivo in a mammal is a step toward utilizing allotopic expression as a gene therapy in humans to repair physiological consequences of mtDNA defects that may accumulate in congenital mitochondrial diseases or with age.
Collapse
Affiliation(s)
- David V. Begelman
- SENS Research Foundation, Mountain View, CA 94041, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Bhavna Dixit
- SENS Research Foundation, Mountain View, CA 94041, USA
| | - Carly Truong
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Mark A. Watson
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | | |
Collapse
|
9
|
Du H, Rose JP, Bons J, Guo L, Valentino TR, Wu F, Burton JB, Basisty N, Manwaring-Mueller M, Makhijani P, Chen N, Chang V, Winer S, Campisi J, Furman D, Nagy A, Schilling B, Winer DA. Substrate Stiffness Dictates Unique Doxorubicin-induced Senescence-associated Secretory Phenotypes and Transcriptomic Signatures in Human Pulmonary Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623471. [PMID: 39605579 PMCID: PMC11601487 DOI: 10.1101/2024.11.18.623471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood. Here, we show that mechanical tension, modeled using cell culture substrate rigidity, influences senescent cell markers like SA-β-gal and secretory phenotypes. Comparing human primary pulmonary fibroblasts (IMR-90) cultured on physiological (2 kPa), fibrotic (50 kPa), and plastic (approximately 3 GPa) substrates, followed by senescence induction using doxorubicin, we identified unique high-stiffness-driven secretory protein profiles using mass spectrometry and transcriptomic signatures, both showing an enrichment in collagen proteins. Consistently, clusters of p21+ cells are seen in fibrotic regions of bleomycin induced pulmonary fibrosis in mice. Computational meta-analysis of single-cell RNA sequencing datasets from human interstitial lung disease confirmed these stiffness SASP genes are highly expressed in disease fibroblasts and strongly correlate with mechanotransduction and senescence-related pathways. Thus, mechanical forces shape cell senescence and their secretory phenotypes.
Collapse
Affiliation(s)
- Huixun Du
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jacob P Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Li Guo
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Fei Wu
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Nathan Basisty
- Longitudinal Studies Section, Translational Gerontology Branch, NIA, NIH, Baltimore, Maryland, USA
| | | | | | - Nan Chen
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Veronica Chang
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, CA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Xiu Y, Xiong M, Yang H, Wang Q, Zhao X, Long J, Liang F, Liu N, Chen F, Gao M, Sun Y, Fan R, Zeng Y. Proteomic characterization of murine hematopoietic stem progenitor cells reveals dynamic fetal-to-adult changes in metabolic-related pathways. Biochem Biophys Res Commun 2024; 734:150661. [PMID: 39243675 DOI: 10.1016/j.bbrc.2024.150661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Hematopoietic stem progenitor cells (HSPCs) give rise to the hematopoietic system, maintain hematopoiesis throughout the lifespan, and undergo molecular and functional changes during their development and aging. The importance of hematopoietic stem cell (HSC) biology has led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of HSPCs throughout the murine lifetime still needs to be fully completed. Here, using mass spectrometry (MS)-based quantitative proteomics, we report on the dynamic changes in the proteome of HSPCs from four developmental stages in the fetal liver (FL) and the bone marrow (BM), including E14.5, young (2 months), middle-aged (8 months), and aging (18 months) stages. Proteomics unveils highly dynamic protein kinetics during the development and aging of HSPCs. Our data identify stage-specific developmental features of HSPCs, which can be linked to their functional maturation and senescence. Our proteomic data demonstrated that FL HSPCs depend on aerobic respiration to meet their proliferation and oxygen supply demand, while adult HSPCs prefer glycolysis to preserve the HSC pool. By functional assays, we validated the decreased mitochondrial metabolism, glucose uptake, reactive oxygen species (ROS) production, protein synthesis rate, and increased glutathione S-transferase (GST) activity during HSPC development from fetal to adult. Distinct metabolism pathways and immune-related pathways enriched in different HSPC developmental stages were revealed at the protein level. Our study will have broader implications for understanding the mechanism of stem cell maintenance and fate determination and reversing the HSC aging process.
Collapse
Affiliation(s)
- Yanyu Xiu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Mingfang Xiong
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Haoyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Qianqian Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Xiao Zhao
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Juan Long
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Fei Liang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Nan Liu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Fudong Chen
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Meng Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yuying Sun
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Yang Zeng
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; Medical School of the Chinese PLA General Hospital, Beijing, 100039, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
11
|
Al Shboul S, Singh A, Kobetic R, Goodlett DR, Brennan PM, Hupp T, Dapic I. Mass Spectrometry Advances in Analysis of Glioblastoma. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39529217 DOI: 10.1002/mas.21912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Some cancers such as glioblastoma (GBM), show minimal response to medical interventions, often only capable of mitigating tumor growth or alleviating symptoms. High metabolic activity in the tumor microenvironment marked by immune responses and hypoxia, is a crucial factor driving tumor progression. The many developments in mass spectrometry (MS) over the last decades have provided a pivotal tool for studying proteins, along with their posttranslational modifications. It is known that the proteomic landscape of GBM comprises a wide range of proteins involved in cell proliferation, survival, migration, and immune evasion. Combination of MS imaging and microscopy has potential to reveal the spatial and molecular characteristics of pathological tissue sections. Moreover, integration of MS in the surgical process in form of techniques such as DESI-MS or rapid evaporative ionization MS has been shown as an effective tool for rapid measurement of metabolite profiles, providing detailed information within seconds. In immunotherapy-related research, MS plays an indispensable role in detection and targeting of cancer antigens which serve as a base for antigen-specific therapies. In this review, we aim to provide detailed information on molecular profile in GBM and to discuss recent MS advances and their clinical benefits for targeting this aggressive disease.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ashita Singh
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - David R Goodlett
- University of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia, Canada
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
12
|
Sweatt AJ, Griffiths CD, Groves SM, Paudel BB, Wang L, Kashatus DF, Janes KA. Proteome-wide copy-number estimation from transcriptomics. Mol Syst Biol 2024; 20:1230-1256. [PMID: 39333715 PMCID: PMC11535397 DOI: 10.1038/s44320-024-00064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
Protein copy numbers constrain systems-level properties of regulatory networks, but proportional proteomic data remain scarce compared to RNA-seq. We related mRNA to protein statistically using best-available data from quantitative proteomics and transcriptomics for 4366 genes in 369 cell lines. The approach starts with a protein's median copy number and hierarchically appends mRNA-protein and mRNA-mRNA dependencies to define an optimal gene-specific model linking mRNAs to protein. For dozens of cell lines and primary samples, these protein inferences from mRNA outmatch stringent null models, a count-based protein-abundance repository, empirical mRNA-to-protein ratios, and a proteogenomic DREAM challenge winner. The optimal mRNA-to-protein relationships capture biological processes along with hundreds of known protein-protein complexes, suggesting mechanistic relationships. We use the method to identify a viral-receptor abundance threshold for coxsackievirus B3 susceptibility from 1489 systems-biology infection models parameterized by protein inference. When applied to 796 RNA-seq profiles of breast cancer, inferred copy-number estimates collectively re-classify 26-29% of luminal tumors. By adopting a gene-centered perspective of mRNA-protein covariation across different biological contexts, we achieve accuracies comparable to the technical reproducibility of contemporary proteomics.
Collapse
Affiliation(s)
- Andrew J Sweatt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Cameron D Griffiths
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Sarah M Groves
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - B Bishal Paudel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - David F Kashatus
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
13
|
Koenig C, Bortel P, Paterson RS, Rendl B, Madupe PP, Troché GB, Hermann NV, Martínez de Pinillos M, Martinón-Torres M, Mularczyk S, Schjellerup Jørkov ML, Gerner C, Kanz F, Martinez-Val A, Cappellini E, Olsen JV. Automated High-Throughput Biological Sex Identification from Archeological Human Dental Enamel Using Targeted Proteomics. J Proteome Res 2024; 23:5107-5121. [PMID: 39324540 PMCID: PMC11536428 DOI: 10.1021/acs.jproteome.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Biological sex is key information for archeological and forensic studies, which can be determined by proteomics. However, the lack of a standardized approach for fast and accurate sex identification currently limits the reach of proteomics applications. Here, we introduce a streamlined mass spectrometry (MS)-based workflow for the determination of biological sex using human dental enamel. Our approach builds on a minimally invasive sampling strategy by acid etching, a rapid online liquid chromatography (LC) gradient coupled to a high-resolution parallel reaction monitoring (PRM) assay allowing for a throughput of 200 samples per day (SPD) with high quantitative performance enabling confident identification of both males and females. Additionally, we developed a streamlined data analysis pipeline and integrated it into a Shiny interface for ease of use. The method was first developed and optimized using modern teeth and then validated in an independent set of deciduous teeth of known sex. Finally, the assay was successfully applied to archeological material, enabling the analysis of over 300 individuals. We demonstrate unprecedented performance and scalability, speeding up MS analysis by 10-fold compared to conventional proteomics-based sex identification methods. This work paves the way for large-scale archeological or forensic studies enabling the investigation of entire populations rather than focusing on individual high-profile specimens. Data are available via ProteomeXchange with the identifier PXD049326.
Collapse
Affiliation(s)
- Claire Koenig
- Novo
Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Patricia Bortel
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str.38, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Ryan S. Paterson
- Geogenetics
Section, Globe Institute, University of
Copenhagen, 1350 Copenhagen, Denmark
| | - Barbara Rendl
- Center
for Forensic Medicine, Medical University
of Vienna, 1090 Vienna, Austria
| | - Palesa P. Madupe
- Geogenetics
Section, Globe Institute, University of
Copenhagen, 1350 Copenhagen, Denmark
| | - Gaudry B. Troché
- Geogenetics
Section, Globe Institute, University of
Copenhagen, 1350 Copenhagen, Denmark
| | - Nuno Vibe Hermann
- Pediatric
Dentistry and Clinical Genetics, Department of Odontology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marina Martínez de Pinillos
- Centro
Nacional de Investigación sobre la Evolución Humana
(CENIEH), Paseo Sierra de Atapuerca 3, Burgos 09002, Spain
| | - María Martinón-Torres
- Centro
Nacional de Investigación sobre la Evolución Humana
(CENIEH), Paseo Sierra de Atapuerca 3, Burgos 09002, Spain
- Department
of Anthropology, University College London
(UCL), 14 Taviton Street, London WC1H 0BW, United Kingdom
| | - Sandra Mularczyk
- Laboratory
of Biological Anthropology, Globe Institute, University of Copenhagen, 1307 Copenhagen, Denmark
| | | | - Christopher Gerner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str.38, 1090 Vienna, Austria
- Joint
Metabolome Facility, University of Vienna
and Medical University of Vienna, Waehringer Str.38, 1090 Vienna, Austria
| | - Fabian Kanz
- Center
for Forensic Medicine, Medical University
of Vienna, 1090 Vienna, Austria
| | - Ana Martinez-Val
- Novo
Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Enrico Cappellini
- Geogenetics
Section, Globe Institute, University of
Copenhagen, 1350 Copenhagen, Denmark
| | - Jesper V. Olsen
- Novo
Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
14
|
Bundgaard L, Årman F, Åhrman E, Walters M, auf dem Keller U, Malmström J, Jacobsen S. An Equine Protein Atlas Highlights Synovial Fluid Proteome Dynamics during Experimentally LPS-Induced Arthritis. J Proteome Res 2024; 23:4849-4863. [PMID: 39395021 PMCID: PMC11536436 DOI: 10.1021/acs.jproteome.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
In human proteomics, substantial efforts are ongoing to leverage large collections of mass spectrometry (MS) fragment ion spectra into extensive spectral libraries (SL) as a resource for data independent acquisition (DIA) analysis. Currently, such initiatives in equine research are still missing. Here we present a large-scale equine SL, comprising 6394 canonical proteins and 89,329 unique peptides, based on data dependent acquisition analysis of 75 tissue and body fluid samples from horses. The SL enabled large-scale DIA-MS based quantification of the same samples to generate a quantitative equine protein distribution atlas to infer dominant proteins in different organs and body fluids. Data mining revealed 163 proteins uniquely identified in a specific type of tissue or body fluid, serving as a starting point to determine tissue-specific or tissue-type-specific proteins. We showcase the SL by highlighting proteome dynamics in equine synovial fluid samples during experimental lipopolysaccharide-induced arthritis. A fuzzy c-means cluster analysis pinpointed SERPINB1, ATRN, NGAL, LTF, MMP1, and LBP as putative biomarkers for joint inflammation. This SL provides an extendable resource for future equine studies employing DIA-MS.
Collapse
Affiliation(s)
- Louise Bundgaard
- Section
of Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, 2630 Taastrup, Denmark
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Filip Årman
- Division
of Infection Medicine Proteomics, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Emma Åhrman
- Division
of Infection Medicine Proteomics, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Marie Walters
- Section
of Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, 2630 Taastrup, Denmark
| | - Ulrich auf dem Keller
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Johan Malmström
- Division
of Infection Medicine Proteomics, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Stine Jacobsen
- Section
of Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, 2630 Taastrup, Denmark
| |
Collapse
|
15
|
Moreno-Ulloa A, Zárate-Córdova VL, Ramírez-Sánchez I, Cruz-López JC, Perez-Ortiz A, Villarreal-Garza C, Díaz-Chávez J, Estrada-Mena B, Antonio-Aguirre B, López-Almanza PX, Lira-Romero E, Estrada-Mena FJ. Evaluation of a Proteomics-Guided Protein Signature for Breast Cancer Detection in Breast Tissue. J Proteome Res 2024; 23:4907-4923. [PMID: 39412830 DOI: 10.1021/acs.jproteome.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The distinction between noncancerous and cancerous breast tissues is challenging in clinical settings, and discovering new proteomics-based biomarkers remains underexplored. Through a pilot proteomic study (discovery cohort), we aimed to identify a protein signature indicative of breast cancer for subsequent validation using six published proteomics/transcriptomics data sets (validation cohorts). Sequential window acquisition of all theoretical (SWATH)-based mass spectrometry revealed 370 differentially abundant proteins between noncancerous tissue and breast cancer. Protein-protein interaction-based networks and enrichment analyses revealed dysregulation in pathways associated with extracellular matrix organization, platelet degranulation, the innate immune system, and RNA metabolism in breast cancer. Through multivariate unsupervised analysis, we identified a four-protein signature (OGN, LUM, DCN, and COL14A1) capable of distinguishing breast cancer. This dysregulation pattern was consistently verified across diverse proteomics and transcriptomics data sets. Dysregulation magnitude was notably higher in poor-prognosis breast cancer subtypes like Basal-Like and HER2 compared to Luminal A. Diagnostic evaluation (receiver operating characteristic (ROC) curves) of the signature in distinguishing breast cancer from noncancerous tissue revealed area under the curve (AUC) ranging from 0.87 to 0.9 with predictive accuracy of 80% to 82%. Upon stratifying, to solely include the Basal-Like/Triple-Negative subtype, the ROC AUC increased to 0.922-0.959 with predictive accuracy of 84.2%-89%. These findings suggest a potential role for the identified signature in distinguishing cancerous from noncancerous breast tissue, offering insights into enhancing diagnostic accuracy.
Collapse
Affiliation(s)
- Aldo Moreno-Ulloa
- Laboratorio MS2, Departamento de Innovación Biomédica, CICESE, Ensenada 22860, Baja California, México
| | - Vareska L Zárate-Córdova
- Laboratorio MS2, Departamento de Innovación Biomédica, CICESE, Ensenada 22860, Baja California, México
- Posgrado en Ciencias de la Vida, CICESE, Ensenada 22860, Baja California, México
| | - Israel Ramírez-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, IPN, Ciudad de México 11340, México
| | - Juan Carlos Cruz-López
- Hospital Puebla, Puebla 72197, Pue., México
- Hospital General Zona Norte SSEP, Puebla 72200, Pue., México
| | - Andric Perez-Ortiz
- Escuela de Medicina, Universidad Panamericana, Ciudad de México 03920, México
- Departamento de Cirugía, Centro Médico ABC, Ciudad de México 05348, México
| | - Cynthia Villarreal-Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de Monterrey, Monterrey 66260, Nuevo León, México
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Ciudad de México 14080, México
| | - Benito Estrada-Mena
- Escuela de Enfermería, Universidad Panamericana, Ciudad de México 03920, México
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | | | | | | | | |
Collapse
|
16
|
Salovska B, Li W, Bernhardt OM, Germain PL, Gandhi T, Reiter L, Liu Y. A Comprehensive and Robust Multiplex-DIA Workflow Profiles Protein Turnover Regulations Associated with Cisplatin Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620709. [PMID: 39554001 PMCID: PMC11565775 DOI: 10.1101/2024.10.28.620709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Measuring protein turnover is essential for understanding cellular biological processes and advancing drug discovery. The multiplex DIA mass spectrometry (DIA-MS) approach, combined with dynamic SILAC labeling (pulse-SILAC, or pSILAC), has proven to be a reliable method for analyzing protein turnover and degradation kinetics. Previous multiplex DIA-MS workflows have employed various strategies, including leveraging the highest isotopic labeling channels of peptides to enhance the detection of isotopic MS signal pairs or clusters. In this study, we introduce an improved and robust workflow that integrates a novel machine learning strategy and channel-specific statistical filtering, enabling dynamic adaptation to systematic or temporal variations in channel ratios. This allows comprehensive profiling of protein turnover throughout the pSILAC experiment without relying solely on the highest channel signals. Additionally, we developed KdeggeR , a data processing and analysis package optimized for pSILAC-DIA experiments, which estimates and visualizes peptide and protein degradation rates and dynamic profiles. Our integrative workflow was benchmarked on both 2-channel and 3-channel standard DIA datasets and across two mass spectrometry platforms, demonstrating its broad applicability. Finally, applying this workflow to an aneuploid cancer cell model before and after cisplatin resistance development demonstrated a strong negative correlation between transcript regulation and protein degradation for major protein complex subunits. We also identified specific protein turnover signatures associated with cisplatin resistance.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | | | - Pierre-Luc Germain
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | | | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
Yildirim OS, Yildiz P, Karaer A, Calleja-Agius J, Ozcan S. Exploring the protein signature of endometrial cancer: A comprehensive review through diverse samples and mass spectrometry-based proteomics. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108783. [PMID: 39488491 DOI: 10.1016/j.ejso.2024.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Endometrial cancer (EC) is increasing incidence among women, and it constitutes a health problem for women globally. An important aspect of EC management involves the use of protein biomarkers for early detection and monitoring. Protein biomarkers allow the identification of high-risk patients, the detection of the disease in its early stages, and the assessment of treatment responses. Mass spectrometry (MS)-based proteomics offers robust analytical techniques and a comprehensive understanding of proteins. Proteomics methods allow scientists to investigate both the quantities and functions of proteins. Thus, it provides valuable insights into how proteins are altered under different conditions. This review summarizes recent advances in MS-based proteomic biomarker discovery for EC, focusing on different sample types and MS-based techniques used in clinical studies. The review emphasized in detail the most commonly used key sources such as blood, urine, vaginal fluids and tissue. Furthermore, MS-based proteomics techniques such as untargeted, targeted, sequential window acquisition of all theoretical mass spectra (SWATH-MS) and mass spectrometry imaging used in the discovery and validation/validation phases were evaluated. This review highlights the importance of biomarker discovery and clinical translation to improve diagnostic and therapeutic outcomes in EC. It aims to provide a comprehensive overview of MS-based proteomics in EC, guiding future research and clinical applications.
Collapse
Affiliation(s)
- Oyku Su Yildirim
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye
| | - Abdullah Karaer
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, 44280, Malatya, Turkiye; Department of Obstetrics and Gynecology, School of Medicine, Inonu University, 44280, Malatya, Turkiye
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye; Cancer Systems Biology Laboratory (CanSyL), Middle East Technical University (METU), 06800, Ankara, Turkiye.
| |
Collapse
|
18
|
Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, Peng J, Liu Y. An Extensive Atlas of Proteome and Phosphoproteome Turnover Across Mouse Tissues and Brain Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618303. [PMID: 39464138 PMCID: PMC11507808 DOI: 10.1101/2024.10.15.618303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications like phosphorylation, are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites across eight mouse tissues and various brain regions, using advanced proteomics and stable isotope labeling. We revealed tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discovered that peroxisomes are regulated by protein turnover across tissues, and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides new fundamental insights into protein stability, tissue dynamic proteotypes, and the role of protein phosphorylation, and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Guntur, Andhra Pradesh 522240, India
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nisha Hemandhar-Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Current address: Interdisciplinary Research center on Biology and chemistry, Shanghai institute of Organic chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
- Lead Contact
| |
Collapse
|
19
|
Zheng YF, Lin YS, Huang JW, Tang KT, Kuo CY, Wang WC, Chien HJ, Chang CJ, Hu NJ, Lai CC. SWATH-MS Based Secretome Proteomic Analysis of Pseudomonas aeruginosa Against MRSA. Proteomics 2024:e202300649. [PMID: 39420696 DOI: 10.1002/pmic.202300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The study uses Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH)-MS in conjunction with secretome proteomics to identify key proteins that Pseudomonas aeruginosa secretes against methicillin-resistant Staphylococcus aureus (MRSA). Variations in the inhibition zones indicated differences in strain resistance. Multivariate statistical methods were applied to filter the proteomic results, revealing five potential protein biomarkers, including Peptidase M23. Gene ontology (GO) analysis and sequence alignment supported their antibacterial activity. Thus, SWATH-MS provides a comprehensive understanding of the secretome of P. aeruginosa in its action against MRSA, guiding future antibacterial research.
Collapse
Affiliation(s)
- Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Sheng Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Department of Internal Medicine, Division of Chest Medicine, Asia University Hospital, Asia University, Taichung, Taiwan
| | - Jing-Wen Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Han-Ju Chien
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chih-Jui Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Nien-Jen Hu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
20
|
Sze YH, Tse DYY, Zuo B, Li KK, Zhao Q, Jiang X, Kurihara T, Tsubota K, Lam TC. Deep Spectral Library of Mice Retina for Myopia Research: Proteomics Dataset generated by SWATH and DIA-NN. Sci Data 2024; 11:1115. [PMID: 39389962 PMCID: PMC11467338 DOI: 10.1038/s41597-024-03958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
The retina plays a crucial role in processing and decoding visual information, both in normal development and during myopia progression. Recent advancements have introduced a library-independent approach for data-independent acquisition (DIA) analyses. This study demonstrates deep proteome identification and quantification in individual mice retinas during myopia development, with an average of 6,263 ± 86 unique protein groups. We anticipate that the use of a predicted retinal-specific spectral library combined with the robust quantification achieved within this dataset will contribute to a better understanding of the proteome complexity. Furthermore, a comprehensive mice retinal-specific spectral library was generated, encompassing a total identification of 9,401 protein groups, 70,041 peptides, 95,339 precursors, and 761,868 transitions acquired using SWATH-MS acquisition on a ZenoTOF 7600 mass spectrometer. This dataset surpasses the spectral library generated through high-pH reversed-phase fractionation by data-dependent acquisition (DDA). The data is available via ProteomeXchange with the identifier PXD046983. It will also serve as an indispensable reference for investigations in myopia research and other retinal or neurological diseases.
Collapse
Affiliation(s)
- Ying Hon Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hung Hom, Hong Kong
| | - Dennis Yan Yin Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hung Hom, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Bing Zuo
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - King Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xiaoyan Jiang
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Thomas Cheun Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hung Hom, Hong Kong.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518052, China.
| |
Collapse
|
21
|
Hwang JH, Lai A, Tung JP, Harkin DG, Flower RL, Pecheniuk NM. Proteomic Characterization of Transfusable Blood Components: Fresh Frozen Plasma, Cryoprecipitate, and Derived Extracellular Vesicles via Data-Independent Mass Spectrometry. J Proteome Res 2024; 23:4508-4522. [PMID: 39254217 DOI: 10.1021/acs.jproteome.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of particles that play a crucial role in cell-to-cell communication, primarily due to their ability to transport molecules, such as proteins. Thus, profiling EV-associated proteins offers insight into their biological effects. EVs can be isolated from various biological fluids, including donor blood components such as cryoprecipitate and fresh frozen plasma (FFP). In this study, we conducted a proteomic analysis of five single donor units of cryoprecipitate, FFP, and EVs derived from these blood components using a quantitative mass spectrometry approach. EVs were successfully isolated from both cryoprecipitate and FFP based on community guidelines. We identified and quantified approximately 360 proteins across all sample groups. Principal component analysis and heatmaps revealed that both cryoprecipitate and FFP are similar. Similarly, EVs derived from cryoprecipitate and FFP are comparable. However, they differ between the originating fluids and their derived EVs. Using the R-package MS-DAP, differentially expressed proteins (DEPs) were identified. The DEPs for all comparisons, when submitted for gene enrichment analysis, are involved in the complement and coagulation pathways. The protein profile generated from this study will have important clinical implications in increasing our knowledge of the proteins that are associated with EVs derived from blood components.
Collapse
Affiliation(s)
- Ji Hui Hwang
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Andrew Lai
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - John-Paul Tung
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Damien G Harkin
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Robert L Flower
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| |
Collapse
|
22
|
Anderton E, Chamoli M, Bhaumik D, King CD, Xie X, Foulger A, Andersen JK, Schilling B, Lithgow GJ. Amyloid β accelerates age-related proteome-wide protein insolubility. GeroScience 2024; 46:4585-4602. [PMID: 38753231 PMCID: PMC11335993 DOI: 10.1007/s11357-024-01169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Loss of proteostasis is a highly conserved feature of aging across model organisms and results in the accumulation of insoluble protein aggregates. Protein insolubility is also a unifying feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), in which hundreds of insoluble proteins associate with aggregated amyloid beta (Aβ) in senile plaques. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven generalized protein insolubility as a contributing factor. However, proteins that become insoluble during aging in model organisms are capable of accelerating Aβ aggregation in vitro and lifespan in vivo. Here, using an unbiased proteomics approach, we questioned the relationship between Aβ and age-related protein insolubility. Specifically, we uncovered that Aβ expression drives proteome-wide protein insolubility in C. elegans, even in young animals, and this insoluble proteome is highly similar to the insoluble proteome driven by normal aging, this vulnerable sub-proteome we term the core insoluble proteome (CIP). We show that the CIP is enriched with proteins that modify Aβ toxicity in vivo, suggesting the possibility of a vicious feedforward cycle in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the geroprotective, gut-derived metabolite, Urolithin A, relieves Aβ toxicity, supporting its use in clinical trials for dementia and age-related diseases.
Collapse
Affiliation(s)
- Edward Anderton
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
- USC Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90191, USA.
| | - Manish Chamoli
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Dipa Bhaumik
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Christina D King
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Xueshu Xie
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Anna Foulger
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Julie K Andersen
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Birgit Schilling
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| | - Gordon J Lithgow
- The Buck Institute for Research On Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
23
|
Ren L, Shi L, Zheng Y. Reference Materials for Improving Reliability of Multiomics Profiling. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:487-521. [PMID: 39723231 PMCID: PMC11666855 DOI: 10.1007/s43657-023-00153-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2024]
Abstract
High-throughput technologies for multiomics or molecular phenomics profiling have been extensively adopted in biomedical research and clinical applications, offering a more comprehensive understanding of biological processes and diseases. Omics reference materials play a pivotal role in ensuring the accuracy, reliability, and comparability of laboratory measurements and analyses. However, the current application of omics reference materials has revealed several issues, including inappropriate selection and underutilization, leading to inconsistencies across laboratories. This review aims to address these concerns by emphasizing the importance of well-characterized reference materials at each level of omics, encompassing (epi-)genomics, transcriptomics, proteomics, and metabolomics. By summarizing their characteristics, advantages, and limitations along with appropriate performance metrics pertinent to study purposes, we provide an overview of how omics reference materials can enhance data quality and data integration, thus fostering robust scientific investigations with omics technologies.
Collapse
Affiliation(s)
- Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
- Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
- International Human Phenome Institutes, Shanghai, 200438 China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
24
|
Crawford AJ, Forjaz A, Bons J, Bhorkar I, Roy T, Schell D, Queiroga V, Ren K, Kramer D, Huang W, Russo GC, Lee MH, Wu PH, Shih IM, Wang TL, Atkinson MA, Schilling B, Kiemen AL, Wirtz D. Combined assembloid modeling and 3D whole-organ mapping captures the microanatomy and function of the human fallopian tube. SCIENCE ADVANCES 2024; 10:eadp6285. [PMID: 39331707 PMCID: PMC11430475 DOI: 10.1126/sciadv.adp6285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The fallopian tubes play key roles in processes from pregnancy to ovarian cancer where three-dimensional (3D) cellular and extracellular interactions are important to their pathophysiology. Here, we develop a 3D multicompartment assembloid model of the fallopian tube that molecularly, functionally, and architecturally resembles the organ. Global label-free proteomics, innovative assays capturing physiological functions of the fallopian tube (i.e., oocyte transport), and whole-organ single-cell resolution mapping are used to validate these assembloids through a multifaceted platform with direct comparisons to fallopian tube tissue. These techniques converge at a unique combination of assembloid parameters with the highest similarity to the reference fallopian tube. This work establishes (i) an optimized model of the human fallopian tubes for in vitro studies of their pathophysiology and (ii) an iterative platform for customized 3D in vitro models of human organs that are molecularly, functionally, and microanatomically accurate by combining tunable assembloid and tissue mapping methods.
Collapse
Affiliation(s)
- Ashleigh J Crawford
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - André Forjaz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Isha Bhorkar
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Triya Roy
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - David Schell
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vasco Queiroga
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kehan Ren
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Donald Kramer
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biotechnology, Johns Hopkins Advanced Academic Programs, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Huang
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriella C Russo
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Meng-Horng Lee
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tian-Li Wang
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark A Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
- Departments of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
| | | | - Ashley L Kiemen
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Denis Wirtz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Schmidt AV, Bharathi SS, Solo KJ, Bons J, Rose JP, Schilling B, Goetzman ES. Sirt2 Regulates Liver Metabolism in a Sex-Specific Manner. Biomolecules 2024; 14:1160. [PMID: 39334926 PMCID: PMC11430619 DOI: 10.3390/biom14091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Sirtuin-2 (Sirt2), an NAD+-dependent lysine deacylase enzyme, has previously been implicated as a regulator of glucose metabolism, but the specific mechanisms remain poorly defined. Here, we observed that Sirt2-/- males, but not females, have decreased body fat, moderate hypoglycemia upon fasting, and perturbed glucose handling during exercise compared to wild type controls. Conversion of injected lactate, pyruvate, and glycerol boluses into glucose via gluconeogenesis was impaired, but only in males. Primary Sirt2-/- male hepatocytes exhibited reduced glycolysis and reduced mitochondrial respiration. RNAseq and proteomics were used to interrogate the mechanisms behind this liver phenotype. Loss of Sirt2 did not lead to transcriptional dysregulation, as very few genes were altered in the transcriptome. In keeping with this, there were also negligible changes to protein abundance. Site-specific quantification of the hepatic acetylome, however, showed that 13% of all detected acetylated peptides were significantly increased in Sirt2-/- male liver versus wild type, representing putative Sirt2 target sites. Strikingly, none of these putative target sites were hyperacetylated in Sirt2-/- female liver. The target sites in the male liver were distributed across mitochondria (44%), cytoplasm (32%), nucleus (8%), and other compartments (16%). Despite the high number of putative mitochondrial Sirt2 targets, Sirt2 antigen was not detected in purified wild type liver mitochondria, suggesting that Sirt2's regulation of mitochondrial function occurs from outside the organelle. We conclude that Sirt2 regulates hepatic protein acetylation and metabolism in a sex-specific manner.
Collapse
Affiliation(s)
- Alexandra V. Schmidt
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; (A.V.S.); (S.S.B.); (K.J.S.)
| | - Sivakama S. Bharathi
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; (A.V.S.); (S.S.B.); (K.J.S.)
| | - Keaton J. Solo
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; (A.V.S.); (S.S.B.); (K.J.S.)
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; (J.B.)
| | - Jacob P. Rose
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; (J.B.)
| | - Birgit Schilling
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; (J.B.)
| | - Eric S. Goetzman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; (A.V.S.); (S.S.B.); (K.J.S.)
| |
Collapse
|
26
|
Capraz T, Huber W. Feature selection by replicate reproducibility and non-redundancy. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae548. [PMID: 39254597 PMCID: PMC11410923 DOI: 10.1093/bioinformatics/btae548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
MOTIVATION A fundamental step in many analyses of high-dimensional data is dimension reduction. Two basic approaches are introduction of new synthetic coordinates and selection of extant features. Advantages of the latter include interpretability, simplicity, transferability, and modularity. A common criterion for unsupervized feature selection is variance or dynamic range. However, in practice, it can occur that high-variance features are noisy, that important features have low variance, or that variances are simply not comparable across features because they are measured in unrelated numeric scales or physical units. Moreover, users may want to include measures of signal-to-noise ratio and non-redundancy into feature selection. RESULTS Here, we introduce the RNR algorithm, which selects features based on (i) the reproducibility of their signal across replicates and (ii) their non-redundancy, measured by linear dependence. It takes as input a typically large set of features measured on a collection of objects with two or more replicates per object. It returns an ordered list of features, i1,i2,…,ik, where feature i1 is the one with the highest reproducibility across replicates, i2 that with the highest reproducibility across replicates after projecting out the dimension spanned by i1, and so on. Applications to microscopy-based imaging of cells and proteomics highlight benefits of the approach. AVAILABILITY AND IMPLEMENTATION The RNR method is available via Bioconductor (Huber W, Carey VJ, Gentleman R et al. (Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 2015;12:115-21.) in the R package FeatSeekR. Its source code is also available at https://github.com/tcapraz/FeatSeekR under the GPL-3 open source license.
Collapse
Affiliation(s)
- Tümay Capraz
- Genome Biology Unit, EMBL, Heidelberg, 69117, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, 69117, Germany
| | | |
Collapse
|
27
|
Matilla L, Martín-Núñez E, Navarro A, Garaikoetxea M, Fernández-Celis A, Goñi-Olóriz M, Gainza A, Fernández-Irigoyen J, Santamaría E, Tamayo I, Álvarez V, Sádaba R, Jover E, López-Andrés N. Neuropilin-1 sex-dependently modulates inflammatory, angiogenic and osteogenic phenotypes in the calcifying valve interstitial cell. Biochem Pharmacol 2024; 226:116336. [PMID: 38844264 DOI: 10.1016/j.bcp.2024.116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The pathological mechanisms underlying the sex-dependent presentation of calcific aortic stenosis (AS) remain poorly understood. We aim to analyse sex-specific responses of valve interstitial cells (VICs) to calcific environments and to identify new pathological and potentially druggable targets. First, VICs from stenotic patients were modelled using pro-calcifying media (HP). Both male and female VICs were inflamed upon calcific HP challenge, although the inflammatory response was higher in female VICs. The osteogenic and calcification responses were higher in male VICs. To identify new players involved in the responses to HP, proteomics analyses were performed on additional calcifying VICs. Neuropilin-1 (NRP-1) was significantly up-regulated in male calcifying VICs and that was confirmed in aortic valves (AVs), especially nearby neovessels and calcifications. Regardless of the sex, NRP-1 expression was correlated to inflammation, angiogenesis and osteogenic markers, but with stronger associations in male AVs. To further evidence the role of NRP-1, in vitro experiments of silencing or supplementation with soluble NRP-1 (sNRP-1) were performed. NRP-1 silencing or addition of sNRP-1 reduced/mended the expression of any sex-specific response triggered by HP. Moreover, NRP-1 regulation contributed to significantly diminish the baseline enhanced expression of pro-inflammatory, pro-angiogenic and pro-osteogenic markers mainly in male VICs. Validation studies were conducted in stenotic AVs. In summary, pharmacologic targeting of NRP-1 could be used to target sex-specific phenotypes in AS as well as to exert protective effects by reducing the basal expression of pathogenic markers only in male VICs.
Collapse
Affiliation(s)
- Lara Matilla
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Ernesto Martín-Núñez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Adela Navarro
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Miriam Goñi-Olóriz
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Alicia Gainza
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Ibai Tamayo
- Research Methodology Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Virginia Álvarez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Rafael Sádaba
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain.
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
28
|
Zhong X, Li Q, Polacco BJ, Patil T, Marley A, Foussard H, Khare P, Vartak R, Xu J, DiBerto JF, Roth BL, Eckhardt M, von Zastrow M, Krogan NJ, Hüttenhain R. A proximity proteomics pipeline with improved reproducibility and throughput. Mol Syst Biol 2024; 20:952-971. [PMID: 38951684 PMCID: PMC11297269 DOI: 10.1038/s44320-024-00049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Proximity labeling (PL) via biotinylation coupled with mass spectrometry (MS) captures spatial proteomes in cells. Large-scale processing requires a workflow minimizing hands-on time and enhancing quantitative reproducibility. We introduced a scalable PL pipeline integrating automated enrichment of biotinylated proteins in a 96-well plate format. Combining this with optimized quantitative MS based on data-independent acquisition (DIA), we increased sample throughput and improved protein identification and quantification reproducibility. We applied this pipeline to delineate subcellular proteomes across various compartments. Using the 5HT2A serotonin receptor as a model, we studied temporal changes of proximal interaction networks induced by receptor activation. In addition, we modified the pipeline for reduced sample input to accommodate CRISPR-based gene knockout, assessing dynamics of the 5HT2A network in response to perturbation of selected interactors. This PL approach is universally applicable to PL proteomics using biotinylation-based PL enzymes, enhancing throughput and reproducibility of standard protocols.
Collapse
Affiliation(s)
- Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Qiongyu Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Trupti Patil
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Aaron Marley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94158, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Prachi Khare
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Rasika Vartak
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mark von Zastrow
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA.
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
29
|
Chocarro L, Blanco E, Fernandez-Rubio L, Garnica M, Zuazo M, Garcia MJ, Bocanegra A, Echaide M, Johnston C, Edwards CJ, Legg J, Pierce AJ, Arasanz H, Fernandez-Hinojal G, Vera R, Ausin K, Santamaria E, Fernandez-Irigoyen J, Kochan G, Escors D. PD-1/LAG-3 co-signaling profiling uncovers CBL ubiquitin ligases as key immunotherapy targets. EMBO Mol Med 2024; 16:1791-1816. [PMID: 39030301 PMCID: PMC11319776 DOI: 10.1038/s44321-024-00098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024] Open
Abstract
Many cancer patients do not benefit from PD-L1/PD-1 blockade immunotherapies. PD-1 and LAG-3 co-upregulation in T-cells is one of the major mechanisms of resistance by establishing a highly dysfunctional state in T-cells. To identify shared features associated to PD-1/LAG-3 dysfunctionality in human cancers and T-cells, multiomic expression profiles were obtained for all TCGA cancers immune infiltrates. A PD-1/LAG-3 dysfunctional signature was found which regulated immune, metabolic, genetic, and epigenetic pathways, but especially a reinforced negative regulation of the TCR signalosome. These results were validated in T-cell lines with constitutively active PD-1, LAG-3 pathways and their combination. A differential analysis of the proteome of PD-1/LAG-3 T-cells showed a specific enrichment in ubiquitin ligases participating in E3 ubiquitination pathways. PD-1/LAG-3 co-blockade inhibited CBL-B expression, while the use of a bispecific drug in clinical development also repressed C-CBL expression, which reverted T-cell dysfunctionality in lung cancer patients resistant to PD-L1/PD-1 blockade. The combination of CBL-B-specific small molecule inhibitors with anti-PD-1/anti-LAG-3 immunotherapies demonstrated notable therapeutic efficacy in models of lung cancer refractory to immunotherapies, overcoming PD-1/LAG-3 mediated resistance.
Collapse
Grants
- FIS PI20/00010 MEC | Instituto de Salud Carlos III (ISCIII)
- FIS PI23/00196 MEC | Instituto de Salud Carlos III (ISCIII)
- COV20/00237 MEC | Instituto de Salud Carlos III (ISCIII)
- FI21/00080 MEC | Instituto de Salud Carlos III (ISCIII)
- TRANSPOCART ICI19/00069 MEC | Instituto de Salud Carlos III (ISCIII)
- PFIS,FI21/00080 MEC | Instituto de Salud Carlos III (ISCIII)
- BMED 050-2019 Departamento de Salud, Gobierno de Navarra (Department of Health, Government of Navarra)
- BMED 51-2021 Departamento de Salud, Gobierno de Navarra (Department of Health, Government of Navarra)
- BMED 036-2023 Departamento de Salud, Gobierno de Navarra (Department of Health, Government of Navarra)
- PROYE16001ESC Fundación Científica Asociación Española Contra el Cáncer (AECC)
- AGATA,0011-1411-2020-000013 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- LINTERNA,0011-1411-2020-000033 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- DESCARTHES,0011-1411-2019-000058 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- ARNMUNE,0011-1411-2023-000101 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- ISOLDA,grant agreement 848166 EC | Horizon 2020 Framework Programme (H2020)
Collapse
Affiliation(s)
- Luisa Chocarro
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain.
| | - Ester Blanco
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Leticia Fernandez-Rubio
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Maider Garnica
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Miren Zuazo
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Maria Jesus Garcia
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Ana Bocanegra
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Miriam Echaide
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Colette Johnston
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Carolyn J Edwards
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - James Legg
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Andrew J Pierce
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Hugo Arasanz
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Oncobiona Unit, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Gonzalo Fernandez-Hinojal
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Ruth Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Karina Ausin
- Proteomics Platform, Proteored-ISCIII, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Enrique Santamaria
- Proteomics Platform, Proteored-ISCIII, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Joaquin Fernandez-Irigoyen
- Proteomics Platform, Proteored-ISCIII, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Grazyna Kochan
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - David Escors
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain.
| |
Collapse
|
30
|
Holcom A, Fuentealba M, Sivapatham R, King CD, Osman H, Foulger A, Bhaumik D, Schilling B, Furman D, Andersen JK, Lithgow GJ. Neuronal expression of human amyloid-β and Tau drives global phenotypic and multi-omic changes in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.01.542377. [PMID: 37398058 PMCID: PMC10312529 DOI: 10.1101/2023.06.01.542377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alzheimer's disease (AD) and Alzheimer's related diseases (ADRD) are prevalent age-related neurodegenerative disorders characterized by the accumulation of amyloid-β (Aβ) plaques and Tau neurofibrillary tangles. The nematode Caenorhabditis elegan s ( C. elegans ) serves as an invaluable model organism in diseases of old age-due to its rapid aging. Here we performed an unbiased systems analysis of a C. elegans strain expressing both Aβ and Tau proteins within neurons. We set out to determine if there was a phenotypic interaction between Aβ and Tau. In addition, we were interested in determining the temporal order of the phenotypic and multi-omic (geromic) outcomes. At an early stage of adulthood, we observed reproductive impairments and mitochondrial dysfunction consistent with disruptions in mRNA transcript abundance, protein solubility, and metabolite levels. Notably, the expression of these neurotoxic proteins exhibited a synergistic effect, leading to accelerated aging. Our findings shed light on the close relationship between normal aging and ADRD. Specifically, we demonstrate alterations to metabolic functions preceding age-related neurotoxicity, offering a resource for the development of new therapeutic strategies.
Collapse
|
31
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
32
|
Wang Q, Ding X, Xu Z, Wang B, Wang A, Wang L, Ding Y, Song S, Chen Y, Zhang S, Jiang L, Ding X. The mouse multi-organ proteome from infancy to adulthood. Nat Commun 2024; 15:5752. [PMID: 38982135 PMCID: PMC11233712 DOI: 10.1038/s41467-024-50183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
The early-life organ development and maturation shape the fundamental blueprint for later-life phenotype. However, a multi-organ proteome atlas from infancy to adulthood is currently not available. Herein, we present a comprehensive proteomic analysis of ten mouse organs (brain, heart, lung, liver, kidney, spleen, stomach, intestine, muscle and skin) at three crucial developmental stages (1-, 4- and 8-weeks after birth) acquired using data-independent acquisition mass spectrometry. We detect and quantify 11,533 protein groups across the ten organs and obtain 115 age-related differentially expressed protein groups that are co-expressed in all organs from infancy to adulthood. We find that spliceosome proteins prevalently play crucial regulatory roles in the early-life development of multiple organs, and detect organ-specific expression patterns and sexual dimorphism. This multi-organ proteome atlas provides a fundamental resource for understanding the molecular mechanisms underlying early-life organ development and maturation.
Collapse
Affiliation(s)
- Qingwen Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwen Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixiao Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Boqian Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sunfengda Song
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youming Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Degl'Innocenti A, Braccia C, Genchi GG, di Leo N, Leoncino L, Catalano F, Armirotti A, Ciofani G. Proteome Alterations and Nucleosome Activation in Rat Myoblasts Treated with Cerium Oxide Nanoparticles. ACS OMEGA 2024; 9:29226-29233. [PMID: 39005815 PMCID: PMC11238203 DOI: 10.1021/acsomega.3c09715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Oxidative stress is a widespread causative agent of disease. Together with its general relevance for biomedicine, such a dynamic is recognizably detrimental to space exploration. Among other solutions, cerium oxide nanoparticles (or nanoceria, NC) display a long-lasting, self-renewable antioxidant activity. In a previous experiment, we evaluated oxidative imbalance in rat myoblasts in space, aboard the International Space Station, and unveiled possible protective effects from NC through RNA sequencing. Here, we focus on the myoblast response to NC on land by means of proteomics, defining a list of proteins that putatively react to NC and confirming nucleosomes/histones as likely mediators of its molecular action. The proteomics data set we present here and its counterpart from the space study share four factors. These are coherently either up- (Hist1h4b) or down-regulated (Gnl3, Mtdh, Trip12) upon NC exposure.
Collapse
Affiliation(s)
- Andrea Degl'Innocenti
- Smart Bio-Interfaces, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
- Department of Medical Biotechnologies, Polyclinic Hospital Santa Maria alle Scotte, Università degli Studi di Siena, Viale Mario Bracci 2, Siena 53100, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Giada Graziana Genchi
- Smart Bio-Interfaces, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, Bari 70125, Italy
| | - Nicoletta di Leo
- Smart Bio-Interfaces, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Luca Leoncino
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| |
Collapse
|
34
|
Zhou C, Li C, Luo L, Li X, Jia K, He N, Mao S, Wang W, Shao C, Liu X, Huang K, Yu Y, Cai X, Chen Y, Dai Z, Li W, Yu J, Li J, Shen F, Wang Z, He F, Sun X, Mao R, Shi W, Zhang J, Jiang T, Zhang Z, Li F, Ren S. Anti-tumor efficacy of HRS-4642 and its potential combination with proteasome inhibition in KRAS G12D-mutant cancer. Cancer Cell 2024; 42:1286-1300.e8. [PMID: 38942026 DOI: 10.1016/j.ccell.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024]
Abstract
KRAS G12D is the most frequently mutated oncogenic KRAS subtype in solid tumors and remains undruggable in clinical settings. Here, we developed a high affinity, selective, long-acting, and non-covalent KRAS G12D inhibitor, HRS-4642, with an affinity constant of 0.083 nM. HRS-4642 demonstrated robust efficacy against KRAS G12D-mutant cancers both in vitro and in vivo. Importantly, in a phase 1 clinical trial, HRS-4642 exhibited promising anti-tumor activity in the escalating dosing cohorts. Furthermore, the sensitization and resistance spectrum for HRS-4642 was deciphered through genome-wide CRISPR-Cas9 screening, which unveiled proteasome as a sensitization target. We further observed that the proteasome inhibitor, carfilzomib, improved the anti-tumor efficacy of HRS-4642. Additionally, HRS-4642, either as a single agent or in combination with carfilzomib, reshaped the tumor microenvironment toward an immune-permissive one. In summary, this study provides potential therapies for patients with KRAS G12D-mutant cancers, for whom effective treatments are currently lacking.
Collapse
Affiliation(s)
- Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Chongyang Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Libo Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xin Li
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ning He
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chuchu Shao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Kan Huang
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yaxin Yu
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinlei Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 100049, China
| | - Yingxue Chen
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zican Dai
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jiayu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Feng Shen
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Zaiyong Wang
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Feng He
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Xing Sun
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Rongfu Mao
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Wei Shi
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Zhe Zhang
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China.
| | - Fei Li
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
35
|
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparison of the Proteome of Huh7 Cells Transfected with Hepatitis B Virus Subgenotype A1, with or without G1862T. Curr Issues Mol Biol 2024; 46:7032-7047. [PMID: 39057060 PMCID: PMC11275860 DOI: 10.3390/cimb46070419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
HBeAg is a non-structural, secreted protein of hepatitis B virus (HBV). Its p25 precursor is post-translationally modified in the endoplasmic reticulum. The G1862T precore mutation leads to the accumulation of P25 in the endoplasmic reticulum and activation of unfolded protein response. Using mass spectrometry, comparative proteome profiling of Huh-7 cells transfected with wildtype (WT) or G1862T revealed significantly differentially expressed proteins resulting in 12 dysregulated pathways unique to WT-transfected cells and 7 shared between cells transfected with either WT or G1862T. Except for the p38 MAPK signalling pathway, WT showed a higher number of DEPs than G1862T-transfected cells in all remaining six shared pathways. Two signalling pathways: oxidative stress and cell cycle signalling were differentially expressed only in cells transfected with G1862T. Fifteen pathways were dysregulated in G1862T-transfected cells compared to WT. The 15 dysregulated pathways were involved in the following processes: MAPK signalling, DNA synthesis and methylation, and extracellular matrix organization. Moreover, proteins involved in DNA synthesis signalling (replication protein A (RPA) and DNA primase (PRIM2)) were significantly upregulated in G1862T compared to WT. This upregulation was confirmed by mRNA quantification of both genes and immunofluorescent confocal microscopy for RPA only. The dysregulation of the pathways involved in these processes may lead to immune evasion, persistence, and uncontrolled proliferation, which are hallmarks of cancer.
Collapse
Affiliation(s)
- Kiyasha Padarath
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
| | - Aurélie Deroubaix
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Stoyan Stoychev
- ReSyn Biosciences, Johannesburg 2194, South Africa;
- Evosep Biosystems, 5230 Odense, Denmark
| | - Anna Kramvis
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
| |
Collapse
|
36
|
Pfister K, Young V, Frankel B, Silva Barbosa A, Burton J, Bons J, Zhang B, Chiba T, Uhlean R, Goetzman E, Schilling B, Sims-Lucas S. Succinylation of Park7 activates a protective metabolic response to acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F128-F136. [PMID: 38695076 DOI: 10.1152/ajprenal.00062.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024] Open
Abstract
Acute kidney injury (AKI) is extremely prevalent among hospitalizations and presents a significant risk for the development of chronic kidney disease and increased mortality. Ischemia caused by shock, trauma, and transplant are common causes of AKI. To attenuate ischemic AKI therapeutically, we need a better understanding of the physiological and cellular mechanisms underlying damage. Instances of ischemia are most damaging in proximal tubule epithelial cells (PTECs) where hypoxic signaling cascades, and perhaps more rapidly, posttranslational modifications (PTMs), act in concert to change cellular metabolism. Here, we focus on the effects of the understudied PTM, lysine succinylation. We have previously shown a protective effect of protein hypersuccinylation on PTECs after depletion of the desuccinylase sirtuin5. General trends in the results suggested that hypersuccinylation led to upregulation of peroxisomal activity and was protective against kidney injury. Included in the list of changes was the Parkinson's-related deglycase Park7. There is little known about any links between peroxisome activity and Park7. In this study, we show in vitro and in vivo that Park7 has a crucial role in protection from AKI and upregulated peroxisome activity. These data in combination with published results of Park7's protective role in cardiovascular damage and chronic kidney disease lead us to hypothesize that succinylation of Park7 may ameliorate oxidative damage resulting from AKI and prevent disease progression. This novel mechanism provides a potential therapeutic mechanism that can be targeted.NEW & NOTEWORTHY Succinylation is an understudied posttranslational modification that has been shown to increase peroxisomal activity. Furthermore, increased peroxisomal activity has been shown to reduce oxidative stress and protect proximal tubules after acute kidney injury. Analysis of mass spectrometry succinylomic and proteomic data reveals a novel role for Parkinson's related Park7 in mediating Nrf2 antioxidant response after kidney injury. This novel protection pathway provides new insights for kidney injury prevention and development of novel therapeutics.
Collapse
Affiliation(s)
- Katherine Pfister
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Victoria Young
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Brendon Frankel
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Anne Silva Barbosa
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jordan Burton
- Buck Institute for Research on Aging, Novato, California, United States
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California, United States
| | - Bob Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Takuto Chiba
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Rebecca Uhlean
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Eric Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, United States
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
37
|
Zheng Y, Liu Y, Yang J, Dong L, Zhang R, Tian S, Yu Y, Ren L, Hou W, Zhu F, Mai Y, Han J, Zhang L, Jiang H, Lin L, Lou J, Li R, Lin J, Liu H, Kong Z, Wang D, Dai F, Bao D, Cao Z, Chen Q, Chen Q, Chen X, Gao Y, Jiang H, Li B, Li B, Li J, Liu R, Qing T, Shang E, Shang J, Sun S, Wang H, Wang X, Zhang N, Zhang P, Zhang R, Zhu S, Scherer A, Wang J, Wang J, Huo Y, Liu G, Cao C, Shao L, Xu J, Hong H, Xiao W, Liang X, Lu D, Jin L, Tong W, Ding C, Li J, Fang X, Shi L. Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials. Nat Biotechnol 2024; 42:1133-1149. [PMID: 37679543 PMCID: PMC11252085 DOI: 10.1038/s41587-023-01934-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Characterization and integration of the genome, epigenome, transcriptome, proteome and metabolome of different datasets is difficult owing to a lack of ground truth. Here we develop and characterize suites of publicly available multi-omics reference materials of matched DNA, RNA, protein and metabolites derived from immortalized cell lines from a family quartet of parents and monozygotic twin daughters. These references provide built-in truth defined by relationships among the family members and the information flow from DNA to RNA to protein. We demonstrate how using a ratio-based profiling approach that scales the absolute feature values of a study sample relative to those of a concurrently measured common reference sample produces reproducible and comparable data suitable for integration across batches, labs, platforms and omics types. Our study identifies reference-free 'absolute' feature quantification as the root cause of irreproducibility in multi-omics measurement and data integration and establishes the advantages of ratio-based multi-omics profiling with common reference materials.
Collapse
Affiliation(s)
- Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Yaqing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | | | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Feng Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yuanbang Mai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | | | | | | | - Ling Lin
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Medical Diagnostics Co. Ltd., Shanghai, China
| | - Jingwei Lou
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Medical Diagnostics Co. Ltd., Shanghai, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Jingchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | | | | | - Depeng Wang
- Nextomics Biosciences Institute, Wuhan, China
| | | | - Ding Bao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zehui Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qiaochu Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yuechen Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - He Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Bin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Bingying Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jingjing Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- Nextomics Biosciences Institute, Wuhan, China
| | - Ruimei Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Tao Qing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Erfei Shang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jun Shang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shanyue Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Haiyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xiaolin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Naixin Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Peipei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ruolan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Andreas Scherer
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- EATRIS ERIC-European Infrastructure for Translational Medicine, Amsterdam, the Netherlands
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jing Wang
- National Institute of Metrology, Beijing, China
| | - Yinbo Huo
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai, China
| | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai, China
| | - Chengming Cao
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai, China
| | - Li Shao
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai, China
| | - Joshua Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Wenming Xiao
- Office of Oncologic Diseases, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Xiaozhen Liang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Weida Tong
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, China.
| | - Xiang Fang
- National Institute of Metrology, Beijing, China.
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China.
- International Human Phenome Institutes (Shanghai), Shanghai, China.
| |
Collapse
|
38
|
López-Valverde L, Vázquez-Mosquera ME, Colón-Mejeras C, Bravo SB, Barbosa-Gouveia S, Álvarez JV, Sánchez-Martínez R, López-Mendoza M, López-Rodríguez M, Villacorta-Argüelles E, Goicoechea-Diezhandino MA, Guerrero-Márquez FJ, Ortolano S, Leao-Teles E, Hermida-Ameijeiras Á, Couce ML. Characterization of the plasma proteomic profile of Fabry disease: Potential sex- and clinical phenotype-specific biomarkers. Transl Res 2024; 269:47-63. [PMID: 38395389 DOI: 10.1016/j.trsl.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Fabry disease (FD) is a X-linked rare lysosomal storage disorder caused by deficient α-galactosidase A (α-GalA) activity. Early diagnosis and the prediction of disease course are complicated by the clinical heterogeneity of FD, as well as by the frequently inconclusive biochemical and genetic test results that do not correlate with clinical course. We sought to identify potential biomarkers of FD to better understand the underlying pathophysiology and clinical phenotypes. We compared the plasma proteomes of 50 FD patients and 50 matched healthy controls using DDA and SWATH-MS. The >30 proteins that were differentially expressed between the 2 groups included proteins implicated in processes such as inflammation, heme and haemoglobin metabolism, oxidative stress, coagulation, complement cascade, glucose and lipid metabolism, and glycocalyx formation. Stratification by sex revealed that certain proteins were differentially expressed in a sex-dependent manner. Apolipoprotein A-IV was upregulated in FD patients with complications, especially those with chronic kidney disease, and apolipoprotein C-III and fetuin-A were identified as possible markers of FD with left ventricular hypertrophy. All these proteins had a greater capacity to identify the presence of complications in FD patients than lyso-GB3, with apolipoprotein A-IV standing out as being more sensitive and effective in differentiating the presence and absence of chronic kidney disease in FD patients than renal markers such as creatinine, glomerular filtration rate and microalbuminuria. Identification of these potential biomarkers can help further our understanding of the pathophysiological processes that underlie the heterogeneous clinical manifestations associated with FD.
Collapse
Affiliation(s)
- Laura López-Valverde
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - María E Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristóbal Colón-Mejeras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Sofía Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - J Víctor Álvarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Rosario Sánchez-Martínez
- Internal Medicine Department, Alicante General University Hospital-Alicante Institute of Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante 03010, Spain
| | - Manuel López-Mendoza
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Manuel Siurot s/n, Sevilla 41013, Spain
| | - Mónica López-Rodríguez
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, Colmenar Viejo, Madrid 28034, Spain; Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), Av. de Madrid, Alcalá de Henares 28871, Spain
| | - Eduardo Villacorta-Argüelles
- Department of Cardiology, Complejo Asistencial Universitario de Salamanca, P°. de San Vicente 58, Salamanca 37007, Spain
| | | | - Francisco J Guerrero-Márquez
- Department of Cardiology, Internal Medicine Service, Hospital de la Serranía, San Pedro, Ronda, Málaga 29400, Spain
| | - Saida Ortolano
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute-SERGAS-UVIGO, Clara Campoamor 341, Vigo 36213, Spain
| | - Elisa Leao-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São João, Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| |
Collapse
|
39
|
Patel SK, Bons J, Rose JP, Chappel JR, Beres RL, Watson MA, Webster C, Burton JB, Bruderer R, Desprez PY, Reiter L, Campisi J, Baker ES, Schilling B. Exosomes Released from Senescent Cells and Circulatory Exosomes Isolated from Human Plasma Reveal Aging-associated Proteomic and Lipid Signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600215. [PMID: 38979258 PMCID: PMC11230204 DOI: 10.1101/2024.06.22.600215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Senescence emerged as a significant mechanism of aging and age-related diseases, offering an attractive target for clinical interventions. Senescent cells release a senescence-associated secretory phenotype (SASP), including exosomes that may act as signal transducers between distal tissues, propagating secondary or bystander senescence and signaling throughout the body. However, the composition of exosome SASP remains underexplored, presenting an opportunity for novel unbiased discovery. Here, we present a detailed proteomic and lipidomic analysis of exosome SASP using mass spectrometry from human plasma from young and older individuals and from tissue culture of senescent primary human lung fibroblasts. We identified ~1,300 exosome proteins released by senescent fibroblasts induced by three different senescence inducers causing most exosome proteins to be differentially regulated with senescence. In parallel, a human plasma cohort from young and old individuals revealed over 1,350 exosome proteins and 171 plasma exosome proteins were regulated when comparing old vs young individuals. Of the age-regulated plasma exosome proteins, we observed 52 exosome SASP factors that were also regulated in exosomes from the senescent fibroblasts, including serine protease inhibitors (SERPINs), Prothrombin, Coagulation factor V, Plasminogen, and Reelin. In addition, 247 lipids were identified with high confidence in all exosome samples. Following the senescence inducers, a majority of the identified phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin species increased significantly indicating cellular membrane changes. The most notable categories of significantly changed proteins were related to extracellular matrix remodeling and inflammation, both potentially detrimental pathways that can damage surrounding tissues and even induce secondary or bystander senescence. Our findings reveal mechanistic insights and potential senescence biomarkers, enabling a better approach to surveilling the senescence burden in the aging population and offering promising therapeutic targets for interventions.
Collapse
|
40
|
Zhang R, Bons J, Rose JP, Schilling B, Verdin E. Protocol for mass spectrometric profiling of lysine malonylation by lysine acetyltransferase in CRISPRi K562 cell lines. STAR Protoc 2024; 5:103074. [PMID: 38771695 PMCID: PMC11135037 DOI: 10.1016/j.xpro.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Lysine malonylation is a protein posttranslational modification. We present a protocol to generate stable gene-knockdown K562 cell lines through lentiviral infection of a CRISPR interference (CRISPRi) system followed by lysine malonylation measurement using mass spectrometry (MS). We detail guide RNA (gRNA) vector cloning, lentiviral infection, cell line purification, protein digestion, malonyl-lysine enrichment, desalting, and MS acquisition and analysis. For complete details on the use and execution of this protocol, please refer to Zhang et al.1 and Bons et al.2.
Collapse
Affiliation(s)
- Ran Zhang
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Joanna Bons
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Jacob P Rose
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
41
|
Acuña-Catalán D, Shah S, Wehrfritz C, Nomura M, Acevedo A, Olmos C, Quiroz G, Huerta H, Bons J, Ampuero E, Wyneken U, Sanhueza M, Arancibia F, Contreras D, Cárdenas JC, Morales B, Schilling B, Newman JC, González-Billault C. Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice. Cell Rep Med 2024; 5:101593. [PMID: 38843842 PMCID: PMC11228662 DOI: 10.1016/j.xcrm.2024.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.
Collapse
Affiliation(s)
- Diego Acuña-Catalán
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Samah Shah
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | - Alejandro Acevedo
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Cristina Olmos
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Gabriel Quiroz
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Hernán Huerta
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Estibaliz Ampuero
- Neurobiology of Behavior Laboratory, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Ursula Wyneken
- IMPACT, Center for Interventional Medicine for Precision and Advanced Cellular Therapy, and Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Arancibia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Julio César Cárdenas
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Department of Chemistry and Biochemistry and Center for Aging and Longevity Studies University of California, Santa Barbara, CA, USA
| | - Bernardo Morales
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | - John C Newman
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Christian González-Billault
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
42
|
He Y, Hou P, Long Z, Zheng Y, Tang C, Jones E, Diao X, Zhu M. Application of Electro-Activated Dissociation Fragmentation Technique to Identifying Glucuronidation and Oxidative Metabolism Sites of Vepdegestrant by Liquid Chromatography-High Resolution Mass Spectrometry. Drug Metab Dispos 2024; 52:634-643. [PMID: 38830773 DOI: 10.1124/dmd.124.001661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 06/05/2024] Open
Abstract
Drug metabolite identification is an integrated part of drug metabolism and pharmacokinetics studies in drug discovery and development. Definitive identification of metabolic modification sides of test compounds such as screening metabolic soft spots and supporting metabolite synthesis are often required. Currently, liquid chromatography-high resolution mass spectrometry is the dominant analytical platform for metabolite identification. However, the interpretation of product ion spectra generated by commonly used collision-induced disassociation (CID) and higher-energy collisional dissociation (HCD) often fails to identify locations of metabolic modifications, especially glucuronidation. Recently, a ZenoTOF 7600 mass spectrometer equipped with electron-activated dissociation (EAD-HRMS) was introduced. The primary objective of this study was to apply EAD-HRMS to identify metabolism sites of vepdegestrant (ARV-471), a model compound that consists of multiple functional groups. ARV-471 was incubated in dog liver microsomes and 12 phase I metabolites and glucuronides were detected. EAD generated unique product ions via orthogonal fragmentation, which allowed for accurately determining the metabolism sites of ARV-471, including phenol glucuronidation, piperazine N-dealkylation, glutarimide hydrolysis, piperidine oxidation, and piperidine lactam formation. In contrast, CID and HCD spectral interpretation failed to identify modification sites of three O-glucuronides and three phase I metabolites. The results demonstrated that EAD has significant advantages over CID and HCD in definitive structural elucidation of glucuronides and phase I metabolites although the utility of EAD-HRMS in identifying various types of drug metabolites remains to be further evaluated. SIGNIFICANCE STATEMENT: Definitive identification of metabolic modification sites by liquid chromatography-high resolution mass spectrometry is highly needed in drug metabolism research, such as screening metabolic soft spots and supporting metabolite synthesis. However, commonly used collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) fragmentation techniques often fail to provide critical information for definitive structural elucidation. In this study, the electron-activated dissociation (EAD) was applied to identifying glucuronidation and oxidative metabolism sites of vepdegestrant, which generated significantly better results than CID and HCD.
Collapse
Affiliation(s)
- Yifei He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Pengyi Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Zhimin Long
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Yuandong Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Chongzhuang Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Elliott Jones
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Mingshe Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (Y.H., Y.Z., X.D.); University of the Chinese Academy of Sciences, Beijing, People's Republic of China (Y.H., X.D.); Sciex, Beijing, People's Republic of China (P.H., Z.L.); XenoFinder Co., Ltd., Suzhou, People's Republic of China (C.T., M.Z.); AB Sciex LLC, Framingham, Massachusetts (E.J.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| |
Collapse
|
43
|
Padhye BD, Nawaz U, Hains PG, Reddel RR, Robinson PJ, Zhong Q, Poulos RC. Proteomic insights into paediatric cancer: Unravelling molecular signatures and therapeutic opportunities. Pediatr Blood Cancer 2024; 71:e30980. [PMID: 38556739 DOI: 10.1002/pbc.30980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Survival rates in some paediatric cancers have improved greatly over recent decades, in part due to the identification of diagnostic, prognostic and predictive molecular signatures, and the development of risk-directed therapies. However, other paediatric cancers have proved difficult to treat, and there is an urgent need to identify novel biomarkers that reveal therapeutic opportunities. The proteome is the total set of expressed proteins present in a cell or tissue at a point in time, and is vastly more dynamic than the genome. Proteomics holds significant promise for cancer research, as proteins are ultimately responsible for cellular phenotype and are the target of most anticancer drugs. Here, we review the discoveries, opportunities and challenges of proteomic analyses in paediatric cancer, with a focus on mass spectrometry (MS)-based approaches. Accelerating incorporation of proteomics into paediatric precision medicine has the potential to improve survival and quality of life for children with cancer.
Collapse
Affiliation(s)
- Bhavna D Padhye
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Kids Research, Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Urwah Nawaz
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Roger R Reddel
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Qing Zhong
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Rebecca C Poulos
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
44
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
45
|
Deinhardt-Emmer S, Deshpande S, Kitazawa K, Herman AB, Bons J, Rose JP, Kumar PA, Anerillas C, Neri F, Ciotlos S, Perez K, Köse-Vogel N, Häder A, Abdelmohsen K, Löffler B, Gorospe M, Desprez PY, Melov S, Furman D, Schilling B, Campisi J. Role of the Senescence-Associated Factor Dipeptidyl Peptidase 4 in the Pathogenesis of SARS-CoV-2 Infection. Aging Dis 2024; 15:1398-1415. [PMID: 37728586 PMCID: PMC11081172 DOI: 10.14336/ad.2023.0812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023] Open
Abstract
During cellular senescence, persistent growth arrest and changes in protein expression programs are accompanied by a senescence-associated secretory phenotype (SASP). In this study, we detected the upregulation of the SASP-related protein dipeptidyl peptidase 4 (DDP4) in human primary lung cells rendered senescent by exposure to ionizing radiation. DPP4 is an exopeptidase that plays a crucial role in the cleavage of various proteins, resulting in the loss of N-terminal dipeptides and proinflammatory effects. Interestingly, our data revealed an association between severe coronavirus disease 2019 (COVID-19) and DDP4, namely that DPP4 levels increased in the plasma of patients with COVID-19 and were correlated with age and disease progression. Although we could not determine the direct effect of DDP4 on viral replication, mechanistic studies in cell culture revealed a negative impact on the expression of the tight junction protein zonula occludens-1 (ZO-1), which contributes to epithelial barrier function. Mass spectrometry analysis indicated that DPP4 overexpressing cells exhibited a decrease in ZO-1 and increased expression of pro-inflammatory cytokines and chemokines. By investigating the effect of DPP4 on the barrier function of human primary cells, we detected an increase in ZO-1 using DPP4 inhibitors. These results provide an important contribution to our understanding of DPP4 in the context of senescence, suggesting that DPP4 plays a major role as part of the SASP. Our results provide evidence that cellular senescence, a hallmark of aging, has an important impact on respiratory infections.
Collapse
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | | | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Jacob P. Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | | | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Francesco Neri
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Serban Ciotlos
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Kevin Perez
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Nilay Köse-Vogel
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | - Antje Häder
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - David Furman
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
46
|
Sing JC, Charkow J, AlHigaylan M, Horecka I, Xu L, Röst HL. MassDash: A Web-Based Dashboard for Data-Independent Acquisition Mass Spectrometry Visualization. J Proteome Res 2024. [PMID: 38684072 DOI: 10.1021/acs.jproteome.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
With the increased usage and diversity of methods and instruments being applied to analyze Data-Independent Acquisition (DIA) data, visualization is becoming increasingly important to validate automated software results. Here we present MassDash, a cross-platform DIA mass spectrometry visualization and validation software for comparing features and results across popular tools. MassDash provides a web-based interface and Python package for interactive feature visualizations and summary report plots across multiple automated DIA feature detection tools, including OpenSwath, DIA-NN, and dreamDIA. Furthermore, MassDash processes peptides on the fly, enabling interactive visualization of peptides across dozens of runs simultaneously on a personal computer. MassDash supports various multidimensional visualizations across retention time, ion mobility, m/z, and intensity, providing additional insights into the data. The modular framework is easily extendable, enabling rapid algorithm development of novel peak-picker techniques, such as deep-learning-based approaches and refinement of existing tools. MassDash is open-source under a BSD 3-Clause license and freely available at https://github.com/Roestlab/massdash, and a demo version can be accessed at https://massdash.streamlit.app.
Collapse
Affiliation(s)
- Justin C Sing
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Joshua Charkow
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Mohammed AlHigaylan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Ira Horecka
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Leon Xu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Hannes L Röst
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| |
Collapse
|
47
|
Zhong X, Li Q, Polacco BJ, Patil T, Marley A, Foussard H, Khare P, Vartak R, Xu J, DiBerto JF, Roth BL, Eckhardt M, Zastrow MV, Krogan NJ, Hüttenhain R. A proximity proteomics pipeline with improved reproducibility and throughput. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.11.536358. [PMID: 37090610 PMCID: PMC10120663 DOI: 10.1101/2023.04.11.536358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Proximity labeling (PL) through biotinylation coupled with mass spectrometry (MS) has emerged as a powerful technique for capturing spatial proteomes within living cells. Large-scale sample processing for proximity proteomics requires a workflow that minimizes hands-on time while enhancing quantitative reproducibility. Here, we present a scalable PL pipeline integrating automated enrichment of biotinylated proteins in a 96-well plate format. By combining this pipeline with an optimized quantitative MS acquisition method based on data-independent acquisition (DIA), we not only significantly increased sample throughput but also improved the reproducibility of protein identification and quantification. We applied this pipeline to delineate subcellular proteomes across various cellular compartments, including endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, employing 5HT2A serotonin receptor as a model, we investigated temporal changes of proximal interaction networks induced by the receptor's activation with serotonin. Finally, to demonstrate the applicability of our PL pipeline across multiple experimental conditions, we further modified the PL pipeline for reduced sample input amounts to accommodate CRISPR-based gene knockout, and assessed the dynamics of the 5HT2A network in response to the perturbation of selected proximal interactors. Importantly, the presented PL approach is universally applicable to PL proteomics using biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols.
Collapse
Affiliation(s)
- Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trupti Patil
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aaron Marley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Prachi Khare
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rasika Vartak
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark Von Zastrow
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Lawlor K, Clausen J, Johnston A, Edge A, Wolff K, Castrignanò E, Couchman L. A review of analytical parameters in 'rapid' liquid chromatographic methods for bioanalysis: Can we do better? J Chromatogr A 2024; 1721:464803. [PMID: 38547680 DOI: 10.1016/j.chroma.2024.464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Rapid bioanalysis is beneficial to many applications. However, how 'rapid' a method is, or could be, is often an unanswered question. In this statistical review, the authors have assessed multiple pre-analytical (i.e. sample preparation), and analytical method parameters specifically for liquid chromatography to assist researchers in developing and validating 'rapid' bioanalytical methods. We restricted the search to urine and plasma matrices only. Data were extracted from over 2,000 recent studies and evaluated to assess how these parameters affected the 'on-instrument' analysis time. In addition to methods using ultra-violet (UV) detection, there were a large number of mass spectrometric (MS) methods, allowing additional review of the differences between high- and low-resolution MS on analysis time. We observed that most (N = 922, 70 %) methods used 5 or 10 cm columns, and that whilst uptake of ultra-high performance (U)HPLC columns was good, the use of sub-5 cm columns and/or flow rates in excess of 1 mL/min was incredibly rare (N = 25, 3 %). The detector of choice for quantitative (U)HPLC-MS remains the triple quadrupole, although a number of groups report the use of high-resolution MS for such methods.
Collapse
Affiliation(s)
- K Lawlor
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UK; Analytical Services International, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
| | - J Clausen
- Analytical Services International, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - A Johnston
- Analytical Services International, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - A Edge
- Avantor Sciences, The Markham Centre, Station Road, Theale, Reading, RG7 4PE
| | - K Wolff
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UK; Drug Control Centre, King's College London, London, SE1 9NH, UK
| | - E Castrignanò
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UK; Drug Control Centre, King's College London, London, SE1 9NH, UK
| | - L Couchman
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UK; Analytical Services International, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
49
|
Numa K, Patel SK, Zhang ZA, Burton JB, Matsumoto A, Hughes JWB, Sotozono C, Schilling B, Desprez PY, Campisi J, Kitazawa K. Senescent characteristics of human corneal endothelial cells upon ultraviolet-A exposure. Aging (Albany NY) 2024; 16:6673-6693. [PMID: 38683123 PMCID: PMC11087119 DOI: 10.18632/aging.205761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE The objective of this study was to investigate the senescent phenotypes of human corneal endothelial cells (hCEnCs) upon treatment with ultraviolet (UV)-A. METHODS We assessed cell morphology, senescence-associated β-galactosidase (SA-β-gal) activity, cell proliferation and expression of senescence markers (p16 and p21) in hCEnCs exposed to UV-A radiation, and senescent hCEnCs induced by ionizing radiation (IR) were used as positive controls. We performed RNA sequencing and proteomics analyses to compare gene and protein expression profiles between UV-A- and IR-induced senescent hCEnCs, and we also compared the results to non-senescent hCEnCs. RESULTS Cells exposed to 5 J/cm2 of UV-A or to IR exhibited typical senescent phenotypes, including enlargement, increased SA-β-gal activity, decreased cell proliferation and elevated expression of p16 and p21. RNA-Seq analysis revealed that 83.9% of the genes significantly upregulated and 82.6% of the genes significantly downregulated in UV-A-induced senescent hCEnCs overlapped with the genes regulated in IR-induced senescent hCEnCs. Proteomics also revealed that 93.8% of the proteins significantly upregulated in UV-A-induced senescent hCEnCs overlapped with those induced by IR. In proteomics analyses, senescent hCEnCs induced by UV-A exhibited elevated expression levels of several factors part of the senescence-associated secretory phenotype. CONCLUSIONS In this study, where senescence was induced by UV-A, a more physiological stress for hCEnCs compared to IR, we determined that UV-A modulated the expression of many genes and proteins typically altered upon IR treatment, a more conventional method of senescence induction, even though UV-A also modulated specific pathways unrelated to IR.
Collapse
Affiliation(s)
- Kohsaku Numa
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| | - Sandip Kumar Patel
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | | | | | - Akifumi Matsumoto
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| | | | - Chie Sotozono
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| | | | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- California Pacific Medical Center, Research Institute, San Francisco, CA 94107, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| |
Collapse
|
50
|
Coorssen JR, Padula MP. Proteomics-The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience. Proteomes 2024; 12:14. [PMID: 38651373 PMCID: PMC11036260 DOI: 10.3390/proteomes12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
With growing recognition and acknowledgement of the genuine complexity of proteomes, we are finally entering the post-proteogenomic era. Routine assessment of proteomes as inferred correlates of gene sequences (i.e., canonical 'proteins') cannot provide the necessary critical analysis of systems-level biology that is needed to understand underlying molecular mechanisms and pathways or identify the most selective biomarkers and therapeutic targets. These critical requirements demand the analysis of proteomes at the level of proteoforms/protein species, the actual active molecular players. Currently, only highly refined integrated or integrative top-down proteomics (iTDP) enables the analytical depth necessary to provide routine, comprehensive, and quantitative proteome assessments across the widest range of proteoforms inherent to native systems. Here we provide a broad perspective of the field, taking in historical and current realities, to establish a more balanced understanding of where the field has come from (in particular during the ten years since Proteomes was launched), current issues, and how things likely need to proceed if necessary deep proteome analyses are to succeed. We base this in our firm belief that the best proteomic analyses reflect, as closely as possible, the native sample at the moment of sampling. We also seek to emphasise that this and future analytical approaches are likely best based on the broad recognition and exploitation of the complementarity of currently successful approaches. This also emphasises the need to continuously evaluate and further optimize established approaches, to avoid complacency in thinking and expectations but also to promote the critical and careful development and introduction of new approaches, most notably those that address proteoforms. Above all, we wish to emphasise that a rigorous focus on analytical quality must override current thinking that largely values analytical speed; the latter would certainly be nice, if only proteoforms could thus be effectively, routinely, and quantitatively assessed. Alas, proteomes are composed of proteoforms, not molecular species that can be amplified or that directly mirror genes (i.e., 'canonical'). The problem is hard, and we must accept and address it as such, but the payoff in playing this longer game of rigorous deep proteome analyses is the promise of far more selective biomarkers, drug targets, and truly personalised or even individualised medicine.
Collapse
Affiliation(s)
- Jens R. Coorssen
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
- Institute for Globally Distributed Open Research and Education (IGDORE), St. Catharines, ON L2N 4X2, Canada
| | - Matthew P. Padula
- School of Life Sciences and Proteomics, Lipidomics and Metabolomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|