1
|
Liu Y, Jin F, Zhou L, Li X, Li X, Chen Q, Yang S, Sun J, Qi F. Platelet-derived Growth Factor Receptor-α Induces Contraction Knots and Inflammatory Pain-like Behavior in a Rat Model of Myofascial Trigger Points. Anesthesiology 2024; 141:929-945. [PMID: 39058323 PMCID: PMC11463032 DOI: 10.1097/aln.0000000000005167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Myofascial trigger points (MTrPs) are the primary etiological characteristics of chronic myofascial pain syndrome. Receptor tyrosine kinases (RTKs) are associated with signal transduction in the central mechanisms of chronic pain, but the role of RTKs in the peripheral mechanisms of MTrPs remains unclear. The current study aimed to identify RTKs expression in MTrPs and elucidate the molecular mechanisms through which platelet-derived growth factor receptor-α (PDGFR-α) induces contraction knots and inflammatory pain-like behavior in a rat model of myofascial trigger points. METHODS MTrPs tissue samples were obtained from the trapezius muscles of patients with myofascial pain syndrome through needle biopsy, and PDGFR-α activation was analyzed by microarray, enzyme-linked immunosorbent assay, and histological staining. Sprague-Dawley rats (male and female) were used to investigate PDGFR-α signaling, assessing pain-like behaviors with Randall-Selitto and nest-building tests. Muscle fiber and sarcomere morphologies were observed using histology and electron microscopy. The PDGFR-α binding protein was identified by coimmunoprecipitation, liquid chromatograph mass spectrometer, and molecular docking. PDGFR-α-related protein or gene levels, muscle contraction, and inflammatory markers were determined by Western blot and reverse-transcription quantitative polymerase chain reaction. RESULTS PDGFR-α phosphorylation levels were elevated in the MTrPs tissues of individuals with trapezius muscle pain and were positively correlated with pain intensity. In rats, PDGFR-α activation caused pain-like behaviors and muscle contraction via the Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathway. JAK2/STAT3 inhibitors reversed the pain-like behaviors and muscle contraction induced by PDGFR-α activation. Collagen type I α 1 (COL1A1) binds to PDGFR-α and promotes its phosphorylation, which contributed to pain-like behaviors and muscle contraction. CONCLUSIONS COL1A1-induced phosphorylation of PDGFR-α and the subsequent activation of the JAK2/STAT3 pathway may induce dysfunctional muscle contraction and increased nociception at MTrPs. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yu Liu
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feihong Jin
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingwei Zhou
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuan Li
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyue Li
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinghe Chen
- Department of Anesthesiology, and Research Center for Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaozhong Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jintang Sun
- Research Center for Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Akwata D, Kempen AL, Dayal N, Brauer NR, Sintim HO. Identification of a Selective FLT3 Inhibitor with Low Activity against VEGFR, FGFR, PDGFR, c-KIT, and RET Anti-Targets. ChemMedChem 2024; 19:e202300442. [PMID: 37971283 DOI: 10.1002/cmdc.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
FLT3 is mainly expressed in immune and various cancer cells and is a drug target for acute myeloid leukemia (AML). Recently, FLT3 has also been identified as a potential target for treating chronic pain. Most FLT3 inhibitors (FLT3i) identified to date, including approved drugs such as gilteritinib, midostaurin, ponatinib, quizartinib, and FLT3i in clinical trials, such as quizartinib and crenolanib, also inhibit closely-related kinases that are important for immune (c-KIT), cardiovascular (KDR/VEGFR2, FGFR, PDGFR) or kidney (RET) functions. While the aforementioned FLT3i may increase survival rates in AML, they are neither ideal for AML maintenance therapy nor for non-oncology applications, such as for the treatment of chronic pain, due to their promiscuous inhibition of many kinase anti-targets. Here, we report the identification of new FLT3i compounds that have low activities against kinases that have traditionally been difficult to differentiate from FLT3 inhibition, such as KDR/VEGFR, FGFR, PGFR, c-KIT, and RET. These selective compounds could be valuable chemical probes for studying FLT3 biology in the context of chronic pain and/or may represent good starting points to develop well-tolerated FLT3 therapeutics for non-oncology indications or for maintenance therapy for AML.
Collapse
Affiliation(s)
- Desmond Akwata
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
| | - Allison L Kempen
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
| | - Neetu Dayal
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
| | - Nickolas R Brauer
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
- Purdue Institute for Drug Discovery, 720 Clinic Drive, IN 47907, West Lafayette, USA
- Purdue Institute for Cancer Research, 201 S. University St., IN 47907, West Lafayette, USA
| |
Collapse
|
3
|
Thouaye M, Yalcin I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol Ther 2023; 251:108546. [PMID: 37832728 DOI: 10.1016/j.pharmthera.2023.108546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17% of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies, lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies (EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and their potential co-use with pharmacological treatments.
Collapse
Affiliation(s)
- Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Lesnak JB, Mazhar K, Price TJ. Neuroimmune Mechanisms Underlying Post-acute Sequelae of SARS-CoV-2 (PASC) Pain, Predictions from a Ligand-Receptor Interactome. Curr Rheumatol Rep 2023; 25:169-181. [PMID: 37300737 PMCID: PMC10256978 DOI: 10.1007/s11926-023-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW Individuals with post-acute sequelae of SARS-CoV-2 (PASC) complain of persistent musculoskeletal pain. Determining how COVID-19 infection produces persistent pain would be valuable for the development of therapeutics aimed at alleviating these symptoms. RECENT FINDINGS To generate hypotheses regarding neuroimmune interactions in PASC, we used a ligand-receptor interactome to make predictions about how ligands from PBMCs in individuals with COVID-19 communicate with dorsal root ganglia (DRG) neurons to induce persistent pain. In a structured literature review of -omics COVID-19 studies, we identified ligands capable of binding to receptors on DRG neurons, which stimulate signaling pathways including immune cell activation and chemotaxis, the complement system, and type I interferon signaling. The most consistent finding across immune cell types was an upregulation of genes encoding the alarmins S100A8/9 and MHC-I. This ligand-receptor interactome, from our hypothesis-generating literature review, can be used to guide future research surrounding mechanisms of PASC-induced pain.
Collapse
Affiliation(s)
- Joseph B Lesnak
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Khadijah Mazhar
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Theodore J Price
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA.
| |
Collapse
|
5
|
Awad-Igbaria Y, Ferreira N, Keadan A, Sakas R, Edelman D, Shamir A, Francous-Soustiel J, Palzur E. HBO treatment enhances motor function and modulates pain development after sciatic nerve injury via protection the mitochondrial function. J Transl Med 2023; 21:545. [PMID: 37582750 PMCID: PMC10428612 DOI: 10.1186/s12967-023-04414-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Peripheral nerve injury can cause neuroinflammation and neuromodulation that lead to mitochondrial dysfunction and neuronal apoptosis in the dorsal root ganglion (DRG) and spinal cord, contributing to neuropathic pain and motor dysfunction. Hyperbaric oxygen therapy (HBOT) has been suggested as a potential therapeutic tool for neuropathic pain and nerve injury. However, the specific cellular and molecular mechanism by which HBOT modulates the development of neuropathic pain and motor dysfunction through mitochondrial protection is still unclear. METHODS Mechanical and thermal allodynia and motor function were measured in rats following sciatic nerve crush (SNC). The HBO treatment (2.5 ATA) was performed 4 h after SNC and twice daily (12 h intervals) for seven consecutive days. To assess mitochondrial function in the spinal cord (L2-L6), high-resolution respirometry was measured on day 7 using the OROBOROS-O2k. In addition, RT-PCR and Immunohistochemistry were performed at the end of the experiment to assess neuroinflammation, neuromodulation, and apoptosis in the DRG (L3-L6) and spinal cord (L2-L6). RESULTS HBOT during the early phase of the SNC alleviates mechanical and thermal hypersensitivity and motor dysfunction. Moreover, HBOT modulates neuroinflammation, neuromodulation, mitochondrial stress, and apoptosis in the DRG and spinal cord. Thus, we found a significant reduction in the presence of macrophages/microglia and MMP-9 expression, as well as the transcription of pro-inflammatory cytokines (TNFa, IL-6, IL-1b) in the DRG and (IL6) in the spinal cord of the SNC group that was treated with HBOT compared to the untreated group. Notable, the overexpression of the TRPV1 channel, which has a high Ca2+ permeability, was reduced along with the apoptosis marker (cleaved-Caspase3) and mitochondrial stress marker (TSPO) in the DRG and spinal cord of the HBOT group. Additionally, HBOT prevents the reduction in mitochondrial respiration, including non-phosphorylation state, ATP-linked respiration, and maximal mitochondrial respiration in the spinal cord after SNC. CONCLUSION Mitochondrial dysfunction in peripheral neuropathic pain was found to be mediated by neuroinflammation and neuromodulation. Strikingly, our findings indicate that HBOT during the critical period of the nerve injury modulates the transition from acute to chronic pain via reducing neuroinflammation and protecting mitochondrial function, consequently preventing neuronal apoptosis in the DRG and spinal cord.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel.
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel.
| | - Nadine Ferreira
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - Ali Keadan
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel
| | - Reem Sakas
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel
| | - Doron Edelman
- UHN-Neurosurgery Spine Program, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jean Francous-Soustiel
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel
- Department of Neurosurgery, Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, P.O.B 21, 22100, Nahariya, Israel
| |
Collapse
|
6
|
Derre A, Soler N, Billoux V, Benizri S, Vialet B, Rivat C, Barthélémy P, Carroll P, Pattyn A, Venteo S. FXYD2 antisense oligonucleotide provides an efficient approach for long-lasting relief of chronic peripheral pain. JCI Insight 2023; 8:161246. [PMID: 37154155 DOI: 10.1172/jci.insight.161246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Chronic pain, whether of inflammatory or neuropathic origin, affects about 18% of the population of developed countries, and most current treatments are only moderately effective and/or cause serious side effects. Therefore, the development of novel therapeutic approaches still represents a major challenge. The Na,K-ATPase modulator FXYD2 is critically required for the maintenance of neuropathic pain in rodents. Here, we set up a therapeutic protocol based on the use of chemically modified antisense oligonucleotides (ASOs) to inhibit FXYD2 expression and treat chronic pain. We identified an ASO targeting a 20-nucleotide stretch in the FXYD2 mRNA that is evolutionarily conserved between rats and humans and is a potent inhibitor of FXYD2 expression. We used this sequence to synthesize lipid-modified forms of ASO (FXYD2-LASO) to facilitate their entry into dorsal root ganglia neurons. We established that intrathecal or intravenous injections of FXYD2-LASO in rat models of neuropathic or inflammatory pain led to a virtually complete alleviation of their pain symptoms, without causing obvious side effects. Remarkably, by using 2'-O-2-methoxyethyl chemical stabilization of the ASO (FXYD2-LASO-Gapmer), we could significantly prolong the therapeutic action of a single treatment up to 10 days. This study establishes FXYD2-LASO-Gapmer administration as a promising and efficient therapeutic strategy for long-lasting relief of chronic pain conditions in human patients.
Collapse
Affiliation(s)
- Alexandre Derre
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Noelian Soler
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Valentine Billoux
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Sebastien Benizri
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Brune Vialet
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Cyril Rivat
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Philippe Barthélémy
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Stephanie Venteo
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
7
|
Tassou A, Thouaye M, Gilabert D, Jouvenel A, Leyris JP, Sonrier C, Diouloufet L, Mechaly I, Mallié S, Bertin J, Chentouf M, Neiveyans M, Pugnière M, Martineau P, Robert B, Capdevila X, Valmier J, Rivat C. Activation of neuronal FLT3 promotes exaggerated sensorial and emotional pain-related behaviors facilitating the transition from acute to chronic pain. Prog Neurobiol 2023; 222:102405. [PMID: 36646299 DOI: 10.1016/j.pneurobio.2023.102405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Acute pain has been associated with persistent pain sensitization of nociceptive pathways increasing the risk of transition from acute to chronic pain. We demonstrated the critical role of the FLT3- tyrosine kinase receptor, expressed in sensory neurons, in pain chronification after peripheral nerve injury. However, it is unclear whether injury-induced pain sensitization can also promote long-term mood disorders. Here, we evaluated the emotional and sensorial components of pain after a single (SI) or double paw incision (DI) and the implication of FLT3. DI mice showed an anxiodepressive-like phenotype associated with extended mechanical pain hypersensitivity and spontaneous pain when compared to SI mice. Behavioral exaggeration was associated with peripheral and spinal changes including increased microglia activation after DI versus SI. Intrathecal microglial inhibitors not only eliminated the exaggerated pain hypersensitivity produced by DI but also prevented anxiodepressive-related behaviors. Behavioral and cellular changes produced by DI were blocked in Flt3 knock-out animals and recapitulated by repeated intrathecal FL injections in naive animals. Finally, humanized antibodies against FLT3 reduced DI-induced behavioral and microglia changes. Altogether our results show that the repetition of peripheral lesions facilitate not only exaggerated nociceptive behaviors but also induced anxiodepressive disorders supported by spinal central changes that can be blocked by targeting peripheral FLT3.
Collapse
Affiliation(s)
- Adrien Tassou
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Maxime Thouaye
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Damien Gilabert
- Univ Montpellier, Montpellier, France; CNRS UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Antoine Jouvenel
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Jean-Philippe Leyris
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Corinne Sonrier
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Lucie Diouloufet
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Ilana Mechaly
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Sylvie Mallié
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Juliette Bertin
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Myriam Chentouf
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Madeline Neiveyans
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Martine Pugnière
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Pierre Martineau
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Bruno Robert
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Xavier Capdevila
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; Département d'anesthésiologie, Hôpital Universitaire Lapeyronie, Montpellier, France
| | - Jean Valmier
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Cyril Rivat
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Chen C, Sun L, Adler A, Zhou H, Zhang L, Zhang L, Deng J, Bai Y, Zhang J, Yang G, Gan WB, Tang P. Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain. Nat Commun 2023; 14:689. [PMID: 36755026 PMCID: PMC9908980 DOI: 10.1038/s41467-023-36093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Increased low frequency cortical oscillations are observed in people with neuropathic pain, but the cause of such elevated cortical oscillations and their impact on pain development remain unclear. By imaging neuronal activity in a spared nerve injury (SNI) mouse model of neuropathic pain, we show that neurons in dorsal root ganglia (DRG) and somatosensory cortex (S1) exhibit synchronized activity after peripheral nerve injury. Notably, synchronized activity of DRG neurons occurs within hours after injury and 1-2 days before increased cortical oscillations. This DRG synchrony is initiated by axotomized neurons and mediated by local purinergic signaling at the site of nerve injury. We further show that synchronized DRG activity after SNI is responsible for increasing low frequency cortical oscillations and synaptic remodeling in S1, as well as for inducing animals' pain-like behaviors. In naive mice, enhancing the synchrony, not the level, of DRG neuronal activity causes synaptic changes in S1 and pain-like behaviors similar to SNI mice. Taken together, these results reveal the critical role of synchronized DRG neuronal activity in increasing cortical plasticity and oscillations in a neuropathic pain model. These findings also suggest the potential importance of detection and suppression of elevated cortical oscillations in neuropathic pain states.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
- Department of Hand Surgery, Shenzhen People's Hospital, Second Clinical Medicine College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Neuroscience Research Institute, Peking University, Beijing, China
| | - Avital Adler
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Hang Zhou
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Licheng Zhang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
| | - Lihai Zhang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
| | - Junhao Deng
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
| | - Yang Bai
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jinhui Zhang
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 175 Hospital, Zhangzhou, Fujian, China
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| | - Wen-Biao Gan
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Peifu Tang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China.
| |
Collapse
|
9
|
Molecular Landscape of Tourette's Disorder. Int J Mol Sci 2023; 24:ijms24021428. [PMID: 36674940 PMCID: PMC9865021 DOI: 10.3390/ijms24021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable childhood-onset neurodevelopmental disorder and is caused by a complex interplay of multiple genetic and environmental factors. Yet, the molecular mechanisms underlying the disorder remain largely elusive. In this study, we used the available omics data to compile a list of TD candidate genes, and we subsequently conducted tissue/cell type specificity and functional enrichment analyses of this list. Using genomic data, we also investigated genetic sharing between TD and blood and cerebrospinal fluid (CSF) metabolite levels. Lastly, we built a molecular landscape of TD through integrating the results from these analyses with an extensive literature search to identify the interactions between the TD candidate genes/proteins and metabolites. We found evidence for an enriched expression of the TD candidate genes in four brain regions and the pituitary. The functional enrichment analyses implicated two pathways ('cAMP-mediated signaling' and 'Endocannabinoid Neuronal Synapse Pathway') and multiple biological functions related to brain development and synaptic transmission in TD etiology. Furthermore, we found genetic sharing between TD and the blood and CSF levels of 39 metabolites. The landscape of TD not only provides insights into the (altered) molecular processes that underlie the disease but, through the identification of potential drug targets (such as FLT3, NAALAD2, CX3CL1-CX3CR1, OPRM1, and HRH2), it also yields clues for developing novel TD treatments.
Collapse
|
10
|
Perebyinis M, Rognan D. Overlap of On-demand Ultra-large Combinatorial Spaces with On-the-shelf Drug-like Libraries. Mol Inform 2023; 42:e2200163. [PMID: 36072995 DOI: 10.1002/minf.202200163] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
On-demand combinatorial spaces are shifting paradigms in early drug discovery, by considerably increasing the searchable chemical space to several billions of compounds while securing their synthetic accessibility. We here systematically compared the on-the-shelf available drug-like chemical space (9 million compounds) to three on-demand ultra-large (ODUL) combinatorial fragment spaces (REAL, CHEMriya, GalaXi) covering 32 billion of readily accessible molecules. Surprisingly, only one space (REAL) intersects almost entirely the currently available drug-like space, suggesting that it is the only ODUL widely suitable for in-stock hit expansion. Of course, expanding a preliminary ODUL hit in the same chemical space is the best possible strategy to rapidly generate structure-activity relationships. All three spaces remain well suited to early hit finding initiatives since they all provide numerous unique scaffolds that are not described by on-the shelf collections.
Collapse
Affiliation(s)
- Mariana Perebyinis
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, 74 route du Rhin, F-67400, Illkirch, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, 74 route du Rhin, F-67400, Illkirch, France
| |
Collapse
|
11
|
Luo J, Zeng L, Li J, Xu S, Zhao W. Oxidative DNA Damage-induced PARP-1-mediated Autophagic Flux Disruption Contributes to Bupivacaine-induced Neurotoxicity During Pregnancy. Curr Neuropharmacol 2023; 21:2134-2150. [PMID: 37021417 PMCID: PMC10556365 DOI: 10.2174/1570159x21666230404102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 04/07/2023] Open
Abstract
OBJECTIVE Severe neurologic complications after spinal anesthesia are rare but highly distressing, especially in pregnant women. Bupivacaine is widely used in spinal anesthesia, but its neurotoxic effects have gained attention. METHODS Furthermore, the etiology of bupivacaine-mediated neurotoxicity in obstetric patients remains unclear. Female C57BL/6 mice were intrathecally injected with 0.75% bupivacaine on the 18th day of pregnancy. We used immunohistochemistry to examine DNA damage after bupivacaine treatment in pregnant mice and measured γ-H2AX (Ser139) and 8-OHdG in the spinal cord. A PARP-1 inhibitor (PJ34) and autophagy inhibitor (3-MA) were administered with bupivacaine in pregnant mice. Parp-1flox/flox mice were crossed with Nes-Cre transgenic mice to obtain neuronal conditional knockdown mice. Then, LC3B and P62 staining were performed to evaluate autophagic flux in the spinal cords of pregnant wild-type (WT) and Parp-1-/- mice. We performed transmission electron microscopy (TEM) to evaluate autophagosomes. RESULTS The present study showed that oxidative stress-mediated DNA damage and neuronal injury were increased after bupivacaine treatment in the spinal cords of pregnant mice. Moreover, PARP-1 was significantly activated, and autophagic flux was disrupted. Further studies revealed that PARP-1 knockdown and autophagy inhibitors could alleviate bupivacaine-mediated neurotoxicity in pregnant mice. CONCLUSION Bupivacaine may cause neuronal DNA damage and PARP-1 activation in pregnant mice. PARP-1 further obstructed autophagic flux and ultimately led to neurotoxicity.
Collapse
Affiliation(s)
- Jiaming Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Lei Zeng
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ji Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
12
|
Blockade of Cholecystokinin Type 2 Receptors Prevents the Onset of Vincristine-Induced Neuropathy in Mice. Pharmaceutics 2022; 14:pharmaceutics14122823. [PMID: 36559317 PMCID: PMC9788598 DOI: 10.3390/pharmaceutics14122823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Vincristine (VCR) is responsible for the onset of the VCR-induced peripheral neuropathy (VIPN), associated with neuropathic pain. Several reports have strongly linked the cholecystokinin type 2 receptor (CCK2R) to nociceptive modulation. Thus, our aim was to evaluate the effect of CCK2R blockade on the onset of VIPN, as well as its interaction on VCR anticancer efficacy. VCR was administrated in mice for 8 days (100 µg/kg/d, i.p.). Transcriptomic analysis of the dorsal root ganglia (DRG) was performed at day 7 in VCR and control mice. Proglumide (30 mg/kg/d), a CCK1R and CCK2R antagonist, and Ly225910 (1 mg/kg/d), a selective CCK2R antagonist, were administrated one day before and during VCR treatment. Tactile sensitivity was assessed during treatments. Immunofluorescence and morphological analyses were performed on the skin, DRG and sciatic nerve at day 7. The cytotoxicity of VCR in combination with proglumide/Ly225910 was evaluated in human cancer cell lines. Cck2r was highly upregulated in the DRG of VCR mice. Proglumide accelerated the recovery of normal sensitivity, while Ly225910 totally prevented the onset of allodynia and nerve injuries induced by VCR. Proglumide or Ly225910 in combination with VCR did not affect the cytotoxicity of VCR. Targeting CCK2R could therefore be an effective strategy to prevent the onset of VIPN.
Collapse
|
13
|
Gamble MC, Williams BR, Singh N, Posa L, Freyberg Z, Logan RW, Puig S. Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Front Syst Neurosci 2022; 16:1059089. [PMID: 36532632 PMCID: PMC9751598 DOI: 10.3389/fnsys.2022.1059089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the prevalence of opioid misuse, opioids remain the frontline treatment regimen for severe pain. However, opioid safety is hampered by side-effects such as analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, or reward. These side effects promote development of opioid use disorders and ultimately cause overdose deaths due to opioid-induced respiratory depression. The intertwined nature of signaling via μ-opioid receptors (MOR), the primary target of prescription opioids, with signaling pathways responsible for opioid side-effects presents important challenges. Therefore, a critical objective is to uncouple cellular and molecular mechanisms that selectively modulate analgesia from those that mediate side-effects. One such mechanism could be the transactivation of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-effects can be uncoupled from analgesia signaling via targeting RTK family receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This review focuses on the current state of knowledge surrounding the basic pharmacology of RTKs and bidirectional regulation of MOR signaling, as well as how MOR-RTK signaling may modulate undesirable effects of chronic opioid use, including opioid analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, and reward. Further research is needed to better understand RTK-MOR transactivation signaling pathways, and to determine if RTKs are a plausible therapeutic target for mitigating opioid side effects.
Collapse
Affiliation(s)
- Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Navsharan Singh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Luca Posa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
14
|
Paiola M, Ma S, Robert J. Evolution and Potential Subfunctionalization of Duplicated fms-Related Class III Receptor Tyrosine Kinase flt3s and Their Ligands in the Allotetraploid Xenopus laevis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:960-969. [PMID: 36130129 PMCID: PMC9512362 DOI: 10.4049/jimmunol.2200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022]
Abstract
The fms-related tyrosine kinase 3 (Flt3) and its ligand (Flt3lg) are important regulators of hematopoiesis and dendritic cell (DC) homeostasis with unsettled coevolution. Gene synteny and deduced amino acid sequence analyses identified conserved flt3 gene orthologs across all jawed vertebrates. In contrast, flt3lg orthologs were not retrieved in ray-finned fish, and the gene locus exhibited more variability among species. Interestingly, duplicated flt3/flt3lg genes were maintained in the allotetraploid Xenopus laevis Comparison of modeled structures of X. laevis Flt3 and Flt3lg homoeologs with the related diploid Xenopus tropicalis and with humans indicated a higher conformational divergence between the homoeologous pairs than their respective counterparts. The distinctive developmental and tissue expression patterns of Flt3 and Flt3lg homoeologs in tadpoles and adult frogs suggest a subfunctionalization of these homoeologs. To characterize Flt3 cell surface expression, X. laevis-tagged rFlt3lg.S and rFlt3lg.L were produced. Both rFlt3lg.S and rFlt3lg.L bind in vitro Flt3.S and Flt3.L and can trigger Erk1/2 signaling, which is consistent with a partial overlapping function between homoeologs. In spleen, Flt3.S/L cell surface expression was detected on a fraction of B cells and a population of MHC class IIhigh/CD8+ leukocytes phenotypically similar to the recently described dual follicular/conventional DC-like XL cells. Our result suggests that 1) Flt3lg.S and Flt3lg.L are both involved in XL cell homeostasis and that 2) XL cells have hematopoietic origin. Furthermore, we detected surface expression of the macrophage/monocyte marker Csf1r.S on XL cells as in mammalian and chicken DCs, which points to a common evolutionary origin in vertebrate DCs.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Siyuan Ma
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
15
|
Defaye M, Iftinca MC, Gadotti VM, Basso L, Abdullah NS, Cumenal M, Agosti F, Hassan A, Flynn R, Martin J, Soubeyre V, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Mery PF, Bourinet E, Zamponi GW, Altier C. The neuronal tyrosine kinase receptor ligand ALKAL2 mediates persistent pain. J Clin Invest 2022; 132:154317. [PMID: 35608912 PMCID: PMC9197515 DOI: 10.1172/jci154317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase known for its oncogenic potential that is involved in the development of the peripheral and central nervous system. ALK receptor ligands ALKAL1 and ALKAL2 were recently found to promote neuronal differentiation and survival. Here, we show that inflammation or injury enhanced ALKAL2 expression in a subset of TRPV1+ sensory neurons. Notably, ALKAL2 was particularly enriched in both mouse and human peptidergic nociceptors, yet weakly expressed in nonpeptidergic, large-diameter myelinated neurons or in the brain. Using a coculture expression system, we found that nociceptors exposed to ALKAL2 exhibited heightened excitability and neurite outgrowth. Intraplantar CFA or intrathecal infusion of recombinant ALKAL2 led to ALK phosphorylation in the lumbar dorsal horn of the spinal cord. Finally, depletion of ALKAL2 in dorsal root ganglia or blocking ALK with clinically available compounds crizotinib or lorlatinib reversed thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury, respectively. Overall, our work uncovers the ALKAL2/ALK signaling axis as a central regulator of nociceptor-induced sensitization. We propose that clinically approved ALK inhibitors used for non–small cell lung cancer and neuroblastomas could be repurposed to treat persistent pain conditions.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Mircea C Iftinca
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Vinicius M Gadotti
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Lilian Basso
- INSERM, University of Toulouse, Toulouse, France
| | - Nasser S Abdullah
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Melissa Cumenal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Ahmed Hassan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Robyn Flynn
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | | | | | - Gaëtan Poulen
- Department of Neurosurgery, University of Montpellier, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, University of Montpellier, Montpellier, France
| | | | - Luc Bauchet
- Department of Neurosurgery, University of Montpellier, Montpellier, France
| | | | | | | | - Christophe Altier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| |
Collapse
|
16
|
Liedtke W. Long March Toward Safe and Effective Analgesia by Enhancing Gene Expression of Kcc2: First Steps Taken. Front Mol Neurosci 2022; 15:865600. [PMID: 35645734 PMCID: PMC9137411 DOI: 10.3389/fnmol.2022.865600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Low intraneuronal chloride in spinal cord dorsal horn pain relay neurons is critical for physiologic transmission of primary pain afferents because low intraneuronal chloride dictates whether GABA-ergic and glycin-ergic neurotransmission is inhibitory. If the neuronal chloride elevates to pathologic levels, then spinal cord primary pain relay becomes leaky and exhibits the behavioral hallmarks of pathologic pain, namely hypersensitivity and allodynia. Low chloride in spinal cord dorsal horn neurons is maintained by proper gene expression of Kcc2 and sustained physiologic function of the KCC2 chloride extruding electroneutral transporter. Peripheral nerve injury and other forms of neural injury evoke greatly diminished Kcc2 gene expression and subsequent corruption of inhibitory neurotransmission in the spinal cord dorsal horn, thus causing derailment of the gate function for pain. Here I review key discoveries that have helped us understand these fundamentals, and focus on recent insights relating to the discovery of Kcc2 gene expression enhancing compounds via compound screens in neurons. One such study characterized the kinase inhibitor, kenpaullone, more in-depth, revealing its function as a robust and long-lasting analgesic in preclinical models of nerve injury and cancer bone pain, also elucidating its mechanism of action via GSK3β inhibition, diminishing delta-catenin phosphorylation, and facilitating its nuclear transfer and subsequent enhancement of Kcc2 gene expression by de-repressing Kaiso epigenetic transcriptional regulator. Future directions re Kcc2 gene expression enhancement are discussed, namely combination with other analgesics and analgesic methods, such as spinal cord stimulation and electroacupuncture, gene therapy, and leveraging Kcc2 gene expression-enhancing nanomaterials.
Collapse
|
17
|
Hany R, Leyris JP, Bret G, Mallié S, Sar C, Thouaye M, Hamze A, Provot O, Sokoloff P, Valmier J, Villa P, Rognan D. High-Throughput Screening for Extracellular Inhibitors of the FLT3 Receptor Tyrosine Kinase Reveals Chemically Diverse and Druggable Negative Allosteric Modulators. ACS Chem Biol 2022; 17:709-722. [PMID: 35227060 DOI: 10.1021/acschembio.2c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inhibiting receptor tyrosine kinases is commonly achieved by two main strategies targeting either the intracellular kinase domain by low molecular weight compounds or the extracellular ligand-binding domain by monoclonal antibodies. Identifying small molecules able to inhibit RTKs at the extracellular level would be highly desirable to gain exquisite selectivity but is believed to be challenging owing to the size of RTK endogenous ligands (cytokines, growth factors) and the topology of RTK extracellular domains. We here report the high-throughput screening of the French Chemical Library (48K compounds) for extracellular inhibitors of the Fms-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase, by a homogeneous time-resolved fluorescence competition assay. A total of 679 small molecular weight ligands (1.4%) were confirmed to strongly inhibit (>75%) the binding of the fluorescent labeled FLT3 ligand (FL cytokine) to FLT3 overexpressed in HEK-293 cells, at two different concentrations (5 and 20 μM). Concentration-response curves, obtained for 111 lead-like molecules, confirmed the unexpected tolerance of the FLT3 extracellular domain for low molecular weight druggable inhibitors exhibiting submicromolar potencies, chemical diversity, and promising pharmacokinetic properties. Further investigation of one hit confirmed inhibitory properties in dorsal root ganglia neurons and in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
- Romain Hany
- Plate-forme de Chimie Biologique Intégrative de Strasbourg (PCBIS), UAR3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch Cedex, France
| | - Jean-Philippe Leyris
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
- BIODOL Therapeutics, CAP Alpha, 34830 Clapiers, France
| | - Guillaume Bret
- Laboratoire d’Innovation Thérapeutique (LIT), UMR7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| | - Sylvie Mallié
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Chamroeun Sar
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Maxime Thouaye
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | | | - Jean Valmier
- Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Pascal Villa
- Plate-forme de Chimie Biologique Intégrative de Strasbourg (PCBIS), UAR3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch Cedex, France
| | - Didier Rognan
- Laboratoire d’Innovation Thérapeutique (LIT), UMR7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
18
|
The Antinociceptive Potential of Camellia japonica Leaf Extract, (−)-Epicatechin, and Rutin against Chronic Constriction Injury-Induced Neuropathic Pain in Rats. Antioxidants (Basel) 2022; 11:antiox11020410. [PMID: 35204294 PMCID: PMC8869459 DOI: 10.3390/antiox11020410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/14/2023] Open
Abstract
Neuropathic pain is caused by a lesion or disease of the somatosensory nervous system. Currently, prescribed treatments are still unsatisfactory or have limited effectiveness. Camellia japonica leaves are known to have antioxidant and anti-inflammatory properties.; however, their antinociceptive efficacy has not yet been explored. We examined the antinociceptive efficacy and underlying mechanism of C. japonica leaf extract (CJE) in chronic constriction injury (CCI)-induced neuropathic pain models. To test the antinociceptive activity of CJE, three types of allodynia were evaluated: punctate allodynia using von Frey filaments, dynamic allodynia using a paintbrush and cotton swab, and cold allodynia using a cold plate test. CCI rats developed neuropathic pain representing increases in the three types of allodynia and spontaneous pain. In addition, CCI rats showed high phosphorylation levels of mitogen-activated protein kinases (MAPKs), transcription factors, and nociceptive mediators in dorsal root ganglion (DRG). The ionized calcium-binding adapter molecule 1 levels and neuroinflammation also increased following CCI surgery in the spinal cord. CJE and its active components have potential antinociceptive effects against CCI-induced neuropathic pain that might be mediated by MAPK activation in the DRG and microglial activation in the spinal cord. These findings suggest that CJE, (−)-epicatechin, and rutin could be novel candidates for neuropathic pain management.
Collapse
|
19
|
Li J, Chen Y, Liu J, Zhang D, Liang P, Lu P, Shen J, Miao C, Zuo Y, Zhou C. Elevated Expression and Activity of Sodium Leak Channel Contributes to Neuronal Sensitization of Inflammatory Pain in Rats. Front Mol Neurosci 2021; 14:723395. [PMID: 34512260 PMCID: PMC8430348 DOI: 10.3389/fnmol.2021.723395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory pain encompasses many clinical symptoms, and there is no satisfactory therapeutic target. Neuronal hyperexcitability and/or sensitization of the primary nociceptive neurons in the dorsal root ganglion (DRG) and spinal dorsal horn are critical to the development and maintenance of inflammatory pain. The sodium leak channel (NALCN), a non-selective cation channel, mediates the background Na+ leak conductance and controls neuronal excitability. It is unknown whether abnormal activity of NALCN mediates the pathological process of inflammatory pain. Complete Freund’s adjuvant (CFA) was injected into the left footpad of rats to induce inflammatory pain. The thresholds of mechanical and thermal sensation and spontaneous pain behaviors were assessed. The expression of NALCN in DRG and spinal dorsal cord was measured. NALCN currents and the contribution of NALCN to neuronal excitability in the DRG and spinal dorsal cord were recorded using whole-cell patch-clamping recording. NALCN was abundantly expressed in neurons of the DRG and spinal dorsal cord. In acutely isolated DRG neurons and spinal cord slices from rats with CFA-induced inflammatory pain, NALCN currents and neuronal excitability were increased. Subsequently, intrathecal and sciatic nerve injection of NALCN-small interfering RNA (siRNA) decreased NALCN mRNA and reverted NALCN currents to normal levels, and then reduced CFA-induced neuronal excitability and alleviated pain symptoms. Furthermore, pain-related symptoms were significantly prevented by the NALCN-shRNA-mediated NALCN knockdown in DRG and spinal cord. Therefore, increased expression and activity of NALCN contributed to neuronal sensitization in CFA-induced inflammatory pain. NALCN may be a novel molecular target for the control of inflammatory pain.
Collapse
Affiliation(s)
- Jia Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, Xi'an Jiaotong University-Affiliated Honghui Hospital, Xi'an, China
| | - Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Peilin Lu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiefei Shen
- Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases and Department of Prosthodontics, West China Stomatology Hospital of Sichuan University, Chengdu, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Jin F, Zhao L, Hu Q, Qi F. Peripheral EphrinB1/EphB1 signalling attenuates muscle hyperalgesia in MPS patients and a rat model of taut band-associated persistent muscle pain. Mol Pain 2021; 16:1744806920984079. [PMID: 33356837 PMCID: PMC7780166 DOI: 10.1177/1744806920984079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Myofascial pain syndrome (MPS) is an important clinical condition that is characterized by chronic muscle pain and a myofascial trigger point (MTrP) located in a taut band (TB). Previous studies showed that EphrinB1 was involved in the regulation of pathological pain via EphB1 signalling, but whether EphrinB1-EphB1 plays a role in MTrP is not clear. Methods The present study analysed the levels of p-EphB1/p-EphB2/p-EphB3 in biopsies of MTrPs in the trapezius muscle of 11 MPS patients and seven healthy controls using a protein microarray kit. EphrinB1-Fc was injected intramuscularly to detect EphrinB1s/EphB1s signalling in peripheral sensitization. We applied a blunt strike to the left gastrocnemius muscles (GM) and eccentric exercise for 8 weeks with 4 weeks of recovery to analyse the function of EphrinB1/EphB1 in the muscle pain model. Results P-EphB1, p-EphB2, and p-EphB3 expression was highly increased in human muscles with MTrPs compared to healthy muscle. EphB1 (r = 0.723, n = 11, P < 0.05), EphB2 (r = 0.610, n = 11, P < 0.05), and EphB3 levels (r = 0.670, n = 11, P < 0.05) in the MPS group were significantly correlated with the numerical rating scale (NRS) in the MTrPs. Intramuscular injection of EphrinB1-Fc produces hyperalgesia, which can be partially prevented by pre-treatment with EphB1-Fc. The p-EphB1 contents in MTrPs of MPS animals were significantly higher than that among control animals (P < 0.01). Intramuscular administration of the EphB1 inhibitor EphB1-Fr significantly suppressed mechanical hyperalgesia. Conclusions The present study showed that the increased expression of p-EphB1/p-EphB2/p-EphB3 was related to MTrPs in patients with MPS. This report is the first study to examine the function of EphrinB1-EphB1 signalling in primary muscle afferent neurons in MPS patients and a rat animal model. This pathway may be one of the most important and promising targets for MPS.
Collapse
Affiliation(s)
- Feihong Jin
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, Ji'nan, China
| | - Lianying Zhao
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, Ji'nan, China
| | - Qiya Hu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, Ji'nan, China
| | - Feng Qi
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, Ji'nan, China
| |
Collapse
|
21
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
22
|
Tran-Nguyen VK, Bret G, Rognan D. True Accuracy of Fast Scoring Functions to Predict High-Throughput Screening Data from Docking Poses: The Simpler the Better. J Chem Inf Model 2021; 61:2788-2797. [PMID: 34109796 DOI: 10.1021/acs.jcim.1c00292] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hundreds of fast scoring functions have been developed over the last 20 years to predict binding free energies from three-dimensional structures of protein-ligand complexes. Despite numerous statistical promises, we believe that none of them has been properly validated for daily prospective high-throughput virtual screening studies, mostly because in silico screening challenges usually employ artificially built and biased datasets. We here carry out a fully unbiased evaluation of four scoring functions (Pafnucy, ΔvinaRF20, IFP, and GRIM) on an in-house developed data collection of experimental high-confidence screening data (LIT-PCBA) covering about 3 million data points on 15 diverse pharmaceutical targets. All four scoring functions were applied to rescore the docking poses of LIT-PCBA compounds in conditions mimicking exactly standard drug discovery scenarios and were compared in terms of propensity to enrich true binders in the top 1%-ranked hit lists. Interestingly, rescoring based on simple interaction fingerprints or interaction graphs outperforms state-of-the-art machine learning and deep learning scoring functions in most of the cases. The current study notably highlights the strong tendency of deep learning methods to predict affinity values within a very narrow range centered on the mean value of samples used for training. Moreover, it suggests that knowledge of pre-existing binding modes is the key to detecting the most potent binders.
Collapse
Affiliation(s)
- Viet-Khoa Tran-Nguyen
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| | - Guillaume Bret
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
23
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
24
|
Jeon M, Jagodnik KM, Kropiwnicki E, Stein DJ, Ma'ayan A. Prioritizing Pain-Associated Targets with Machine Learning. Biochemistry 2021; 60:1430-1446. [PMID: 33606503 DOI: 10.1021/acs.biochem.0c00930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While hundreds of genes have been associated with pain, much of the molecular mechanisms of pain remain unknown. As a result, current analgesics are limited to few clinically validated targets. Here, we trained a machine learning (ML) ensemble model to predict new targets for 17 categories of pain. The model utilizes features from transcriptomics, proteomics, and gene ontology to prioritize targets for modulating pain. We focused on identifying novel G-protein-coupled receptors (GPCRs), ion channels, and protein kinases because these proteins represent the most successful drug target families. The performance of the model to predict novel pain targets is 0.839 on average based on AUROC, while the predictions for arthritis had the highest accuracy (AUROC = 0.929). The model predicts hundreds of novel targets for pain; for example, GPR132 and GPR109B are highly ranked GPCRs for rheumatoid arthritis. Overall, gene-pain association predictions cluster into three groups that are enriched for cytokine, calcium, and GABA-related cell signaling pathways. These predictions can serve as a foundation for future experimental exploration to advance the development of safer and more effective analgesics.
Collapse
Affiliation(s)
- Minji Jeon
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| | - Kathleen M Jagodnik
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| | - Eryk Kropiwnicki
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| | - Daniel J Stein
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| |
Collapse
|
25
|
Giraud F, Pereira E, Anizon F, Moreau P. Recent Advances in Pain Management: Relevant Protein Kinases and Their Inhibitors. Molecules 2021; 26:molecules26092696. [PMID: 34064521 PMCID: PMC8124620 DOI: 10.3390/molecules26092696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to underline the protein kinases that have been established, either in fundamental approach or clinical trials, as potential biological targets in pain management. Protein kinases are presented according to their group in the human kinome: TK (Trk, RET, EGFR, JAK, VEGFR, SFK, BCR-Abl), CMGC (p38 MAPK, MEK, ERK, JNK, ASK1, CDK, CLK2, DYRK1A, GSK3, CK2), AGC (PKA, PKB, PKC, PKMζ, PKG, ROCK), CAMK, CK1 and atypical/other protein kinases (IKK, mTOR). Examples of small molecule inhibitors of these biological targets, demonstrating an analgesic effect, are described. Altogether, this review demonstrates the fundamental role that protein kinase inhibitors could play in the development of new pain treatments.
Collapse
|
26
|
Wei S, Chang S, Dong Y, Xu L, Yuan X, Jia H, Zhang J, Liang L. Electro-acupuncture Suppresses AXL Expression in Dorsal Root Ganglion Neurons and Enhances Analgesic Effect of AXL Inhibitor in Spinal Nerve Ligation Induced-Neuropathic Pain Rats. Neurochem Res 2021; 46:504-512. [PMID: 33387191 DOI: 10.1007/s11064-020-03185-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Electro-acupuncture (EA) has been used for clinic analgesia for many years. However, its mechanisms are not fully understood. We recently reported that AXL, a tyrosine kinase receptor, contributes to the peripheral mechanism of neuropathic pain. We here aim to figure out the significance of EA on neuropathic pain mediated by AXL in dorsal root ganglion (DRG). Spinal nerve ligation (SNL) was used as a neuropathic pain model. EA was applied at ''Huantiao'' (GB-30) and ''Yanglingquan'' (GB-34) acupoints for 30 min daily from day 7 to day 10 after SNL. EA not only gradually attenuated SNL-induced mechanical allodynia, but also suppressed the expression of phosphorylated AXL (p-AXL) and AXL in injured DRGs of SNL rats examined by western blotting and immunofluorescence. Moreover, intrathecal injection of the subthreshold dose of AXL inhibitor TP0903, significantly prolonged the analgesic time of single EA treatment and enhanced the analgesic effect of repeated EA treatments, suggesting a synergic effect of EA and AXL inhibitor. These results indicate that AXL signaling underlies EA analgesia and combination of AXL inhibitor and EA might be a new strategy for clinic analgesia on neuropathic pain.
Collapse
Affiliation(s)
- Siqi Wei
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, People's Republic of China
| | - Shuyang Chang
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Yue Dong
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Linping Xu
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Xiaocui Yuan
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Hong Jia
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Jun Zhang
- Department of Pain Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, People's Republic of China
| | - Lingli Liang
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
28
|
Tsetsos F, Yu D, Sul JH, Huang AY, Illmann C, Osiecki L, Darrow SM, Hirschtritt ME, Greenberg E, Muller-Vahl KR, Stuhrmann M, Dion Y, Rouleau GA, Aschauer H, Stamenkovic M, Schlögelhofer M, Sandor P, Barr CL, Grados MA, Singer HS, Nöthen MM, Hebebrand J, Hinney A, King RA, Fernandez TV, Barta C, Tarnok Z, Nagy P, Depienne C, Worbe Y, Hartmann A, Budman CL, Rizzo R, Lyon GJ, McMahon WM, Batterson JR, Cath DC, Malaty IA, Okun MS, Berlin C, Woods DW, Lee PC, Jankovic J, Robertson MM, Gilbert DL, Brown LW, Coffey BJ, Dietrich A, Hoekstra PJ, Kuperman S, Zinner SH, Wagner M, Knowles JA, Jeremy Willsey A, Tischfield JA, Heiman GA, Cox NJ, Freimer NB, Neale BM, Davis LK, Coppola G, Mathews CA, Scharf JM, Paschou P, Barr CL, Batterson JR, Berlin C, Budman CL, Cath DC, Coppola G, Cox NJ, Darrow S, Davis LK, Dion Y, Freimer NB, Grados MA, Greenberg E, Hirschtritt ME, Huang AY, Illmann C, King RA, Kurlan R, Leckman JF, Lyon GJ, Malaty IA, Mathews CA, McMahon WM, Neale BM, Okun MS, Osiecki L, Robertson MM, Rouleau GA, Sandor P, Scharf JM, Singer HS, Smit JH, Sul JH, Yu D, Aschauer HAH, Barta C, Budman CL, Cath DC, Depienne C, Hartmann A, Hebebrand J, Konstantinidis A, Mathews CA, Müller-Vahl K, Nagy P, Nöthen MM, Paschou P, Rizzo R, Rouleau GA, Sandor P, Scharf JM, Schlögelhofer M, Stamenkovic M, Stuhrmann M, Tsetsos F, Tarnok Z, Wolanczyk T, Worbe Y, Brown L, Cheon KA, Coffey BJ, Dietrich A, Fernandez TV, Garcia-Delgar B, Gilbert D, Grice DE, Hagstrøm J, Hedderly T, Heiman GA, Heyman I, Hoekstra PJ, Huyser C, Kim YK, Kim YS, King RA, Koh YJ, Kook S, Kuperman S, Leventhal BL, Madruga-Garrido M, Mir P, Morer A, Münchau A, Plessen KJ, Roessner V, Shin EY, Song DH, Song J, Tischfield JA, Willsey AJ, Zinner S, Aschauer H, Barr CL, Barta C, Batterson JR, Berlin C, Brown L, Budman CL, Cath DC, Coffey BJ, Coppola G, Cox NJ, Darrow S, Davis LK, Depienne C, Dietrich A, Dion Y, Fernandez T, Freimer NB, Gilbert D, Grados MA, Greenberg E, Hartmann A, Hebebrand J, Heiman G, Hirschtritt ME, Hoekstra P, Huang AY, Illmann C, Jankovic J, King RA, Kuperman S, Lee PC, Lyon GJ, Malaty IA, Mathews CA, McMahon WM, Müller-Vahl K, Nagy P, Neale BM, Nöthen MM, Okun MS, Osiecki L, Paschou P, Rizzo R, Robertson MM, Rouleau GA, Sandor P, Scharf JM, Schlögelhofer M, Singer HS, Stamenkovic M, Stuhrmann M, Sul JH, Tarnok Z, Tischfield J, Tsetsos F, Willsey AJ, Woods D, Worbe Y, Yu D, Zinner S. Synaptic processes and immune-related pathways implicated in Tourette syndrome. Transl Psychiatry 2021; 11:56. [PMID: 33462189 PMCID: PMC7814139 DOI: 10.1038/s41398-020-01082-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS.
Collapse
Grants
- R01 NS102371 NINDS NIH HHS
- R01 NS096207 NINDS NIH HHS
- R01 NS096008 NINDS NIH HHS
- R01 MH115958 NIMH NIH HHS
- K08 MH099424 NIMH NIH HHS
- U24 NS095914 NINDS NIH HHS
- K02 NS085048 NINDS NIH HHS
- R01 MH115963 NIMH NIH HHS
- U01 HG009086 NHGRI NIH HHS
- R56 MH120736 NIMH NIH HHS
- U54 MD010722 NIMHD NIH HHS
- UL1 TR001863 NCATS NIH HHS
- R01 DC016977 NIDCD NIH HHS
- R01 NS105746 NINDS NIH HHS
- R01 MH118233 NIMH NIH HHS
- DP2 HD098859 NICHD NIH HHS
- R01 MH115961 NIMH NIH HHS
- U24 MH068457 NIMH NIH HHS
- R25 NS108939 NINDS NIH HHS
- R01 MH114927 NIMH NIH HHS
- R01 NR014852 NINR NIH HHS
- R21 HG010652 NHGRI NIH HHS
- R01 MH113362 NIMH NIH HHS
- RM1 HG009034 NHGRI NIH HHS
- FT is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (IKY)
- KMV has received financial or material research support from the EU (FP7-HEALTH-2011 No. 278367, FP7-PEOPLE-2012-ITN No. 316978), the German Research Foundation (DFG: GZ MU 1527/3-1), the German Ministry of Education and Research (BMBF: 01KG1421), the National Institute of Mental Health (NIMH), the Tourette Gesellschaft Deutschland e.V., the Else-Kroner-Fresenius-Stiftung, and GW, Almirall, Abide Therapeutics, and Therapix Biosiences and has received consultant’s honoraria from Abide Therapeutics, Tilray, Resalo Vertrieb GmbH, and Wayland Group, speaker’s fees from Tilray and Cogitando GmbH, and royalties from Medizinisch Wissenschaftliche Verlagsgesellschaft Berlin, Elsevier, and Kohlhammer; and is a consultant for Nuvelution TS Pharma Inc., Zynerba Pharmaceuticals, Resalo Vertrieb GmbH, CannaXan GmbH, Therapix Biosiences, Syqe, Nomovo Pharma, and Columbia Care.
- MMN has received fees for memberships in Scientific Advisory Boards from the Lundbeck Foundation and the Robert-Bosch-Stiftung, and for membership in the Medical-Scientific Editorial Office of the Deutsches Ärzteblatt. MMN was reimbursed travel expenses for a conference participation by Shire Deutschland GmbH. MMN receives salary payments from Life & Brain GmbH and holds shares in Life & Brain GmbH. All this concerned activities outside the submitted work.
- IM has participated in research funded by the Parkinson Foundation, Tourette Association, Dystonia Coalition, AbbVie, Biogen, Boston Scientific, Eli Lilly, Impax, Neuroderm, Prilenia, Revance, Teva but has no owner interest in any pharmaceutical company. She has received travel compensation or honoraria from the Tourette Association of America, Parkinson Foundation, International Association of Parkinsonism and Related Disorders, Medscape, and Cleveland Clinic, and royalties for writing a book with Robert rose publishers.
- MSO serves as a consultant for the Parkinson’s Foundation, and has received research grants from NIH, Parkinson’s Foundation, the Michael J. Fox Foundation, the Parkinson Alliance, Smallwood Foundation, the Bachmann-Strauss Foundation, the Tourette Syndrome Association, and the UF Foundation. MSO’s DBS research is supported by: NIH R01 NR014852 and R01NS096008. MSO is PI of the NIH R25NS108939 Training Grant. MSO has received royalties for publications with Demos, Manson, Amazon, Smashwords, Books4Patients, Perseus, Robert Rose, Oxford and Cambridge (movement disorders books). MSO is an associate editor for New England Journal of Medicine Journal Watch Neurology. MSO has participated in CME and educational activities on movement disorders sponsored by the Academy for Healthcare Learning, PeerView, Prime, QuantiaMD, WebMD/Medscape, Medicus, MedNet, Einstein, MedNet, Henry Stewart, American Academy of Neurology, Movement Disorders Society and by Vanderbilt University. The institution and not MSO receives grants from Medtronic, Abbvie, Boston Scientific, Abbott and Allergan and the PI has no financial interest in these grants. MSO has participated as a site PI and/or co-I for several NIH, foundation, and industry sponsored trials over the years but has not received honoraria. Research projects at the University of Florida receive device and drug donations.
- DW receives royalties for books on Tourette Syndrome with Guilford Press, Oxford University Press, and Springer Press.
- BMN is a member of the scientific advisory board at Deep Genomics and consultant for Camp4 Therapeutics, Takeda Pharmaceutical and Biogen.
Collapse
Affiliation(s)
- Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Sabrina M Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Kirsten R Muller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | | | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas V Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Douglas W Woods
- Marquette University and University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Paul C Lee
- Tripler Army Medical Center and University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Donald L Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | | | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Samuel H Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | | | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | | | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Roger Kurlan
- Atlantic Neuroscience Institute, Overlook Hospital, Summit, NJ, USA
| | - James F Leckman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jan H Smit
- Department of Psychiatry, VU UniversityMedical Center, Amsterdam, The Netherlands
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harald Aschauer Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anastasios Konstantinidis
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Center for Mental Health Muldenstrasse, BBRZMed, Linz, Austria
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Tomasz Wolanczyk
- Department of Child Psychiatry, Medical University of Warsaw, 00-001, Warsaw, Poland
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Lawrence Brown
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keun-Ah Cheon
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thomas V Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Blanca Garcia-Delgar
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic Universitari, Barcelona, Spain
| | - Donald Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Dorothy E Grice
- Department of Psychiatry, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Hagstrøm
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
| | - Tammy Hedderly
- Tic and Neurodevelopmental Movements Service (TANDeM), Evelina Children's Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
- Paediatric Neurosciences, Kings College London, London, UK
| | - Gary A Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Isobel Heyman
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Psychological and Mental Health Services, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chaim Huyser
- De Bascule, Academic Centre for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | | | - Young-Shin Kim
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yun-Joo Koh
- The Korea Institute for Children's Social Development, Rudolph Child Research Center, Seoul, South Korea
| | - Sodahm Kook
- Kangbuk Samsung Hospital, Seoul, South Korea
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bennett L Leventhal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Marcos Madruga-Garrido
- Sección de Neuropediatría, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Kerstin J Plessen
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav CarusTU Dresden, Dresden, Germany
| | - Eun-Young Shin
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Dong-Ho Song
- Yonsei University College of Medicine, Yonsei Yoo & Kim Mental Health Clinic, Seoul, South Korea
| | - Jungeun Song
- National Health Insurance Service Ilsan Hospital, Goyang-Si, South Korea
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Harald Aschauer
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
- Biopsychosocial Corporation, Vienna, Austria
| | - Cathy L Barr
- Krembil Research Institute, University Health Network, Hospital for Sick Children, and University of Toronto, Toronto, Canada
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology, and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Cheston Berlin
- Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lawrence Brown
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cathy L Budman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Danielle C Cath
- Department of Psychiatry, University Medical Center Groningen and Rijksuniversity Groningen, and Drenthe Mental Health Center, Groningen, the Netherlands
| | - Barbara J Coffey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabrina Darrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yves Dion
- McGill University Health Center, University of Montreal, McGill University Health Centre, Montreal, Canada
| | - Thomas Fernandez
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nelson B Freimer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Donald Gilbert
- Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Marco A Grados
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Erica Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Andreas Hartmann
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Matthew E Hirschtritt
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Pieter Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Robert A King
- Yale Child Study Center and the Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel Kuperman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Paul C Lee
- Tripler Army Medical Center and University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Gholson J Lyon
- Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
| | - Irene A Malaty
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - William M McMahon
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Peter Nagy
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Benjamin M Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, University of Bonn Medical School, Bonn, Germany
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Renata Rizzo
- Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mary M Robertson
- Division of Psychiatry, Department of Neuropsychiatry, University College London, London, UK
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Paul Sandor
- University Health Network, Youthdale Treatment Centres, and University of Toronto, Toronto, Canada
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Harvey S Singer
- Johns Hopkins University School of Medicine and the Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mara Stamenkovic
- Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
| | - Manfred Stuhrmann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jae Hoon Sul
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary
| | - Jay Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Douglas Woods
- Marquette University and University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Yulia Worbe
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hopital Saint Antoine, Paris, France
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel Zinner
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
29
|
Abramov D, Guiberson NGL, Daab A, Na Y, Petsko GA, Sharma M, Burré J. Targeted stabilization of Munc18-1 function via pharmacological chaperones. EMBO Mol Med 2021; 13:e12354. [PMID: 33332765 PMCID: PMC7799358 DOI: 10.15252/emmm.202012354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia, and tremor. No disease-modifying therapy exists to treat these disorders, and while chemical chaperones have been shown to alleviate neuronal dysfunction caused by missense mutations in Munc18-1, their required high concentrations and potential toxicity necessitate a Munc18-1-targeted therapy. Munc18-1 is essential for neurotransmitter release, and mutations in Munc18-1 have been shown to cause neuronal dysfunction via aggregation and co-aggregation of the wild-type protein, reducing functional Munc18-1 levels well below hemizygous levels. Here, we identify two pharmacological chaperones via structure-based drug design, that bind to wild-type and mutant Munc18-1, and revert Munc18-1 aggregation and neuronal dysfunction in vitro and in vivo, providing the first targeted treatment strategy for these severe pediatric encephalopathies.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Andrew Daab
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
University of BathBathUK
| | - Yoonmi Na
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Gregory A Petsko
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
Ann Romney Center for Neurologic DiseasesDepartment of NeurologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA, USA
| | - Manu Sharma
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Jacqueline Burré
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
30
|
An Index Combining Lost and Remaining Nerve Fibers Correlates with Pain Hypersensitivity in Mice. Cells 2020; 9:cells9112414. [PMID: 33158176 PMCID: PMC7694241 DOI: 10.3390/cells9112414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
Multiple peripheral nerves are known to degenerate after nerve compression injury but the correlation between the extent of nerve alteration and pain severity remains unclear. Here, we used intravital two-photon fluorescence microscopy to longitudinally observe changes in cutaneous fibers in the hind paw of Nav1.8-Cre-tdTomato mice after chronic constriction injury (CCI). Results showed that the CCI led to variable loss of the skin nerve plexus and intraepidermal nerve fibers. The timing of Nav1.8 nerve fiber loss correlated with the development of mechanical hypersensitivity. We compared a scoring approach that assessed whole-paw nerve degeneration with an index that quantified changes in the nerve plexus and terminals in multiple small regions of interest (ROI) from intravital images of the third and fifth toe tips. We found that the number of surviving nerve fibers was not linearly correlated with mechanical hypersensitivity. On the contrary, at 14 days after CCI, the moderately injured mice showed greater mechanical hypersensitivity than the mildly or severely injured mice. This indicates that both surviving and injured nerves are required for evoked neuropathic pain. In addition, these two methods may have the estimative effect as diagnostic and prognostic biomarkers for the assessment of neuropathic pain.
Collapse
|
31
|
Jin F, Guo Y, Wang Z, Badughaish A, Pan X, Zhang L, Qi F. The pathophysiological nature of sarcomeres in trigger points in patients with myofascial pain syndrome: A preliminary study. Eur J Pain 2020; 24:1968-1978. [PMID: 32841448 PMCID: PMC7693045 DOI: 10.1002/ejp.1647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Myofascial pain syndrome (MPS) has a high global prevalence and is associated with myofascial trigger points (MTrPs) in taut bands or nodules. Little is known about the aetiology. The current study assessed the pathophysiological characteristics of MTrPs in MPS patients. METHODS Biopsies of the trapezius muscle were collected from the MTrPs of MPS patients (MTrP group; n = 29) and from healthy controls (control group; n = 24), and their morphologies were analysed via haematoxylin-eosin (H&E) and Masson staining. A protein microarray was used to detect the receptor tyrosine kinase (RTK) family proteins. mRNA and long non-coding RNA (lncRNA) sequencing and analysis were conducted, and immunohistochemistry and Western blotting were used to examine the expression of EphB and Rho family proteins. RESULTS Abnormally contracted sarcomeres showed enlarged, round fibres without inflammation or fibrosis. An lncRNA-mRNA network analysis revealed activation of muscle contraction signalling pathways in MTrP regions. Among RTK family proteins, 15 exhibited increased phosphorylation, and two exhibited decreased phosphorylation in the MTrP regions relative to control levels. In particular, EphB1/EphB2 phosphorylation was increased on the muscle cell membranes of abnormal sarcomeres. RhoA and Rac1, but not cell division control protein 42 (Cdc42), were activated in the abnormal sarcomeres. CONCLUSIONS EphB1/EphB2 and RhoA/Rac1 might play roles in the aetiology of abnormally contracted sarcomeres in MTrPs without inflammatory cell infiltration and fibrotic adhesion. SIGNIFICANCE Contracted sarcomeres were found in MTrP regions, which is consistent with the MTrP formation hypothesis. EphB1/EphB2 and RhoA/Rac1 might play roles in the sarcomere contractile sites of MTrPs, which may be promising therapeutic targets.
Collapse
Affiliation(s)
- Feihong Jin
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| | - Yaqiu Guo
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
- Department of AnesthesiologyJinan Maternity and Child Care HospitalJi’nanChina
| | - Zi Wang
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
- Department of AnesthesiologyFirst Affiliated Hospital of Shandong TCM UniversityJi’nanChina
| | - Ahmed Badughaish
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| | - Xin Pan
- Department of OrthopedicsQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| | - Li Zhang
- Department of OrthopedicsQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| | - Feng Qi
- Department of Anesthesiology and Pain ClinicQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJi’nanChina
| |
Collapse
|
32
|
Fogha J, Diharce J, Obled A, Aci-Sèche S, Bonnet P. Computational Analysis of Crystallization Additives for the Identification of New Allosteric Sites. ACS OMEGA 2020; 5:2114-2122. [PMID: 32064372 PMCID: PMC7016913 DOI: 10.1021/acsomega.9b02697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Allosteric effect can modulate the biological activity of a protein. Thus, the discovery of new allosteric sites is very attractive for designing new modulators or inhibitors. Here, we propose an innovative way to identify allosteric sites, based on crystallization additives (CA), used to stabilize proteins during the crystallization process. Density and clustering analyses of CA, applied on protein kinase and nuclear receptor families, revealed that CA are not randomly distributed around protein structures, but they tend to aggregate near common sites. All orthosteric and allosteric cavities described in the literature are retrieved from the analysis of CA distribution. In addition, new sites were identified, which could be associated to putative allosteric sites. We proposed an efficient and easy way to use the structural information of CA to identify allosteric sites. This method could assist medicinal chemists for the design of new allosteric compounds targeting cavities of new drug targets.
Collapse
|
33
|
Tang BL. The Expanding Therapeutic Potential of Neuronal KCC2. Cells 2020; 9:E240. [PMID: 31963584 PMCID: PMC7016893 DOI: 10.3390/cells9010240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dysfunctions in GABAergic inhibitory neural transmission occur in neuronal injuries and neurological disorders. The potassium-chloride cotransporter 2 (KCC2, SLC12A5) is a key modulator of inhibitory GABAergic inputs in healthy adult neurons, as its chloride (Cl-) extruding activity underlies the hyperpolarizing reversal potential for GABAA receptor Cl- currents (EGABA). Manipulation of KCC2 levels or activity improve symptoms associated with epilepsy and neuropathy. Recent works have now indicated that pharmacological enhancement of KCC2 function could reactivate dormant relay circuits in an injured mouse's spinal cord, leading to functional recovery and the attenuation of neuronal abnormality and disease phenotype associated with a mouse model of Rett syndrome (RTT). KCC2 interacts with Huntingtin and is downregulated in Huntington's disease (HD), which contributed to GABAergic excitation and memory deficits in the R6/2 mouse HD model. Here, these recent advances are highlighted, which attest to KCC2's growing potential as a therapeutic target for neuropathological conditions resulting from dysfunctional inhibitory input.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; ; Tel.: +65-6516-1040
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
34
|
Da Silva F, Bret G, Teixeira L, Gonzalez CF, Rognan D. Exhaustive Repertoire of Druggable Cavities at Protein-Protein Interfaces of Known Three-Dimensional Structure. J Med Chem 2019; 62:9732-9742. [PMID: 31603323 DOI: 10.1021/acs.jmedchem.9b01184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions (PPIs) offer the unique opportunity to tailor ligands aimed at specifically stabilizing or disrupting the corresponding interfaces and providing a safer alternative to conventional ligands targeting monomeric macromolecules. Selecting biologically relevant protein-protein interfaces for either stabilization or disruption by small molecules is usually biology-driven on a case-by-case basis and does not follow a structural rationale that could be applied to an entire interactome. We herewith provide a first step to the latter goal by using a fully automated and structure-based workflow, applicable to any PPI of known three-dimensional (3D) structure, to identify and prioritize druggable cavities at and nearby PPIs of pharmacological interest. When applied to the entire Protein Data Bank, 164 514 druggable cavities were identified and classified in four groups (interfacial, rim, allosteric, orthosteric) according to their properties and spatial locations. Systematic comparison of PPI cavities with pockets deduced from druggable protein-ligand complexes shows almost no overlap in property space, suggesting that even the most druggable PPI cavities are unlikely to be addressed with conventional drug-like compound libraries. The archive is freely accessible at http://drugdesign.unistra.fr/ppiome .
Collapse
Affiliation(s)
- Franck Da Silva
- Laboratoire d'Innovation Thérapeutique , UMR 7200 CNRS-Université de Strasbourg , 67400 Illkirch , France
| | - Guillaume Bret
- Laboratoire d'Innovation Thérapeutique , UMR 7200 CNRS-Université de Strasbourg , 67400 Illkirch , France
| | - Leandro Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32610-3610 , United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32610-3610 , United States
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique , UMR 7200 CNRS-Université de Strasbourg , 67400 Illkirch , France
| |
Collapse
|
35
|
Osthues T, Sisignano M. Oxidized Lipids in Persistent Pain States. Front Pharmacol 2019; 10:1147. [PMID: 31680947 PMCID: PMC6803483 DOI: 10.3389/fphar.2019.01147] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy, nerve injuries, or diseases like multiple sclerosis can cause pathophysiological processes of persistent and neuropathic pain. Thereby, the activation threshold of ion channels is reduced in peripheral sensory neurons to normally noxious stimuli like heat, cold, acid, or mechanical due to sensitization processes. This leads to enhanced neuronal activity, which can result in mechanical allodynia, cold allodynia, thermal hyperalgesia, spontaneous pain, and may initiate persistent and neuropathic pain. The treatment options for persistent and neuropathic pain patients are limited; for about 50% of them, current medication is not efficient due to severe side effects or low response to the treatment. Therefore, it is of special interest to find additional treatment strategies. One approach is the control of neuronal sensitization processes. Herein, signaling lipids are crucial mediators and play an important role during the onset and maintenance of pain. As preclinical studies demonstrate, lipids may act as endogenous ligands or may sensitize transient receptor potential (TRP)-channels. Likewise, they can cause enhanced activity of sensory neurons by mechanisms involving G-protein coupled receptors and activation of intracellular protein kinases. In this regard, oxidized metabolites of the essential fatty acid linoleic acid, 9- and 13-hydroxyoctadecadienoic acid (HODE), their dihydroxy-metabolites (DiHOMEs), as well as epoxides of linoleic acid (EpOMEs) and of arachidonic acid (EETs), as well as lysophospholipids, sphingolipids, and specialized pro-resolving mediators (SPMs) have been reported to play distinct roles in pain transmission or inhibition. Here, we discuss the underlying molecular mechanisms of the oxidized linoleic acid metabolites and eicosanoids. Furthermore, we critically evaluate their role as potential targets for the development of novel analgesics and for the treatment of persistent or neuropathic pain.
Collapse
Affiliation(s)
- Tabea Osthues
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, Frankfurt, Germany
| |
Collapse
|
36
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
37
|
Increased Expression of Fibronectin Leucine-Rich Transmembrane Protein 3 in the Dorsal Root Ganglion Induces Neuropathic Pain in Rats. J Neurosci 2019; 39:7615-7627. [PMID: 31346030 DOI: 10.1523/jneurosci.0295-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/17/2019] [Accepted: 06/06/2019] [Indexed: 01/19/2023] Open
Abstract
Neuropathic pain is a chronic condition that occurs frequently after nerve injury and induces hypersensitivity or allodynia characterized by aberrant neuronal excitability in the spinal cord dorsal horn. Fibronectin leucine-rich transmembrane protein 3 (FLRT3) is a modulator of neurite outgrowth, axon pathfinding, and cell adhesion, which is upregulated in the dorsal horn following peripheral nerve injury. However, the function of FLRT3 in adults remains unknown. Therefore, we aimed to investigate the involvement of spinal FLRT3 in neuropathic pain using rodent models. In the dorsal horns of male rats, FLRT3 protein levels increased at day 4 after peripheral nerve injury. In the DRG, FLRT3 was expressed in activating transcription factor 3-positive, injured sensory neurons. Peripheral nerve injury stimulated Flrt3 transcription in the DRG but not in the spinal cord. Intrathecal administration of FLRT3 protein to naive rats induced mechanical allodynia and GluN2B phosphorylation in the spinal cord. DRG-specific FLRT3 overexpression using adeno-associated virus also produced mechanical allodynia. Conversely, a function-blocking FLRT3 antibody attenuated mechanical allodynia after partial sciatic nerve ligation. Therefore, FLRT3 derived from injured DRG neurons increases dorsal horn excitability and induces mechanical allodynia.SIGNIFICANCE STATEMENT Neuropathic pain occurs frequently after nerve injury and is associated with abnormal neuronal excitability in the spinal cord. Fibronectin leucine-rich transmembrane protein 3 (FLRT3) regulates neurite outgrowth and cell adhesion. Here, nerve injury increased FLRT3 protein levels in the spinal cord dorsal root, despite the fact that Flrt3 transcripts were only induced in the DRG. FLRT3 protein injection into the rat spinal cord induced mechanical hypersensitivity, as did virus-mediated FLRT3 overexpression in DRG. Conversely, FLRT3 inhibition with antibodies attenuated mechanically induced pain after nerve damage. These findings suggest that FLRT3 is produced by injured DRG neurons and increases neuronal excitability in the dorsal horn, leading to pain sensitization. Neuropathic pain induction is a novel function of FLRT3.
Collapse
|
38
|
Abstract
Sensitization of the transient receptor potential ion channel vanilloid 1 (TRPV1) is critically involved in inflammatory pain. To date, manifold signaling cascades have been shown to converge onto TRPV1 and enhance its sensitization. However, many of them also play a role for nociceptive pain, which limits their utility as targets for therapeutic intervention. Here, we show that the vesicle transport through interaction with t-SNAREs homolog 1B (Vti1b) protein promotes TRPV1 sensitization upon inflammation in cell culture but leaves normal functioning of TRPV1 intact. Importantly, the effect of Vti1b can be recapitulated in vivo: Virus-mediated knockdown of Vti1b in sensory neurons attenuated thermal hypersensitivity during inflammatory pain without affecting mechanical hypersensitivity or capsaicin-induced nociceptive pain. Interestingly, TRPV1 and Vti1b are localized in close vicinity as indicated by proximity ligation assays and are likely to bind to each other, either directly or indirectly, as suggested by coimmunoprecipitations. Moreover, using a mass spectrometry-based quantitative interactomics approach, we show that Vti1b is less abundant in TRPV1 protein complexes during inflammatory conditions compared with controls. Alongside, we identify numerous novel and pain state-dependent binding partners of native TRPV1 in dorsal root ganglia. These data represent a unique resource on the dynamics of the TRPV1 interactome and facilitate mechanistic insights into TRPV1 regulation. We propose that inflammation-related differences in the TRPV1 interactome identified here could be exploited to specifically target inflammatory pain in the future.
Collapse
|
39
|
Growth Factor Signaling Regulates Mechanical Nociception in Flies and Vertebrates. J Neurosci 2019; 39:6012-6030. [PMID: 31138657 DOI: 10.1523/jneurosci.2950-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Mechanical sensitization is one of the most difficult clinical pain problems to treat. However, the molecular and genetic bases of mechanical nociception are unclear. Here we develop a Drosophila model of mechanical nociception to investigate the ion channels and signaling pathways that regulate mechanical nociception. We fabricated von Frey filaments that span the subthreshold to high noxious range for Drosophila larvae. Using these, we discovered that pressure (force/area), rather than force per se, is the main determinant of aversive rolling responses to noxious mechanical stimuli. We demonstrated that the RTK PDGF/VEGF receptor (Pvr) and its ligands (Pvfs 2 and 3) are required for mechanical nociception and normal dendritic branching. Pvr is expressed and functions in class IV sensory neurons, whereas Pvf2 and Pvf3 are produced by multiple tissues. Constitutive overexpression of Pvr and its ligands or inducible overexpression of Pvr led to mechanical hypersensitivity that could be partially separated from morphological effects. Genetic analyses revealed that the Piezo and Pain ion channels are required for mechanical hypersensitivity observed upon ectopic activation of Pvr signaling. PDGF, but not VEGF, peptides caused mechanical hypersensitivity in rats. Pharmacological inhibition of VEGF receptor Type 2 (VEGFR-2) signaling attenuated mechanical nociception in rats, suggesting a conserved role for PDGF and VEGFR-2 signaling in regulating mechanical nociception. VEGFR-2 inhibition also attenuated morphine analgesic tolerance in rats. Our results reveal that a conserved RTK signaling pathway regulates baseline mechanical nociception in flies and rats.SIGNIFICANCE STATEMENT Hypersensitivity to touch is poorly understood and extremely difficult to treat. Using a refined Drosophila model of mechanical nociception, we discovered a conserved VEGF-related receptor tyrosine kinase signaling pathway that regulates mechanical nociception in flies. Importantly, pharmacological inhibition of VEGF receptor Type 2 signaling in rats causes analgesia and blocks opioid tolerance. We have thus established a robust, genetically tractable system for the rapid identification and functional analysis of conserved genes underlying mechanical pain sensitivity.
Collapse
|
40
|
Martineau P, Watier H, Pèlegrin A, Turtoi A. Targets for MAbs: innovative approaches for their discovery & validation, LabEx MAbImprove 6 th antibody industrial symposium, June 25-26, 2018, Montpellier, France. MAbs 2019; 11:812-825. [PMID: 31043141 PMCID: PMC6601567 DOI: 10.1080/19420862.2019.1612691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies (mAbs) have revolutionized the treatment landscape in many disciplines of human medicine. To continue this exciting trend, sustained identification of new, validated and preferably functional targets are needed. However, this is the precise bottleneck in today's development of the next generation of therapeutic mAbs. Failures in translating a target into a successful therapeutic mAb are much more frequent than successes. Labex MAbImprove is a French-led consortium of academic laboratories jointly working on several aspects of the development of next-generation mAbs. The network organizes annual international meetings gathering academia and industry to discuss the different challenges faced in the therapeutic mAbs field. The 2018 symposium (also called AIS2018 and co-organized with MabDesign, the immunotherapy French industrial sector) focused on the discovery and validation of new targets for therapeutic mAbs. Key players from industry and academia outlined a number of exciting contributions, notably dealing with new innovations in the target discovery area, but also lessons learned from failures in the past. This report summarizes the talks presented at the AIS2018. We aim at broad dissemination of the most relevant, unpublished findings presented during the meeting, and hope to inspire all the contributors in this field to take new directions and bring about improvements.
Collapse
Affiliation(s)
- Pierre Martineau
- a IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194 , Université de Montpellier, Institut régional du Cancer de Montpellier , Montpellier , France
| | - Hervé Watier
- b EA7501 GICC, Université de Tours et CHRU de Tours , Tours , France
| | - Andre Pèlegrin
- a IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194 , Université de Montpellier, Institut régional du Cancer de Montpellier , Montpellier , France
| | - Andrei Turtoi
- a IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194 , Université de Montpellier, Institut régional du Cancer de Montpellier , Montpellier , France
| |
Collapse
|
41
|
|