1
|
Mecklenbrauck F, Sepulcre J, Fehring J, Schubotz RI. Decoding Cortical Chronotopy - Comparing the Influence of Different Cortical Organizational Schemes. Neuroimage 2024:120914. [PMID: 39491762 DOI: 10.1016/j.neuroimage.2024.120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
The brain's diverse intrinsic timescales enable us to perceive stimuli with varying temporal persistency. This study aimed to uncover the cortical organizational schemes underlying these variations, revealing the neural architecture for processing a wide range of sensory experiences. We collected resting-state fMRI, task-fMRI, and diffusion-weighted imaging data from 47 individuals. Based on this data, we extracted six organizational schemes: (1) the structural Rich Club (RC) architecture, shown to synchronize the connectome; (2) the structural Diverse Club architecture, as an alternative to the RC based on the network's module structure; (3) the functional uni-to-multimodal gradient, reflected in a wide range of structural and functional features; and (4) the spatial posterior/lateral-to-anterior/medial gradient, established for hierarchical levels of cognitive control. Also, we explored the effects of (5) structural graph theoretical measures of centrality and (6) cytoarchitectural differences. Using Bayesian model comparison, we contrasted the impact of these organizational schemes on (1) intrinsic resting-state timescales and (2) inter-subject correlation (ISC) from a task involving hierarchically nested digit sequences. As expected, resting-state timescales were slower in structural network hubs, hierarchically higher areas defined by the functional and spatial gradients, and thicker cortical regions. ISC analysis demonstrated hints for the engagement of higher cortical areas with more temporally persistent stimuli. Finally, the model comparison identified the uni-to-multimodal gradient as the best organizational scheme for explaining the chronotopy in both task and rest. Future research should explore the microarchitectural features that shape this gradient, elucidating how our brain adapts and evolves across different modes of processing.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| | - Jorge Sepulcre
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, Yale University, New Haven, CT, USA,.
| | - Jana Fehring
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany; Institute for Biomagnetism and Biosignal Analysis, Münster, Germany.
| | - Ricarda I Schubotz
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| |
Collapse
|
2
|
Demeter DV, Greene DJ. The promise of precision functional mapping for neuroimaging in psychiatry. Neuropsychopharmacology 2024; 50:16-28. [PMID: 39085426 PMCID: PMC11526039 DOI: 10.1038/s41386-024-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Precision functional mapping (PFM) is a neuroimaging approach to reliably estimate metrics of brain function from individual people via the collection of large amounts of fMRI data (hours per person). This method has revealed much about the inter-individual variation of functional brain networks. While standard group-level studies, in which we average brain measures across groups of people, are important in understanding the generalizable neural underpinnings of neuropsychiatric disorders, many disorders are heterogeneous in nature. This heterogeneity often complicates clinical care, leading to patient uncertainty when considering prognosis or treatment options. We posit that PFM methods may help streamline clinical care in the future, fast-tracking the choice of personalized treatment that is most compatible with the individual. In this review, we provide a history of PFM studies, foundational results highlighting the benefits of PFM methods in the pursuit of an advanced understanding of individual differences in functional network organization, and possible avenues where PFM can contribute to clinical translation of neuroimaging research results in the way of personalized treatment in psychiatry.
Collapse
Affiliation(s)
- Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Zhao W, Su K, Zhu H, Kaiser M, Fan M, Zou Y, Li T, Yin D. Activity flow under the manipulation of cognitive load and training. Neuroimage 2024; 297:120761. [PMID: 39069226 DOI: 10.1016/j.neuroimage.2024.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024] Open
Abstract
Flexible cognitive functions, such as working memory (WM), usually require a balance between localized and distributed information processing. However, it is challenging to uncover how local and distributed processing specifically contributes to task-induced activity in a region. Although the recently proposed activity flow mapping approach revealed the relative contribution of distributed processing, few studies have explored the adaptive and plastic changes that underlie cognitive manipulation. In this study, we recruited 51 healthy volunteers (31 females) and investigated how the activity flow and brain activation of the frontoparietal systems was modulated by WM load and training. While the activation of both executive control network (ECN) and dorsal attention network (DAN) increased linearly with memory load at baseline, the relative contribution of distributed processing showed a linear response only in the DAN, which was prominently attributed to within-network activity flow. Importantly, adaptive training selectively induced an increase in the relative contribution of distributed processing in the ECN and also a linear response to memory load, which were predominantly due to between-network activity flow. Furthermore, we demonstrated a causal effect of activity flow prediction through training manipulation on connectivity and activity. In contrast with classic brain activation estimation, our findings suggest that the relative contribution of distributed processing revealed by activity flow prediction provides unique insights into neural processing of frontoparietal systems under the manipulation of cognitive load and training. This study offers a new methodological framework for exploring information integration versus segregation underlying cognitive processing.
Collapse
Affiliation(s)
- Wanyun Zhao
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Kaiqiang Su
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Hengcheng Zhu
- Division of Biostatistics, University of Minnesota, Minneapolis 55455, MN, USA
| | - Marcus Kaiser
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yong Zou
- Institute of Theoretical Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Ting Li
- Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China.
| |
Collapse
|
4
|
Li J, Yao C, Li Y, Liu X, Zhao Z, Shang Y, Yang J, Yao Z, Sheng Y, Hu B. Effects of second language acquisition on brain functional networks at different developmental stages. Brain Imaging Behav 2024; 18:808-818. [PMID: 38492128 DOI: 10.1007/s11682-024-00865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/18/2024]
Abstract
Previous studies have shown that language acquisition influences both the structure and function of the brain. However, whether the acquisition of a second language at different periods of life alters functional network organization in different ways remains unclear. Here, functional magnetic resonance imaging data from 27 English-speaking monolingual controls and 52 Spanish-English bilingual individuals, including 22 early bilinguals who began learning a second language before the age of ten and 30 late bilinguals who started learning a second language at age fourteen or later, were collected from the OpenNeuro database. Topological metrics of resting-state functional networks, including small-world attributes, network efficiency, and rich- and diverse-club regions, that characterize functional integration and segregation of the networks were computed via a graph theoretical approach. The results showed obvious increases in network efficiency in early bilinguals and late bilinguals relative to the monolingual controls; for example, the global efficiency of late bilinguals and early bilinguals was improved relative to that of monolingual controls, and the local efficiency of early bilinguals occupied an intermediate position between that of late bilinguals and monolingual controls. Obvious increases in rich-club and diverse-club functional connectivity were observed in the bilinguals relative to the monolingual controls. Three network metrics were positively correlated with Spanish proficiency test scores. These findings demonstrated that early and late acquisition of a second language had different impacts on the functional networks of the brain.
Collapse
Affiliation(s)
- Jiajia Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Chaofan Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xia Liu
- School of Computer Science, Qinghai Normal University, Xining, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yingying Shang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Jing Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| | - Yucen Sheng
- School of Foreign Languages, Lanzhou Jiaotong University, Lanzhou, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University &, Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China.
| |
Collapse
|
5
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
6
|
Wang B, Yuan Y, Yang L, Huang Y, Zhang X, Zhang X, Yan W, Li Y, Li D, Xiang J, Yang J, Liu M. Multi-hierarchy Network Configuration Can Predict Brain States and Performance. J Cogn Neurosci 2024; 36:1695-1714. [PMID: 38579269 DOI: 10.1162/jocn_a_02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we propose an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.
Collapse
Affiliation(s)
- Bin Wang
- Taiyuan University of Technology
| | | | - Lan Yang
- Taiyuan University of Technology
| | | | - Xi Zhang
- Taiyuan University of Technology
| | | | | | - Ying Li
- Taiyuan University of Technology
| | | | | | | | | |
Collapse
|
7
|
Lohia K, Soans RS, Saxena R, Mahajan K, Gandhi TK. Distinct rich and diverse clubs regulate coarse and fine binocular disparity processing: Evidence from stereoscopic task-based fMRI. iScience 2024; 27:109831. [PMID: 38784010 PMCID: PMC11111836 DOI: 10.1016/j.isci.2024.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
While cortical regions involved in processing binocular disparities have been studied extensively, little is known on how the human visual system adapts to changing disparity magnitudes. In this paper, we investigate causal mechanisms of coarse and fine binocular disparity processing using fMRI with a clinically validated, custom anaglyph-based stimulus. We make use of Granger causality and graph measures to reveal the existence of distinct rich and diverse clubs across different disparity magnitudes. We demonstrate that Middle Temporal area (MT) plays a specialized role with overlapping rich and diverse characteristics. Next, we show that subtle interhemispheric differences exist across various brain regions, despite an overall right hemisphere dominance. Finally, we pass the graph measures through the decision tree and found that the diverse clubs outperform rich clubs in decoding disparity magnitudes. Our study sets the stage for conducting further investigations on binocular disparity processing, particularly in the context of neuro-ophthalmic disorders with binocular impairments.
Collapse
Affiliation(s)
- Kritika Lohia
- Department of Electrical Engineering, Indian Institute of Technology – Delhi, New Delhi, India
| | - Rijul Saurabh Soans
- Department of Electrical Engineering, Indian Institute of Technology – Delhi, New Delhi, India
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Rohit Saxena
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - Tapan K. Gandhi
- Department of Electrical Engineering, Indian Institute of Technology – Delhi, New Delhi, India
| |
Collapse
|
8
|
Sun Y, Lucas MV, Cline CC, Menezes MC, Kim S, Badami FS, Narayan M, Wu W, Daskalakis ZJ, Etkin A, Saggar M. Densely sampled stimulus-response map of human cortex with single pulse TMS-EEG and its relation to whole brain neuroimaging measures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599236. [PMID: 38948696 PMCID: PMC11212865 DOI: 10.1101/2024.06.16.599236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Large-scale networks underpin brain functions. How such networks respond to focal stimulation can help decipher complex brain processes and optimize brain stimulation treatments. To map such stimulation-response patterns across the brain non-invasively, we recorded concurrent EEG responses from single-pulse transcranial magnetic stimulation (i.e., TMS-EEG) from over 100 cortical regions with two orthogonal coil orientations from one densely-sampled individual. We also acquired Human Connectome Project (HCP)-styled diffusion imaging scans (six), resting-state functional Magnetic Resonance Imaging (fMRI) scans (120 mins), resting-state EEG scans (108 mins), and structural MR scans (T1- and T2-weighted). Using the TMS-EEG data, we applied network science-based community detection to reveal insights about the brain's causal-functional organization from both a stimulation and recording perspective. We also computed structural and functional maps and the electric field of each TMS stimulation condition. Altogether, we hope the release of this densely sampled (n=1) dataset will be a uniquely valuable resource for both basic and clinical neuroscience research.
Collapse
Affiliation(s)
- Yinming Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Molly V. Lucas
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Christopher C. Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Matthew C. Menezes
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sanggyun Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Faizan S. Badami
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA
| | - Manjari Narayan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA
| | | | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Luo Q, Gao L, Yang Z, Chen S, Yang J, Lu S. Integrated sentence-level speech perception evokes strengthened language networks and facilitates early speech development. Neuroimage 2024; 289:120544. [PMID: 38365164 DOI: 10.1016/j.neuroimage.2024.120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/23/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Natural poetic speeches (i.e., proverbs, nursery rhymes, and commercial ads) with strong prosodic regularities are easily memorized by children and the harmonious acoustic patterns are suggested to facilitate their integrated sentence processing. Do children have specific neural pathways for perceiving such poetic utterances, and does their speech development benefit from it? We recorded the task-induced hemodynamic changes of 94 children aged 2 to 12 years using functional near-infrared spectroscopy (fNIRS) while they listened to poetic and non-poetic natural sentences. Seventy-three adult as controls were recruited to investigate the developmental specificity of children group. The results indicated that poetic sentences perceiving is a highly integrated process featured by a lower brain workload in both groups. However, an early activated large-scale network was induced only in the child group, coordinated by hubs for connectivity diversity. Additionally, poetic speeches evoked activation in the phonological encoding regions in the children's group rather than adult controls which decreases with children's ages. The neural responses to poetic speeches were positively linked to children's speech communication performance, especially the fluency and semantic aspects. These results reveal children's neural sensitivity to integrated speech perception which facilitate early speech development by strengthening more sophisticated language networks and the perception-production circuit.
Collapse
Affiliation(s)
- Qinqin Luo
- Neurolinguistics Laboratory,College of International Studies, Shenzhen University, Shenzhen, China; Department of Chinese Language and Literature, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Leyan Gao
- Neurolinguistics Laboratory,College of International Studies, Shenzhen University, Shenzhen, China
| | - Zhirui Yang
- Neurolinguistics Laboratory,College of International Studies, Shenzhen University, Shenzhen, China; Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sihui Chen
- Department of Chinese Language and Literature, Sun Yat-sen University, Guangzhou, China
| | - Jingwen Yang
- Neurolinguistics Laboratory,College of International Studies, Shenzhen University, Shenzhen, China
| | - Shuo Lu
- Neurolinguistics Laboratory,College of International Studies, Shenzhen University, Shenzhen, China; Department of Clinical Neurolinguistics Research, Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Mecklenbrauck F, Gruber M, Siestrup S, Zahedi A, Grotegerd D, Mauritz M, Trempler I, Dannlowski U, Schubotz RI. The significance of structural rich club hubs for the processing of hierarchical stimuli. Hum Brain Mapp 2024; 45:e26543. [PMID: 38069537 PMCID: PMC10915744 DOI: 10.1002/hbm.26543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 03/07/2024] Open
Abstract
The brain's structural network follows a hierarchy that is described as rich club (RC) organization, with RC hubs forming the well-interconnected top of this hierarchy. In this study, we tested whether RC hubs are involved in the processing of hierarchically higher structures in stimulus sequences. Moreover, we explored the role of previously suggested cortical gradients along anterior-posterior and medial-lateral axes throughout the frontal cortex. To this end, we conducted a functional magnetic resonance imaging (fMRI) experiment and presented participants with blocks of digit sequences that were structured on different hierarchically nested levels. We additionally collected diffusion weighted imaging data of the same subjects to identify RC hubs. This classification then served as the basis for a region of interest analysis of the fMRI data. Moreover, we determined structural network centrality measures in areas that were found as activation clusters in the whole-brain fMRI analysis. Our findings support the previously found anterior and medial shift for processing hierarchically higher structures of stimuli. Additionally, we found that the processing of hierarchically higher structures of the stimulus structure engages RC hubs more than for lower levels. Areas involved in the functional processing of hierarchically higher structures were also more likely to be part of the structural RC and were furthermore more central to the structural network. In summary, our results highlight the potential role of the structural RC organization in shaping the cortical processing hierarchy.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Marius Gruber
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Department for Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital Frankfurt, Goethe UniversityFrankfurtGermany
| | - Sophie Siestrup
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Anoushiravan Zahedi
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Marco Mauritz
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
| | - Ima Trempler
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Ricarda I. Schubotz
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
11
|
Lurie DJ, Pappas I, D'Esposito M. Cortical timescales and the modular organization of structural and functional brain networks. Hum Brain Mapp 2024; 45:e26587. [PMID: 38339903 PMCID: PMC10823764 DOI: 10.1002/hbm.26587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024] Open
Abstract
Recent years have seen growing interest in characterizing the properties of regional brain dynamics and their relationship to other features of brain structure and function. In particular, multiple studies have observed regional differences in the "timescale" over which activity fluctuates during periods of quiet rest. In the cerebral cortex, these timescales have been associated with both local circuit properties as well as patterns of inter-regional connectivity, including the extent to which each region exhibits widespread connectivity to other brain areas. In the current study, we build on prior observations of an association between connectivity and dynamics in the cerebral cortex by investigating the relationship between BOLD fMRI timescales and the modular organization of structural and functional brain networks. We characterize network community structure across multiple scales and find that longer timescales are associated with greater within-community functional connectivity and diverse structural connectivity. We also replicate prior observations of a positive correlation between timescales and structural connectivity degree. Finally, we find evidence for preferential functional connectivity between cortical areas with similar timescales. We replicate these findings in an independent dataset. These results contribute to our understanding of functional brain organization and structure-function relationships in the human brain, and support the notion that regional differences in cortical dynamics may in part reflect the topological role of each region within macroscale brain networks.
Collapse
Affiliation(s)
- Daniel J. Lurie
- Department of PsychologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Biomedical Informatics University of Pittsburgh School of Medicine PittsburghPennsylvaniaUSA
| | - Ioannis Pappas
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mark D'Esposito
- Department of Psychology and Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
12
|
Zhang Y, Han X, Ge X, Xu T, Wang Y, Mu J, Liu F. Modular brain network in volitional eyes closing: enhanced integration with a marked impact on hubs. Cereb Cortex 2024; 34:bhad464. [PMID: 38044477 DOI: 10.1093/cercor/bhad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Volitional eyes closing would shift brain's information processing modes from the "exteroceptive" to "interoceptive" state. This transition induced by the eyes closing is underpinned by a large-scale reconfiguration of brain network, which is still not fully comprehended. Here, we investigated the eyes-closing-relevant network reconfiguration by examining the functional integration among intrinsic modules. Our investigation utilized a publicly available dataset with 48 subjects being scanned in both eyes closed and eyes open conditions. It was found that the modular integration was significantly enhanced during the eyes closing, including lower modularity index, higher participation coefficient, less provincial hubs, and more connector hubs. Moreover, the eyes-closing-enhanced integration was particularly noticeable in the hubs of network, mainly located in the default-mode network. Finally, the hub-dominant modular enhancement was positively correlated to the eyes-closing-reduced entropy of BOLD signal, suggesting a close connection to the diminished consciousness of individuals. Collectively, our findings strongly suggested that the enhanced modular integration with substantially reorganized hubs characterized the large-scale cortical underpinning of the volitional eyes closing.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xiao Han
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xuelian Ge
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Tianyong Xu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yanjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jiali Mu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Fan Liu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Vafaii H, Mandino F, Desrosiers-Grégoire G, O'Connor D, Markicevic M, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair MC, Constable RT, Lake EMR, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. Nat Commun 2024; 15:229. [PMID: 38172111 PMCID: PMC10764905 DOI: 10.1038/s41467-023-44363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.
Collapse
Affiliation(s)
- Hadi Vafaii
- Department of Physics, University of Maryland, College Park, MD, 20742, USA.
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Gabriel Desrosiers-Grégoire
- Computional Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
| | - David O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xinxin Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Section of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mallar Chakravarty
- Computional Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Michael C Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06510, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Neuroimaging Center, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
14
|
Zhuang K, Zeitlen DC, Beaty RE, Vatansever D, Chen Q, Qiu J. Diverse functional interaction driven by control-default network hubs supports creative thinking. Cereb Cortex 2023; 33:11206-11224. [PMID: 37823346 DOI: 10.1093/cercor/bhad356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Complex cognitive processes, like creative thinking, rely on interactions among multiple neurocognitive processes to generate effective and innovative behaviors on demand, for which the brain's connector hubs play a crucial role. However, the unique contribution of specific hub sets to creative thinking is unknown. Employing three functional magnetic resonance imaging datasets (total N = 1,911), we demonstrate that connector hub sets are organized in a hierarchical manner based on diversity, with "control-default hubs"-which combine regions from the frontoparietal control and default mode networks-positioned at the apex. Specifically, control-default hubs exhibit the most diverse resting-state connectivity profiles and play the most substantial role in facilitating interactions between regions with dissimilar neurocognitive functions, a phenomenon we refer to as "diverse functional interaction". Critically, we found that the involvement of control-default hubs in facilitating diverse functional interaction robustly relates to creativity, explaining both task-induced functional connectivity changes and individual creative performance. Our findings suggest that control-default hubs drive diverse functional interaction in the brain, enabling complex cognition, including creative thinking. We thus uncover a biologically plausible explanation that further elucidates the widely reported contributions of certain frontoparietal control and default mode network regions in creativity studies.
Collapse
Affiliation(s)
- Kaixiang Zhuang
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Qunlin Chen
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| |
Collapse
|
15
|
Guan M, Xie Y, Li C, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. Rich-club reorganization of white matter structural network in schizophrenia patients with auditory verbal hallucinations following 1 Hz rTMS treatment. Neuroimage Clin 2023; 40:103546. [PMID: 37988997 PMCID: PMC10701084 DOI: 10.1016/j.nicl.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
The human brain comprises a large-scale structural network of regions and interregional pathways, including a selectively defined set of highly central and interconnected hub regions, often referred to as the "rich club", which may play a pivotal role in the integrative processes of the brain. A quintessential symptom of schizophrenia, auditory verbal hallucinations (AVH) have shown a decrease in severity following low-frequency repetitive transcranial magnetic stimulation (rTMS). However, the underlying mechanism of rTMS in treating AVH remains elusive. This study investigated the effect of low-frequency rTMS on the rich-club organization within the brain in patients diagnosed with schizophrenia who experience AVH using diffusion tensor imaging data. Through by constructing structural connectivity networks, we identified several critical rich hub nodes, which constituted a rich-club subnetwork, predominantly located in the prefrontal cortices. Notably, our findings revealed enhanced connection strength and density within the rich-club subnetwork following rTMS treatment. Furthermore, we found that the decreased connectivity within the subnetwork components, including the rich-club subnetwork, was notably enhanced in patients following rTMS treatment. In particular, the increased connectivity strength of the right median superior frontal gyrus, which functions as a critical local bridge, with the right postcentral gyrus exhibited a significant correlation with improvements in both positive symptoms and AVH. These findings provide valuable insights into the role of rTMS in inducing reorganizational changes within the rich-club structural network in schizophrenia and shed light on potential mechanisms through which rTMS may alleviate AVH.
Collapse
Affiliation(s)
- Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China.
| | - Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Finn ES, Poldrack RA, Shine JM. Functional neuroimaging as a catalyst for integrated neuroscience. Nature 2023; 623:263-273. [PMID: 37938706 DOI: 10.1038/s41586-023-06670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/22/2023] [Indexed: 11/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) enables non-invasive access to the awake, behaving human brain. By tracking whole-brain signals across a diverse range of cognitive and behavioural states or mapping differences associated with specific traits or clinical conditions, fMRI has advanced our understanding of brain function and its links to both normal and atypical behaviour. Despite this headway, progress in human cognitive neuroscience that uses fMRI has been relatively isolated from rapid advances in other subdomains of neuroscience, which themselves are also somewhat siloed from one another. In this Perspective, we argue that fMRI is well-placed to integrate the diverse subfields of systems, cognitive, computational and clinical neuroscience. We first summarize the strengths and weaknesses of fMRI as an imaging tool, then highlight examples of studies that have successfully used fMRI in each subdomain of neuroscience. We then provide a roadmap for the future advances that will be needed to realize this integrative vision. In this way, we hope to demonstrate how fMRI can help usher in a new era of interdisciplinary coherence in neuroscience.
Collapse
Affiliation(s)
- Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Dartmouth, NH, USA.
| | | | - James M Shine
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
17
|
Yoshida Y, Yokoi T, Hara K, Watanabe H, Yamaguchi H, Bagarinao E, Masuda M, Kato T, Ogura A, Ohdake R, Kawabata K, Katsuno M, Kato K, Naganawa S, Okamura N, Yanai K, Sobue G. <Editors' Choice> Pattern of THK 5351 retention in normal aging involves core regions of resting state networks associated with higher cognitive function. NAGOYA JOURNAL OF MEDICAL SCIENCE 2023; 85:758-771. [PMID: 38155624 PMCID: PMC10751491 DOI: 10.18999/nagjms.85.4.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2023]
Abstract
We aimed to elucidate the distribution pattern of the positron emission tomography probe [18F]THK 5351, a marker for astrogliosis and tau accumulation, in healthy aging. We also assessed the relationship between THK5351 retention and resting state networks. We enrolled 62 healthy participants in this study. All participants underwent magnetic resonance imaging/positron emission tomography scanning consisting of T1-weighted images, resting state functional magnetic resonance imaging, Pittsburgh Compound-B and THK positron emission tomography. The preprocessed THK images were entered into a scaled subprofile modeling/principal component analysis to extract THK distribution patterns. Using the most significant THK pattern, we generated regions of interest, and performed seed-based functional connectivity analyses. We also evaluated the functional connectivity overlap ratio to identify regions with high between-network connectivity. The most significant THK distributions were observed in the medial prefrontal cortex and bilateral putamen. The seed regions of interest in the medial prefrontal cortex had a functional connectivity map that significantly overlapped with regions of the dorsal default mode network. The seed regions of interest in the putamen showed strong overlap with the basal ganglia and anterior salience networks. The functional connectivity overlap ratio also showed that three peak regions had the characteristics of connector hubs. We have identified an age-related spatial distribution of THK in the medial prefrontal cortex and basal ganglia in normal aging. Interestingly, the distribution's peaks are located in regions of connector hubs that are strongly connected to large-scale resting state networks associated with higher cognitive function.
Collapse
Affiliation(s)
- Yusuke Yoshida
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Yokoi
- Department of Neurology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hiroshi Yamaguchi
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiko Kato
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Aichi Medical University, Nagakute, Japan
| |
Collapse
|
18
|
Boeken OJ, Cieslik EC, Langner R, Markett S. Characterizing functional modules in the human thalamus: coactivation-based parcellation and systems-level functional decoding. Brain Struct Funct 2023; 228:1811-1834. [PMID: 36547707 PMCID: PMC10516793 DOI: 10.1007/s00429-022-02603-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The human thalamus relays sensory signals to the cortex and facilitates brain-wide communication. The thalamus is also more directly involved in sensorimotor and various cognitive functions but a full characterization of its functional repertoire, particularly in regard to its internal anatomical structure, is still outstanding. As a putative hub in the human connectome, the thalamus might reveal its functional profile only in conjunction with interconnected brain areas. We therefore developed a novel systems-level Bayesian reverse inference decoding that complements the traditional neuroinformatics approach towards a network account of thalamic function. The systems-level decoding considers the functional repertoire (i.e., the terms associated with a brain region) of all regions showing co-activations with a predefined seed region in a brain-wide fashion. Here, we used task-constrained meta-analytic connectivity-based parcellation (MACM-CBP) to identify thalamic subregions as seed regions and applied the systems-level decoding to these subregions in conjunction with functionally connected cortical regions. Our results confirm thalamic structure-function relationships known from animal and clinical studies and revealed further associations with language, memory, and locomotion that have not been detailed in the cognitive neuroscience literature before. The systems-level decoding further uncovered large systems engaged in autobiographical memory and nociception. We propose this novel decoding approach as a useful tool to detect previously unknown structure-function relationships at the brain network level, and to build viable starting points for future studies.
Collapse
Affiliation(s)
- Ole J Boeken
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany.
| | - Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Sebastian Markett
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany
| |
Collapse
|
19
|
Niu M, Guo H, Zhang Z, Fu Y. Abnormal temporal variability of rich-club organization in three major psychiatric conditions. Front Psychiatry 2023; 14:1226143. [PMID: 37720902 PMCID: PMC10500439 DOI: 10.3389/fpsyt.2023.1226143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Convergent evidence has demonstrated a shared rich-club reorganization across multiple major psychiatric conditions. However, previous studies assessing altered functional couplings between rich-club regions have typically focused on the mean time series from entire functional magnetic resonance imaging (fMRI) scanning session, neglecting their time-varying properties. Methods In this study, we aim to explore the common and/or unique alterations in the temporal variability of rich-club organization among schizophrenia (SZ), bipolar disorder (BD), and attention deficit/hyperactivity disorder (ADHD). We employed a temporal rich-club (TRC) approach to quantitatively assess the propensity of well-connected nodes to form simultaneous and stable structures in a temporal network derived from resting-state fMRI data of 156 patients with major psychiatric disorders (SZ/BD/ADHD = 71/45/40) and 172 healthy controls. We executed the TRC workflow at both whole-brain and subnetwork scales across varying network sparsity, sliding window strategies, lengths and steps of sliding windows, and durations of TRC coefficients. Results The SZ and BD groups displayed significantly decreased TRC coefficients compared to corresponding HC groups at the whole-brain scale and in most subnetworks. In contrast, the ADHD group exhibited reduced TRC coefficients in longer durations, as opposed to shorter durations, which markedly differs from the SZ and BD groups. These findings reveal both transdiagnostic and illness-specific patterns in temporal variability of rich-club organization across SZ, BD, and ADHD. Discussion TRC may serve as an effective metric for detecting brain network disruptions in particular states, offering novel insights and potential biomarkers into the neurobiological basis underpinning the behavioral and cognitive deficits observed in these disorders.
Collapse
Affiliation(s)
- Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - Hanning Guo
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou, China
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Smith DM, Kraus BT, Dworetsky A, Gordon EM, Gratton C. Brain hubs defined in the group do not overlap with regions of high inter-individual variability. Neuroimage 2023; 277:120195. [PMID: 37286152 PMCID: PMC10427117 DOI: 10.1016/j.neuroimage.2023.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Connector 'hubs' are brain regions with links to multiple networks. These regions are hypothesized to play a critical role in brain function. While hubs are often identified based on group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-subject variation in the functional connectivity profiles of the brain, especially in association regions where hubs tend to be located. Here we investigated how group hubs are related to locations of inter-individual variability. To answer this question, we examined inter-individual variation at group-level hubs in both the Midnight Scan Club and Human Connectome Project datasets. The top group hubs defined based on the participation coefficient did not overlap strongly with the most prominent regions of inter-individual variation (termed 'variants' in prior work). These hubs have relatively strong similarity across participants and consistent cross-network profiles, similar to what was seen for many other areas of cortex. Consistency across participants was further improved when these hubs were allowed to shift slightly in local position. Thus, our results demonstrate that the top group hubs defined with the participation coefficient are generally consistent across people, suggesting they may represent conserved cross-network bridges. More caution is warranted with alternative hub measures, such as community density (which are based on spatial proximity to network borders) and intermediate hub regions which show higher correspondence to locations of individual variability.
Collapse
Affiliation(s)
- Derek M Smith
- Department of Psychology, Northwestern University, Evanston, IL, United States; Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Brian T Kraus
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Ally Dworetsky
- Department of Psychology, Northwestern University, Evanston, IL, United States; Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, United States; Department of Psychology, Florida State University, Tallahassee, FL, United States; Department of Neurology, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
21
|
Lurie DJ, Pappas I, D'Esposito M. Cortical timescales and the modular organization of structural and functional brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548751. [PMID: 37502887 PMCID: PMC10370009 DOI: 10.1101/2023.07.12.548751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Recent years have seen growing interest in characterizing the properties of regional brain dynamics and their relationship to other features of brain structure and function. In particular, multiple studies have observed regional differences in the "timescale" over which activity fluctuates during periods of quiet rest. In the cerebral cortex, these timescales have been associated with both local circuit properties as well as patterns of inter-regional connectivity, including the extent to which each region exhibits widespread connectivity to other brain areas. In the current study, we build on prior observations of an association between connectivity and dynamics in the cerebral cortex by investigating the relationship between BOLD fMRI timescales and the modular organization of structural and functional brain networks. We characterize network community structure across multiple scales and find that longer timescales are associated with greater within-community functional connectivity and diverse structural connectivity. We also replicate prior observations of a positive correlation between timescales and structural connectivity degree. Finally, we find evidence for preferential functional connectivity between cortical areas with similar timescales. We replicate these findings in an independent dataset. These results contribute to our understanding of functional brain organization and structure-function relationships in the human brain, and support the notion that regional differences in cortical dynamics may in part reflect the topological role of each region within macroscale brain networks.
Collapse
Affiliation(s)
- Daniel J Lurie
- Department of Psychology, University of California, Berkeley
| | - Ioannis Pappas
- Department of Neurology, Keck School of Medicine, University of Southern California
| | - Mark D'Esposito
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley
| |
Collapse
|
22
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
23
|
Demeter DV, Gordon EM, Nugiel T, Garza A, Larguinho TL, Church JA. Resting-state cortical hubs in youth organize into four categories. Cell Rep 2023; 42:112521. [PMID: 37200192 PMCID: PMC10281712 DOI: 10.1016/j.celrep.2023.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
During childhood, neural systems supporting high-level cognitive processes undergo periods of rapid growth and refinement, which rely on the successful coordination of activation across the brain. Some coordination occurs via cortical hubs-brain regions that coactivate with functional networks other than their own. Adult cortical hubs map into three distinct profiles, but less is known about hub categories during development, when critical improvement in cognition occurs. We identify four distinct hub categories in a large youth sample (n = 567, ages 8.5-17.2), each exhibiting more diverse connectivity profiles than adults. Youth hubs integrating control-sensory processing split into two distinct categories (visual control and auditory/motor control), whereas adult hubs unite under one. This split suggests a need for segregating sensory stimuli while functional networks are experiencing rapid development. Functional coactivation strength for youth control-processing hubs are associated with task performance, suggesting a specialized role in routing sensory information to and from the brain's control system.
Collapse
Affiliation(s)
- Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA.
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tehila Nugiel
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - AnnaCarolina Garza
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tyler L Larguinho
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
24
|
Sanders AFP, Harms MP, Kandala S, Marek S, Somerville LH, Bookheimer SY, Dapretto M, Thomas KM, Van Essen DC, Yacoub E, Barch DM. Age-related differences in resting-state functional connectivity from childhood to adolescence. Cereb Cortex 2023; 33:6928-6942. [PMID: 36724055 PMCID: PMC10233258 DOI: 10.1093/cercor/bhad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 02/02/2023] Open
Abstract
The human brain is active at rest, and spontaneous fluctuations in functional MRI BOLD signals reveal an intrinsic functional architecture. During childhood and adolescence, functional networks undergo varying patterns of maturation, and measures of functional connectivity within and between networks differ as a function of age. However, many aspects of these developmental patterns (e.g. trajectory shape and directionality) remain unresolved. In the present study, we characterised age-related differences in within- and between-network resting-state functional connectivity (rsFC) and integration (i.e. participation coefficient, PC) in a large cross-sectional sample of children and adolescents (n = 628) aged 8-21 years from the Lifespan Human Connectome Project in Development. We found evidence for both linear and non-linear differences in cortical, subcortical, and cerebellar rsFC, as well as integration, that varied by age. Additionally, we found that sex moderated the relationship between age and putamen integration where males displayed significant age-related increases in putamen PC compared with females. Taken together, these results provide evidence for complex, non-linear differences in some brain systems during development.
Collapse
Affiliation(s)
- Ashley F P Sanders
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63119, USA
| | - Leah H Somerville
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | - Kathleen M Thomas
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Psychological and Brain Sciences, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
25
|
Vafaii H, Mandino F, Desrosiers-Grégoire G, O’Connor D, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair MC, Constable RT, Lake EMR, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. RESEARCH SQUARE 2023:rs.3.rs-2823802. [PMID: 37162818 PMCID: PMC10168440 DOI: 10.21203/rs.3.rs-2823802/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employed wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determined cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks are overlapping rather than disjoint. Our results show that multiple BOLD networks are detected via Ca2+ signals; there is considerable network overlap (both modalities); networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks; and, despite similarities, important differences are detected across modalities (e.g., brain region "network diversity"). In conclusion, Ca2+ imaging uncovered overlapping functional cortical organization in the mouse that reflected several, but not all, properties observed with fMRI-BOLD signals.
Collapse
Affiliation(s)
- Hadi Vafaii
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Gabriel Desrosiers-Grégoire
- Comp. Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health Univ. Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
| | - David O’Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xinxin Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Mallar Chakravarty
- Comp. Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health Univ. Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Michael C. Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06510, USA
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Evelyn MR. Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
26
|
Martin S, Williams KA, Saur D, Hartwigsen G. Age-related reorganization of functional network architecture in semantic cognition. Cereb Cortex 2023; 33:4886-4903. [PMID: 36190445 PMCID: PMC10110455 DOI: 10.1093/cercor/bhac387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cognitive aging is associated with widespread neural reorganization processes in the human brain. However, the behavioral impact of such reorganization is not well understood. The current neuroimaging study investigated age differences in the functional network architecture during semantic word retrieval in young and older adults. Combining task-based functional connectivity, graph theory and cognitive measures of fluid and crystallized intelligence, our findings show age-accompanied large-scale network reorganization even when older adults have intact word retrieval abilities. In particular, functional networks of older adults were characterized by reduced decoupling between systems, reduced segregation and efficiency, and a larger number of hub regions relative to young adults. Exploring the predictive utility of these age-related changes in network topology revealed high, albeit less efficient, performance for older adults whose brain graphs showed stronger dedifferentiation and reduced distinctiveness. Our results extend theoretical accounts on neurocognitive aging by revealing the compensational potential of the commonly reported pattern of network dedifferentiation when older adults can rely on their prior knowledge for successful task processing. However, we also demonstrate the limitations of such compensatory reorganization and show that a youth-like network architecture in terms of balanced integration and segregation is associated with more economical processing.
Collapse
Affiliation(s)
- Sandra Martin
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Kathleen A Williams
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Harry BB, Margulies DS, Falkiewicz M, Keller PE. Brain networks for temporal adaptation, anticipation, and sensory-motor integration in rhythmic human behavior. Neuropsychologia 2023; 183:108524. [PMID: 36868500 DOI: 10.1016/j.neuropsychologia.2023.108524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Human interaction often requires the precise yet flexible interpersonal coordination of rhythmic behavior, as in group music making. The present fMRI study investigates the functional brain networks that may facilitate such behavior by enabling temporal adaptation (error correction), prediction, and the monitoring and integration of information about 'self' and the external environment. Participants were required to synchronize finger taps with computer-controlled auditory sequences that were presented either at a globally steady tempo with local adaptations to the participants' tap timing (Virtual Partner task) or with gradual tempo accelerations and decelerations but without adaptation (Tempo Change task). Connectome-based predictive modelling was used to examine patterns of brain functional connectivity related to individual differences in behavioral performance and parameter estimates from the adaptation and anticipation model (ADAM) of sensorimotor synchronization for these two tasks under conditions of varying cognitive load. Results revealed distinct but overlapping brain networks associated with ADAM-derived estimates of temporal adaptation, anticipation, and the integration of self-controlled and externally controlled processes across task conditions. The partial overlap between ADAM networks suggests common hub regions that modulate functional connectivity within and between the brain's resting-state networks and additional sensory-motor regions and subcortical structures in a manner reflecting coordination skill. Such network reconfiguration might facilitate sensorimotor synchronization by enabling shifts in focus on internal and external information, and, in social contexts requiring interpersonal coordination, variations in the degree of simultaneous integration and segregation of these information sources in internal models that support self, other, and joint action planning and prediction.
Collapse
Affiliation(s)
- Bronson B Harry
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia.
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France; Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marcel Falkiewicz
- Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| |
Collapse
|
28
|
Keller AS, Sydnor VJ, Pines A, Fair DA, Bassett DS, Satterthwaite TD. Hierarchical functional system development supports executive function. Trends Cogn Sci 2023; 27:160-174. [PMID: 36437189 PMCID: PMC9851999 DOI: 10.1016/j.tics.2022.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022]
Abstract
In this perspective, we describe how developmental improvements in youth executive function (EF) are supported by hierarchically organized maturational changes in functional brain systems. We first highlight evidence that functional brain systems are embedded within a hierarchical sensorimotor-association axis of cortical organization. We then review data showing that functional system developmental profiles vary along this axis: systems near the associative end become more functionally segregated, while those in the middle become more integrative. Developmental changes that strengthen the hierarchical organization of the cortex may support EF by facilitating top-down information flow and balancing within- and between-system communication. We propose a central role for attention and frontoparietal control systems in the maturation of healthy EF and suggest that reduced functional system differentiation across the sensorimotor-association axis contributes to transdiagnostic EF deficits.
Collapse
Affiliation(s)
- Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Dani S Bassett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Zhu H, Huang Z, Yang Y, Su K, Fan M, Zou Y, Li T, Yin D. Activity flow mapping over probabilistic functional connectivity. Hum Brain Mapp 2023; 44:341-361. [PMID: 36647263 PMCID: PMC9842909 DOI: 10.1002/hbm.26044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Emerging evidence indicates that activity flow over resting-state network topology allows the prediction of task activations. However, previous studies have mainly adopted static, linear functional connectivity (FC) estimates as activity flow routes. It is unclear whether an intrinsic network topology that captures the dynamic nature of FC can be a better representation of activity flow routes. Moreover, the effects of between- versus within-network connections and tight versus loose (using rest baseline) task contrasts on the prediction of task-evoked activity across brain systems remain largely unknown. In this study, we first propose a probabilistic FC estimation derived from a dynamic framework as a new activity flow route. Subsequently, activity flow mapping was tested using between- and within-network connections separately for each region as well as using a set of tight task contrasts. Our results showed that probabilistic FC routes substantially improved individual-level activity flow prediction. Although it provided better group-level prediction, the multiple regression approach was more dependent on the length of data points at the individual-level prediction. Regardless of FC type, we consistently observed that between-network connections showed a relatively higher prediction performance in higher-order cognitive control than in primary sensorimotor systems. Furthermore, cognitive control systems exhibit a remarkable increase in prediction accuracy with tight task contrasts and a decrease in sensorimotor systems. This work demonstrates that probabilistic FC estimates are promising routes for activity flow mapping and also uncovers divergent influences of connectional topology and task contrasts on activity flow prediction across brain systems with different functional hierarchies.
Collapse
Affiliation(s)
- Hengcheng Zhu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Yifeixue Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Kaiqiang Su
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic ScienceEast China Normal UniversityShanghaiChina
| | - Yong Zou
- Institute of Theoretical Physics, School of Physics and Electronic ScienceEast China Normal UniversityShanghaiChina
| | - Ting Li
- Shanghai Changning Mental Health CenterShanghaiChina
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
- Shanghai Changning Mental Health CenterShanghaiChina
| |
Collapse
|
30
|
Howlett-Prieto Q, Oommen C, Carrithers MD, Wunsch DC, Hier DB. Subtypes of relapsing-remitting multiple sclerosis identified by network analysis. Front Digit Health 2023; 4:1063264. [PMID: 36714613 PMCID: PMC9874946 DOI: 10.3389/fdgth.2022.1063264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
We used network analysis to identify subtypes of relapsing-remitting multiple sclerosis subjects based on their cumulative signs and symptoms. The electronic medical records of 113 subjects with relapsing-remitting multiple sclerosis were reviewed, signs and symptoms were mapped to classes in a neuro-ontology, and classes were collapsed into sixteen superclasses by subsumption. After normalization and vectorization of the data, bipartite (subject-feature) and unipartite (subject-subject) network graphs were created using NetworkX and visualized in Gephi. Degree and weighted degree were calculated for each node. Graphs were partitioned into communities using the modularity score. Feature maps visualized differences in features by community. Network analysis of the unipartite graph yielded a higher modularity score (0.49) than the bipartite graph (0.25). The bipartite network was partitioned into five communities which were named fatigue, behavioral, hypertonia/weakness, abnormal gait/sphincter, and sensory, based on feature characteristics. The unipartite network was partitioned into five communities which were named fatigue, pain, cognitive, sensory, and gait/weakness/hypertonia based on features. Although we did not identify pure subtypes (e.g., pure motor, pure sensory, etc.) in this cohort of multiple sclerosis subjects, we demonstrated that network analysis could partition these subjects into different subtype communities. Larger datasets and additional partitioning algorithms are needed to confirm these findings and elucidate their significance. This study contributes to the literature investigating subtypes of multiple sclerosis by combining feature reduction by subsumption with network analysis.
Collapse
Affiliation(s)
- Quentin Howlett-Prieto
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| | - Chelsea Oommen
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael D. Carrithers
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| | - Donald C. Wunsch
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Daniel B. Hier
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States,Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, United States,Correspondence: Daniel B. Hier
| |
Collapse
|
31
|
Sigar P, Uddin LQ, Roy D. Altered global modular organization of intrinsic functional connectivity in autism arises from atypical node-level processing. Autism Res 2023; 16:66-83. [PMID: 36333956 DOI: 10.1002/aur.2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by restricted interests and repetitive behaviors as well as social-communication deficits. These traits are associated with atypicality of functional brain networks. Modular organization in the brain plays a crucial role in network stability and adaptability for neurodevelopment. Previous neuroimaging research demonstrates discrepancies in studies of functional brain modular organization in ASD. These discrepancies result from the examination of mixed age groups. Furthermore, recent findings suggest that while much attention has been given to deriving atlases and measuring the connections between nodes, within node information may also be crucial in determining altered modular organization in ASD compared with typical development (TD). However, altered modular organization originating from systematic nodal changes are yet to be explored in younger children with ASD. Here, we used graph-theoretical measures to fill this knowledge gap. To this end, we utilized multicenter resting-state fMRI data collected from 5 to 10-year-old children-34 ASD and 40 TD obtained from the Autism Brain Image Data Exchange (ABIDE) I and II. We demonstrate that alterations in topological roles and modular cohesiveness are the two key properties of brain regions anchored in default mode, sensorimotor, and salience networks, and primarily relate to social and sensory deficits in children with ASD. These results demonstrate that atypical global network organization in children with ASD arises from nodal role changes, and contribute to the growing body of literature suggesting that there is interesting information within nodes providing critical markers of functional brain networks in autistic children.
Collapse
Affiliation(s)
- Priyanka Sigar
- Cognitive Brain Dynamics Lab, National Brain Research Center, Manesar, India.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab, National Brain Research Center, Manesar, India.,School of AIDE, Centre for Brain Science and Applications, Karwar, India
| |
Collapse
|
32
|
Breedt LC, Santos FAN, Hillebrand A, Reneman L, van Rootselaar AF, Schoonheim MM, Stam CJ, Ticheler A, Tijms BM, Veltman DJ, Vriend C, Wagenmakers MJ, van Wingen GA, Geurts JJG, Schrantee A, Douw L. Multimodal multilayer network centrality relates to executive functioning. Netw Neurosci 2023; 7:299-321. [PMID: 37339322 PMCID: PMC10275212 DOI: 10.1162/netn_a_00284] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/07/2022] [Indexed: 02/18/2024] Open
Abstract
Executive functioning (EF) is a higher order cognitive process that is thought to depend on a network organization facilitating integration across subnetworks, in the context of which the central role of the fronto-parietal network (FPN) has been described across imaging and neurophysiological modalities. However, the potentially complementary unimodal information on the relevance of the FPN for EF has not yet been integrated. We employ a multilayer framework to allow for integration of different modalities into one 'network of networks.' We used diffusion MRI, resting-state functional MRI, MEG, and neuropsychological data obtained from 33 healthy adults to construct modality-specific single-layer networks as well as a single multilayer network per participant. We computed single-layer and multilayer eigenvector centrality of the FPN as a measure of integration in this network and examined their associations with EF. We found that higher multilayer FPN centrality, but not single-layer FPN centrality, was related to better EF. We did not find a statistically significant change in explained variance in EF when using the multilayer approach as compared to the single-layer measures. Overall, our results show the importance of FPN integration for EF and underline the promise of the multilayer framework toward better understanding cognitive functioning.
Collapse
Affiliation(s)
- Lucas C. Breedt
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Fernando A. N. Santos
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
- Institute of Advanced Studies, University of Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Menno M. Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Anouk Ticheler
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Chris Vriend
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Margot J. Wagenmakers
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
- GGZ in Geest Specialized Mental Health Care, Amsterdam, The Netherlands
| | - Guido A. van Wingen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, The Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, The Netherlands
| |
Collapse
|
33
|
Fu Y, Niu M, Gao Y, Dong S, Huang Y, Zhang Z, Zhuo C. Altered nonlinear Granger causality interactions in the large-scale brain networks of patients with schizophrenia. J Neural Eng 2022; 19. [PMID: 36579785 DOI: 10.1088/1741-2552/acabe7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.It has been demonstrated that schizophrenia (SZ) is characterized by functional dysconnectivity involving extensive brain networks. However, the majority of previous studies utilizing resting-state functional magnetic resonance imaging (fMRI) to infer abnormal functional connectivity (FC) in patients with SZ have focused on the linear correlation that one brain region may influence another, ignoring the inherently nonlinear properties of fMRI signals.Approach. In this paper, we present a neural Granger causality (NGC) technique for examining the changes in SZ's nonlinear causal couplings. We develop static and dynamic NGC-based analyses of large-scale brain networks at several network levels, estimating complicated temporal and causal relationships in SZ patients.Main results. We find that the NGC-based FC matrices can detect large and significant differences between the SZ and healthy control groups at both the regional and subnetwork scales. These differences are persistent and significantly overlapped at various network sparsities regardless of whether the brain networks were built using static or dynamic techniques. In addition, compared to controls, patients with SZ exhibited extensive NGC confusion patterns throughout the entire brain.Significance. These findings imply that the NGC-based FCs may be a useful method for quantifying the abnormalities in the causal influences of patients with SZ, hence shedding fresh light on the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuanhang Gao
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Shunjie Dong
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanyan Huang
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou, People's Republic of China.,Institute of Brain Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Cheng Zhuo
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
34
|
Madden MB, Stewart BW, White MG, Krimmel SR, Qadir H, Barrett FS, Seminowicz DA, Mathur BN. A role for the claustrum in cognitive control. Trends Cogn Sci 2022; 26:1133-1152. [PMID: 36192309 PMCID: PMC9669149 DOI: 10.1016/j.tics.2022.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Early hypotheses of claustrum function were fueled by neuroanatomical data and yielded suggestions that the claustrum is involved in processes ranging from salience detection to multisensory integration for perceptual binding. While these hypotheses spurred useful investigations, incompatibilities inherent in these views must be reconciled to further conceptualize claustrum function amid a wealth of new data. Here, we review the varied models of claustrum function and synthesize them with developments in the field to produce a novel functional model: network instantiation in cognitive control (NICC). This model proposes that frontal cortices direct the claustrum to flexibly instantiate cortical networks to subserve cognitive control. We present literature support for this model and provide testable predictions arising from this conceptual framework.
Collapse
Affiliation(s)
- Maxwell B Madden
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brent W Stewart
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Michael G White
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Houman Qadir
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian N Mathur
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
35
|
Pathak A, Menon SN, Sinha S. Mesoscopic architecture enhances communication across the macaque connectome revealing structure-function correspondence in the brain. Phys Rev E 2022; 106:054304. [PMID: 36559437 DOI: 10.1103/physreve.106.054304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Analyzing the brain in terms of organizational structures at intermediate scales provides an approach to unravel the complexity arising from interactions between its large number of components. Focusing on a wiring diagram that spans the cortex, basal ganglia, and thalamus of the macaque brain, we identify robust modules in the network that provide a mesoscopic-level description of its topological architecture. Surprisingly, we find that the modular architecture facilitates rapid communication across the network, instead of localizing activity as is typically expected in networks having community organization. By considering processes of diffusive spreading and coordination, we demonstrate that the specific pattern of inter- and intramodular connectivity in the network allows propagation to be even faster than equivalent randomized networks with or without modular structure. This pattern of connectivity is seen at different scales and is conserved across principal cortical divisions, as well as subcortical structures. Furthermore, we find that the physical proximity between areas is insufficient to explain the modular organization, as similar mesoscopic structures can be obtained even after factoring out the effect of distance constraints on the connectivity. By supplementing the topological information about the macaque connectome with physical locations, volumes, and functions of the constituent areas and analyzing this augmented dataset, we reveal a counterintuitive role played by the modular architecture of the brain in promoting global coordination of its activity. It suggests a possible explanation for the ubiquity of modularity in brain networks.
Collapse
Affiliation(s)
- Anand Pathak
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
36
|
Schoonheim MM, Broeders TAA, Geurts JJG. The network collapse in multiple sclerosis: An overview of novel concepts to address disease dynamics. Neuroimage Clin 2022; 35:103108. [PMID: 35917719 PMCID: PMC9421449 DOI: 10.1016/j.nicl.2022.103108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis is a neuroinflammatory and neurodegenerative disorder of the central nervous system that can be considered a network disorder. In MS, lesional pathology continuously disconnects structural pathways in the brain, forming a disconnection syndrome. Complex functional network changes then occur that are poorly understood but closely follow clinical status. Studying these structural and functional network changes has been and remains crucial to further decipher complex symptoms like cognitive impairment and physical disability. Recent insights especially implicate the importance of monitoring network hubs in MS, like the thalamus and default-mode network which seem especially hit hard. Such network insights in MS have led to the hypothesis that as the network continues to become disconnected and dysfunctional, exceeding a certain threshold of network efficiency loss leads to a "network collapse". After this collapse, crucial network hubs become rigid and overloaded, and at the same time a faster neurodegeneration and accelerated clinical (and cognitive) progression can be seen. As network neuroscience has evolved, the MS field can now move towards a clearer classification of the network collapse itself and specific milestone events leading up to it. Such an updated network-focused conceptual framework of MS could directly impact clinical decision making as well as the design of network-tailored rehabilitation strategies. This review therefore provides an overview of recent network concepts that have enhanced our understanding of clinical progression in MS, especially focusing on cognition, as well as new concepts that will likely move the field forward in the near future.
Collapse
Affiliation(s)
- Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Tommy A A Broeders
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Voss MW, Jain S. Getting Fit to Counteract Cognitive Aging: Evidence and Future Directions. Physiology (Bethesda) 2022; 37:0. [PMID: 35001656 PMCID: PMC9191193 DOI: 10.1152/physiol.00038.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Physical activity has shown tremendous promise for counteracting cognitive aging, but also tremendous variability in cognitive benefits. We describe evidence for how exercise affects cognitive and brain aging, and whether cardiorespiratory fitness is a key factor. We highlight a brain network framework as a valuable paradigm for the mechanistic insight needed to tailor physical activity for cognitive benefits.
Collapse
Affiliation(s)
- Michelle W. Voss
- 1Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa,2Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa,3Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Shivangi Jain
- 1Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| |
Collapse
|
38
|
Hancock F, Rosas FE, Mediano PAM, Luppi AI, Cabral J, Dipasquale O, Turkheimer FE. May the 4C's be with you: an overview of complexity-inspired frameworks for analysing resting-state neuroimaging data. J R Soc Interface 2022; 19:20220214. [PMID: 35765805 PMCID: PMC9240685 DOI: 10.1098/rsif.2022.0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
Competing and complementary models of resting-state brain dynamics contribute to our phenomenological and mechanistic understanding of whole-brain coordination and communication, and provide potential evidence for differential brain functioning associated with normal and pathological behaviour. These neuroscientific theories stem from the perspectives of physics, engineering, mathematics and psychology and create a complicated landscape of domain-specific terminology and meaning, which, when used outside of that domain, may lead to incorrect assumptions and conclusions within the neuroscience community. Here, we review and clarify the key concepts of connectivity, computation, criticality and coherence-the 4C's-and outline a potential role for metastability as a common denominator across these propositions. We analyse and synthesize whole-brain neuroimaging research, examined through functional magnetic imaging, to demonstrate that complexity science offers a principled and integrated approach to describe, and potentially understand, macroscale spontaneous brain functioning.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, UK
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Department of Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- Alan Turing Institute, London, UK
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
39
|
Chen Q, Turnbull A, Cole M, Zhang Z, Lin FV. Enhancing Cortical Network-level Participation Coefficient as a Potential Mechanism for Transfer in Cognitive Training in aMCI. Neuroimage 2022; 254:119124. [PMID: 35331866 PMCID: PMC9199485 DOI: 10.1016/j.neuroimage.2022.119124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Effective cognitive training must improve cognition beyond the trained domain (show a transfer effect) and be applicable to dementia-risk populations, e.g., amnesic mild cognitive impairment (aMCI). Theories suggest training should target processes that 1) show robust engagement, 2) are domain-general, and 3) reflect long-lasting changes in brain organization. Brain regions that connect to many different networks (i.e., show high participation coefficient; PC) are known to support integration. This capacity is 1) relatively preserved in aMCI, 2) required across a wide range of cognitive domains, and 3) trait-like. In 49 individuals with aMCI that completed a 6-week visual speed of processing training (VSOP) and 28 active controls, enhancement in PC was significantly more related to transfer to working memory at global and network levels in VSOP compared to controls, particularly in networks with many high-PC nodes. This suggests that enhancing brain integration may provide a target for developing effective cognitive training.
Collapse
Affiliation(s)
- Quanjing Chen
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, United States
| | - Adam Turnbull
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, United States; School of Nursing, University of Rochester, United States.
| | - Martin Cole
- Department of Biostatics and Computational Biology, University of Rochester, United States
| | - Zhengwu Zhang
- Department of Statistics and Operations Research, UNC-Chapel Hill, United States
| | - Feng V Lin
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, United States; The Wu Tsai Neuroscience Institute, Stanford University, University of Rochester, United States
| |
Collapse
|
40
|
Naro A, Pignolo L, Calabrò RS. Brain Network Organization Following Post-Stroke Neurorehabilitation. Int J Neural Syst 2022; 32:2250009. [PMID: 35139774 DOI: 10.1142/s0129065722500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brain network analysis can offer useful information to guide the rehabilitation of post-stroke patients. We applied functional network connection models based on multiplex-multilayer network analysis (MMN) to explore functional network connectivity changes induced by robot-aided gait training (RAGT) using the Ekso, a wearable exoskeleton, and compared it to conventional overground gait training (COGT) in chronic stroke patients. We extracted the coreness of individual nodes at multiple locations in the brain from EEG recordings obtained before and after gait training in a resting state. We found that patients provided with RAGT achieved a greater motor function recovery than those receiving COGT. This difference in clinical outcome was paralleled by greater changes in connectivity patterns among different brain areas central to motor programming and execution, as well as a recruitment of other areas beyond the sensorimotor cortices and at multiple frequency ranges, contemporarily. The magnitude of these changes correlated with motor function recovery chances. Our data suggest that the use of RAGT as an add-on treatment to COGT may provide post-stroke patients with a greater modification of the functional brain network impairment following a stroke. This might have potential clinical implications if confirmed in large clinical trials.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| | - Loris Pignolo
- Sant'Anna Institute, Via Siris, 11, 88900 Crotone, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| |
Collapse
|
41
|
van Balkom TD, van den Heuvel OA, Berendse HW, van der Werf YD, Vriend C. Eight-week multi-domain cognitive training does not impact large-scale resting-state brain networks in Parkinson's disease. Neuroimage Clin 2022; 33:102952. [PMID: 35123203 PMCID: PMC8819471 DOI: 10.1016/j.nicl.2022.102952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
There is meta-analytic evidence for the efficacy of cognitive training (CT) in Parkinson's disease (PD). We performed a randomized controlled trial where we found small positive effects of CT on executive function and processing speed in individuals with PD (ntotal = 140). In this study, we assessed the effects of CT on brain network connectivity and topology in a subsample of the full study population (nmri = 86). Participants were randomized into an online multi-domain CT and an active control condition and performed 24 sessions of either intervention in eight weeks. Resting-state functional MRI scans were acquired in addition to extensive clinical and neuropsychological assessments pre- and post-intervention. In line with our preregistered analysis plan (osf.io/3st82), we computed connectivity between 'cognitive' resting-state networks and computed topological outcomes at the whole-brain and sub-network level. We assessed group differences after the intervention with mixed-model analyses adjusting for baseline performance and analyzed the association between network and cognitive performance changes with repeated measures correlation analyses. The final analysis sample consisted of 71 participants (n CT = 37). After intervention there were no group differences on between-network connectivity and network topological outcomes. No associations between neural network and neuropsychological performance change were found. CT increased segregated network topology in a small sub-sample of cognitively intact participants. Post-hoc nodal analyses showed post-intervention enhanced connectivity of both the dorsal anterior cingulate cortex and dorsolateral prefrontal cortex in the CT group. The results suggest no large-scale brain network effects of eight-week computerized CT, but rather localized connectivity changes of key regions in cognitive function, that potentially reflect the specific effects of the intervention.
Collapse
Affiliation(s)
- Tim D van Balkom
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, Netherlands.
| |
Collapse
|
42
|
Guo T, Xuan M, Zhou C, Wu J, Gao T, Bai X, Liu X, Gu L, Liu R, Song Z, Gu Q, Huang P, Pu J, Zhang B, Xu X, Guan X, Zhang M. Normalization effect of levodopa on hierarchical brain function in Parkinson’s disease. Netw Neurosci 2022; 6:552-569. [PMID: 35733432 PMCID: PMC9208001 DOI: 10.1162/netn_a_00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022] Open
Abstract
Hierarchical brain organization, in which the rich club and diverse club situate in core position, is critical for global information integration in the human brain network. Parkinson’s disease (PD), a common movement disorder, has been conceptualized as a network disorder. Levodopa is an effective treatment for PD. Whether there is a functional divergence in the hierarchical brain system under PD pathology, and how this divergence is regulated by immediate levodopa therapy, remains unknown. We constructed a functional network in 61 PD patients and 89 normal controls and applied graph theoretical analyses to examine the neural mechanism of levodopa short response from the perspective of brain hierarchical configuration. The results revealed the following: (a) PD patients exhibited disrupted function within rich-club organization, while the diverse club preserved function, indicating a differentiated brain topological organization in PD. (b) Along the rich-club derivate hierarchical system, PD patients showed impaired network properties within rich-club and feeder subnetworks, and decreased nodal degree centrality in rich-club and feeder nodes, along with increased nodal degree in peripheral nodes, suggesting distinct functional patterns in different types of nodes. And (c) levodopa could normalize the abnormal network architecture of the rich-club system. This study provides evidence for levodopa effects on the hierarchical brain system with divergent functions. Many studies of brain networks have revealed densely connected regions forming the rich club and diverse club, which occupy the central position of the hierarchical brain system. Here, we explore the hierarchical topology in Parkinson’s disease (PD) and investigate the neural effect of levodopa on it. We show that within the core position of the hierarchical system, the function of the diverse club is preserved while the function of the rich club is impaired. Along the rich-club hierarchical system, the function of biologically costly rich-club and feeder subnetworks is disrupted, together with an increased function of peripheral nodes, which could be normalized by levodopa. Our study provides evidence of a disparity pattern between different levels of brain hierarchical systems under PD pathology.
Collapse
Affiliation(s)
- Tao Guo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Liu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhe Song
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 2022; 47:90-103. [PMID: 34408276 PMCID: PMC8616903 DOI: 10.1038/s41386-021-01152-w] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Systems neuroscience approaches with a focus on large-scale brain organization and network analysis are advancing foundational knowledge of how cognitive control processes are implemented in the brain. Over the past decade, technological and computational innovations in the study of brain connectivity have led to advances in our understanding of how brain networks function, inspiring new conceptualizations of the role of prefrontal cortex (PFC) networks in the coordination of cognitive control. In this review, we describe six key PFC networks involved in cognitive control and elucidate key principles relevant for understanding how these networks implement cognitive control. Implementation of cognitive control in a constantly changing environment depends on the dynamic and flexible organization of PFC networks. In this context, we describe major empirical and theoretical models that have emerged in recent years and describe how their functional architecture and dynamic organization supports flexible cognitive control. We take an overarching view of advances made in the past few decades and consider fundamental issues regarding PFC network function, global brain dynamics, and cognition that still need to be resolved. We conclude by clarifying important future directions for research on cognitive control and their implications for advancing our understanding of PFC networks in brain disorders.
Collapse
|
44
|
Pang J, Guo H, Tang X, Fu Y, Yang Z, Li Y, An N, Luo J, Yao Z, Hu B. Uncovering the global task-modulated brain network in chunk decomposition with Chinese characters. Neuroimage 2021; 247:118826. [PMID: 34923135 DOI: 10.1016/j.neuroimage.2021.118826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Chunk decomposition, which requires the mental representation transformation in accordance with behavioral goals, is of vital importance to problem solving and creative thinking. Previous studies have identified that the frontal, parietal, and occipital cortex in the cognitive control network selectively activated in response to chunk tightness, however, functional localization strategy may overlook the interaction brain regions. Based on the notion of a global brain network, we proposed that multiple specialized regions have to be interconnected to maintain goal representation during the course of chunk decomposition. Therefore, the present study applied a beta-series correlation method to investigate interregional functional connectivity in the event-related design of chunk decomposition tasks using Chinese characters, which would highlight critical nodes irrespective to chunk tightness. The results reveal a network of functional hubs with highly within or between module connections, including the orbitofrontal cortex, superior/inferior parietal lobule, hippocampus, and thalamus. We speculate that the thalamus integrates information across modular as an integrative hub while the orbitofrontal cortex tracks the mental states of chunk decomposition on a moment-to-moment basis. The superior and inferior parietal lobule collaborate to manipulate the mental representation of chunk decomposition and the hippocampus associates the relationship between elements in the question and solution phase. Furthermore, the tightness of chunks is not only associated with different processors in visual systems but also leads to increased intermodular connections in right superior frontal gyrus and left precentral gyrus. To summary up, the present study first reveals the task-modulated brain network of chunk decomposition in addition to the tightness-related nodes in the frontal and occipital cortex.
Collapse
Affiliation(s)
- Jiaoyan Pang
- School of Government, Shanghai University of Political Science and Law, Shanghai, China
| | - Hanning Guo
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China.
| | - Xiaochen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Yu Fu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China.
| | - Zhengwu Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Na An
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu 730000, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University and Institute of Semiconductors, Chinese Academy of Sciences, China; Ministry of Education, Open Source Software and Real-Time System Lanzhou University, Lanzhou, China.
| |
Collapse
|
45
|
Varangis E, Qi W, Stern Y, Lee S. The role of neural flexibility in cognitive aging. Neuroimage 2021; 247:118784. [PMID: 34902547 DOI: 10.1016/j.neuroimage.2021.118784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/09/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022] Open
Abstract
Studies assessing relationships between neural and cognitive changes in healthy aging have shown that a variety of aspects of brain structure and function explain a significant portion of the variability in cognitive outcomes throughout adulthood. Many studies assessing relationships between brain function and cognition have utilized time-averaged, or static functional connectivity methods to explore ways in which brain network organization may contribute to aspects of cognitive aging. However, recent studies in this field have suggested that time-varying, or dynamic measures of functional connectivity, which assess changes in functional connectivity over the course of a scan session, may play a stronger role in explaining cognitive outcomes in healthy young adults. Further, both static and dynamic functional connectivity studies suggest that there may be differences in patterns of brain-cognition relationships as a function of whether or not the participant is performing a task during the scan. Thus, the goals of the present study were threefold: (1) assess whether neural flexibility during both resting as well as task-based scans is related to participant age and cognitive performance in a lifespan aging sample, (2) determine whether neural flexibility moderates relationships between age and cognitive performance, and (3) explore differences in neural flexibility between rest and task. Participants in the study were 386 healthy adults between the ages of 20-80 who provided resting state and/or task-based (Matrix Reasoning) functional magnetic resonance imaging (fMRI) scan data as part of their participation in two ongoing studies of cognitive aging. Neural flexibility measures from both resting and task-based scans reflected the number of times each node changed network assignment, and were averaged both across the whole brain (global neural flexibility) as well as within ten somatosensory/cognitive networks. Results showed that neural flexibility was not related to participant age, and that task-based global neural flexibility, as well as task-based neural flexibility in several networks, tended to be negatively related to reaction times during the Matrix Reasoning task, however these effects did not survive strict multiple comparisons correction. Resting state neural flexibility was not significantly related to either participant age or cognitive performance. Additionally, no neural flexibility measures significantly moderated relationships between participant age and cognitive outcomes. Further, neural flexibility differed as a function of scan type, with resting state neural flexibility being significantly greater than task-based neural flexibility. Thus, neural flexibility measures computed during a cognitive task may be more meaningfully related to cognitive performance across the adult lifespan then resting state measures of neural flexibility.
Collapse
Affiliation(s)
- Eleanna Varangis
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Weiwei Qi
- Mental Health Data Science, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 48, New York, NY 10032, USA; Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Yaakov Stern
- Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Seonjoo Lee
- Mental Health Data Science, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 48, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Biostatistics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
46
|
Nonlinear reconfiguration of network edges, topology and information content during an artificial learning task. Brain Inform 2021; 8:26. [PMID: 34859330 PMCID: PMC8639979 DOI: 10.1186/s40708-021-00147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
Here, we combine network neuroscience and machine learning to reveal connections between the brain's network structure and the emerging network structure of an artificial neural network. Specifically, we train a shallow, feedforward neural network to classify hand-written digits and then used a combination of systems neuroscience and information-theoretic tools to perform 'virtual brain analytics' on the resultant edge weights and activity patterns of each node. We identify three distinct phases of network reconfiguration across learning, each of which are characterized by unique topological and information-theoretic signatures. Each phase involves aligning the connections of the neural network with patterns of information contained in the input dataset or preceding layers (as relevant). We also observe a process of low-dimensional category separation in the network as a function of learning. Our results offer a systems-level perspective of how artificial neural networks function-in terms of multi-stage reorganization of edge weights and activity patterns to effectively exploit the information content of input data during edge-weight training-while simultaneously enriching our understanding of the methods used by systems neuroscience.
Collapse
|
47
|
The diversity and multiplexity of edge communities within and between brain systems. Cell Rep 2021; 37:110032. [PMID: 34788617 DOI: 10.1016/j.celrep.2021.110032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/08/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The human brain is composed of functionally specialized systems that support cognition. Recently, we proposed an edge-centric model for detecting overlapping communities. It remains unclear how these communities and brain systems are related. Here, we address this question using data from the Midnight Scan Club and show that all brain systems are linked via at least two edge communities. We then examine the diversity of edge communities within each system, finding that heteromodal systems are more diverse than sensory systems. Next, we cluster the entire cortex to reveal it according to the regions' edge-community profiles. We find that regions in heteromodal systems are more likely to form their own clusters. Finally, we show that edge communities are personalized. Our work reveals the pervasive overlap of edge communities across the cortex and their relationship with brain systems. Our work provides pathways for future research using edge-centric brain networks.
Collapse
|
48
|
Douw L, Nissen IA, Fitzsimmons SMDD, Santos FAN, Hillebrand A, van Straaten ECW, Stam CJ, De Witt Hamer PC, Baayen JC, Klein M, Reijneveld JC, Heyer DB, Verhoog MB, Wilbers R, Hunt S, Mansvelder HD, Geurts JJG, de Kock CPJ, Goriounova NA. Cellular Substrates of Functional Network Integration and Memory in Temporal Lobe Epilepsy. Cereb Cortex 2021; 32:2424-2436. [PMID: 34564728 PMCID: PMC9157285 DOI: 10.1093/cercor/bhab349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/12/2022] Open
Abstract
Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been linked to functional network disturbances, particularly of integration of the default mode network (DMN). However, the cellular substrates of functional network integration are unknown. We leverage a unique cross-scale dataset of drug-resistant TLE patients (n = 31), who underwent pseudo resting-state functional magnetic resonance imaging (fMRI), resting-state magnetoencephalography (MEG) and/or neuropsychological testing before neurosurgery. fMRI and MEG underwent atlas-based connectivity analyses. Functional network centrality of the lateral middle temporal gyrus, part of the DMN, was used as a measure of local network integration. Subsequently, non-pathological cortical tissue from this region was used for single cell morphological and electrophysiological patch-clamp analysis, assessing integration in terms of total dendritic length and action potential rise speed. As could be hypothesized, greater network centrality related to better memory performance. Moreover, greater network centrality correlated with more integrative properties at the cellular level across patients. We conclude that individual differences in cognitively relevant functional network integration of a DMN region are mirrored by differences in cellular integrative properties of this region in TLE patients. These findings connect previously separate scales of investigation, increasing translational insight into focal pathology and large-scale network disturbances in TLE.
Collapse
Affiliation(s)
- Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 02129 MA, Charlestown, USA
| | - Ida A Nissen
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Sophie M D D Fitzsimmons
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Fernando A N Santos
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center Amsterdam Brain Tumor Center Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center Amsterdam Brain Tumor Center Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Martin Klein
- Department of Medical Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center Amsterdam Brain Tumor Center Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center Amsterdam Brain Tumor Center Amsterdam, 1081 HV, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, Heemstede, the Netherlands
| | - Djai B Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Matthijs B Verhoog
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands.,Department of Human Biology, Division of Cell Biology, Neuroscience Institute, University of Cape Town, 7935, Cape Town, South Africa
| | - René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Sarah Hunt
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Bazinet V, Vos de Wael R, Hagmann P, Bernhardt BC, Misic B. Multiscale communication in cortico-cortical networks. Neuroimage 2021; 243:118546. [PMID: 34478823 DOI: 10.1016/j.neuroimage.2021.118546] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Signaling in brain networks unfolds over multiple topological scales. Areas may exchange information over local circuits, encompassing direct neighbours and areas with similar functions, or over global circuits, encompassing distant neighbours with dissimilar functions. Here we study how the organization of cortico-cortical networks mediate localized and global communication by parametrically tuning the range at which signals are transmitted on the white matter connectome. We show that brain regions vary in their preferred communication scale. By investigating the propensity for brain areas to communicate with their neighbors across multiple scales, we naturally reveal their functional diversity: unimodal regions show preference for local communication and multimodal regions show preferences for global communication. We show that these preferences manifest as region- and scale-specific structure-function coupling. Namely, the functional connectivity of unimodal regions emerges from monosynaptic communication in small-scale circuits, while the functional connectivity of transmodal regions emerges from polysynaptic communication in large-scale circuits. Altogether, the present findings reveal that communication preferences are highly heterogeneous across the cortex, shaping regional differences in structure-function coupling.
Collapse
Affiliation(s)
- Vincent Bazinet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV-UNIL), Lausanne, Switzerland
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
50
|
Zhu H, Jin W, Zhou J, Tong S, Xu X, Sun J. Nodal Memberships to Communities of Functional Brain Networks Reveal Functional Flexibility and Individualized Connectome. Cereb Cortex 2021; 31:5090-5106. [PMID: 34387312 DOI: 10.1093/cercor/bhab144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/12/2022] Open
Abstract
Human brain network is organized as interconnected communities for supporting cognition and behavior. Despite studies on the nonoverlapping communities of brain network, overlapping community structure and its relationship to brain function remain largely unknown. With this consideration, we employed the Bayesian nonnegative matrix factorization to decompose the functional brain networks constructed from resting-state fMRI data into overlapping communities with interdigitated mapping to functional subnetworks. By examining the heterogeneous nodal membership to communities, we classified nodes into three classes: Most nodes in somatomotor and limbic subnetworks were affiliated with one dominant community and classified as unimodule nodes; most nodes in attention and frontoparietal subnetworks were affiliated with more than two communities and classified as multimodule nodes; and the remaining nodes affiliated with two communities were classified as bimodule nodes. This three-class paradigm was highly reproducible across sessions and subjects. Furthermore, the more likely a node was classified as multimodule node, the more flexible it will be engaged in multiple tasks. Finally, the FC feature vector associated with multimodule nodes could serve as connectome "fingerprinting" to gain high subject discriminability. Together, our findings offer new insights on the flexible spatial overlapping communities that related to task-based functional flexibility and individual connectome "fingerprinting."
Collapse
Affiliation(s)
- Hong Zhu
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wen Jin
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Zhou
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shanbao Tong
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoke Xu
- College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
| | - Junfeng Sun
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|