1
|
Bellantoni E, Marini M, Chieca M, Gabellini C, Crapanzano EL, Souza Monteiro de Araujo D, Nosi D, Roschi L, Landini L, De Siena G, Pensieri P, Mastricci A, Scuffi I, Geppetti P, Nassini R, De Logu F. Schwann cell transient receptor potential ankyrin 1 (TRPA1) ortholog in zebrafish larvae mediates chemotherapy-induced peripheral neuropathy. Br J Pharmacol 2024; 181:4859-4873. [PMID: 39238161 DOI: 10.1111/bph.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND AND PURPOSE The oxidant sensor transient receptor potential ankyrin 1 (TRPA1) channel expressed by Schwann cells (SCs) has recently been implicated in several models of neuropathic pain in rodents. Here we investigate whether the pro-algesic function of Schwann cell TRPA1 is not limited to mammals by exploring the role of TRPA1 in a model of chemotherapy-induced peripheral neuropathy (CIPN) in zebrafish larvae. EXPERIMENTAL APPROACH We used zebrafish larvae and a mouse model to test oxaliplatin-evoked nociceptive behaviours. We also performed a TRPA1 selective silencing in Schwann cells both in zebrafish larvae and mice to study their contribution in oxaliplatin-induced CIPN model. KEY RESULTS We found that zebrafish larvae and zebrafish TRPA1 (zTRPA1)-transfected HEK293T cells respond to reactive oxygen species (ROS) with nociceptive behaviours and intracellular calcium increases, respectively. TRPA1 was found to be co-expressed with the Schwann cell marker, SOX10, in zebrafish larvae. Oxaliplatin caused nociceptive behaviours in zebrafish larvae that were attenuated by a TRPA1 antagonist and a ROS scavenger. Oxaliplatin failed to produce mechanical allodynia in mice with Schwann cell TRPA1 selective silencing (Plp1+-Trpa1 mice). Comparable results were observed in zebrafish larvae where TRPA1 selective silencing in Schwann cells, using the specific Schwann cell promoter myelin basic protein (MBP), attenuated oxaliplatin-evoked nociceptive behaviours. CONCLUSION AND IMPLICATIONS These results indicate that the contribution of the oxidative stress/Schwann cell/TRPA1 pro-allodynic pathway to neuropathic pain models seems to be conserved across the animal kingdom.
Collapse
Affiliation(s)
- Elisa Bellantoni
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Martina Chieca
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Chiara Gabellini
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Erica Lucia Crapanzano
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | | | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Roschi
- LENS-European Laboratory for Nonlinear Spectroscopy, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pasquale Pensieri
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Alessandra Mastricci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Irene Scuffi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
- Pain Research Center, College of Dentistry, New York University, New York, New York, USA
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
3
|
Zhu CC, Zheng YL, Gong C, Chen BL, Guo JB. Role of Exercise on Neuropathic Pain in Preclinical Models: Perspectives for Neuroglia. Mol Neurobiol 2024:10.1007/s12035-024-04511-y. [PMID: 39316356 DOI: 10.1007/s12035-024-04511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
The benefits of exercise on neuropathic pain (NP) have been demonstrated in numerous studies. In recent studies, inflammation, neurotrophins, neurotransmitters, and endogenous opioids are considered as the main mechanisms. However, the role of exercise in alleviating NP remains unclear. Neuroglia, widely distributed in both the central and peripheral nervous systems, perform functions such as support, repair, immune response, and maintenance of normal neuronal activity. A large number of studies have shown that neuroglia play an important role in the occurrence and development of NP, and exercise can alleviate NP by regulating neuroglia. This article reviewed the involvement of neuroglia in the development of NP and their role in the exercise treatment of NP, intending to provide a theoretical basis for the exercise treatment strategy of NP.
Collapse
Affiliation(s)
- Chen-Chen Zhu
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Chan Gong
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Bing-Lin Chen
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jia-Bao Guo
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Yang F, Ghosh A, Katwala S, Chu XP. Commentary: Intraganglionic reactive oxygen species mediate inflammatory pain and hyperalgesia through TRPA1 in the rat. FRONTIERS IN PAIN RESEARCH 2024; 5:1456548. [PMID: 39301325 PMCID: PMC11410756 DOI: 10.3389/fpain.2024.1456548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Felix Yang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
| | - Arkadeep Ghosh
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
| | - Shreya Katwala
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas, MO, United States
| |
Collapse
|
5
|
Yuan BT, Li MN, Zhu LP, Xu ML, Gu J, Gao YJ, Ma LJ. TFAP2A is involved in neuropathic pain by regulating Grin1 expression in glial cells of the dorsal root ganglion. Biochem Pharmacol 2024; 227:116427. [PMID: 39009095 DOI: 10.1016/j.bcp.2024.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Neuropathic pain is a highly prevalent and refractory condition, yet its mechanism remains poorly understood. While NR1, the essential subunit of NMDA receptors, has long been recognized for its pivotal role in nociceptive transmission, its involvement in presynaptic stimulation is incompletely elucidated. Transcription factors can regulate the expression of both pro-nociceptive and analgesic factors. Our study shows that transcription factor TFAP2A was up-regulated in the dorsal root ganglion (DRG) neurons, satellite glial cells (SGCs), and Schwann cells following spinal nerve ligation (SNL). Intrathecal injection of siRNA targeting Tfap2a immediately or 7 days after SNL effectively alleviated SNL-induced pain hypersensitivity and reduced Tfap2a expression levels. Bioinformatics analysis revealed that TFAP2A may regulate the expression of the Grin1 gene, which encodes NR1. Dual-luciferase reporter assays confirmed TFAP2A's positive regulation of Grin1 expression. Notably, both Tfap2a and Grin1 were expressed in the primary SGCs and upregulated by lipopolysaccharides. The expression of Grin1 was also down-regulated in the DRG following Tfap2a knockdown. Furthermore, intrathecal injection of siRNA targeting Grin1 immediately or 7 days post-SNL effectively alleviated SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, intrathecal Tfap2a siRNA alleviated SNL-induced neuronal hypersensitivity, and incubation of primary SGCs with Tfap2a siRNA decreased NMDA-induced upregulation of proinflammatory cytokines. Collectively, our study reveals the role of TFAP2A-Grin1 in regulating neuropathic pain in peripheral glia, offering a new strategy for the development of novel analgesics.
Collapse
Affiliation(s)
- Bao-Tong Yuan
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Meng-Na Li
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Lin-Peng Zhu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Jun Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
6
|
Brum ES, Fialho MFP, Souza Monteiro de Araújo D, Landini L, Marini M, Titiz M, Kuhn BL, Frizzo CP, Araújo PHS, Guimarães RM, Cunha TM, Silva CR, Trevisan G, Geppetti P, Nassini R, De Logu F, Oliveira SM. Schwann cell TRPA1 elicits reserpine-induced fibromyalgia pain in mice. Br J Pharmacol 2024; 181:3445-3461. [PMID: 38772415 DOI: 10.1111/bph.16413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/30/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Fibromyalgia is a complex clinical disorder with an unknown aetiology, characterized by generalized pain and co-morbid symptoms such as anxiety and depression. An imbalance of oxidants and antioxidants is proposed to play a pivotal role in the pathogenesis of fibromyalgia symptoms. However, the precise mechanisms by which oxidative stress contributes to fibromyalgia-induced pain remain unclear. The transient receptor potential ankyrin 1 (TRPA1) channel, known as both a pain sensor and an oxidative stress sensor, has been implicated in various painful conditions. EXPERIMENTAL APPROACH The feed-forward mechanism that implicates reactive oxygen species (ROS) driven by TRPA1 was investigated in a reserpine-induced fibromyalgia model in C57BL/6J mice employing pharmacological interventions and genetic approaches. KEY RESULTS Reserpine-treated mice developed pain-like behaviours (mechanical/cold hypersensitivity) and early anxiety-depressive-like disorders, accompanied by increased levels of oxidative stress markers in the sciatic nerve tissues. These effects were not observed upon pharmacological blockade or global genetic deletion of the TRPA1 channel and macrophage depletion. Furthermore, we demonstrated that selective silencing of TRPA1 in Schwann cells reduced reserpine-induced neuroinflammation (NADPH oxidase 1-dependent ROS generation and macrophage increase in the sciatic nerve) and attenuated fibromyalgia-like behaviours. CONCLUSION AND IMPLICATIONS Activated Schwann cells expressing TRPA1 promote an intracellular pathway culminating in the release of ROS and recruitment of macrophages in the mouse sciatic nerve. These cellular and molecular events sustain mechanical and cold hypersensitivity in the reserpine-evoked fibromyalgia model. Targeting TRPA1 channels on Schwann cells could offer a novel therapeutic approach for managing fibromyalgia-related behaviours.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Bruna Luiza Kuhn
- Heterocycle Chemistry Nucleus (NUQUIMHE), Federal University of Santa Maria, Santa Maria, Brazil
| | - Clarissa Piccinin Frizzo
- Heterocycle Chemistry Nucleus (NUQUIMHE), Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Rafaela Mano Guimarães
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Thiago Mattar Cunha
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cássia Regina Silva
- Department of Genetic and Biochemistry, University of Uberlândia, Uberlândia, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
7
|
Xu R, Pan Y, Zheng K, Chen M, Yin C, Hu Q, Wang J, Yu Q, Li P, Tai Y, Fang J, Liu B, Fang J, Tian G, Liu B. IL-33/ST2 induces macrophage-dependent ROS production and TRPA1 activation that mediate pain-like responses by skin incision in mice. Theranostics 2024; 14:5281-5302. [PMID: 39267790 PMCID: PMC11388077 DOI: 10.7150/thno.97856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background: Insufficiently managed incisional (INC) pain severely affects patients' life quality and rehabilitation after a major operation. However, mechanisms underlying INC pain still remain poorly understood. Methods: A mouse model of INC pain was established by skin plus deep muscle incision. Biochemistry assay, in vivo reactive oxygen species (ROS) imaging, Ca2+ imaging combined with retrograde labelling, neuron tracing and nocifensive behavior test, etc. were utilized for mechanism investigation. Results: We found pro-nociceptive cytokine interleukin -33 (IL-33) ranked among top up-regulated cytokines in incised tissues of INC pain model mice. IL-33 was predominantly expressed in keratinocytes around the incisional area. Neutralization of IL-33 or its receptor suppression of tumorigenicity 2 protein (ST2) or genetic deletion of St2 gene (St2 -/-) remarkably ameliorated mechanical allodynia and improved gait impairments of model mice. IL-33 contributes to INC pain by recruiting macrophages, which subsequently release ROS in incised tissues via ST2-dependent mechanism. Transfer of excessive macrophages enhanced oxidative injury and reproduced mechanical allodynia in St2 -/- mice upon tissue incision. Overproduced ROS subsequently activated functionally up-regulated transient receptor potential ankyrin subtype-1 (TRPA1) channel innervating the incisional site to produce mechanical allodynia. Neither deleting St2 nor attenuating ROS affected wound healing of model mice. Conclusions: Our work uncovered a previously unrecognized contribution of IL-33/ST2 signaling in mediating mechanical allodynia and gait impairment of a mouse model of INC pain. Targeting IL-33/ST2 signaling could be a novel therapeutic approach for INC pain management.
Collapse
Affiliation(s)
- Ruoyao Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushuang Pan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaige Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Muyan Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Wang
- Department of Rehabilitation in Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peiyi Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guihua Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Liu Q, Han J, Zhang X. Peripheral and central pathogenesis of postherpetic neuralgia. Skin Res Technol 2024; 30:e13867. [PMID: 39101621 PMCID: PMC11299165 DOI: 10.1111/srt.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is a classic chronic condition with multiple signs of peripheral and central neuropathy. Unfortunately, the pathogenesis of PHN is not well defined, limiting clinical treatment and disease management. OBJECTIVE To describe the peripheral and central pathological axes of PHN, including peripheral nerve injury, inflammation induction, central nervous system sensitization, and brain functional and structural network activity. METHODS A bibliographic survey was carried out, selecting relevant articles that evaluated the characterization of the pathogenesis of PHN, including peripheral and central pathological axes. RESULTS Currently, due to the complexity of the pathophysiological mechanisms of PHN and the incomplete understanding of the exact mechanism of neuralgia. CONCLUSION It is essential to conduct in-depth research to clarify the origins of PHN pathogenesis and explore effective and comprehensive therapies for PHN.
Collapse
Affiliation(s)
- Qiuping Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
9
|
Jing B, Chen ZN, Si WM, Zhao JJ, Zhao GP, Zhang D. (+)-Catechin Alleviates CCI-Induced Neuropathic Pain in Rats by Modulating the IL34/CSFIR Axis and Attenuating the Schwann Cell-Macrophage Cascade Response in the DRG. Mol Neurobiol 2024; 61:5027-5041. [PMID: 38159197 DOI: 10.1007/s12035-023-03876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The aim of this study was to investigate the potential therapeutic applications of (+)-catechin in the treatment of neuropathic pain. In vivo study, 32 SD rats were randomly divided into four groups: sham group, chronic constriction injury (CCI) group, CCI + ibuprofen group and CCI+ (+)-catechin group. They were subjected to behavioural tests, ELISA, immunohistochemistry and Western blotting. The mechanisms involved were investigated using specific inhibitors in cell experiments. Results of in vivo experiments showed that (+)-catechin could reduce the cold sensitivity pain in a rat model of CCI; ELISA and immunohistochemistry results showed that (+)-catechin could decrease the levels of IL-8, IL-6, TNF-α, CCL2 and CCL5 in serum and the expression levels of nNOS, COX2, IL6, TNF-α, IBA-1 and CSF1R in DRG of CCI rats. Finally, western blot confirmed that (+)-catechin could diminish the levels of IL-34/CSF1R/JAK2/STAT3 signalling pathway in DRG of CCI rats. In vitro studies showed that (+)-catechin reduced IL-34 secretion in LPS-induced RSC96 cells. Meanwhile, (+)-catechin administration in LPS-induced Schwann cell-conditioned medium (L-CM) significantly inhibited the proliferation and migration of RAW264.7 cells; in addition, L-CM+(+)-catechin reduced the activation of the CSF1R/JAK2/STAT3 signalling pathway. (+)-Catechin attenuated the Schwann cell-macrophage cascade response in the DRG by modulating the IL34/CSFIR axis and inhibiting activation of the JAK2/STAT3 pathway, thereby attenuating CCI-induced neuropathic pain in rats.
Collapse
Affiliation(s)
- Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-Ni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wai-Mei Si
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Ji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Li F, Gallego J, Tirko NN, Greaser J, Bashe D, Patel R, Shaker E, Van Valkenburg GE, Alsubhi AS, Wellman S, Singh V, Padilla CG, Gheres KW, Broussard JI, Bagwell R, Mulvihill M, Kozai TDY. Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat Commun 2024; 15:5512. [PMID: 38951525 PMCID: PMC11217463 DOI: 10.1038/s41467-024-49709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Microglia are important players in surveillance and repair of the brain. Implanting an electrode into the cortex activates microglia, produces an inflammatory cascade, triggers the foreign body response, and opens the blood-brain barrier. These changes can impede intracortical brain-computer interfaces performance. Using two-photon imaging of implanted microelectrodes, we test the hypothesis that low-intensity pulsed ultrasound stimulation can reduce microglia-mediated neuroinflammation following the implantation of microelectrodes. In the first week of treatment, we found that low-intensity pulsed ultrasound stimulation increased microglia migration speed by 128%, enhanced microglia expansion area by 109%, and a reduction in microglial activation by 17%, indicating improved tissue healing and surveillance. Microglial coverage of the microelectrode was reduced by 50% and astrocytic scarring by 36% resulting in an increase in recording performance at chronic time. The data indicate that low-intensity pulsed ultrasound stimulation helps reduce the foreign body response around chronic intracortical microelectrodes.
Collapse
Affiliation(s)
- Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- Computational Modeling and Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jazlyn Gallego
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Natasha N Tirko
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | | | - Derek Bashe
- Washington University in St. Louis, St. Louis, MO, USA
| | - Rudra Patel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Shaker
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Vanshika Singh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camila Garcia Padilla
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | | | | | | | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Zhu X, Jia Z, Zhou Y, Wu J, Cao M, Hu C, Yu L, Chen Z. Current advances in the pain treatment and mechanisms of Traditional Chinese Medicine. Phytother Res 2024. [PMID: 39031847 DOI: 10.1002/ptr.8259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 07/22/2024]
Abstract
Traditional Chinese Medicine (TCM), as a unique medical model in China, has been shown to be effective in the treatment of many diseases. It has been proven that TCM can increase the pain threshold, increase the level of endorphins and enkephalins in the body, and reduce the body's response to adverse stimuli. In recent years, TCM scholars have made valuable explorations in the field of pain treatment, using methods such as internal and external application of TCM and acupuncture to carry out research on pain treatment and have achieved more satisfactory results. TCM treats pain in a variety of ways, and with the discovery of a variety of potential bioactive substances for pain treatment. With the new progress in the research of other TCM treatment methods for pain, TCM will have greater potential in the clinical application of pain.
Collapse
Affiliation(s)
- Xiaoli Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuolin Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Stassart RM, Gomez-Sanchez JA, Lloyd AC. Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies. Cold Spring Harb Perspect Biol 2024; 16:a041363. [PMID: 38199866 PMCID: PMC11146315 DOI: 10.1101/cshperspect.a041363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.
Collapse
Affiliation(s)
- Ruth M Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig 04103, Germany
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
- Instituto de Neurociencias CSIC-UMH, Sant Joan de Alicante 03550, Spain
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Gao N, Li M, Wang W, Liu Z, Guo Y. Visual analysis of global research on the transient receptor potential ankyrin 1 channel: A literature review from 2002 to 2022. Heliyon 2024; 10:e31001. [PMID: 38770319 PMCID: PMC11103542 DOI: 10.1016/j.heliyon.2024.e31001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Background and aims The transient receptor potential ankyrin 1 (TRPA1) channel has become a focus in pain research. However, there are no bibliometric studies that systematically analyze the existing research in this area. This study aimed to provide a systematic review of the existing literature on TRPA1 using a bibliometric analysis. Methods Published literature in the field of TRPA1 was collected from the Web of Science Core Collection database. Quantitative and qualitative analyses of publications, countries, institutions, authors, journals, and other entries were conducted using Excel, VOSview, and Citespace software to provide insight into global research hotspots and trends in the TRPA1 field. Results This study included 1189 scientific products published in 398 journals from 52 countries. The United States of America (n = 367) had the most publications, ahead of Japan (n = 212) and China (n = 199). The University of Florence (n = 55) was the most productive institution and Pierangelo Geppetti (n = 46) was the most productive author. PLoS One (n = 40) published the most articles on TRPA1. Pain, cold, inflammation, covalent modification, hyperalgesia, and oxidative stress were the most common keywords used in the studies. Conclusion This study provides the first bibliometric analysis of TRPA1 publications. The physiological functions of TRPA1, TRPA1, and neuropathic pain, TRPA1 as a therapeutic target, and agonists of TRPA1 are trending in TRPA1 research. Neuropathic pain, apoptosis, and sensitization could be focus areas of future research. This study provides important insight in the field of TRPA1 research.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
14
|
Szabó K, Makkai G, Konkoly J, Kormos V, Gaszner B, Berki T, Pintér E. TRPA1 Covalent Ligand JT010 Modifies T Lymphocyte Activation. Biomolecules 2024; 14:632. [PMID: 38927036 PMCID: PMC11202300 DOI: 10.3390/biom14060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We reported earlier a detectable, but orders-of-magnitude-lower level of Trpa1 mRNA in monocytes and lymphocytes than in sensory neurons by qRT-PCR analyses of cells from lymphoid organs of mice. Our present goals were to (a) further elucidate the expression of Trpa1 mRNA in immune cells by RNAscope in situ hybridization (ISH) and (b) test the role of TRPA1 in lymphocyte activation. RNAscope ISH confirmed that Trpa1 transcripts were detectable in CD14+ and CD4+ cells from the peritoneal cavity of mice. A selective TRPA1 agonist JT010 elevated Ca2+ levels in these cells only at high concentrations. However, a concentration-dependent inhibitory effect of JT010 was observed on T-cell receptor (TcR)-induced Ca2+ signals in CD4+ T lymphocytes, while JT010 neither modified B cell activation nor ionomycin-stimulated Ca2+ level. Based on our present and past findings, TRPA1 activation negatively modulates T lymphocyte activation, but it does not appear to be a key regulator of TcR-stimulated calcium signaling.
Collapse
Affiliation(s)
- Katalin Szabó
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Géza Makkai
- Nano-Bio-Imaging Core Facility, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - János Konkoly
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Viktória Kormos
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Balázs Gaszner
- Research Group for Mood Disorders, Department of Anatomy, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, University of Pécs Clinical Center, H-7624 Pécs, Hungary
| | - Erika Pintér
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| |
Collapse
|
15
|
Ye Y, Cheng H, Wang Y, Sun Y, Zhang LD, Tang J. Macrophage: A key player in neuropathic pain. Int Rev Immunol 2024; 43:326-339. [PMID: 38661566 DOI: 10.1080/08830185.2024.2344170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Research on the relationship between macrophages and neuropathic pain has flourished in the past two decades. It has long been believed that macrophages are strong immune effector cells that play well-established roles in tissue homeostasis and lesions, such as promoting the initiation and progression of tissue injury and improving wound healing and tissue remodeling in a variety of pathogenesis-related diseases. They are also heterogeneous and versatile cells that can switch phenotypically/functionally in response to the micro-environment signals. Apart from microglia (resident macrophages of both the spinal cord and brain), which are required for the neuropathic pain processing of the CNS, neuropathic pain signals in PNS are influenced by the interaction of tissue-resident macrophages and BM infiltrating macrophages with primary afferent neurons. And the current review looks at new evidence that suggests sexual dimorphism in neuropathic pain are caused by variations in the immune system, notably macrophages, rather than the neurological system.
Collapse
Affiliation(s)
- Ying Ye
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hao Cheng
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Yan Wang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Sun
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Li-Dong Zhang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jun Tang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
16
|
Koivisto AP, Voets T, Iadarola MJ, Szallasi A. Targeting TRP channels for pain relief: A review of current evidence from bench to bedside. Curr Opin Pharmacol 2024; 75:102447. [PMID: 38471384 DOI: 10.1016/j.coph.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.
Collapse
Affiliation(s)
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
André-Lévigne D, Pignel R, Boet S, Jaquet V, Kalbermatten DF, Madduri S. Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia. Int J Mol Sci 2024; 25:2030. [PMID: 38396709 PMCID: PMC10888612 DOI: 10.3390/ijms25042030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Oxygen is compulsory for mitochondrial function and energy supply, but it has numerous more nuanced roles. The different roles of oxygen in peripheral nerve regeneration range from energy supply, inflammation, phagocytosis, and oxidative cell destruction in the context of reperfusion injury to crucial redox signaling cascades that are necessary for effective axonal outgrowth. A fine balance between reactive oxygen species production and antioxidant activity draws the line between physiological and pathological nerve regeneration. There is compelling evidence that redox signaling mediated by the Nox family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases plays an important role in peripheral nerve regeneration. Further research is needed to better characterize the role of Nox in physiological and pathological circumstances, but the available data suggest that the modulation of Nox activity fosters great therapeutic potential. One of the promising approaches to enhance nerve regeneration by modulating the redox environment is hyperbaric oxygen therapy. In this review, we highlight the influence of various oxygenation states, i.e., hypoxia, physoxia, and hyperoxia, on peripheral nerve repair and regeneration. We summarize the currently available data and knowledge on the effectiveness of using hyperbaric oxygen therapy to treat nerve injuries and discuss future directions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Rodrigue Pignel
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sylvain Boet
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Vincent Jaquet
- Department of Cell Physiology and Metabolism, University of Geneva, 1205 Geneva, Switzerland
- READS Unit, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Daniel F. Kalbermatten
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| | - Srinivas Madduri
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
18
|
Wang S, Jiang C, Cao K, Li R, Gao Z, Wang Y. HK2 in microglia and macrophages contribute to the development of neuropathic pain. Glia 2024; 72:396-410. [PMID: 37909251 DOI: 10.1002/glia.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Neuropathic pain is a complex pain condition accompanied by prominent neuroinflammation involving activation of both central and peripheral immune cells. Metabolic switch to glycolysis is an important feature of activated immune cells. Hexokinase 2 (HK2), a key glycolytic enzyme enriched in microglia, has recently been shown important in regulating microglial functions. Whether and how HK2 is involved in neuropathic pain-related neuroinflammation remains unknown. Using a HK2-tdTomato reporter line, we found that HK2 was prominently elevated in spinal microglia. Pharmacological inhibition of HK2 effectively alleviated nerve injury-induced acute mechanical pain. However, selective ablation of Hk2 in microglia reduced microgliosis in the spinal dorsal horn (SDH) with little analgesic effects. Further analyses showed that nerve injury also significantly induced HK2 expression in dorsal root ganglion (DRG) macrophages. Deletion of Hk2 in myeloid cells, including both DRG macrophages and spinal microglia, led to the alleviation of mechanical pain during the first week after injury, along with attenuated microgliosis in the ipsilateral SDH, macrophage proliferation in DRGs, and suppressed inflammatory responses in DRGs. These data suggest that HK2 plays an important role in regulating neuropathic pain-related immune cell responses at acute phase and that HK2 contributes to neuropathic pain onset primarily through peripheral monocytes and DRG macrophages rather than spinal microglia.
Collapse
Affiliation(s)
- Siyuan Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Jiang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelei Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Run Li
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Shan F, Zhang N, Yao X, Li Y, Wang Z, Zhang C, Wang Y. Mechanosensitive channel of large conductance enhances the mechanical stretching-induced upregulation of glycolysis and oxidative metabolism in Schwann cells. Cell Commun Signal 2024; 22:93. [PMID: 38302971 PMCID: PMC10835878 DOI: 10.1186/s12964-024-01497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Physical exercise directly stretching the peripheral nerve promotes nerve regeneration; however, its action mechanism remains elusive. Our present study aimed to investigate the effects of mechanosensitive channel of large conductance (MscL) activated by mechanical stretching on the cultured Schwann cells (SCs) and explore the possible mechanism. METHODS Primary SCs from neonatal mice at 3-5 days of age were derived and transfected with the lentivirus vector expressing a mutant version of MscL, MscL-G22S. We first detected the cell viability and calcium ion (Ca2+) influx in the MscL-G22S-expressing SCs with low-intensity mechanical stretching and the controls. Proteomic and energy metabolomics analyses were performed to investigate the comprehensive effects of MscL-G22S activation on SCs. Measurement of glycolysis- and oxidative phosphorylation-related molecules and ATP production were respectively performed to further validate the effects of MscL-G22S activation on SCs. Finally, the roles of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in the mechanism of energy metabolism modulation of SCs by MscL-G22S activation was investigated. RESULTS Mechanical stretching-induced MscL-G22S activation significantly increased the cell viability and Ca2+ influx into the SCs. Both the proteomic and targeted energy metabolomics analysis indicated the upregulation of energy metabolism as the main action mechanism of MscL-G22S-activation on SCs. MscL-G22S-activated SCs showed significant upregulation of glycolysis and oxidative phosphorylation when SCs with stretching alone had only mild upregulation of energy metabolism than those without stimuli. MscL-G22S activation caused significant phosphorylation of the PI3K/AKT/mTOR signaling pathway and upregulation of HIF-1α/c-Myc. Inhibition of PI3K abolished the MscL-G22S activation-induced upregulation of HIF-1α/c-Myc signaling in SCs and reduced the levels of glycolysis- and oxidative phosphorylation-related substrates and mitochondrial activity. CONCLUSION Mechanical stretching activates MscL-G22S to significantly promote the energy metabolism of SCs and the production of energic substrates, which may be applied to enhance nerve regeneration via the glia-axonal metabolic coupling.
Collapse
Affiliation(s)
- Fangzhen Shan
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Nannan Zhang
- Department of Respiratory and Critical Care, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Xiaoying Yao
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Yi Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining City, Shandong Province, 272029, China
| | - Zihao Wang
- Cheeloo Medical College, Shandong University, Jinan, Shandong Province, China
| | - Chuanji Zhang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuzhong Wang
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining City, Shandong Province, 272029, China.
| |
Collapse
|
20
|
Raut NG, Maile LA, Oswalt LM, Mitxelena I, Adlakha A, Sprague KL, Rupert AR, Bokros L, Hofmann MC, Patritti-Cram J, Rizvi TA, Queme LF, Choi K, Ratner N, Jankowski MP. Schwann cells modulate nociception in neurofibromatosis 1. JCI Insight 2024; 9:e171275. [PMID: 38258905 PMCID: PMC10906222 DOI: 10.1172/jci.insight.171275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line-derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.
Collapse
Affiliation(s)
- Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura A. Maile
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Leila M. Oswalt
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Irati Mitxelena
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aaditya Adlakha
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kourtney L. Sprague
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley R. Rupert
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lane Bokros
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Megan C. Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jennifer Patritti-Cram
- Graduate Program in Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Cancer Biology and Experimental Hematology and
| | - Tilat A. Rizvi
- Division of Cancer Biology and Experimental Hematology and
| | - Luis F. Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kwangmin Choi
- Division of Cancer Biology and Experimental Hematology and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Cancer Biology and Experimental Hematology and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Vlachova V, Barvik I, Zimova L. Human Transient Receptor Potential Ankyrin 1 Channel: Structure, Function, and Physiology. Subcell Biochem 2024; 104:207-244. [PMID: 38963489 DOI: 10.1007/978-3-031-58843-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.
Collapse
Affiliation(s)
- Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
22
|
Cortez I, Gaffney CM, Crelli CV, Lee E, Nichols JM, Pham HV, Mehdi S, Janjic JM, Shepherd AJ. Sustained pain and macrophage infiltration in a mouse muscle contusion model. Muscle Nerve 2024; 69:103-114. [PMID: 37929655 DOI: 10.1002/mus.28001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION/AIMS Prior studies have emphasized the role of inflammation in the response to injury and muscle regeneration, but little emphasis has been placed on characterizing the relationship between innate inflammation, pain, and functional impairment. The aim of our study was to determine the contribution of innate immunity to prolonged pain following muscle contusion. METHODS We developed a closed-impact mouse model of muscle contusion and a macrophage-targeted near-infrared fluorescent nanoemulsion. Closed-impact contusions were delivered to the lower left limb. Pain sensitivity, gait dysfunction, and inflammation were assessed in the days and weeks post-contusion. Macrophage accumulation was imaged in vivo by injecting i.v. near-infrared nanoemulsion. RESULTS Despite hindpaw hypersensitivity persisting for several weeks, disruptions to gait and grip strength typically resolved within 10 days of injury. Using non-invasive imaging and immunohistochemistry, we show that macrophage density peaks in and around the affected muscle 3 day post-injury and quickly subsides. However, macrophage density in the ipsilateral sciatic nerve and dorsal root ganglia (DRG) increases more gradually and persists for at least 14 days. DISCUSSION In this study, we demonstrate pain sensitivity is influenced by the degree of lower muscle contusion, without significant changes to gait and grip strength. This may be due to modulation of pain signaling by macrophage proliferation in the sciatic nerve, upstream from the site of injury. Our work suggests chronic pain developing from muscle contusion is driven by macrophage-derived neuroinflammation in the peripheral nervous system.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caitlyn M Gaffney
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caitlin V Crelli
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Eric Lee
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James M Nichols
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hoang Vu Pham
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Syed Mehdi
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Xu W, Liu J, Zhang J, Lu J, Guo J. Tumor microenvironment crosstalk between tumors and the nervous system in pancreatic cancer: Molecular mechanisms and clinical perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189032. [PMID: 38036106 DOI: 10.1016/j.bbcan.2023.189032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits the highest incidence of perineural invasion among all solid tumors. The intricate interplay between tumors and the nervous system plays an important role in PDAC tumorigenesis, progression, recurrence, and metastasis. Various clinical symptoms of PDAC, including anorexia and cancer pain, have been linked to aberrant neural activity, while the presence of perineural invasion is a significant prognostic indicator. The use of conventional neuroactive drugs and neurosurgical interventions for PDAC patients is on the rise. An in-depth exploration of tumor-nervous system crosstalk has revealed novel therapeutic strategies for mitigating PDAC progression and effectively relieving symptoms. In this comprehensive review, we elucidate the regulatory functions of tumor-nervous system crosstalk, provide a succinct overview of the relationship between tumor-nervous system dialogue and clinical symptomatology, and deliberate the current research progress and forthcoming avenues of neural therapy for PDAC.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianlu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Jun Lu
- Department of General Surgery, Peking University Third Hospital, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
24
|
Cheng PF, Yuan-He, Ge MM, Ye DW, Chen JP, Wang JX. Targeting the Main Sources of Reactive Oxygen Species Production: Possible Therapeutic Implications in Chronic Pain. Curr Neuropharmacol 2024; 22:1960-1985. [PMID: 37921169 PMCID: PMC11333790 DOI: 10.2174/1570159x22999231024140544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 11/04/2023] Open
Abstract
Humans have long been combating chronic pain. In clinical practice, opioids are firstchoice analgesics, but long-term use of these drugs can lead to serious adverse reactions. Finding new, safe and effective pain relievers that are useful treatments for chronic pain is an urgent medical need. Based on accumulating evidence from numerous studies, excess reactive oxygen species (ROS) contribute to the development and maintenance of chronic pain. Some antioxidants are potentially beneficial analgesics in the clinic, but ROS-dependent pathways are completely inhibited only by scavenging ROS directly targeting cellular or subcellular sites. Unfortunately, current antioxidant treatments do not achieve this effect. Furthermore, some antioxidants interfere with physiological redox signaling pathways and fail to reverse oxidative damage. Therefore, the key upstream processes and mechanisms of ROS production that lead to chronic pain in vivo must be identified to discover potential therapeutic targets related to the pathways that control ROS production in vivo. In this review, we summarize the sites and pathways involved in analgesia based on the three main mechanisms by which ROS are generated in vivo, discuss the preclinical evidence for the therapeutic potential of targeting these pathways in chronic pain, note the shortcomings of current research and highlight possible future research directions to provide new targets and evidence for the development of clinical analgesics.
Collapse
Affiliation(s)
- Peng-Fei Cheng
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuan-He
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Ping Chen
- Department of Pain Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jin-Xi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
25
|
Patil MJ, Kim SH, Bahia PK, Nair SS, Darcey TS, Fiallo J, Zhu XX, Frisina RD, Hadley SH, Taylor-Clark TE. A Novel Flp Reporter Mouse Shows That TRPA1 Expression Is Largely Limited to Sensory Neuron Subsets. eNeuro 2023; 10:ENEURO.0350-23.2023. [PMID: 37989590 PMCID: PMC10698635 DOI: 10.1523/eneuro.0350-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal cation channel that is activated by electrophilic irritants, oxidative stress, cold temperature, and GPCR signaling. TRPA1 expression has been primarily identified in subsets of nociceptive sensory afferents and is considered a target for future analgesics. Nevertheless, TRPA1 has been implicated in other cell types including keratinocytes, epithelium, enterochromaffin cells, endothelium, astrocytes, and CNS neurons. Here, we developed a knock-in mouse that expresses the recombinase FlpO in TRPA1-expressing cells. We crossed the TRPA1Flp mouse with the R26ai65f mouse that expresses tdTomato in a Flp-sensitive manner. We found tdTomato expression correlated well with TRPA1 mRNA expression and sensitivity to TRPA1 agonists in subsets of TRPV1 (transient receptor potential vanilloid receptor type 1)-expressing neurons in the vagal ganglia and dorsal root ganglia (DRGs), although tdTomato expression efficiency was limited in DRG. We observed tdTomato-expressing afferent fibers centrally (in the medulla and spinal cord) and peripherally in the esophagus, gut, airways, bladder, and skin. Furthermore, chemogenetic activation of TRPA1-expressing nerves in the paw evoked flinching behavior. tdTomato expression was very limited in other cell types. We found tdTomato in subepithelial cells in the gut mucosa but not in enterochromaffin cells. tdTomato was also observed in supporting cells within the cochlea, but not in hair cells. Lastly, tdTomato was occasionally observed in neurons in the somatomotor cortex and the piriform area, but not in astrocytes or vascular endothelium. Thus, this novel mouse strain may be useful for mapping and manipulating TRPA1-expressing cells and deciphering the role of TRPA1 in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Mayur J Patil
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Seol-Hee Kim
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Parmvir K Bahia
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Sanjay S Nair
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Teresa S Darcey
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Jailene Fiallo
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Xiao Xia Zhu
- Medical Engineering, College of Engineering, University of South Florida, Tampa, Florida 33620
| | - Robert D Frisina
- Medical Engineering, College of Engineering, University of South Florida, Tampa, Florida 33620
| | - Stephen H Hadley
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| |
Collapse
|
26
|
Li J, Zhang H, Du Q, Gu J, Wu J, Liu Q, Li Z, Zhang T, Xu J, Xie R. Research Progress on TRPA1 in Diseases. J Membr Biol 2023; 256:301-316. [PMID: 37039840 PMCID: PMC10667463 DOI: 10.1007/s00232-023-00277-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.
Collapse
Affiliation(s)
- Jiajing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hongfei Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Junyu Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jiangbo Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
27
|
Kudsi SQ, de David Antoniazzi CT, Camponogara C, Meira GM, de Amorim Ferreira M, da Silva AM, Dalenogare DP, Zaccaron R, Dos Santos Stein C, Silveira PCL, Moresco RN, Oliveira SM, Ferreira J, Trevisan G. Topical application of a TRPA1 antagonist reduced nociception and inflammation in a model of traumatic muscle injury in rats. Inflammopharmacology 2023; 31:3153-3166. [PMID: 37752305 DOI: 10.1007/s10787-023-01337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Musculoskeletal pain is a widely experienced public healthcare issue, especially after traumatic muscle injury. Besides, it is a common cause of disability, but this pain remains poorly managed. However, the pathophysiology of traumatic muscle injury-associated pain and inflammation has not been fully elucidated. In this regard, the transient receptor potential ankyrin 1 (TRPA1) has been studied in inflammatory and painful conditions. Thus, this study aimed to evaluate the antinociceptive and anti-inflammatory effect of the topical application of a TRPA1 antagonist in a model of traumatic muscle injury in rats. The mechanical trauma model was developed by a single blunt trauma impact on the right gastrocnemius muscle of Wistar male rats (250-350 g). The animals were divided into four groups (Sham/Vehicle; Sham/HC-030031 0.05%; Injury/Vehicle, and Injury/HC-030031 0.05%) and topically treated with a Lanette® N cream base containing a TRPA1 antagonist (HC-030031, 0.05%; 200 mg/muscle) or vehicle (Lanette® N cream base; 200 mg/muscle), which was applied at 2, 6, 12, 24, and 46 h after muscle injury. Furthermore, we evaluated the contribution of the TRPA1 channel on nociceptive, inflammatory, and oxidative parameters. The topical application of TRPA1 antagonist reduced biomarkers of muscle injury (lactate/glucose ratio), spontaneous nociception (rat grimace scale), inflammatory (inflammatory cell infiltration, cytokine levels, myeloperoxidase, and N-acetyl-β-D-glucosaminidase activities) and oxidative (nitrite levels and dichlorofluorescein fluorescence) parameters, and mRNA Trpa1 levels in the muscle tissue. Thus, these results demonstrate that TRPA1 may be a promising anti-inflammatory and antinociceptive target in treating muscle pain after traumatic muscle injury.
Collapse
Affiliation(s)
- Sabrina Qader Kudsi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Caren Tatiane de David Antoniazzi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Graziela Moro Meira
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Marcella de Amorim Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88037-000, Brazil
| | - Ana Merian da Silva
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88037-000, Brazil
| | - Diéssica Padilha Dalenogare
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Rubya Zaccaron
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Carolina Dos Santos Stein
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Paulo Cesar Lock Silveira
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88037-000, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
28
|
Shepherd AJ, Rice AS, Smith MT. Angiotensin II type 2 receptor signalling as a pain target: Bench, bedside and back-translation. Curr Opin Pharmacol 2023; 73:102415. [PMID: 38041933 DOI: 10.1016/j.coph.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
Translating promising preclinical pain relief data for novel molecules from drug discovery to positive clinical trial outcomes is challenging. The angiotensin II type 2 (AT2) receptor is a clinically-validated target based upon positive proof-of-concept clinical trial data in patients with post-herpetic neuralgia. This trial was conducted because AT2 receptor antagonists evoked pain relief in rodent models of neuropathic pain. EMA401 was selected as the drug candidate based upon its suitable preclinical toxicity and safety profile and good pharmacokinetics. Herein, we provide an overview of the discovery, preclinical and clinical development of EMA401, for the alleviation of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Sc Rice
- Pain Research, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Maree T Smith
- School of Biomedical Sciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland, Australia.
| |
Collapse
|
29
|
Dehdashtian A, Timek JH, Svientek SR, Risch MJ, Bratley JV, Riegger AE, Kung TA, Cederna PS, Kemp SWP. Sexually Dimorphic Pattern of Pain Mitigation Following Prophylactic Regenerative Peripheral Nerve Interface (RPNI) in a Rat Neuroma Model. Neurosurgery 2023; 93:1192-1201. [PMID: 37227138 DOI: 10.1227/neu.0000000000002548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Treating neuroma pain is a clinical challenge. Identification of sex-specific nociceptive pathways allows a more individualized pain management. The Regenerative Peripheral Nerve Interface (RPNI) consists of a neurotized autologous free muscle using a severed peripheral nerve to provide physiological targets for the regenerating axons. OBJECTIVE To evaluate prophylactic RPNI to prevent neuroma pain in male and female rats. METHODS F344 rats of each sex were assigned to neuroma, prophylactic RPNI, or sham groups. Neuromas and RPNIs were created in both male and female rats. Weekly pain assessments including neuroma site pain and mechanical, cold, and thermal allodynia were performed for 8 weeks. Immunohistochemistry was used to evaluate macrophage infiltration and microglial expansion in the corresponding dorsal root ganglia and spinal cord segments. RESULTS Prophylactic RPNI prevented neuroma pain in both sexes; however, female rats displayed delayed pain attenuation when compared with males. Cold allodynia and thermal allodynia were attenuated exclusively in males. Macrophage infiltration was mitigated in males, whereas females showed a reduced number of spinal cord microglia. CONCLUSION Prophylactic RPNI can prevent neuroma site pain in both sexes. However, attenuation of both cold allodynia and thermal allodynia occurred in males exclusively, potentially because of their sexually dimorphic effect on pathological changes of the central nervous system.
Collapse
Affiliation(s)
- Amir Dehdashtian
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Jagienka H Timek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Shelby R Svientek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Mary Jane Risch
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Jared V Bratley
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Anna E Riegger
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Theodore A Kung
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Paul S Cederna
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor , Michigan , USA
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor , Michigan , USA
| |
Collapse
|
30
|
Gheorghe RO, Grosu AV, Magercu M, Ghenghea MS, Zbarcea CE, Tanase A, Negres S, Filippi A, Chiritoiu G, Gherghiceanu M, Dinescu S, Gaina G, Sapunar D, Ristoiu V. Switching Rat Resident Macrophages from M1 to M2 Phenotype by Iba1 Silencing Has Analgesic Effects in SNL-Induced Neuropathic Pain. Int J Mol Sci 2023; 24:15831. [PMID: 37958812 PMCID: PMC10648812 DOI: 10.3390/ijms242115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.
Collapse
Affiliation(s)
- Roxana-Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Andreea Violeta Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Melania Magercu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Mihail-Sebastian Ghenghea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Cristina Elena Zbarcea
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandra Tanase
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Simona Negres
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandru Filippi
- Department of Biophysics, University of Medicine and Pharmacy “Carol Davila”, 8 Eroilor Sanitari Blvd., 050474 Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, 2996 Splaiul Independentei 296, District 6, 060031 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babeș National Institute of Pathology Bucharest, 99-101 Splaiul Independentei, District 5, 050096 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Gisela Gaina
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Damir Sapunar
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| |
Collapse
|
31
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
32
|
Itson-Zoske B, Gani U, Mikesell A, Qiu C, Fan F, Stucky C, Hogan Q, Shin SM, Yu H. Selective RNAi-silencing of Schwann cell Piezo1 alleviates mechanical hypersensitization following peripheral nerve injury. RESEARCH SQUARE 2023:rs.3.rs-3405016. [PMID: 37886453 PMCID: PMC10602140 DOI: 10.21203/rs.3.rs-3405016/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We previously reported functional Piezo1 expression in Schwann cells of the peripheral nervous system. This study is designed to further investigate the role of Schwann cell Piezo1 in peripheral nociception. We first developed an adeno-associated viral (AAV) vector that has primary Schwann cell tropism after delivery into the sciatic nerve. This was achieved by packing AAV-GFP transcribed by a hybrid CMV enhancer/chicken β-actin (CBA) promoter using a capsid AAVolig001 to generate AAVolig001-CBA-GFP. Five weeks after intrasciatic injection of AAVolig001-CBA-GFP in naïve rats, GFP expression was detected selectively in the Schwann cells of the sciatic nerve. A short hairpin RNA against rat Piezo1 (PZ1shRNA) was designed that showed efficient physical and functional knockdown of Piezo1 in NG108 neuronal cells. A dual promoter and bidirectional AAV encoding a U6-driven PZ1shRNA and CBA-transcribed GFP was packed with capsid olig001 (AAVolig001-PZ1shRNA), and AAV was injected into unilateral sciatic nerve immediately after induction of common peroneal nerve injury (CPNI). Results showed that the development of mechanical hypersensitivity in the CPNI rats injected with AAVolig001-PZ1shRNA was mitigated, compared to rats subjected with AAVolig001-scramble. Selective in vivo Schwann cell transduction and functional block of Piezo1 channel activity of primary cultured Schwann cells was confirmed. Together, our data demonstrate that 1) AAVolig001 has unique and selective primary tropism to Schwann cells via intrasciatic delivery and 2) Schwann cell Piezo1 contributes to mechanical hypersensitivity following nerve injury.
Collapse
|
33
|
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, Luo HL, Zhang Q. Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol 2023; 956:175955. [PMID: 37541365 DOI: 10.1016/j.ejphar.2023.175955] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Li-Guo Ming
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jian-Wen Yu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Hong-Liang Luo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
34
|
Gunduz O, Yurtgezen ZG, Topuz RD, Sapmaz-Metin M, Kaya O, Orhan AE, Ulugol A. The therapeutic effects of transferring remote ischemic preconditioning serum in rats with neuropathic pain symptoms. Heliyon 2023; 9:e20954. [PMID: 37867836 PMCID: PMC10585389 DOI: 10.1016/j.heliyon.2023.e20954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Background and objectives Neuropathic pain is defined as pain caused by damage to the nerve as a result of a lesion or disease. It has been shown that ischemic preconditioning exerts a protective role in various tissue injuries; however, the effect of transplantation of remote ischemic preconditioning serum (RIPCs) on neuropathic pain symptoms has not been studied. The aim of this project is to investigate the effect of RIPCs transfusion by different routes of administration on neuropathic pain symptoms. Our secondary aim was to demonstrate the role of Schwann cells in the regeneration of sciatic nerve injury and to evaluate the change in the number of glial cells in the spinal cord dorsal horn. Methods The sciatic nerve partial ligation method was used to induce neuropathic pain. Changes in neuropathic pain symptoms were assessed by measuring thermal hyperalgesia and mechanical allodynia. To determine the possible therapeutic site, alterations in the number of spinal cord lumbar posterior horn microglia and astrocytes were evaluated by ionized calcium-binding adapter molecule 1 (iba1) and glial fibrillary acidic protein (GFAP) immunostaining. Myelin basic protein immunohistochemistry was also used to assess Schwann cell immunoreactivity in the sciatic nerve. Results In rats that underwent partial sciatic nerve ligation, neuropathic pain symptoms developed on average on day 12 and persisted up to day 21 (p < 0.0001). RIPCs administered intravenously for five days reduced thermal hyperalgesia more than intraperitoneal and subcutaneous administration (p < 0.05). Both central glial cells appear to play a role in the effect of RIPCs. RIPCs treatment increases Schwann cell remyelination. Conclusions Our results showed that intravenously administered RIPCs remarkably improved the neuropathic pain symptoms, thermal hyperalgesia and mechanical allodynia. Further studies are needed to evaluate the role of RIPCs transfusion on glial cells.
Collapse
Affiliation(s)
- Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | | | - Ruhan Deniz Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Melike Sapmaz-Metin
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Turkey
| | - Oktay Kaya
- Department of Physiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Abdullah Erkan Orhan
- Department of Plastic Surgery, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ahmet Ulugol
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
35
|
Dustin E, McQuiston AR, Honke K, Palavicini JP, Han X, Dupree JL. Adult-onset depletion of sulfatide leads to axonal degeneration with relative myelin sparing. Glia 2023; 71:2285-2303. [PMID: 37283058 PMCID: PMC11007682 DOI: 10.1002/glia.24423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
3-O-sulfogalactosylceramide (sulfatide) constitutes a class of sphingolipids that comprise about 4% of myelin lipids in the central nervous system. Previously, our group characterized a mouse with sulfatide's synthesizing enzyme, cerebroside sulfotransferase (CST), constitutively disrupted. Using these mice, we demonstrated that sulfatide is required for establishment and maintenance of myelin, axoglial junctions, and axonal domains and that sulfatide depletion results in structural pathologies commonly observed in Multiple Sclerosis (MS). Interestingly, sulfatide is reduced in regions of normal appearing white matter (NAWM) of MS patients. Sulfatide reduction in NAWM suggests depletion occurs early in disease development and consistent with functioning as a driving force of disease progression. To closely model MS, an adult-onset disease, our lab generated a "floxed" CST mouse and mated it against the PLP-creERT mouse, resulting in a double transgenic mouse that provides temporal and cell-type specific ablation of the Cst gene (Gal3st1). Using this mouse, we demonstrate adult-onset sulfatide depletion has limited effects on myelin structure but results in the loss of axonal integrity including deterioration of domain organization accompanied by axonal degeneration. Moreover, structurally preserved myelinated axons progressively lose the ability to function as myelinated axons, indicated by the loss of the N1 peak. Together, our findings indicate that sulfatide depletion, which occurs in the early stages of MS progression, is sufficient to drive the loss of axonal function independent of demyelination and that axonal pathology, which is responsible for the irreversible loss of neuronal function that is prevalent in MS, may occur earlier than previously recognized.
Collapse
Affiliation(s)
- E Dustin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
- Research Service, Central Virginia Veterans Affairs Health Care Systems, Richmond, Virginia, USA
| | - A R McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K Honke
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| | - J P Palavicini
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - X Han
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - J L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
- Research Service, Central Virginia Veterans Affairs Health Care Systems, Richmond, Virginia, USA
| |
Collapse
|
36
|
Trotier A, Bagnoli E, Walski T, Evers J, Pugliese E, Lowery M, Kilcoyne M, Fitzgerald U, Biggs M. Micromotion Derived Fluid Shear Stress Mediates Peri-Electrode Gliosis through Mechanosensitive Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301352. [PMID: 37518828 PMCID: PMC10520674 DOI: 10.1002/advs.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.
Collapse
Affiliation(s)
- Alexandre Trotier
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Enrico Bagnoli
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Tomasz Walski
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Department of Biomedical EngineeringFaculty of Fundamental Problems of TechnologyWrocław University of Science and TechnologyWroclaw50‐370Poland
| | - Judith Evers
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Eugenia Pugliese
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
| | - Madeleine Lowery
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Michelle Kilcoyne
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
- Carbohydrate Signalling GroupDiscipline of MicrobiologyUniversity of GalwayGalwayH91 W2TYIreland
| | - Una Fitzgerald
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Manus Biggs
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| |
Collapse
|
37
|
Taniguchi M, Yasukochi S, Yamakawa W, Tsurudome Y, Tsuruta A, Horiguchi M, Ushijima K, Yamashita T, Shindo N, Ojida A, Matsunaga N, Koyanagi S, Ohdo S. Inhibition of Tumor-Derived C-C Motif Chemokine Ligand 2 Expression Attenuates Tactile Allodynia in NCTC 2472 Fibrosarcoma-Inoculated Mice. Mol Pharmacol 2023; 104:73-79. [PMID: 37316349 DOI: 10.1124/molpharm.123.000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Neuropathic pain associated with cancers is caused by tumor growth compressing and damaging nerves, which would also be enhanced by inflammatory factors through sensitizing nociceptor neurons. A troublesome hallmark symptom of neuropathic pain is hypersensitivity to innocuous stimuli, a condition known as "tactile allodynia", which is often refractory to NSAIDs and opioids. The involvement of chemokine CCL2 (monocyte chemoattractant protein-1) in cancer-evoked neuropathic pain is well established, but opinions remain divided as to whether CCL2 is involved in the production of tactile allodynia with tumor growth. In this study, we constructed Ccl2 knockout NCTC 2472 (Ccl2-KO NCTC) fibrosarcoma cells and conducted pain behavioral test using Ccl2-KO NCTC-implanted mice. Implantation of naïve NCTC cells around the sciatic nerves of mice produced tactile allodynia in the inoculated paw. Although the growth of Ccl2 KO NCTC-formed tumors was comparable to that of naïve NCTC-formed tumors, Ccl2-KO NCTC-bearing mice failed to show tactile pain hypersensitivity, suggesting the involvement of CCL2 in cancer-induced allodynia. Subcutaneous administration of controlled-release nanoparticles containing the CCL2 expression inhibitor NS-3-008 (1-benzyl-3-hexylguanidine) significantly attenuated tactile allodynia in naïve NCTC-bearing mice accompanied by a reduction of CCL2 content in tumor masses. Our present findings suggest that inhibition of CCL2 expression in cancer cells is a useful strategy to attenuate tactile allodynia induced by tumor growth. Development of a controlled-release system of CCL2 expression inhibitor may be a preventative option for the treatment of cancer-evoked neuropathic pain. SIGNIFICANCE STATEMENT: The blockade of chemokine/receptor signaling, particularly for C-C motif chemokine ligand 2 (CCL2) and its high-affinity receptor C-C chemokine receptor type 2 (CCR2), has been implicated to attenuate cancer-induced inflammatory and nociceptive pain. This study demonstrated that continuous inhibition of CCL2 production from cancer cells also prevents the development of tactile allodynia associated with tumor growth. Development of a controlled-release system of CCL2 expression inhibitor may be a preventative option for management of cancer-evoked tactile allodynia.
Collapse
Affiliation(s)
- Marie Taniguchi
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Sai Yasukochi
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Wakaba Yamakawa
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Yuya Tsurudome
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Akito Tsuruta
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Michiko Horiguchi
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Kentaro Ushijima
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Tomohiro Yamashita
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Naoya Shindo
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Akio Ojida
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Naoya Matsunaga
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Satoru Koyanagi
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| | - Shigehiro Ohdo
- Department of Pharmaceutics (M.T., S.Y., W.Y., A.T., S.K., S.O.), Department of Bioanalytical Chemistry (N.S., A.O.), and Department of Drug Discovery Structural Biology (T.Y.), Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science (A.T., S.K.) and Department of Clinical Pharmacokinetics (N.M.), Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; and Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan (Y.T., M.H., K.U.)
| |
Collapse
|
38
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
39
|
Radhakrishnan A, Mukherjee T, Mahish C, Kumar PS, Goswami C, Chattopadhyay S. TRPA1 activation and Hsp90 inhibition synergistically downregulate macrophage activation and inflammatory responses in vitro. BMC Immunol 2023; 24:16. [PMID: 37391696 PMCID: PMC10314470 DOI: 10.1186/s12865-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Transient receptor potential ankyrin 1 (TRPA1) channels are known to be actively involved in various pathophysiological conditions, including neuronal inflammation, neuropathic pain, and various immunological responses. Heat shock protein 90 (Hsp90), a cytoplasmic molecular chaperone, is well-reported for various cellular and physiological processes. Hsp90 inhibition by various molecules has garnered importance for its therapeutic significance in the downregulation of inflammation and are proposed as anti-cancer drugs. However, the possible role of TRPA1 in the Hsp90-associated modulation of immune responses remains scanty. RESULTS Here, we have investigated the role of TRPA1 in regulating the anti-inflammatory effect of Hsp90 inhibition via 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) stimulation in RAW 264.7, a mouse macrophage cell lines and PMA differentiated THP-1, a human monocytic cell line similar to macrophages. Activation of TRPA1 with Allyl isothiocyanate (AITC) is observed to execute an anti-inflammatory role via augmenting Hsp90 inhibition-mediated anti-inflammatory responses towards LPS or PMA stimulation in macrophages, whereas inhibition of TRPA1 by 1,2,3,6-Tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7 H-purine-7-acetamide,2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7 H-purin-7-yl)-N-(4-isopropylphenyl)acetamide (HC-030031) downregulates these developments. LPS or PMA-induced macrophage activation was found to be regulated by TRPA1. The same was confirmed by studying the levels of activation markers (major histocompatibility complex II (MHCII), cluster of differentiation (CD) 80 (CD80), and CD86, pro-inflammatory cytokines (tumor necrosis factor (TNF) and interleukin 6 (IL-6)), NO (nitric oxide) production, differential expression of mitogen-activated protein kinase (MAPK) signaling pathways (p-p38 MAPK, phospho-extracellular signal-regulated kinase 1/2 (p-ERK 1/2), and phosphor-stress-activated protein kinase/c-Jun N-terminal kinase (p-SAPK/JNK)), and induction of apoptosis. Additionally, TRPA1 has been found to be an important contributor to intracellular calcium levels toward Hsp90 inhibition in LPS or PMA-stimulated macrophages. CONCLUSION This study indicates a significant role of TRPA1 in Hsp90 inhibition-mediated anti-inflammatory developments in LPS or PMA-stimulated macrophages. Activation of TRPA1 and inhibition of Hsp90 has synergistic roles towards regulating inflammatory responses associated with macrophages. The role of TRPA1 in Hsp90 inhibition-mediated modulation of macrophage responses may provide insights towards designing future novel therapeutic approaches to regulate various inflammatory responses.
Collapse
Affiliation(s)
- Anukrishna Radhakrishnan
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Tathagata Mukherjee
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Chandan Mahish
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - P Sanjai Kumar
- Institute of Life Sciences, Nalco Nagar Rd, NALCO Square, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| | - Chandan Goswami
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Subhasis Chattopadhyay
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| |
Collapse
|
40
|
Dalenogare DP, Souza Monteiro de Araújo D, Landini L, Titiz M, De Siena G, De Logu F, Geppetti P, Nassini R, Trevisan G. Neuropathic-like Nociception and Spinal Cord Neuroinflammation Are Dependent on the TRPA1 Channel in Multiple Sclerosis Models in Mice. Cells 2023; 12:1511. [PMID: 37296632 PMCID: PMC10252670 DOI: 10.3390/cells12111511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Background: Transient receptor potential ankyrin 1 (TRPA1) activation is implicated in neuropathic pain-like symptoms. However, whether TRPA1 is solely implicated in pain-signaling or contributes to neuroinflammation in multiple sclerosis (MS) is unknown. Here, we evaluated the TRPA1 role in neuroinflammation underlying pain-like symptoms using two different models of MS. Methods: Using a myelin antigen, Trpa1+/+ or Trpa1-/- female mice developed relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) (Quil A as adjuvant) or progressive experimental autoimmune encephalomyelitis (PMS)-EAE (complete Freund's adjuvant). The locomotor performance, clinical scores, mechanical/cold allodynia, and neuroinflammatory MS markers were evaluated. Results: Mechanical and cold allodynia detected in RR-EAE, or PMS-EAE Trpa1+/+ mice, were not observed in Trpa1-/- mice. The increased number of cells labeled for ionized calcium-binding adapter molecule 1 (Iba1) or glial fibrillary acidic protein (GFAP), two neuroinflammatory markers in the spinal cord observed in both RR-EAE or PMS-EAE Trpa1+/+ mice, was reduced in Trpa1-/- mice. By Olig2 marker and luxol fast blue staining, prevention of the demyelinating process in Trpa1-/- induced mice was also detected. Conclusions: Present results indicate that the proalgesic role of TRPA1 in EAE mouse models is primarily mediated by its ability to promote spinal neuroinflammation and further strengthen the channel inhibition to treat neuropathic pain in MS.
Collapse
Affiliation(s)
- Diéssica Padilha Dalenogare
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| | - Daniel Souza Monteiro de Araújo
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Lorenzo Landini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Mustafa Titiz
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Gaetano De Siena
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Francesco De Logu
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Pierangelo Geppetti
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Romina Nassini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
41
|
Waltz TB, Chao D, Prodoehl EK, Ehlers VL, Dharanikota BS, Dahms NM, Isaeva E, Hogan QH, Pan B, Stucky CL. Schwann cell release of p11 induces sensory neuron hyperactivity in Fabry disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542493. [PMID: 37292928 PMCID: PMC10245981 DOI: 10.1101/2023.05.26.542493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patients with Fabry disease suffer from chronic debilitating pain and peripheral sensory neuropathy with minimal treatment options, but the cellular drivers of this pain are unknown. Here, we propose a novel mechanism by which altered signaling between Schwann cells and sensory neurons underlies the peripheral sensory nerve dysfunction we observe in a genetic rat model of Fabry disease. Using in vivo and in vitro electrophysiological recordings, we demonstrate that Fabry rat sensory neurons exhibit pronounced hyperexcitability. Schwann cells likely contribute to this finding as application of mediators released from cultured Fabry Schwann cells induces spontaneous activity and hyperexcitability in naïve sensory neurons. We examined putative algogenic mediators using proteomic analysis and found that Fabry Schwann cells release elevated levels of the protein p11 (S100-A10) which induces sensory neuron hyperexcitability. Removal of p11 from Fabry Schwann cell media causes hyperpolarization of neuronal resting membrane potential, indicating that p11 contributes to the excessive neuronal excitability caused by Fabry Schwann cells. These findings demonstrate that rats with Fabry disease exhibit sensory neuron hyperexcitability caused in part by Schwann cell release of the protein p11.
Collapse
|
42
|
Hu Z, Zhang Y, Yu W, Li J, Yao J, Zhang J, Wang J, Wang C. Transient receptor potential ankyrin 1 (TRPA1) modulators: Recent update and future perspective. Eur J Med Chem 2023; 257:115392. [PMID: 37269667 DOI: 10.1016/j.ejmech.2023.115392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 06/05/2023]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that senses irritant chemicals. Its activation is closely associated with pain, inflammation, and pruritus. TRPA1 antagonists are promising treatments for these diseases, and there has been a recent upsurge in their application to new areas such as cancer, asthma, and Alzheimer's disease. However, due to the generally disappointing performance of TRPA1 antagonists in clinical studies, scientists must pursue the development of antagonists with higher selectivity, metabolic stability, and solubility. Moreover, TRPA1 agonists provide a deeper understanding of activation mechanisms and aid in antagonist screening. Therefore, we summarize the TRPA1 antagonists and agonists developed in recent years, with a particular focus on structure-activity relationships (SARs) and pharmacological activity. In this perspective, we endeavor to keep abreast of cutting-edge ideas and provide inspiration for the development of more effective TRPA1-modulating drugs.
Collapse
Affiliation(s)
- Zelin Hu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenhan Yu
- College of Letters & Science, University of California, Berkeley, Berkeley, 94720, California, United States
| | - Junjie Li
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaqi Yao
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
43
|
Landini L, Souza Monteiro de Araujo D, Chieca M, De Siena G, Bellantoni E, Geppetti P, Nassini R, De Logu F. Acetaldehyde via CGRP receptor and TRPA1 in Schwann cells mediates ethanol-evoked periorbital mechanical allodynia in mice: relevance for migraine. J Biomed Sci 2023; 30:28. [PMID: 37101198 PMCID: PMC10131321 DOI: 10.1186/s12929-023-00922-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Ingestion of alcoholic beverages is a known trigger of migraine attacks. However, whether and how ethanol exerts its pro-migraine action remains poorly known. Ethanol stimulates the transient receptor potential vanilloid 1 (TRPV1) channel, and its dehydrogenized metabolite, acetaldehyde, is a known TRP ankyrin 1 (TRPA1) agonist. METHODS Periorbital mechanical allodynia following systemic ethanol and acetaldehyde was investigated in mice after TRPA1 and TRPV1 pharmacological antagonism and global genetic deletion. Mice with selective silencing of the receptor activated modifying protein 1 (RAMP1), a component of the calcitonin gene-related peptide (CGRP) receptor, in Schwann cells or TRPA1 in dorsal root ganglion (DRG) neurons or Schwann cells, were used after systemic ethanol and acetaldehyde. RESULTS We show in mice that intragastric ethanol administration evokes a sustained periorbital mechanical allodynia that is attenuated by systemic or local alcohol dehydrogenase inhibition, and TRPA1, but not TRPV1, global deletion, thus indicating the implication of acetaldehyde. Systemic (intraperitoneal) acetaldehyde administration also evokes periorbital mechanical allodynia. Importantly, periorbital mechanical allodynia by both ethanol and acetaldehyde is abrogated by pretreatment with the CGRP receptor antagonist, olcegepant, and a selective silencing of RAMP1 in Schwann cells. Periorbital mechanical allodynia by ethanol and acetaldehyde is also attenuated by cyclic AMP, protein kinase A, and nitric oxide inhibition and pretreatment with an antioxidant. Moreover, selective genetic silencing of TRPA1 in Schwann cells or DRG neurons attenuated periorbital mechanical allodynia by ethanol or acetaldehyde. CONCLUSIONS Results suggest that, in mice, periorbital mechanical allodynia, a response that mimics cutaneous allodynia reported during migraine attacks, is elicited by ethanol via the systemic production of acetaldehyde that, by releasing CGRP, engages the CGRP receptor in Schwann cells. The ensuing cascade of intracellular events results in a Schwann cell TRPA1-dependent oxidative stress generation that eventually targets neuronal TRPA1 to signal allodynia from the periorbital area.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | | | - Martina Chieca
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Elisa Bellantoni
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy.
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| |
Collapse
|
44
|
Landini L, Marini M, Souza Monteiro de Araujo D, Romitelli A, Montini M, Albanese V, Titiz M, Innocenti A, Bianchini F, Geppetti P, Nassini R, De Logu F. Schwann Cell Insulin-like Growth Factor Receptor Type-1 Mediates Metastatic Bone Cancer Pain in Mice. Brain Behav Immun 2023; 110:348-364. [PMID: 36940752 DOI: 10.1016/j.bbi.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Insulin growth factor-1 (IGF-1), an osteoclast-dependent osteolysis biomarker, contributes to metastatic bone cancer pain (MBCP), but the underlying mechanism is poorly understood. In mice, the femur metastasis caused by intramammary inoculation of breast cancer cells resulted in IGF-1 increase in femur and sciatic nerve, and IGF-1-dependent stimulus/non-stimulus-evoked pain-like behaviors. Adeno-associated virus-based shRNA selective silencing of IGF-1 receptor (IGF-1R) in Schwann cells, but not in dorsal root ganglion (DRG) neurons, attenuated pain-like behaviors. Intraplantar IGF-1 evoked acute nociception and mechanical/cold allodynia, which were reduced by selective IGF-1R silencing in DRG neurons and Schwann cells, respectively. Schwann cell IGF-1R signaling promoted an endothelial nitric oxide synthase-mediated transient receptor potential ankyrin 1 (TRPA1) activation and release of reactive oxygen species that, via macrophage-colony stimulating factor-dependent endoneurial macrophage expansion, sustained pain-like behaviors. Osteoclast derived IGF-1 initiates a Schwann cell-dependent neuroinflammatory response that sustains a proalgesic pathway that provides new options for MBCP treatment.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Antonia Romitelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Marco Montini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, 50141, Florence, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences - DEPS, University of Ferrara, Ferrara, 44121, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50141, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| |
Collapse
|
45
|
Zhang Y, Sang R, Bao J, Jiang Z, Qian D, Zhou Y, Su W, Wei J, Zhao L, Wei Z, Zhao Y, Shi M, Chen G. Schwann cell-derived CXCL2 contributes to cancer pain by modulating macrophage infiltration in a mouse breast cancer model. Brain Behav Immun 2023; 109:308-320. [PMID: 36754246 DOI: 10.1016/j.bbi.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Pain is one of the most severe complications affecting the quality of life of cancer patients. Although substantial progress has been made in the diagnosis and treatment of cancer, the neurobiological mechanism of cancer pain is still unclear. In the present study, we identified the critical role of CXC chemokine 2 (CXCL2), released by Schwann cells after being activated by cancer cells, in maintaining cancer-induced macrophage infiltration and the resulting mechanical hypersensitivity and persistent spontaneous nociception. In vitro, Schwann cells cocultured with breast cancer cells exhibited a significant increase in CXCL2 expression; in addition, conditioned medium from Schwann cells activated by breast cancer cells had a similar effect to recombinant CXCL2 in terms of inducing macrophage migration. Targeting CXCL2 signaling by both CXC chemokine receptor 2 (CXCR2) antagonist pharmacological blockade and anti-CXCL2 mAb immunological blockade robustly prevented conditioned medium-induced macrophage migration. In vivo, both application of recombinant CXCL2 and perineural breast cancer cell implantation resulted in mechanical hypersensitivity and persistent spontaneous nociception in mice, along with increased macrophage infiltration into the sciatic nerves. Similar to the in vitro results, inhibition of CXCL2/CXCR2 signaling or conditional knockdown of CXCL2 in sciatic nerve Schwann cells effectively attenuated breast cancer cell-induced mechanical hypersensitivity, persistent spontaneous nociception, and macrophage recruitment in the sciatic nerve. Mechanistically, we found that redox effector factor-1 (Ref-1) secreted by breast cancer cells activated hypoxia inducible factor-1α (HIF-1α) expression and inhibited reactive oxygen species (ROS) production in Schwann cells, ultimately inducing CXCL2 expression in Schwann cells. In brief, the present study expands new insights into cancer pain mechanisms from promising animal models to provide new strategies for the control of cancer pain.
Collapse
Affiliation(s)
- Yonghui Zhang
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China; Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rui Sang
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Jingyin Bao
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Zhihao Jiang
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Danni Qian
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Yi Zhou
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jinhuan Wei
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Long Zhao
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yayu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Minxin Shi
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University, Nantong 226001, Jiangsu Province, China.
| | - Gang Chen
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
46
|
Rocha BGS, Picoli CC, Gonçalves BOP, Silva WN, Costa AC, Moraes MM, Costa PAC, Santos GSP, Almeida MR, Silva LM, Singh Y, Falchetti M, Guardia GDA, Guimarães PPG, Russo RC, Resende RR, Pinto MCX, Amorim JH, Azevedo VAC, Kanashiro A, Nakaya HI, Rocha EL, Galante PAF, Mintz A, Frenette PS, Birbrair A. Tissue-resident glial cells associate with tumoral vasculature and promote cancer progression. Angiogenesis 2023; 26:129-166. [PMID: 36183032 DOI: 10.1007/s10456-022-09858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele M Moraes
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milla R Almeida
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana M Silva
- Department of Cell Biology, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Youvika Singh
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Marcelo Falchetti
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Pedro P G Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Kanashiro
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | | | - Edroaldo L Rocha
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
47
|
Effects of NADPH Oxidase Isoform-2 (NOX2) Inhibition on Behavioral Responses and Neuroinflammation in a Mouse Model of Neuropathic Pain. Biomedicines 2023; 11:biomedicines11020416. [PMID: 36830952 PMCID: PMC9953009 DOI: 10.3390/biomedicines11020416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
NADPH oxidase isoform-2 (NOX2) has been implicated in the pathophysiology of neuropathic pain (NP), mostly through the modulation of neuroinflammation. Since it is also accepted that some neuroimmune mechanisms underlying NP are sex-dependent, we aimed to evaluate the effects of early systemic treatment with the NOX2-selective inhibitor (NOX2i) GSK2795039 on behavioral responses and spinal neuroinflammation in spared nerve injury (SNI)-induced NP in male and female mice. Mechanical sensitivity was evaluated with the von Frey test, while general well-being and anxiety-like behavior were assessed with burrowing and light/dark box tests. Spinal microglial activation and cytokines IL-1β, IL-6, and IL-10, as well as macrophage colony-stimulating factor (M-CSF) were evaluated by immunofluorescence and multiplex immunoassay, respectively. NOX2i treatment reduced SNI-induced mechanical hypersensitivity and early SNI-induced microglial activation in both sexes. SNI-females, but not males, showed a transient reduction in burrowing activity. NOX2i treatment did not improve their burrowing activity, but tendentially reduced their anxiety-like behavior. NOX2i marginally decreased IL-6 in females, and increased M-CSF in males. Our findings suggest that NOX2-selective inhibition may be a potential therapeutic strategy for NP in both male and female individuals, with particular interest in females due to its apparent favorable impact in anxiety-like behavior.
Collapse
|
48
|
Sun L, Zhang J, Niu C, Deering-Rice CE, Hughen RW, Lamb JG, Rose K, Chase KM, Almestica-Roberts M, Walter M, Schmidt EW, Light AR, Olivera BM, Reilly CA. CYP1B1-derived epoxides modulate the TRPA1 channel in chronic pain. Acta Pharm Sin B 2023; 13:68-81. [PMID: 36815047 PMCID: PMC9939319 DOI: 10.1016/j.apsb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Changshan Niu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronald W. Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - John G. Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Katherine Rose
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M. Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Markel Walter
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Alan R. Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA,Corresponding author. Tel.: +1 8015815236.
| |
Collapse
|
49
|
Yao K, Dou B, Zhang Y, Chen Z, Li Y, Fan Z, Ma Y, Du S, Wang J, Xu Z, Liu Y, Lin X, Wang S, Guo Y. Inflammation-the role of TRPA1 channel. Front Physiol 2023; 14:1093925. [PMID: 36875034 PMCID: PMC9977828 DOI: 10.3389/fphys.2023.1093925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, increasing numbers of studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1) can be used as a potential target for the treatment of inflammatory diseases. TRPA1 is expressed in both neuronal and non-neuronal cells and is involved in diverse physiological activities, such as stabilizing of cell membrane potential, maintaining cellular humoral balance, and regulating intercellular signal transduction. TRPA1 is a multi-modal cell membrane receptor that can sense different stimuli, and generate action potential signals after activation via osmotic pressure, temperature, and inflammatory factors. In this study, we introduced the latest research progress on TRPA1 in inflammatory diseases from three different aspects. First, the inflammatory factors released after inflammation interacts with TRPA1 to promote inflammatory response; second, TRPA1 regulates the function of immune cells such as macrophages and T cells, In addition, it has anti-inflammatory and antioxidant effects in some inflammatory diseases. Third, we have summarized the application of antagonists and agonists targeting TRPA1 in the treatment of some inflammatory diseases.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
50
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|