1
|
Zhang J, Sjøberg KA, Gong S, Wang T, Li F, Kuo A, Durot S, Majcher A, Ardicoglu R, Desgeorges T, Mann CG, Soro Arnáiz I, Fitzgerald G, Gilardoni P, Abel ED, Kon S, Olivares-Villagómez D, Zamboni N, Wolfrum C, Hornemann T, Morscher R, Tisch N, Ghesquière B, Kopf M, Richter EA, De Bock K. Endothelial metabolic control of insulin sensitivity through resident macrophages. Cell Metab 2024; 36:2383-2401.e9. [PMID: 39270655 DOI: 10.1016/j.cmet.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (Glut1/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages without affecting transendothelial glucose transport. Lowering endothelial Glut1 via genetic depletion (Glut1ΔEC) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/Spp1) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting Spp1 from ECs prevented macrophage accumulation and improved insulin sensitivity in Glut1ΔEC mice. Mechanistically, Glut1-dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Kim Anker Sjøberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Songlin Gong
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Tongtong Wang
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Fengqi Li
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, Hefei, China
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Stephan Durot
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphaela Ardicoglu
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland; Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Thibaut Desgeorges
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Charlotte Greta Mann
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Ines Soro Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphael Morscher
- Pediatric Cancer Metabolism Laboratory, Children`s Research Center, University of Zürich, 8032 Zürich, Switzerland
| | - Nathalie Tisch
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
2
|
Lu H, Suo Z, Lin J, Cong Y, Liu Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark Res 2024; 12:76. [PMID: 39095853 PMCID: PMC11295551 DOI: 10.1186/s40364-024-00612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monocytes and macrophages play an indispensable role in maintaining intestinal homeostasis and modulating mucosal immune responses in inflammatory bowel disease (IBD). Although numerous studies have described macrophage properties in IBD, the underlying mechanisms whereby the monocyte-macrophage lineage modulates intestinal homeostasis during gut inflammation remain elusive. MAIN BODY In this review, we decipher the cellular and molecular mechanisms governing the generation of intestinal mucosal macrophages and fill the knowledge gap in understanding the origin, maturation, classification, and functions of mucosal macrophages in intestinal niches, particularly the phagocytosis and bactericidal effects involved in the elimination of cell debris and pathogens. We delineate macrophage-mediated immunoregulation in the context of producing pro-inflammatory and anti-inflammatory cytokines, chemokines, toxic mediators, and macrophage extracellular traps (METs), and participating in the modulation of epithelial cell proliferation, angiogenesis, and fibrosis in the intestine and its accessory tissues. Moreover, we emphasize that the maturation of intestinal macrophages is arrested at immature stage during IBD, and the deficiency of MCPIP1 involves in the process via ATF3-AP1S2 signature. In addition, we confirmed the origin potential of IL-1B+ macrophages and defined C1QB+ macrophages as mature macrophages. The interaction crosstalk between the intestine and the mesentery has been described in this review, and the expression of mesentery-derived SAA2 is upregulated during IBD, which contributes to immunoregulation of macrophage. Moreover, we also highlight IBD-related susceptibility genes (e.g., RUNX3, IL21R, GTF2I, and LILRB3) associated with the maturation and functions of macrophage, which provide promising therapeutic opportunities for treating human IBD. CONCLUSION In summary, this review provides a comprehensive, comprehensive, in-depth and novel description of the characteristics and functions of macrophages in IBD, and highlights the important role of macrophages in the molecular and cellular process during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
3
|
Farkasinszky G, Péliné JS, Károlyi P, Rácz S, Dénes N, Papp T, Király J, Szabo Z, Kertész I, Mező G, Halmos G, Képes Z, Trencsényi G. In Vivo Imaging of Acute Hindlimb Ischaemia in Rat Model: A Pre-Clinical PET Study. Pharmaceutics 2024; 16:542. [PMID: 38675203 PMCID: PMC11054801 DOI: 10.3390/pharmaceutics16040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND To better understand ischaemia-related molecular alterations, temporal changes in angiogenic Aminopeptidase N (APN/CD13) expression and glucose metabolism were assessed with PET using a rat model of peripheral arterial disease (PAD). METHODS The mechanical occlusion of the base of the left hindlimb triggered using a tourniquet was applied to establish the ischaemia/reperfusion injury model in Fischer-344 rats. 2-[18F]FDG and [68Ga]Ga-NOTA-c(NGR) PET imaging performed 1, 3, 5, 7, and 10 days post-ischaemia induction was followed by Western blotting and immunohistochemical staining for APN/CD13 in ischaemic and control muscle tissue extracts. RESULTS Due to a cellular adaptation to hypoxia, a gradual increase in [68Ga]Ga-NOTA-c(NGR) and 2-[18F]FDG uptake was observed from post-intervention day 1 to 7 in the ischaemic hindlimbs, which was followed by a drop on day 10. Conforming pronounced angiogenic recovery, the NGR accretion of the ischaemic extremities differed significantly from the controls 5, 7, and 10 days after ischaemia induction (p ≤ 0.05), which correlated with the Western blot and immunohistochemical results. No remarkable radioactivity was depicted between the normally perfused hindlimbs of either the ischaemic or the control groups. CONCLUSIONS The PET-based longitudinal assessment of angiogenesis-associated APN/CD13 expression and glucose metabolism during ischaemia may continue to broaden our knowledge on the pathophysiology of PAD.
Collapse
Affiliation(s)
- Gergely Farkasinszky
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Szabó Péliné
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
| | - Péter Károlyi
- Doctoral School of Neuroscience, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Szilvia Rácz
- Division of Radiology, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Noémi Dénes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
| | - Tamás Papp
- Doctoral School of Neuroscience, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - József Király
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsuzsanna Szabo
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Kertész
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
| | - Gábor Mező
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, H-1053 Budapest, Hungary
- MTA-ELTE, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, H-1053 Budapest, Hungary
| | - Gabor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary (G.T.)
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Kou T, Kang L, Zhang B, Li J, Zhao B, Zeng W, Hu X. RBP-J regulates homeostasis and function of circulating Ly6C lo monocytes. eLife 2024; 12:RP88135. [PMID: 38407952 PMCID: PMC10942619 DOI: 10.7554/elife.88135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Notch-RBP-J signaling plays an essential role in the maintenance of myeloid homeostasis. However, its role in monocyte cell fate decisions is not fully understood. Here, we showed that conditional deletion of transcription factor RBP-J in myeloid cells resulted in marked accumulation of blood Ly6Clo monocytes that highly expressed chemokine receptor CCR2. Bone marrow transplantation and parabiosis experiments revealed a cell-intrinsic requirement of RBP-J for controlling blood Ly6CloCCR2hi monocytes. RBP-J-deficient Ly6Clo monocytes exhibited enhanced capacity competing with wildtype counterparts in blood circulation. In accordance with alterations of circulating monocytes, RBP-J deficiency led to markedly increased population of lung tissues with Ly6Clo monocytes and CD16.2+ interstitial macrophages. Furthermore, RBP-J deficiency-associated phenotypes could be genetically corrected by further deleting Ccr2 in myeloid cells. These results demonstrate that RBP-J functions as a crucial regulator of blood Ly6Clo monocytes and thus derived lung-resident myeloid populations, at least in part through regulation of CCR2.
Collapse
Affiliation(s)
- Tiantian Kou
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Lan Kang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Jiaqi Li
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| |
Collapse
|
5
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Schroth FN, Xu Y, Chen R, Rong S, Shushakova N, Gueler F, Haller H, Limbourg FP. Validation of CSF-1 receptor (CD115) staining for analysis of murine monocytes by flow cytometry. J Leukoc Biol 2024; 115:573-582. [PMID: 38038378 DOI: 10.1093/jleuko/qiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Frauline Nicole Schroth
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Yuangao Xu
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Rongjun Chen
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
- Phenos GmbH, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| |
Collapse
|
6
|
Yu Y, Wang S, Chen X, Gao Z, Dai K, Wang J, Liu C. Sulfated oligosaccharide activates endothelial Notch for inducing macrophage-associated arteriogenesis to treat ischemic diseases. Proc Natl Acad Sci U S A 2023; 120:e2307480120. [PMID: 37943835 PMCID: PMC10655224 DOI: 10.1073/pnas.2307480120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
Ischemic diseases lead to considerable morbidity and mortality, yet conventional clinical treatment strategies for therapeutic angiogenesis fall short of being impactful. Despite the potential of biomaterials to deliver pro-angiogenic molecules at the infarct site to induce angiogenesis, their efficacy has been impeded by aberrant vascular activation and off-target circulation. Here, we present a semisynthetic low-molecular sulfated chitosan oligosaccharide (SCOS) that efficiently induces therapeutic arteriogenesis with a spontaneous generation of collateral circulation and blood reperfusion in rodent models of hind limb ischemia and myocardial infarction. SCOS elicits anti-inflammatory macrophages' (Mφs') differentiation into perivascular Mφs, which in turn directs artery formation via a cell-to-cell communication rather than secretory factor regulation. SCOS-mediated arteriogenesis requires a canonical Notch signaling pathway in Mφs via the glycosylation of protein O-glucosyltransferases 2, which results in promoting arterial differentiation and tissue repair in ischemia. Thus, this highly bioactive oligosaccharide can be harnessed to direct efficiently therapeutic arteriogenesis and perfusion for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Shuang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Xinye Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Zehua Gao
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Kai Dai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Changsheng Liu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
7
|
Yadav S, Ganta V, Sudhahar V, Ash D, Nagarkoti S, Das A, McMenamin M, Kelley S, Fukai T, Ushio-Fukai M. Myeloid Drp1 Deficiency Limits Revascularization in Ischemic Muscles via Inflammatory Macrophage Polarization and Metabolic Reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.565656. [PMID: 37961122 PMCID: PMC10635146 DOI: 10.1101/2023.11.04.565656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the preclinical model of peripheral arterial disease (PAD), M2-like anti-inflammatory macrophage polarization and angiogenesis are required for revascularization. The regulation of cell metabolism and inflammation in macrophages is tightly linked to mitochondrial dynamics. Drp1, a mitochondrial fission protein, has shown context-dependent macrophage phenotypes with both pro- and anti-inflammatory characteristics. However, the role of macrophage Drp1 in reparative neovascularization remains unexplored. Here we show that Drp1 expression was significantly increased in F4/80+ macrophages within ischemic muscle at day 3 following hindlimb ischemia (HLI), an animal model of PAD. Myeloid-specific Drp1 -/- mice exhibited reduced limb perfusion recovery, angiogenesis and muscle regeneration after HLI. These effects were concomitant with enhancement of pro-inflammatory M1-like macrophages, p-NFkB, and TNFα levels, while showing reduction in anti-inflammatory M2-like macrophages and p-AMPK in ischemic muscle of myeloid Drp1 -/- mice. In vitro, Drp1 -/- macrophages under hypoxia serum starvation (HSS), an in vitro PAD model, demonstrated enhanced glycolysis via reducing p-AMPK as well as mitochondrial dysfunction and excessive mitochondrial ROS, resulting in increased M1-gene and reduced M2-gene expression. Conditioned media from HSS-treated Drp1 -/- macrophages exhibited increased secretion of pro-inflammatory cytokines and suppressed angiogenic responses in cultured endothelial cells. Thus, Drp1 deficiency in macrophages under ischemia drives inflammatory metabolic reprogramming and macrophage polarization, thereby limiting revascularization in experimental PAD.
Collapse
|
8
|
Sun H, Meng S, Xu Z, Cai H, Pei X, Wan Q, Chen J. Vascular and lymphatic heterogeneity and age-related variations of dental pulps. J Dent 2023; 138:104695. [PMID: 37714450 DOI: 10.1016/j.jdent.2023.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVES Dental pulp tissue is highly vascularized. However, age-related vascular changes of the dental pulp in mice and humans remain poorly understood. We modified a novel tissue clearing method, mapped the vasculature, pericytes, and perivascular matrix in the dental pulp via high-resolution 3D imaging. METHODS We isolated young and aged pulps from mouse teeth, and mapped vasculature through a high-resolution thick frozen sections imaging method and a modified tissue clearing method. Human dental pulps were also mapped for vasculature studying. Furthermore, young and aged human dental pulps were collected and were compared with mouse pulps through RNA- sequencing. RESULTS Five vascular subtypes of blood vessels were found in the mouse dental pulp, which constituted the arterioles-capillaries-venules network. The density of capillaries and venules of molars declined obviously in aged mice. Among the age-dependent changes in the perivascular pulp matrix, the perivascular macrophages remarkably increased, lymphatic capillaries increased, while the nerves and extracellular matrix remained unchanged. Furthermore, the vascular patterns of human formed a complex vascular network. Both mouse and human dental pulps exhibited an inflammaging state. TNF pathway and Rap1 pathway might become promising targets for combating inflammaging and promoting angiogenesis. CONCLUSIONS Five subtypes of blood vessels were identified within the dental pulp of mice. Notably, the density of capillaries and venules in pulps of aged mice was reduced. Furthermore, partial similarities were observed in the vascular patterns between the dental pulps of humans and mice. RNA-sequencing analysis revealed that both mouse and human dental pulps exhibit indications of an inflammaging state. CLINICAL SIGNIFICANCE This study may contribute to unraveling potential therapeutic targets in the pulp regeneration and treatment of relevant diseases in the elderly.
Collapse
Affiliation(s)
- Haiyang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuhuai Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - He Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Liu Y, Su S, Shayo S, Bao W, Pal M, Dou K, Shi PA, Aygun B, Campbell-Lee S, Lobo CA, Mendelson A, An X, Manwani D, Zhong H, Yazdanbakhsh K. Hemolysis dictates monocyte differentiation via two distinct pathways in sickle cell disease vaso-occlusion. J Clin Invest 2023; 133:e172087. [PMID: 37490346 PMCID: PMC10503794 DOI: 10.1172/jci172087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by painful vaso-occlusive crises (VOC) and chronic hemolysis. The mononuclear phagocyte system is pivotal to SCD pathophysiology, but the mechanisms governing monocyte/macrophage differentiation remain unknown. This study examined the influence of hemolysis on circulating monocyte trajectories in SCD. We discovered that hemolysis stimulated CSF-1 production, partly by endothelial cells via Nrf2, promoting classical monocyte (CMo) differentiation into blood patrolling monocytes (PMo) in SCD mice. However, hemolysis also upregulated CCL-2 through IFN-I, inducing CMo transmigration and differentiation into tissue monocyte-derived macrophages. Blocking CMo transmigration by anti-P selectin antibody in SCD mice increased circulating PMo, corroborating that CMo-to-tissue macrophage differentiation occurs at the expense of CMo-to-blood PMo differentiation. We observed a positive correlation between plasma CSF-1/CCL-2 ratios and blood PMo levels in patients with SCD, underscoring the clinical significance of these two opposing factors in monocyte differentiation. Combined treatment with CSF-1 and anti-P selectin antibody more effectively increased PMo numbers and reduced stasis compared with single-agent therapies in SCD mice. Altogether, these data indicate that monocyte fates are regulated by the balance between two heme pathways, Nrf2/CSF-1 and IFN-I/CCL-2, and suggest that the CSF-1/CCL-2 ratio may present a diagnostic and therapeutic target in SCD.
Collapse
Affiliation(s)
| | - Shan Su
- Laboratory of Complement Biology
| | | | | | | | - Kai Dou
- Laboratory of Immune Regulation, and
| | - Patricia A. Shi
- Clinical Research in Sickle Cell Disease, New York Blood Center, New York, New York, USA
| | - Banu Aygun
- Cohen Children’s Medical Center, New Hyde Park, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Sally Campbell-Lee
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, New York, USA
| | - Deepa Manwani
- Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Children’s Hospital at Montefiore, New York, New York, USA
| | - Hui Zhong
- Laboratory of Immune Regulation, and
| | | |
Collapse
|
10
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Kijas D, Haller H, Schmidt-Ott K, Limbourg FP. CSF-1 and Notch signaling cooperate in macrophage instruction and tissue repair during peripheral limb ischemia. Front Immunol 2023; 14:1240327. [PMID: 37691936 PMCID: PMC10484478 DOI: 10.3389/fimmu.2023.1240327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Ischemia causes an inflammatory response featuring monocyte-derived macrophages (MF) involved in angiogenesis and tissue repair. Angiogenesis and ischemic macrophage differentiation are regulated by Notch signaling via Notch ligand Delta-like 1 (Dll1). Colony stimulating factor 1 (CSF-1) is an essential MF lineage factor, but its role in ischemic macrophage development and the interaction with Notch signaling is so far unclear. Using a mouse model of hind limb ischemia with CSF-1 inhibitor studies and Dll1 heterozygous mice we show that CSF-1 is induced in the ischemic niche by a subpopulation of stromal cells expressing podoplanin, which was paralleled by the development of ischemic macrophages. Inhibition of CSF-1 signaling with small molecules or blocking antibodies impaired macrophage differentiation but prolonged the inflammatory response, resulting in impaired perfusion recovery and tissue regeneration. Yet, despite high levels of CSF-1, macrophage maturation and perfusion recovery were impaired in mice with Dll1 haploinsufficiency, while inflammation was exaggerated. In vitro, CSF-1 was not sufficient to induce full MF differentiation from donor monocytes in the absence of recombinant DLL1, while the presence of DLL1 in a dose-dependent manner stimulated MF differentiation in combination with CSF-1. Thus, CSF-1 is an ischemic niche factor that cooperates with Notch signaling in a non-redundant fashion to instruct macrophage cell fate and maturation, which is required for ischemic perfusion recovery and tissue repair.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Kai Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Florian P. Limbourg
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Dastagir K, Gamrekelashvili J, Dastagir N, Limbourg A, Kijas D, Kapanadze T, Vogt PM, Limbourg FP. A new fasciocutaneous flap model identifies a critical role for endothelial Notch signaling in wound healing and flap survival. Sci Rep 2023; 13:12542. [PMID: 37532879 PMCID: PMC10397185 DOI: 10.1038/s41598-023-39722-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/29/2023] [Indexed: 08/04/2023] Open
Abstract
Flap surgery is a common treatment for severe wounds and a major determinant of surgical outcome. Flap survival and healing depends on adaptation of the local flap vasculature. Using a novel and defined model of fasciocutaneous flap surgery, we demonstrate that the Notch ligand Delta-like 1 (Dll1), expressed in vascular endothelial cells, regulates flap arteriogenesis, inflammation and flap survival. Utilizing the stereotyped anatomy of dorsal skin arteries, ligation of the major vascular pedicle induced strong collateral vessel development by end-to-end anastomosis in wildtype mice, which supported flap perfusion recovery over time. In mice with heterozygous deletion of Dll1, collateral vessel formation was strongly impaired, resulting in aberrant vascularization and subsequent necrosis of the tissue. Furthermore, Dll1 deficient mice showed severe inflammation in the flap dominated by monocytes and macrophages. This process is controlled by endothelial Dll1 in vivo, since the results were recapitulated in mice with endothelial-specific deletion of Dll1. Thus, our model provides a platform to study vascular adaptation to flap surgery and molecular and cellular regulators influencing flap healing and survival.
Collapse
Affiliation(s)
- Khaled Dastagir
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Nadjib Dastagir
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Anne Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
12
|
Song BF, Li BJ, Ning JZ, Xia YQ, Ye ZH, Yuan TH, Yan XZ, Li L, Zhou XJ, Rao T, Li W, Cheng F. Overexpression of sirtuin 1 attenuates calcium oxalate-induced kidney injury by promoting macrophage polarization. Int Immunopharmacol 2023; 121:110398. [PMID: 37301123 DOI: 10.1016/j.intimp.2023.110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Sirtuin 1 (SIRT1) protein is involved in macrophage differentiation, while NOTCH signaling affects inflammation and macrophage polarization. Inflammation and macrophage infiltration are typical processes that accompany kidney stone formation. However, the role and mechanism of SIRT1 in renal tubular epithelial cell injury caused by calcium oxalate (CaOx) deposition and the relationship between SIRT1 and the NOTCH signaling pathway in this urological disorder are unclear. This study investigated whether SIRT1 promotes macrophage polarization to inhibit CaOx crystal deposition and reduce renal tubular epithelial cell injury. Public single-cell sequencing data, RT-qPCR, immunostaining approaches, and Western blotting showed decreased SIRT1 expression in macrophages treated with CaOx or exposed to kidney stones. Macrophages overexpressing SIRT1 differentiated towards the anti-inflammatory M2 phenotype, significantly inhibiting apoptosis and alleviating injury in the kidneys of mice with hyperoxaluria. Conversely, decreased SIRT1 expression in CaOx-treated macrophages triggered Notch signaling pathway activation, promoting macrophage polarization towards the pro-inflammatory M1 phenotype. Our results suggest that SIRT1 promotes macrophage polarization towards the M2 phenotype by repressing the NOTCH signaling pathway, which reduces CaOx crystal deposition, apoptosis, and damage in the kidney. Therefore, we propose SIRT1 as a potential target for preventing disease progression in patients with kidney stones.
Collapse
Affiliation(s)
- Bao-Feng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo-Jun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Qi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ze-Hua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tian-Hui Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Zhou Yan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang-Jun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Coppin E, Zhang X, Ohayon L, Johny E, Dasari A, Zheng KH, Stiekema L, Cifuentes-Pagano E, Pagano PJ, Chaparala S, Stroes ES, Dutta P. Peripheral Ischemia Imprints Epigenetic Changes in Hematopoietic Stem Cells to Propagate Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2023; 43:889-906. [PMID: 36891902 PMCID: PMC10213134 DOI: 10.1161/atvbaha.123.318956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Peripheral ischemia caused by peripheral artery disease is associated with systemic inflammation, which may aggravate underlying comorbidities such as atherosclerosis and heart failure. However, the mechanisms of increased inflammation and inflammatory cell production in patients with peripheral artery disease remain poorly understood. METHODS We used peripheral blood collected from patients with peripheral artery disease and performed hind limb ischemia (HI) in Apoe-/- mice fed a Western diet and C57BL/6J mice with a standard laboratory diet. Bulk and single-cell RNA sequencing analysis, whole-mount microscopy, and flow cytometry were performed to analyze hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and relocation. RESULTS We observed augmented numbers of leukocytes in the blood of patients with peripheral artery disease and Apoe-/- mice with HI. RNA sequencing and whole-mount imaging of the bone marrow revealed HSPC migration into the vascular niche from the osteoblastic niche and their exaggerated proliferation and differentiation. Single-cell RNA sequencing demonstrated alterations in the genes responsible for inflammation, myeloid cell mobilization, and HSPC differentiation after HI. Heightened inflammation in Apoe-/- mice after HI aggravated atherosclerosis. Surprisingly, bone marrow HSPCs expressed higher amounts of the receptors for IL (interleukin)-1 and IL-3 after HI. Concomitantly, the promoters of Il1r1 and Il3rb had augmented H3K4me3 and H3K27ac marks after HI. Genetic and pharmacological inhibition of these receptors resulted in suppressed HSPC proliferation, reduced leukocyte production, and ameliorated atherosclerosis. CONCLUSIONS Our findings demonstrate increased inflammation, HSPC abundance in the vascular niches of the bone marrow, and elevated IL-3Rb and IL-1R1 (IL-1 receptor 1) expression in HSPC following HI. Furthermore, the IL-3Rb and IL-1R1 signaling plays a pivotal role in HSPC proliferation, leukocyte abundance, and atherosclerosis aggravation after HI.
Collapse
Affiliation(s)
- Emilie Coppin
- Regeneration in Hematopoiesis, Institute for Immunology, TU Dresden, Dresden, Germany
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Xinyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lee Ohayon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ankush Dasari
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kang H. Zheng
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lotte Stiekema
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Srilakshmi Chaparala
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erik S. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, 15213
| |
Collapse
|
14
|
Risser GE, Machour M, Hernaez-Estrada B, Li D, Levenberg S, Spiller KL. Effects of Interleukin-4 (IL-4)-releasing microparticles and adoptive transfer of macrophages on immunomodulation and angiogenesis. Biomaterials 2023; 296:122095. [PMID: 36989737 PMCID: PMC10085857 DOI: 10.1016/j.biomaterials.2023.122095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Macrophages are major regulators of angiogenesis in response to injury, but the mechanisms behind their diverse and phenotypically specific functions are still poorly understood. In particular, the effects of interleukin-4 (IL-4) on macrophage behavior have been well studied in vitro, but it remains unclear whether the release of IL-4 from biomaterials can be used to control macrophage phenotype and subsequent effects on angiogenesis in vivo. We used the murine hindlimb ischemia model to investigate the effects of IL-4-releasing poly(lactic-co-glycolic acid) microparticles co-delivered with IL-4-polarized macrophages on host macrophage phenotype and angiogenesis in vivo. We established a minimum dose of IL-4 required to modulate macrophage phenotype in vivo and evaluated effects on macrophage subpopulation diversity using multidimensional flow cytometry and pseudotime analysis. The delivery of IL-4-releasing microparticles did not affect the density or size of blood vessels as measured by immunohistochemical (IHC) analysis, but it did increase perfused tissue volume as measured by 3D microcomputed tomography (microCT). In contrast, the co-delivery of IL-4-releasing microparticles and exogenously IL-4-polarized macrophages increased the size of blood vessels as measured by IHC, but without effects on perfused tissue volume via microCT. These effects occurred in spite of low recovery of adoptively transferred macrophages at 4 days after administration. Spatial analysis of macrophage-blood vessel interactions via IHC showed that macrophages closely interacted with blood vessels, which was slightly influenced by treatment, and that blood vessel size was positively correlated with number of macrophages in close proximity. Altogether, these findings indicate that delivery of IL-4-releasing microparticles and exogenously IL-4-polarized macrophages can be beneficial for angiogenesis, but further mechanistic investigations are required.
Collapse
Affiliation(s)
- Gregory E Risser
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Majd Machour
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Dong Li
- Shanghai Key Tissue Engineering Laboratory, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kara L Spiller
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Kupatt C, Ziegler T, Bähr A, Le Noble F. Thymosin ß4 and MRTF-A mitigate vessel regression despite cardiovascular risk factors. Int Immunopharmacol 2023; 117:109786. [PMID: 36812671 DOI: 10.1016/j.intimp.2023.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/22/2023]
Abstract
Since clinical revascularization techniques of coronary or peripheral artery disease (CAD/PAD) focus on macrovessels of the heart, the microcirculatory compartment largely goes unnoticed. However, cardiovascular risk factors not only drive large vessel atherosclerosis, but also microcirculatory rarefaction, an instance unmet by current therapeutic schemes. Angiogenic gene therapy has the potential to reverse capillary rarefaction, but only if the disease-causing inflammation and vessel-destabilization are addressed. This review summarizes the current knowledge with regard to capillary rarefaction due to cardiovascular risk factors. Moreover, the potential of Thymosin ß4 (Tß4) and its downstream signal, myocardin-related transcription factor-A (MRTF-A), to counteract capillary rarefaction are discussed.
Collapse
Affiliation(s)
- Christian Kupatt
- Medizinische Klinik und Poliklinik I, Klinikum rechts der Isar, 81675 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (German Centre of Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Tilman Ziegler
- Medizinische Klinik und Poliklinik I, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Andrea Bähr
- Medizinische Klinik und Poliklinik I, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ferdinand Le Noble
- Karlsruhe Institute of Technology (KIT) Cell and Developmental Biology, Building 30.44 Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
16
|
Hasan SS, Fischer A. Notch Signaling in the Vasculature: Angiogenesis and Angiocrine Functions. Cold Spring Harb Perspect Med 2023; 13:cshperspect.a041166. [PMID: 35667708 PMCID: PMC9899647 DOI: 10.1101/cshperspect.a041166] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Formation of a functional blood vessel network is a complex process tightly controlled by pro- and antiangiogenic signals released within the local microenvironment or delivered through the bloodstream. Endothelial cells precisely integrate such temporal and spatial changes in extracellular signals and generate an orchestrated response by modulating signaling transduction, gene expression, and metabolism. A key regulator in vessel formation is Notch signaling, which controls endothelial cell specification, proliferation, migration, adhesion, and arteriovenous differentiation. This review summarizes the molecular biology of endothelial Notch signaling and how it controls angiogenesis and maintenance of the established, quiescent vasculature. In addition, recent progress in the understanding of Notch signaling in endothelial cells for controlling organ homeostasis by transcriptional regulation of angiocrine factors and its relevance to disease will be discussed.
Collapse
Affiliation(s)
- Sana S Hasan
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
17
|
Brain milieu induces early microglial maturation through the BAX-Notch axis. Nat Commun 2022; 13:6117. [PMID: 36253375 PMCID: PMC9576735 DOI: 10.1038/s41467-022-33836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Microglia are derived from primitive myeloid cells and gain their early identity in the embryonic brains. However, the mechanism by which the brain milieu confers microglial maturation signature remains elusive. Here, we demonstrate that the baxcq55 zebrafish and Baxtm1Sjk mouse embryos exhibit similarly defective early microglial maturation. BAX, a typical pro-apoptotic factor, is highly enriched in neuronal cells and regulates microglial maturation through both pro-apoptotic and non-apoptotic mechanisms. BAX regulates dlb via the CaMKII-CREB axis calcium-dependently in living neurons while ensuring the efficient Notch activation in the immigrated pre-microglia by apoptotic neurons. Notch signaling is conserved in supporting embryonic microglia maturation. Compromised microglial development occurred in the Cx3cr1Cre/+Rbpjfl/fl embryonic mice; however, microglia acquire their appropriate signature when incubated with DLL3 in vitro. Thus, our findings elucidate a BAX-CaMKII-CREB-Notch network triggered by the neuronal milieu in microglial development, which may provide innovative insights for targeting microglia in neuronal disorder treatment.
Collapse
|
18
|
Abstract
Heart regenerative medicine has been gradually evolving from a view of the heart as a nonregenerative organ with terminally differentiated cardiac muscle cells. Understanding the biology of the heart during homeostasis and in response to injuries has led to the realization that cellular communication between all cardiac cell types holds great promise for treatments. Indeed, recent studies highlight new disease-reversion concepts in addition to cardiomyocyte renewal, such as matrix- and vascular-targeted therapies, and immunotherapy with a focus on inflammation and fibrosis. In this review, we will discuss the cross-talk within the cardiac microenvironment and how specific therapies aim to target the hostile cardiac milieu under pathological conditions.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, 60594 Frankfurt, Germany.,Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| |
Collapse
|
19
|
Wong CWT, Sawhney A, Wu Y, Mak YW, Tian XY, Chan HF, Blocki A. Sourcing of human peripheral blood-derived myeloid angiogenic cells under xeno-free conditions for the treatment of critical limb ischemia. Stem Cell Res Ther 2022; 13:419. [PMID: 35964057 PMCID: PMC9375284 DOI: 10.1186/s13287-022-03095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Critical limb ischemia (CLI) is the most severe form of peripheral artery disease and exhibits a high risk of lower extremity amputations. As even the most promising experimental approaches based on mesenchymal stem cells (MSCs) demonstrated only moderate therapeutic effects, we hypothesized that other cell types with intrinsic roles in angiogenesis may exhibit a stronger therapeutic potential. We have previously established a protocol to source human peripheral blood-derived angiogenic cells (BDACs). These cells promoted revascularization and took perivascular location at sites of angiogenesis, thus resembling hematopoietic pericytes, which were only described in vivo so far. We thus hypothesized that BDACs might have a superior ability to promote revascularization and rescue the affected limb in CLI. METHODS As standard BDAC sourcing techniques involve the use of animal-derived serum, we sought to establish a xeno- and/or serum-free protocol. Next, BDACs or MSCs were injected intramuscularly following the ligation of the iliac artery in a murine model. Their ability to enhance revascularization, impair necrosis and modulate inflammatory processes in the affected limb was investigated. Lastly, the secretomes of both cell types were compared to find potential indications for the observed differences in angiogenic potential. RESULTS From the various commercial media tested, one xeno-free medium enabled the derivation of cells that resembled functional BDACs in comparable numbers. When applied to a murine model of CLI, both cell types enhanced limb reperfusion and reduced necrosis, with BDACs being twice as effective as MSCs. This was also reflected in histological evaluation, where BDAC-treated animals exhibited the least muscle tissue degeneration. The BDAC secretome was enriched in a larger number of proteins with pro-angiogenic and anti-inflammatory properties, suggesting that the combination of those factors may be responsible for the superior therapeutic effect. CONCLUSIONS Functional BDACs can be sourced under xeno-free conditions paving the way for their safe clinical application. Since BDACs are derived from an easily accessible and renewable tissue, can be sourced in clinically relevant numbers and time frame and exceeded traditional MSCs in their therapeutic potential, they may represent an advantageous cell type for the treatment of CLI and other ischemic diseases.
Collapse
Affiliation(s)
- Christy Wing Tung Wong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Apurva Sawhney
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yalan Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wah Mak
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
20
|
Filipović M, Flegar D, Šućur A, Šisl D, Kavazović I, Antica M, Kelava T, Kovačić N, Grčević D. Inhibition of Notch Signaling Stimulates Osteoclastogenesis From the Common Trilineage Progenitor Under Inflammatory Conditions. Front Immunol 2022; 13:902947. [PMID: 35865541 PMCID: PMC9294223 DOI: 10.3389/fimmu.2022.902947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoclasts, macrophages and dendritic cells (DCs) can be derived from a common trilineage myeloid progenitor of hematopoietic origin. Progenitor commitment is susceptible to regulation through Notch signaling. Our aim was to determine the effects of Notch modulation on trilineage progenitor commitment and functional properties of differentiated cells under inflammatory conditions. We used the conditional inducible CX3CR1CreERT2 mouse strain to achieve overexpression of the Notch 1 intracellular domain (NICD1) or to inhibit Notch signaling via deletion of the transcription factor RBP-J in a bone marrow population, used as a source of the trilineage progenitor (CD45+Ly6G−CD3−B220−NK1.1−CD11b–/loCD115+). Cre-recombinase, under the control of the CX3CR1 promoter, expressed in the monocyte/macrophage lineage, was induced in vitro by 4-hydroxytamoxifen. Differentiation of osteoclasts was induced by M-CSF/RANKL; macrophages by M-CSF; DCs by IL-4/GM-CSF, and inflammation by LPS. Functionally, DCs were tested for the ability to process and present antigen, macrophages to phagocytose E. coli particles, and osteoclasts to resorb bone and express tartrate-resistant acid phosphatase (TRAP). We found that Notch 1 signal activation suppressed osteoclast formation, whereas disruption of the Notch canonical pathway enhanced osteoclastogenesis, resulting in a higher number and size of osteoclasts. RANK protein and Ctsk gene expression were upregulated in osteoclastogenic cultures from RBP-J+ mice, with the opposing results in NICD1+ mice. Notch modulation did not affect the number of in vitro differentiated macrophages and DCs. However, RBP-J deletion stimulated Il12b and Cd86 expression in macrophages and DCs, respectively. Functional assays under inflammatory conditions confirmed that Notch silencing amplifies TRAP expression by osteoclasts, whereas the enhanced phagocytosis by macrophages was observed in both NICD1+ and RBP-J+ strains. Finally, antigen presentation by LPS-stimulated DCs was significantly downregulated with NICD1 overexpression. This experimental setting allowed us to define a cell-autonomous response to Notch signaling at the trilineage progenitor stage. Although Notch signaling modulation affected the activity of all three lineages, the major effect was observed in osteoclasts, resulting in enhanced differentiation and function with inhibition of canonical Notch signaling. Our results indicate that Notch signaling participates as the negative regulator of osteoclast activity during inflammation, which may be relevant in immune and bone diseases.
Collapse
Affiliation(s)
- Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- *Correspondence: Danka Grčević,
| |
Collapse
|
21
|
Bonanni M, Rehak L, Massaro G, Benedetto D, Matteucci A, Russo G, Esperto F, Federici M, Mauriello A, Sangiorgi GM. Autologous Immune Cell-Based Regenerative Therapies to Treat Vasculogenic Erectile Dysfunction: Is the Immuno-Centric Revolution Ready for the Prime Time? Biomedicines 2022; 10:biomedicines10051091. [PMID: 35625828 PMCID: PMC9138496 DOI: 10.3390/biomedicines10051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
About 35% of patients affected by erectile dysfunction (ED) do not respond to oral phosphodiesterase-5 inhibitors (PDE5i) and more severe vasculogenic refractory ED affects diabetic patients. Innovative approaches, such as regenerative therapies, including stem cell therapy (SCT) and platelet-rich plasma (PRP), are currently under investigation. Recent data point out that the regenerative capacity of stem cells is strongly influenced by local immune responses, with macrophages playing a pivotal role in the injury response and as a coordinator of tissue regeneration, suggesting that control of the immune response could be an appealing approach in regenerative medicine. A new generation of autologous cell therapy based on immune cells instead of stem cells, which could change regenerative medicine for good, is discussed. Increasing safety and efficacy data are coming from clinical trials using peripheral blood mononuclear cells to treat no-option critical limb ischemia and diabetic foot. In this review, ongoing phase 1/phase 2 stem cell clinical trials are discussed. In addition, we examine the mechanism of action and rationale, as well as propose a new generation of regenerative therapies, evolving from typical stem cell or growth factor to immune cell-based medicine, based on autologous peripheral blood mononuclear cells (PBMNC) concentrates for the treatment of ED.
Collapse
Affiliation(s)
- Michela Bonanni
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Laura Rehak
- Athena Biomedical Innovations, 50126 Florence, Italy;
| | - Gianluca Massaro
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Daniela Benedetto
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Andrea Matteucci
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Division of Cardiology San Filippo Neri Hospital, 00135 Rome, Italy
| | - Giulio Russo
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Giuseppe Massimo Sangiorgi
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Correspondence:
| |
Collapse
|
22
|
Fleig S, Kapanadze T, Bernier-Latmani J, Lill JK, Wyss T, Gamrekelashvili J, Kijas D, Liu B, Hüsing AM, Bovay E, Jirmo AC, Halle S, Ricke-Hoch M, Adams RH, Engel DR, von Vietinghoff S, Förster R, Hilfiker-Kleiner D, Haller H, Petrova TV, Limbourg FP. Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nat Commun 2022; 13:2022. [PMID: 35440634 PMCID: PMC9018798 DOI: 10.1038/s41467-022-29701-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator Rbpj, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation. Loss of canonical Notch signaling in vascular endothelial cells induces spontaneous formation of proto-typical tertiary lymphoid structures in mouse kidney, liver and lungs, which form around central arteries that acquire a high endothelial cell signature
Collapse
Affiliation(s)
- Susanne Fleig
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Department of Geriatric Medicine (Medical Clinic VI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Jeremiah Bernier-Latmani
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Julia K Lill
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Tania Wyss
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Bin Liu
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Anne M Hüsing
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Esther Bovay
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Adan Chari Jirmo
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Sibylle von Vietinghoff
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Division of Medicine I, Nephrology section, UKB Bonn University Hospital, Bonn, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany.,Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Philipps University Marburg, 35037, Marburg, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Tatiana V Petrova
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Florian P Limbourg
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany. .,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
23
|
Hyun J, Lee M, Rehman J, Pajcini KV, Malik AB. Notch1 promotes ordered revascularization through Semaphorin 3g modulation of downstream vascular patterning signalling factors. J Physiol 2022; 600:509-530. [PMID: 34921404 PMCID: PMC9305962 DOI: 10.1113/jp282286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
Here we genetically and functionally addressed potential pathways of Notch signalling in mediating vascular regeneration in mouse models. We first used transgenic adult mice with either gain- or loss-of-function Notch signalling in vascular endothelial cells and monitored perfusion in the hindlimb following ischaemia induced by femoral artery ligation. Mice deficient in Notch signalling showed defective perfusion recovery and expansion of collateral arteries. Transcriptomics analysis of arterial endothelial cells in the Notch mutants identified the guidance factor Sema3g as a candidate gene mediating reperfusion downstream of Notch. Studies in the retinal circulation showed the central role of SEMA3G downstream of Notch signalling in the orderly regulation of vascular patterning. These studies in multiple vascular beds show the primacy of Notch signalling and downstream generation of guidance peptides such as SEMA3G in promoting well-ordered vascular regeneration. KEY POINTS: Notch signalling is a critical mediator of revascularization. Yet the cellular processes activated during recovery following vascular injury are incompletely understood. Here we used genetic and cellular approaches in two different vascular beds and cultured endothelial cells to address the generalizability of mechanisms. By utilizing a highly reproducible murine model of hindlimb ischaemia in transgenic mice in which Notch signalling was inhibited at the transcriptional level, we demonstrated the centrality of Notch signalling in perfusion recovery and revascularization. RNA-sequencing of Notch mutants identified class 3 Semaphorins regulated by Notch signalling as downstream targets. Studies in retinal vessels and endothelial cells showed an essential role of guidance peptide Sema3g as a modulator of angiogenesis and orderly vascular patterning. The Notch to Sema3g signalling axis functions as a feedback mechanism to sculpt the growing vasculature in multiple beds.
Collapse
Affiliation(s)
- James Hyun
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Monica Lee
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
24
|
Park I, Goddard ME, Cole JE, Zanin N, Lyytikäinen LP, Lehtimäki T, Andreakos E, Feldmann M, Udalova I, Drozdov I, Monaco C. C-type lectin receptor CLEC4A2 promotes tissue adaptation of macrophages and protects against atherosclerosis. Nat Commun 2022; 13:215. [PMID: 35017526 PMCID: PMC8752790 DOI: 10.1038/s41467-021-27862-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Macrophages are integral to the pathogenesis of atherosclerosis, but the contribution of distinct macrophage subsets to disease remains poorly defined. Using single cell technologies and conditional ablation via a LysMCre+Clec4a2flox/DTR mouse strain, we demonstrate that the expression of the C-type lectin receptor CLEC4A2 is a distinguishing feature of vascular resident macrophages endowed with athero-protective properties. Through genetic deletion and competitive bone marrow chimera experiments, we identify CLEC4A2 as an intrinsic regulator of macrophage tissue adaptation by promoting a bias in monocyte-to-macrophage in situ differentiation towards colony stimulating factor 1 (CSF1) in vascular health and disease. During atherogenesis, CLEC4A2 deficiency results in loss of resident vascular macrophages and their homeostatic properties causing dysfunctional cholesterol metabolism and enhanced toll-like receptor triggering, exacerbating disease. Our study demonstrates that CLEC4A2 licenses monocytes to join the vascular resident macrophage pool, and that CLEC4A2-mediated macrophage homeostasis is critical to combat cardiovascular disease. The contribution of distinct subsets of macrophages to atherosclerosis is poorly understood. Here the authors describe a protective subset of vascular macrophages expressing the C-type lectin receptor CLEC4A2, which licenses monocytes to join the resident vascular macrophage pool and ensures vascular homeostasis.
Collapse
Affiliation(s)
- Inhye Park
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Michael E Goddard
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jennifer E Cole
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Natacha Zanin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Evangelos Andreakos
- Biomedical Research Foundation, Academy of Athens, Center for Clinical, Experimental Surgery and Translational Research, Athens, Greece
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Irina Udalova
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Osinski V, Srikakulapu P, Haider YM, Marshall MA, Ganta VC, Annex BH, McNamara CA. Loss of Id3 (Inhibitor of Differentiation 3) Increases the Number of IgM-Producing B-1b Cells in Ischemic Skeletal Muscle Impairing Blood Flow Recovery During Hindlimb Ischemia. Arterioscler Thromb Vasc Biol 2022; 42:6-18. [PMID: 34809449 PMCID: PMC8702457 DOI: 10.1161/atvbaha.120.315501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Neovascularization can maintain and even improve tissue perfusion in the setting of limb ischemia during peripheral artery disease. The molecular and cellular mechanisms mediating this process are incompletely understood. We investigate the potential role(s) for Id3 (inhibitor of differentiation 3) in regulating blood flow in a murine model of hindlimb ischemia (HLI). Approach and Results: HLI was modeled through femoral artery ligation and resection and blood flow recovery was quantified by laser Doppler perfusion imaging. Mice with global Id3 deletion had significantly impaired perfusion recovery at 14 and 21 days of HLI. Endothelial- or myeloid cell-specific deletion of Id3 revealed no effect on perfusion recovery while B-cell-specific knockout of Id3 (Id3BKO) revealed a significant attenuation of perfusion recovery. Flow cytometry revealed no differences in ischemia-induced T cells or myeloid cell numbers at 7 days of HLI, yet there was a significant increase in B-1b cells in Id3BKO. Consistent with these findings, ELISA (enzyme-linked immunoassay) demonstrated increases in skeletal muscle and plasma IgM. In vitro experiments demonstrated reduced proliferation and increased cell death when endothelial cells were treated with conditioned media from IgM-producing B-1b cells and tibialis anterior muscles in Id3BKO mice showed reduced density of total CD31+ and αSMA+CD31+ vessels. CONCLUSIONS This study is the first to demonstrate a role for B-cell-specific Id3 in maintaining blood flow recovery during HLI. Results suggest a role for Id3 in promoting blood flow during HLI and limiting IgM-expressing B-1b cell expansion. These findings present new mechanisms to investigate in peripheral artery disease pathogenesis.
Collapse
Affiliation(s)
- Victoria Osinski
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Prasad Srikakulapu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Young Min Haider
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Melissa A. Marshall
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Vijay C. Ganta
- Vascular Biology Center, Augusta University, Augusta, Georgia 30912
| | - Brian H. Annex
- Vascular Biology Center, Augusta University, Augusta, Georgia 30912
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
26
|
Salyers ZR, Mariani V, Balestrieri N, Kumar RA, Vugman NA, Thome T, Villani KR, Berceli SA, Scali ST, Vasilakos G, Ryan TE. S100A8 and S100A9 are elevated in chronically threatened ischemic limb muscle and induce ischemic mitochondrial pathology in mice. JVS Vasc Sci 2022; 3:232-245. [PMID: 35647565 PMCID: PMC9133641 DOI: 10.1016/j.jvssci.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Objective The objective of the present study was to determine whether elevated levels of S100A8 and S100A9 (S100A8/A9) alarmins contribute to ischemic limb pathology. Methods Gastrocnemius muscle was collected from control patients without peripheral arterial disease (PAD; n = 14) and patients with chronic limb threatening limb ischemia (CLTI; n = 14). Mitochondrial function was assessed in permeabilized muscle fibers, and RNA and protein analyses were used to quantify the S100A8/A9 levels. Additionally, a mouse model of hindlimb ischemia with and without exogenous delivery of S100A8/A9 was used. Results Compared with the non-PAD control muscles, CLTI muscles displayed significant increases in the abundance of S100A8 and S100A9 at both mRNA and protein levels (P < .01). The CLTI muscles also displayed significant impairment in mitochondrial oxidative phosphorylation and increased mitochondrial hydrogen peroxide production compared with the non-PAD controls. The S100A8/A9 levels correlated significantly with the degree of muscle mitochondrial dysfunction (P < .05 for all). C57BL6J mice treated with recombinant S100A8/A9 displayed impaired perfusion recovery and muscle mitochondrial impairment compared with the placebo-treated mice after hindlimb ischemia surgery. These mitochondrial deficits observed after S100A8/A9 treatment were confirmed in the muscle cell culture system under normoxic conditions. Conclusions The S100A8/A9 levels were increased in CLTI limb muscle specimens compared with the non-PAD control muscle specimens, and the level of accumulation was associated with muscle mitochondrial impairment. Elevated S100A8/A9 levels in mice subjected to hindlimb ischemia impaired perfusion recovery and mitochondrial function. Together, these findings suggest that the inflammatory mediators S100A8/A9 might be directly involved in ischemic limb pathology. Despite improvements in the surgical management of chronic limb threatening limb ischemia (CLTI), the rates of major adverse limb events have remained high. Skeletal muscle has emerged as a strong predictor of outcomes in peripheral arterial disease (PAD)/CLTI; however, a complete understanding of muscle pathology in CLTI is lacking. This study identified elevated S100A8 and S100A9 alarmin proteins as a characteristic of CLTI muscle specimens and that the S100A8/A9 levels are associated with the degree of mitochondrial impairment in patient limb muscle specimens. Using a mouse model of PAD, treatment with S100A8/A9 exacerbated ischemic limb pathology, including impaired limb perfusion recovery and muscle mitochondrial impairment. Taken together, these findings connect the inflammatory milieu in the CLTI limb to exacerbated limb muscle outcomes via mitochondrial alterations.
Collapse
Affiliation(s)
- Zachary R. Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Vinicius Mariani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Nicholas Balestrieri
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Ravi A. Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Nicholas A. Vugman
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Katelyn R. Villani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Scott A. Berceli
- Department of Surgery, University of Florida, Gainesville, FL
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Salvatore T. Scali
- Department of Surgery, University of Florida, Gainesville, FL
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Georgios Vasilakos
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
- Center for Exercise Science, University of Florida, Gainesville, FL
- Myology Institute, University of Florida, Gainesville, FL
- Correspondence: Terence E. Ryan, PhD, Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL 32611
| |
Collapse
|
27
|
Targeting the Ang2/Tie2 Axis with Tanshinone IIA Elicits Vascular Normalization in Ischemic Injury and Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7037786. [PMID: 34804370 PMCID: PMC8598375 DOI: 10.1155/2021/7037786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
Pathological angiogenesis, as exhibited by aberrant vascular structure and function, has been well deemed to be a hallmark of cancer and various ischemic diseases. Therefore, strategies to normalize vasculature are of potential therapeutic interest in these diseases. Recently, identifying bioactive compounds from medicinal plant extracts to reverse abnormal vasculature has been gaining increasing attention. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza, has been shown to play significant roles in improving blood circulation and delaying tumor progression. However, the underlying mechanisms responsible for the therapeutic effects of Tan IIA are not fully understood. Herein, we established animal models of HT-29 human colon cancer xenograft and hind limb ischemia to investigate the role of Tan IIA in regulating abnormal vasculature. Interestingly, our results demonstrated that Tan IIA could significantly promote the blood flow, alleviate the hypoxia, improve the muscle quality, and ameliorate the pathological damage after ischemic insult. Meanwhile, we also revealed that Tan IIA promoted the integrity of vascular structure, reduced vascular leakage, and attenuated the hypoxia in HT-29 tumors. Moreover, the circulating angiopoietin 2 (Ang2), which is extremely high in these two pathological states, was substantially depleted in the presence of Tan IIA. Also, the activation of Tie2 was potentiated by Tan IIA, resulting in decreased vascular permeability and elevated vascular integrity. Mechanistically, we uncovered that Tan IIA maintained vascular stability by targeting the Ang2-Tie2-AKT-MLCK cascade. Collectively, our data suggest that Tan IIA normalizes vessels in tumors and ischemic injury via regulating the Ang2/Tie2 signaling pathway.
Collapse
|
28
|
Terlizzese G, Stubinski R, Casini A, Clerici G, Sangiorgi G. A case report of pudendal arteries angioplasty with sirolimus drug-coated balloon and drug-eluting stent associated with intracavernous autologous peripheral blood mononuclear cells injection for untreatable vasculogenic erectile dysfunction. EUROPEAN HEART JOURNAL-CASE REPORTS 2021; 5:ytab244. [PMID: 34409246 PMCID: PMC8364765 DOI: 10.1093/ehjcr/ytab244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022]
Abstract
Background Erectile dysfunction (ED) is a prevalent health problem that seriously impacts men's quality of life. The potential treatment of ED by percutaneous approach has emerged with valid angiographic results and a significant improvement in symptoms and quality of life. In addition, cell-based regenerative therapies aiming at enhancing neovascularization have been successfully performed with peripheral blood mononuclear cells (PBMNCs) in diabetic patients affected by critical limb ischaemia. Case summary We report a case of a young insulin dependent (ID) diabetic patients who suffered of severe vasculogenic erectile dysfunction associated with a poor response for more than 1 year to oral phosphodiesterase-5 inhibitors (PDE5i) and intracavernous (IC) phosphodiesterase type 1 (PDE1) therapy. At selective angiography of the pelvic district, a severe atherosclerotic disease of the internal iliac and pudendal artery was evident with absence of distal vascularization of the cavernous bodies. The patient was treated by mechanical revascularization with drug-coated balloon and drug-eluting stent placement associated with IC injection of autologous PBMNCs. Immediate and 1-year clinical and angiographic follow-up are described. Discussion Percutaneous revascularization with drug-coated balloon and drug-eluting stent associated with IC autologous PBMNCs cells injection is a safe and effective procedure to restore normal erectile function in diabetic patients affected by severe vasculogenic ED not responding to conventional oral drug therapies.
Collapse
Affiliation(s)
- Giuseppe Terlizzese
- Department of Cardiology, Cardiac Cath Lab, Bolognini Hospital, Bergamo, Italy
| | - Robert Stubinski
- Division of Urology, Istituto Policlinico San Donato, San Donato Milanese, Italy
| | - Andrea Casini
- Diabetic Foot Unit, Division of Vascular Surgery, Clinica San Carlo Paderno Dugnano, Milan, Italy
| | - Giacomo Clerici
- Diabetic Foot Unit, Division of Diabetology, Clinica San Carlo Paderno Dugnano, Milan, Italy
| | - Giuseppe Sangiorgi
- Division of Cardiology, Department of Biomedicine and Prevention, Cardiac Cath Lab, University of Tor Vergata, Rome, Italy
| |
Collapse
|
29
|
Magenta A, Florio MC, Ruggeri M, Furgiuele S. Autologous cell therapy in diabetes‑associated critical limb ischemia: From basic studies to clinical outcomes (Review). Int J Mol Med 2021; 48:173. [PMID: 34278463 DOI: 10.3892/ijmm.2021.5006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 01/13/2023] Open
Abstract
Cell therapy is becoming an attractive alternative for the treatment of patients with no‑option critical limb ischemia (CLI). The main benefits of cell therapy are the induction of therapeutic angiogenesis and neovascularization that lead to an increase in blood flow in the ischemic limb and tissue regeneration in non‑healing cutaneous trophic lesions. In the present review, the current state of the art of strategies in the cell therapy field are summarized, focusing on intra‑operative autologous cell concentrates in diabetic patients with CLI, examining different sources of cell concentrates and their mechanisms of action. The present study underlined the detrimental effects of the diabetic condition on different sources of autologous cells used in cell therapy, and also in delaying wound healing capacity. Moreover, relevant clinical trials and critical issues arising from cell therapy trials are discussed. Finally, the new concept of cell therapy as an adjuvant therapy to increase wound healing in revascularized diabetic patients is introduced.
Collapse
Affiliation(s)
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Massimo Ruggeri
- Department of Vascular Surgery, San Camillo de Lellis Hospital, I‑02100 Rieti, Italy
| | | |
Collapse
|
30
|
Chen Q, Liu S, Cao L, Yu M, Wang H. Effects of macrophage regulation on fat grafting survival: Improvement, mechanisms, and potential application-A review. J Cosmet Dermatol 2021; 21:54-61. [PMID: 34129721 DOI: 10.1111/jocd.14295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Autologous fat grafting has become a popular tool in plastic surgery to solve soft tissue defects and achieve skin rejuvenation, but the volume loss after transplantation remains a disturbing problem. In recent years, some new strategies have improved the outcome to some extent, but the fat graft retention is still far from ideal, so there remains a wide development prospect in this field. Macrophages are closely related to the local microenvironment and tissue regeneration, and their role in fat grafting has been increasingly highlighted. AIMS This article was aimed to review the efficacy, possible mechanisms, and potential application of macrophage regulation on fat grafting, as well as concerns and future perspectives of this filed. METHODS A retrospective review of the published data was conducted. RESULTS Most studies indicated that up-regulating M2 macrophages during fat grafting would improve fat retention via promoting neovascularization. M2 macrophages could secrete several pro-angiogenic factors, accelerate extracellular matrix (ECM) remodeling, and directly function on endothelial cells to encourage vascular expansion. In addition, macrophages could influence the proliferation, apoptosis, and adipogenic differentiation of preadipocytes. CONCLUSIONS During autologous fat grafting, appropriately regulating macrophages may become a promising method to increase fat retention. Nevertheless, the M2 macrophage polarizing agents, treatment opportunity, and contraindications require further discussion. We hope our work could promote more in-depth studies in this field, and we are looking forward to a standard procedure for the macrophage therapy in clinical practice.
Collapse
Affiliation(s)
- Qiuyu Chen
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuo Liu
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lideng Cao
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Abstract
The prevalence of peripheral arterial disease (PAD) in the United States exceeds 10 million people, and PAD is a significant cause of morbidity and mortality across the globe. PAD is typically caused by atherosclerotic obstructions in the large arteries to the leg(s). The most common clinical consequences of PAD include pain on walking (claudication), impaired functional capacity, pain at rest, and loss of tissue integrity in the distal limbs that may lead to lower extremity amputation. Patients with PAD also have higher than expected rates of myocardial infarction, stroke, and cardiovascular death. Despite advances in surgical and endovascular procedures, revascularization procedures may be suboptimal in relieving symptoms, and some patients with PAD cannot be treated because of comorbid conditions. In some cases, relieving obstructive disease in the large conduit arteries does not assure complete limb salvage because of severe microvascular disease. Despite several decades of investigational efforts, medical therapies to improve perfusion to the distal limb are of limited benefit. Whereas recent studies of anticoagulant (eg, rivaroxaban) and intensive lipid lowering (such as PCSK9 [proprotein convertase subtilisin/kexin type 9] inhibitors) have reduced major cardiovascular and limb events in PAD populations, chronic ischemia of the limb remains largely resistant to medical therapy. Experimental approaches to improve limb outcomes have included the administration of angiogenic cytokines (either as recombinant protein or as gene therapy) as well as cell therapy. Although early angiogenesis and cell therapy studies were promising, these studies lacked sufficient control groups and larger randomized clinical trials have yet to achieve significant benefit. This review will focus on what has been learned to advance medical revascularization for PAD and how that information might lead to novel approaches for therapeutic angiogenesis and arteriogenesis for PAD.
Collapse
Affiliation(s)
- Brian H Annex
- Vascular Biology Center, Department of Medicine, Medical College of Georgia, Augusta University (B.H.A.)
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.)
| |
Collapse
|
32
|
Abstract
The Notch signalling pathway is one of the main regulators of endothelial biology. In the last 20 years the critical function of Notch has been uncovered in the context of angiogenesis, participating in tip-stalk specification, arterial-venous differentiation, vessel stabilization, and maturation processes. Importantly, pharmacological compounds targeting distinct members of the Notch signalling pathway have been used in the clinics for cancer therapy. However, the underlying mechanisms that support the variety of outcomes triggered by Notch in apparently opposite contexts such as angiogenesis and vascular homeostasis remain unknown. In recent years, advances in -omics technologies together with mosaic analysis and high molecular, cellular and temporal resolution studies have allowed a better understanding of the mechanisms driven by the Notch signalling pathway in different endothelial contexts. In this review we will focus on the main findings that revisit the role of Notch signalling in vascular biology. We will also discuss potential future directions and technologies that will shed light on the puzzling role of Notch during endothelial growth and homeostasis. Addressing these open questions may allow the improvement and development of therapeutic strategies based on modulation of the Notch signalling pathway.
Collapse
|
33
|
Ferrari I, Vagnozzi RJ. Mechanisms and strategies for a therapeutic cardiac immune response. J Mol Cell Cardiol 2021; 158:82-88. [PMID: 34051237 DOI: 10.1016/j.yjmcc.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Ilaria Ferrari
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ronald J Vagnozzi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
34
|
Hutchings G, Kruszyna Ł, Nawrocki MJ, Strauss E, Bryl R, Spaczyńska J, Perek B, Jemielity M, Mozdziak P, Kempisty B, Nowicki M, Krasiński Z. Molecular Mechanisms Associated with ROS-Dependent Angiogenesis in Lower Extremity Artery Disease. Antioxidants (Basel) 2021; 10:735. [PMID: 34066926 PMCID: PMC8148529 DOI: 10.3390/antiox10050735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, atherosclerosis, which affects the vascular bed of all vital organs and tissues, is considered as a leading cause of death. Most commonly, atherosclerosis involves coronary and peripheral arteries, which results in acute (e.g., myocardial infarction, lower extremities ischemia) or chronic (persistent ischemia leading to severe heart failure) consequences. All of them have a marked unfavorable impact on the quality of life and are associated with increased mortality and morbidity in human populations. Lower extremity artery disease (LEAD, also defined as peripheral artery disease, PAD) refers to atherosclerotic occlusive disease of the lower extremities, where partial or complete obstruction of peripheral arteries is observed. Decreased perfusion can result in ischemic pain, non-healing wounds, and ischemic ulcers, and significantly reduce the quality of life. However, the progressive atherosclerotic changes cause stimulation of tissue response processes, like vessel wall remodeling and neovascularization. These mechanisms of adapting the vascular network to pathological conditions seem to play a key role in reducing the impact of the changes limiting the flow of blood. Neovascularization as a response to ischemia induces sprouting and expansion of the endothelium to repair and grow the vessels of the circulatory system. Neovascularization consists of three different biological processes: vasculogenesis, angiogenesis, and arteriogenesis. Both molecular and environmental factors that may affect the process of development and growth of blood vessels were analyzed. Particular attention was paid to the changes taking place during LEAD. It is important to consider the molecular mechanisms underpinning vessel growth. These mechanisms will also be examined in the context of diseases commonly affecting blood vessel function, or those treatable in part by manipulation of angiogenesis. Furthermore, it may be possible to induce the process of blood vessel development and growth to treat peripheral vascular disease and wound healing. Reactive oxygen species (ROS) play an important role in regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. With regard to the repair processes taking place during diseases such as LEAD, prospective therapeutic methods have been described that could significantly improve the treatment of vessel diseases in the future. Summarizing, regenerative medicine holds the potential to transform the therapeutic methods in heart and vessel diseases treatment.
Collapse
Affiliation(s)
- Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Łukasz Kruszyna
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Ewa Strauss
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Julia Spaczyńska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Michał Nowicki
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| |
Collapse
|
35
|
Ma Y, Jia L, Wang Y, Ji Y, Chen J, Ma H, Lin X, Zhang Y, Li W, Ni H, Xie L, Xie Y, Xiang M. Heme Oxygenase-1 in Macrophages Impairs the Perfusion Recovery After Hindlimb Ischemia by Suppressing Autolysosome-Dependent Degradation of NLRP3. Arterioscler Thromb Vasc Biol 2021; 41:1710-1723. [PMID: 33761761 DOI: 10.1161/atvbaha.121.315805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Databases, Genetic
- Disease Models, Animal
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Hindlimb
- Humans
- Inflammasomes/genetics
- Inflammasomes/metabolism
- Inflammation Mediators/metabolism
- Ischemia/enzymology
- Ischemia/genetics
- Ischemia/physiopathology
- Lysosomes/enzymology
- Macrophages/enzymology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/physiopathology
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Neovascularization, Physiologic
- Proteolysis
- Recovery of Function
- Regional Blood Flow
- Mice
Collapse
Affiliation(s)
- Yuankun Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangliang Jia
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yidong Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongli Ji
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhao Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wudi Li
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Ni
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Liu X, Weng X, Xiao W, Xu X, Chen Y, Chen P. Pharmacological and Genetic Inhibition of PD-1 Demonstrate an Important Role of PD-1 in Ischemia-Induced Skeletal Muscle Inflammation, Oxidative Stress, and Angiogenesis. Front Immunol 2021; 12:586429. [PMID: 33815358 PMCID: PMC8017157 DOI: 10.3389/fimmu.2021.586429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/02/2021] [Indexed: 12/03/2022] Open
Abstract
Angiogenesis is an important process under both physiological and pathophysiological conditions. Here we investigated the role and the underlying mechanism of PD-1 in hindlimb ischemia-induced inflammation and angiogenesis in mice. We found that inhibition of PD-1 by genetic PD-1 knockout or pharmacological PD-1 blocking antibodies dramatically attenuated hindlimb blood perfusion, angiogenesis, and exercise capacity in mice after femoral artery ligation. Mechanistically, we found that PD-1 knockout significantly exacerbated ischemia-induced muscle oxidative stress, leukocyte infiltration and IFN-γ production before abnormal angiogenesis in these mice. In addition, we found that the percentages of IFN-γ positive macrophages and CD8 T cells were significantly increased in P-1 knockout mice after hindlimb ischemia. Macrophages were the major leukocyte subset infiltrated in skeletal muscle, which were responsible for the enhanced muscle leukocyte-derived IFN-γ production in PD-1 knockout mice after hindlimb ischemia. Moreover, we demonstrated that IFN-γ significantly attenuated vascular endothelial cell proliferation, tube formation and migration in vitro. IFN-γ also significantly enhanced vascular endothelial cell apoptosis. In addition, the total number of TNF-α positive leukocytes/muscle weight were significantly increased in PD-1-/- mice after hindlimb ischemia. These data indicate that PD-1 exerts an important role in ischemia-induced muscle inflammation and angiogenesis.
Collapse
Affiliation(s)
- Xiaoguang Liu
- College of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Xinyu Weng
- Lillehei Heart Institute and Cardiovascular Division, University of Minnesota Medical School, Minneapolis, MN, United States.,Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xin Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yingjie Chen
- Lillehei Heart Institute and Cardiovascular Division, University of Minnesota Medical School, Minneapolis, MN, United States.,Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
37
|
Berndt R, Albrecht M, Rusch R. Strategies to Overcome the Barrier of Ischemic Microenvironment in Cell Therapy of Cardiovascular Disease. Int J Mol Sci 2021; 22:ijms22052312. [PMID: 33669136 PMCID: PMC7956787 DOI: 10.3390/ijms22052312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
The transplantation of various immune cell types are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction (MI) and peripheral arterial disease (PAD). Major limitation of these so-called Advanced Therapy Medicinal Products (ATMPs) is the ischemic microenvironment affecting cell homeostasis and limiting the demanded effect of the transplanted cell products. Accordingly, different clinical and experimental strategies have been evolved to overcome these obstacles. Here, we give a short review of the different experimental and clinical strategies to solve these issues due to ischemic cardiovascular disease.
Collapse
Affiliation(s)
- Rouven Berndt
- Clinic of Cardiovascular Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany;
- Vascular Research Center, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-(0431)-500-22033; Fax: +49-(0431)-500-22024
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, 24105 Kiel, Germany;
| | - René Rusch
- Clinic of Cardiovascular Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany;
- Vascular Research Center, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| |
Collapse
|
38
|
Yu Y, Dai K, Gao Z, Tang W, Shen T, Yuan Y, Wang J, Liu C. Sulfated polysaccharide directs therapeutic angiogenesis via endogenous VEGF secretion of macrophages. SCIENCE ADVANCES 2021; 7:7/7/eabd8217. [PMID: 33568481 PMCID: PMC7875536 DOI: 10.1126/sciadv.abd8217] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 05/23/2023]
Abstract
Notwithstanding the remarkable progress in the clinical treatment of ischemic disease, proangiogenic drugs mostly suffer from their abnormal angiogenesis and potential cancer risk, and currently, no off-the-shelf biomaterials can efficiently induce angiogenesis. Here, we reported that a semisynthetic sulfated chitosan (SCS) readily engaged anti-inflammatory macrophages and increased its secretion of endogenous vascular endothelial growth factor (VEGF) to induce angiogenesis in ischemia via a VEGF-VEGFR2 signaling pathway. The depletion of host macrophages abrogated VEGF secretion and vascularization in implants, and the inhibition of VEGF or VEGFR2 signaling also disrupted the macrophage-associated angiogenesis. In addition, in a macrophage-inhibited mouse model, SCS efficiently helped to recover the endogenous levels of VEGF and the number of CD31hiEmcnhi vessels in ischemia. Thus, both sulfated group and pentasaccharide sequence in SCS played an important role in directing the therapeutic angiogenesis, indicating that this highly bioactive biomaterial can be harnessed to treat ischemic disease.
Collapse
Affiliation(s)
- Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kai Dai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zehua Gao
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Tang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Tong Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
39
|
Bijnen M, Bajénoff M. Gland Macrophages: Reciprocal Control and Function within Their Niche. Trends Immunol 2021; 42:120-136. [PMID: 33423933 DOI: 10.1016/j.it.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Abstract
The human body contains dozens of endocrine and exocrine glands, which regulate physiological processes by secreting hormones and other factors. Glands can be subdivided into contiguous tissue modules, each consisting of an interdependent network of cells that together perform particular tissue functions. Among those cells are macrophages, a diverse type of immune cells endowed with trophic functions. In this review, we discuss recent findings on how resident macrophages support tissue modules within glands via the creation of mutually beneficial cell-cell circuits. A better comprehension of gland macrophage function and local control within their niche is essential to achieve a refined understanding of gland physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Marc Bajénoff
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The well recognized plasticity and diversity, typical of monocytes and macrophages have recently been expanded by the knowledge that additional macrophage lineages originated directly from embryonic progenitors, populate and establish residency in all tissues examined so far. This review aims to summarize our current understanding on the diversity of monocyte/macrophage subtypes associated with the vasculature, their specific origins, and nature of their cross-talk with the endothelium. RECENT FINDINGS Taking stock of the many interactions between the endothelium and monocytes/macrophages reveals a far more intricate and ever-growing depth. In addition to circulating and surveilling the endothelium, monocytes can specifically be differentiated into patrolling cells that crawl on the surface of the endothelium and promote homeostasis. The conversion of classical to patrolling is endothelium-dependent uncovering an important functional link. In addition to patrolling cells, the endothelium also recruits and harbor an intimal-resident myeloid population that resides in the tunica intima in the absence of pathological insults. Moreover, the adventitia is populated with resident macrophages that support blood vessel integrity and prevent fibrosis. SUMMARY The last few years have witnessed a significant expansion in our knowledge of the many subtypes of monocytes and macrophages and their corresponding functional interactions with the vascular wall. In addition to surveying the endothelium for opportunities of diapedeses, monocyte and macrophages take residence in both the intima (as patrolling or resident) and in the adventitia. Their contributions to vascular function are broad and critical to homeostasis, regeneration, and expansion.
Collapse
|
41
|
Delta-like Canonical Notch Ligand 1 in Patients Following Liver Transplantation-A Secondary Analysis of a Prospective Cohort Study. Diagnostics (Basel) 2020; 10:diagnostics10110894. [PMID: 33142943 PMCID: PMC7693674 DOI: 10.3390/diagnostics10110894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022] Open
Abstract
Opportunistic bacterial infections are dreaded risks in patients following liver transplantation (LTX), even though patients receive an antibiotic prophylaxis. The timely recognition of such an infection may be delayed, as culture-based diagnostic methods are linked with a relevant gap in performance. We measured plasma concentrations of Delta-like canonical Notch ligand 1 (DLL1) in 93 adult patients at seven consecutive time points after liver transplantation and correlated the results to the occurrence of culture-proven bacterial infection or a complicated clinical course (composite endpoint of two or more complications: graft rejection or failure, acute kidney failure, acute lung injury, or 90-day mortality). Patients exhibited elevated plasma concentrations after liver transplantation over the whole 28 d observation time. Patients with bacterial infection showed increased DLL1 levels compared to patients without infection. Persistent elevated levels of DLL1 on day 7 and afterward following LTX were able to indicate patients at risk for a complicated course. Plasma levels of DLL1 following LTX may be useful to support an earlier detection of bacterial infections in combination with C-reactive protein (CRP) and procalcitonin (PCT), or they may lead to risk stratification of patients as a single marker for post-operative complications. (Clinical Trial Notation. German Clinical Trials Register: DRKS00005480).
Collapse
|
42
|
The Role of Macrophages in Vascular Repair and Regeneration after Ischemic Injury. Int J Mol Sci 2020; 21:ijms21176328. [PMID: 32878297 PMCID: PMC7503238 DOI: 10.3390/ijms21176328] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophage is one of the important players in immune response which perform many different functions during tissue injury, repair, and regeneration. Studies using animal models of cardiovascular diseases have provided a clear picture describing the effect of macrophages and their phenotype during injury and regeneration of various vascular beds. Many data have been generated to demonstrate that macrophages secrete many important factors including cytokines and growth factors to regulate angiogenesis and arteriogenesis, acting directly or indirectly on the vascular cells. Different subsets of macrophages may participate at different stages of vascular repair. Recent findings also suggest a direct interaction between macrophages and other cell types during the generation and repair of vasculature. In this short review, we focused our discussion on how macrophages adapt to the surrounding microenvironment and their potential interaction with other cells, in the context of vascular repair supported by evidences mostly from studies using hindlimb ischemia as a model for studying post-ischemic vascular repair.
Collapse
|
43
|
Brandt S, Ballhause TM, Bernhardt A, Becker A, Salaru D, Le-Deffge HM, Fehr A, Fu Y, Philipsen L, Djudjaj S, Müller AJ, Kramann R, Ibrahim M, Geffers R, Siebel C, Isermann B, Heidel FH, Lindquist JA, Mertens PR. Fibrosis and Immune Cell Infiltration Are Separate Events Regulated by Cell-Specific Receptor Notch3 Expression. J Am Soc Nephrol 2020; 31:2589-2608. [PMID: 32859670 DOI: 10.1681/asn.2019121289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Kidney injuries that result in chronic inflammation initiate crosstalk between stressed resident cells and infiltrating immune cells. In animal models, whole-body receptor Notch3 deficiency protects from leukocyte infiltration and organ fibrosis. However, the relative contribution of Notch3 expression in tissue versus infiltrating immune cells is unknown. METHODS Chimeric mice deficient for Notch3 in hematopoietic cells and/or resident tissue cells were generated, and kidney fibrosis and inflammation after unilateral ureteral obstruction (UUO) were analyzed. Adoptive transfer of labeled bone marrow-derived cells validated the results in a murine Leishmania ear infection model. In vitro adhesion assays, integrin activation, and extracellular matrix production were analyzed. RESULTS Fibrosis follows UUO, but inflammatory cell infiltration mostly depends upon Notch3 expression in hematopoietic cells, which coincides with an enhanced proinflammatory milieu (e.g., CCL2 and CCL5 upregulation). Notch3 expression on CD45+ leukocytes plays a prominent role in efficient cell transmigration. Functionally, leukocyte adhesion and integrin activation are abrogated in the absence of receptor Notch3. Chimeric animal models also reveal that tubulointerstitial fibrosis develops, even in the absence of prominent leukocyte infiltrates after ureteral obstruction. Deleting Notch3 receptors on resident cells blunts kidney fibrosis, ablates NF-κB signaling, and lessens matrix deposition. CONCLUSIONS Cell-specific receptor Notch3 signaling independently orchestrates leukocyte infiltration and organ fibrosis. Interference with Notch3 signaling may present a novel therapeutic approach in inflammatory as well as fibrotic diseases.
Collapse
Affiliation(s)
- Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Tobias M Ballhause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Annika Becker
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Delia Salaru
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hien Minh Le-Deffge
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Fehr
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Yan Fu
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lars Philipsen
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sonja Djudjaj
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Andreas J Müller
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mahmoud Ibrahim
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Chris Siebel
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Berend Isermann
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany.,Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Florian H Heidel
- Department of Hematology and Oncology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Internal Medicine II, Hematology and Oncology, Friedrich Schiller University Medical Center, Jena, Germany.,Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany .,Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
44
|
Gamrekelashvili J, Kapanadze T, Sablotny S, Ratiu C, Dastagir K, Lochner M, Karbach S, Wenzel P, Sitnow A, Fleig S, Sparwasser T, Kalinke U, Holzmann B, Haller H, Limbourg FP. Notch and TLR signaling coordinate monocyte cell fate and inflammation. eLife 2020; 9:57007. [PMID: 32723480 PMCID: PMC7413669 DOI: 10.7554/elife.57007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Conventional Ly6Chi monocytes have developmental plasticity for a spectrum of differentiated phagocytes. Here we show, using conditional deletion strategies in a mouse model of Toll-like receptor (TLR) 7-induced inflammation, that the spectrum of developmental cell fates of Ly6Chi monocytes, and the resultant inflammation, is coordinately regulated by TLR and Notch signaling. Cell-intrinsic Notch2 and TLR7-Myd88 pathways independently and synergistically promote Ly6Clo patrolling monocyte development from Ly6Chi monocytes under inflammatory conditions, while impairment in either signaling axis impairs Ly6Clo monocyte development. At the same time, TLR7 stimulation in the absence of functional Notch2 signaling promotes resident tissue macrophage gene expression signatures in monocytes in the blood and ectopic differentiation of Ly6Chi monocytes into macrophages and dendritic cells, which infiltrate the spleen and major blood vessels and are accompanied by aberrant systemic inflammation. Thus, Notch2 is a master regulator of Ly6Chi monocyte cell fate and inflammation in response to TLR signaling.
Collapse
Affiliation(s)
- Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Corina Ratiu
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Khaled Dastagir
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Matthias Lochner
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Mucosal Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Susanne Karbach
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - Philip Wenzel
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - Andre Sitnow
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Susanne Fleig
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research Braunschweig and the Hannover Medical School, Hannover, Germany.,Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hannover, Germany
| | - Bernhard Holzmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Hermann Haller
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
45
|
Ran P, Chen W, Wei J, Qiu B, Chen M, Xie S, Li X. Macrophage Spheroids with Chronological Phenotype Shifting To Promote Therapeutic Angiogenesis in Critical Limb Ischemia. ACS APPLIED BIO MATERIALS 2020; 3:3707-3717. [DOI: 10.1021/acsabm.0c00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Weijia Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Bo Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
46
|
Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metab 2020; 31:1136-1153.e7. [PMID: 32492393 PMCID: PMC7267778 DOI: 10.1016/j.cmet.2020.05.004] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
Abstract
Endothelial cell (EC)-derived signals contribute to organ regeneration, but angiocrine metabolic communication is not described. We found that EC-specific loss of the glycolytic regulator pfkfb3 reduced ischemic hindlimb revascularization and impaired muscle regeneration. This was caused by the reduced ability of macrophages to adopt a proangiogenic and proregenerative M2-like phenotype. Mechanistically, loss of pfkfb3 reduced lactate secretion by ECs and lowered lactate levels in the ischemic muscle. Addition of lactate to pfkfb3-deficient ECs restored M2-like polarization in an MCT1-dependent fashion. Lactate shuttling by ECs enabled macrophages to promote proliferation and fusion of muscle progenitors. Moreover, VEGF production by lactate-polarized macrophages was increased, resulting in a positive feedback loop that further stimulated angiogenesis. Finally, increasing lactate levels during ischemia rescued macrophage polarization and improved muscle reperfusion and regeneration, whereas macrophage-specific mct1 deletion prevented M2-like polarization. In summary, ECs exploit glycolysis for angiocrine lactate shuttling to steer muscle regeneration from ischemia.
Collapse
|
47
|
Abstract
Peripheral artery disease is a common disorder and a major cause of morbidity and mortality worldwide. Therapy is directed at reducing the risk of major adverse cardiovascular events and at ameliorating symptoms. Medical therapy is effective at reducing the incidence of myocardial infarction and stroke to which these patients are prone but is inadequate in relieving limb-related symptoms, such as intermittent claudication, rest pain, and ischemic ulceration. Limb-related morbidity is best addressed with surgical and endovascular interventions that restore perfusion. Current medical therapies have only modest effects on limb blood flow. Accordingly, there is an opportunity to develop medical approaches to restore limb perfusion. Vascular regeneration to enhance limb blood flow includes methods to enhance angiogenesis, arteriogenesis, and vasculogenesis using angiogenic cytokines and cell therapies. We review the molecular mechanisms of these processes; briefly discuss what we have learned from the clinical trials of angiogenic and cell therapies; and conclude with an overview of a potential new approach based upon transdifferentiation to enhance vascular regeneration in peripheral artery disease.
Collapse
Affiliation(s)
- John P Cooke
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX
| | - Shu Meng
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX
| |
Collapse
|
48
|
Kosmac K, Gonzalez‐Freire M, McDermott MM, White SH, Walton RG, Sufit RL, Tian L, Li L, Kibbe MR, Criqui MH, Guralnik JM, S. Polonsky T, Leeuwenburgh C, Ferrucci L, Peterson CA. Correlations of Calf Muscle Macrophage Content With Muscle Properties and Walking Performance in Peripheral Artery Disease. J Am Heart Assoc 2020; 9:e015929. [PMID: 32390569 PMCID: PMC7660852 DOI: 10.1161/jaha.118.015929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/25/2022]
Abstract
Background Peripheral artery disease (PAD) is a manifestation of atherosclerosis characterized by reduced blood flow to the lower extremities and mobility loss. Preliminary evidence suggests PAD damages skeletal muscle, resulting in muscle impairments that contribute to functional decline. We sought to determine whether PAD is associated with an altered macrophage profile in gastrocnemius muscles and whether muscle macrophage populations are associated with impaired muscle phenotype and walking performance in patients with PAD. Methods and Results Macrophages, satellite cells, and extracellular matrix in gastrocnemius muscles from 25 patients with PAD and 7 patients without PAD were quantified using immunohistochemistry. Among patients with PAD, both the absolute number and percentage of cluster of differentiation (CD) 11b+CD206+ M2-like macrophages positively correlated to satellite cell number (r=0.461 [P=0.023] and r=0.416 [P=0.042], respectively) but not capillary density or extracellular matrix. The number of CD11b+CD206- macrophages negatively correlated to 4-meter walk tests at normal (r=-0.447, P=0.036) and fast pace (r=-0.510, P=0.014). Extracellular matrix occupied more muscle area in PAD compared with non-PAD (8.72±2.19% versus 5.30±1.03%, P<0.001) and positively correlated with capillary density (r=0.656, P<0.001). Conclusions Among people with PAD, higher CD206+ M2-like macrophage abundance was associated with greater satellite cell numbers and muscle fiber size. Lower CD206- macrophage abundance was associated with better walking performance. Further study is needed to determine whether CD206+ macrophages are associated with ongoing reparative processes enabling skeletal muscle adaptation to damage with PAD. Registration URL: https://www.clinicaltrials.gov; Unique identifiers: NCT00693940, NCT01408901, NCT0224660.
Collapse
Affiliation(s)
- Kate Kosmac
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | | | - Mary M. McDermott
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Sarah H. White
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | - R. Grace Walton
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | - Robert L. Sufit
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - Lu Tian
- Department of Health Research & PolicyStanford UniversityStanfordCA
| | - Lingyu Li
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Melina R. Kibbe
- Department of SurgeryUniversity of North Carolina School of MedicineChapel HillNC
| | - Michael H. Criqui
- Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCA
| | | | | | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric ResearchUniversity of Florida Institute on AgingGainesvilleFL
| | | | - Charlotte A. Peterson
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| |
Collapse
|
49
|
Abstract
Coronary heart disease (CHD) is the most common and serious illness in the world and has been researched for many years. However, there are still no real effective ways to prevent and save patients with this disease. When patients present with myocardial infarction, the most important step is to recover ischemic prefusion, which usually is accomplished by coronary artery bypass surgery, coronary artery intervention (PCI), or coronary artery bypass grafting (CABG). These are invasive procedures, and patients with extensive lesions cannot tolerate surgery. It is, therefore, extremely urgent to search for a noninvasive way to save ischemic myocardium. After suffering from ischemia, cardiac or skeletal muscle can partly recover blood flow through angiogenesis (de novo capillary) induced by hypoxia, arteriogenesis, or collateral growth (opening and remodeling of arterioles) triggered by dramatical increase of fluid shear stress (FSS). Evidence has shown that both of them are regulated by various crossed pathways, such as hypoxia-related pathways, cellular metabolism remodeling, inflammatory cells invasion and infiltration, or hemodynamical changes within the vascular wall, but still they do not find effective target for regulating revascularization at present. 5′-Adenosine monophosphate-activated protein kinase (AMPK), as a kinase, is not only an energy modulator but also a sensor of cellular oxygen-reduction substances, and many researches have suggested that AMPK plays an essential role in revascularization but the mechanism is not completely understood. Usually, AMPK can be activated by ADP or AMP, upstream kinases or other cytokines, and pharmacological agents, and then it phosphorylates key molecules that are involved in energy metabolism, autophagy, anti-inflammation, oxidative stress, and aging process to keep cellular homeostasis and finally keeps cell normal activity and function. This review makes a summary on the subunits, activation and downstream targets of AMPK, the mechanism of revascularization, the effects of AMPK in endothelial cells, angiogenesis, and arteriogenesis along with some prospects.
Collapse
|
50
|
Arteriogenesis of the Spinal Cord-The Network Challenge. Cells 2020; 9:cells9020501. [PMID: 32098337 PMCID: PMC7072838 DOI: 10.3390/cells9020501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/27/2022] Open
Abstract
Spinal cord ischemia (SCI) is a clinical complication following aortic repair that significantly impairs the quality and expectancy of life. Despite some strategies, like cerebrospinal fluid drainage, the occurrence of neurological symptoms, such as paraplegia and paraparesis, remains unpredictable. Beside the major blood supply through conduit arteries, a huge collateral network protects the central nervous system from ischemia—the paraspinous and the intraspinal compartment. The intraspinal arcades maintain perfusion pressure following a sudden inflow interruption, whereas the paraspinal system first needs to undergo arteriogenesis to ensure sufficient blood supply after an acute ischemic insult. The so-called steal phenomenon can even worsen the postoperative situation by causing the hypoperfusion of the spine when, shortly after thoracoabdominal aortic aneurysm (TAAA) surgery, muscles connected with the network divert blood and cause additional stress. Vessels are a conglomeration of different cell types involved in adapting to stress, like endothelial cells, smooth muscle cells, and pericytes. This adaption to stress is subdivided in three phases—initiation, growth, and the maturation phase. In fields of endovascular aortic aneurysm repair, pre-operative selective segmental artery occlusion may enable the development of a sufficient collateral network by stimulating collateral vessel growth, which, again, may prevent spinal cord ischemia. Among others, the major signaling pathways include the phosphoinositide 3 kinase (PI3K) pathway/the antiapoptotic kinase (AKT) pathway/the endothelial nitric oxide synthase (eNOS) pathway, the Erk1, the delta-like ligand (DII), the jagged (Jag)/NOTCH pathway, and the midkine regulatory cytokine signaling pathways.
Collapse
|