1
|
Wu L, Song Y. Recent innovations in interfacial strategies for DLP 3D printing process optimization. MATERIALS HORIZONS 2024. [PMID: 39470616 DOI: 10.1039/d4mh01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, is capable of transforming computer-aided designs into intricate structures directly and on demand. This technology has garnered significant attention in recent years. Among the various approaches, digital light processing (DLP) 3D printing, which utilizes polymers or prepolymers as the ink, has emerged as the leading new technology, driven by high demand across diverse fields such as customized production, healthcare, education, and art design. DLP 3D printing technology employs cured slices as molding units and is recognized for its potential to achieve both high printing speed and resolution. Recent insights into the DLP printing process highlight its inherent interface transformations between liquid and solid states. This review summarizes key aspects of the printing process, speed, precision, and material diversity optimization, from the view of interfacial interactions between solid and liquid phases which are influenced by resin formation, curing surfaces and light source properties. These interactions include those at the liquid resin-UV pattern interface, the cured structure-curing surface interface, the liquid resin-curing surface interface, and the liquid resin-cured structure interface, each contributing to the unique characteristics of the printed results. Finally, this review addresses the current challenges and limitations of DLP 3D printing, providing valuable insights for future improvements and guiding potential innovations in the field.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yanlin Song
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
2
|
Nguyen LT, Du Prez FE. Direct restoration of photocurable cross-linkers for repeated light-based 3D printing of covalent adaptable networks. MATERIALS HORIZONS 2024. [PMID: 39376135 PMCID: PMC11459227 DOI: 10.1039/d4mh00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Light-based processing of thermosets has gained increasing attention because of its broad application field including its use in digital light processing (DLP) 3D printing. This technique offers efficient design and fabrication of complex structures but typically results in non-recyclable thermoset-based products. To address this issue, we describe here a photocurable, dynamic β-amino ester (BAE) based cross-linker that is not only suitable for DLP printing but can also be chemically degraded via transesterification upon the addition of 2-hydroxyethyl methacrylate (HEMA) as a decross-linker. This conceptually new protocol allows for efficient depolymerization with the direct restoration of curable monomers in a single step without the addition of external catalysts or solvents. By implementing this protocol, we have established a chemical recycling loop for multiple cycles of photo-cross-linking and restoration of cross-linkers, facilitating repeatable DLP 3D printing without generating any waste. The recycled materials exhibit full recovery of thermal properties and Young's modulus while maintaining 75% of their tensile strength for at least three cycles. Simultaneously, the presence of BAE moieties enables the (re)processability of these materials through compression molding.
Collapse
Affiliation(s)
- Loc Tan Nguyen
- A Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Filip E Du Prez
- A Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Zhang J, Xu M, Zhang N, Tao L, Shao M, Wang T, Yang Z, Wang Q, Zhang Y. Exploring the Adaptability of 4D Printed Shape Memory Polymer Featuring Dynamic Covalent Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406358. [PMID: 39254280 DOI: 10.1002/smll.202406358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/01/2024] [Indexed: 09/11/2024]
Abstract
4D printing (4DP) of high-performance shape memory polymers (SMPs), particularly using digital light processing (DLP), has garnered intense global attention due to its capability for rapid and high-precision fabrication of complex configurations, meeting diverse application requirements. However, the development of high-performance dynamic shape memory polymers (DSMPs) for DLP printing remains a significant challenge due to the inherent incompatibilities between the photopolymerization process and the curing/polymerization of high-strength polymers. Here, a mechanically robust DSMP compatible is developed with DLP printing, which incorporates dynamic covalent bonds of imine linking polyimide rigid segments, exhibiting remarkable mechanical performance (tensile strength ≈41.7 MPa, modulus ≈1.63 GPa) and thermal stability (Tg ∼ 113 °C, Td ∼ 208 °C). More importantly, benefiting from the solid-state plasticity conferred by dynamic covalent bonds, 4D printed structures demonstrate rapid network adaptiveness, enabling effortless realization of reconfiguration, self-healing, and recycling. Meanwhile, the extensive π-π conjugated structures bestow DSMP with an intrinsic photothermal effect, allowing controllable morphing of the 4D configuration through dual-mode triggering. This work not only greatly enriches the application scope of high-performance personalized configurations but also provides a reliable approach to addressing environmental pollution and energy crises.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingkun Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Liming Tao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Mingchao Shao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tingmei Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zenghui Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qihua Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
4
|
Zhu G, von Coelln N, Hou Y, Vazquez-Martel C, Spiegel CA, Tegeder P, Blasco E. Digital Light 3D Printing of Double Thermoplastics with Customizable Mechanical Properties and Versatile Reprocessability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401561. [PMID: 38949414 DOI: 10.1002/adma.202401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Digital light processing (DLP) is a 3D printing technology offering high resolution and speed. Printable materials are commonly based on multifunctional monomers, resulting in the formation of thermosets that usually cannot be reprocessed or recycled. Some efforts are made in DLP 3D printing of thermoplastic materials. However, these materials exhibit limited and poor mechanical properties. Here, a new strategy is presented for DLP 3D printing of thermoplastics based on a sequential construction of two linear polymers with contrasting (stiff and flexible) mechanical properties. The inks consist of two vinyl monomers, which lead to the stiff linear polymer, and α-lipoic acid, which forms the flexible linear polymer via thermal ring-opening polymerization in a second step. By varying the ratio of stiff and flexible linear polymers, the mechanical properties can be tuned with Young's modulus ranging from 1.1 GPa to 0.7 MPa, while the strain at break increased from 4% to 574%. Furthermore, these printed thermoplastics allow for a variety of reprocessability pathways including self-healing, solvent casting, reprinting, and closed-loop recycling of the flexible polymer, contributing to the development of a sustainable materials economy. Last, the potential of the new material in applications ranging from soft robotics to electronics is demonstrated.
Collapse
Affiliation(s)
- Guangda Zhu
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nadine von Coelln
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Yi Hou
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Clara Vazquez-Martel
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Christoph A Spiegel
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Tegeder
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Yue L, Su YL, Li M, Yu L, Sun X, Cho J, Brettmann B, Gutekunst WR, Ramprasad R, Qi HJ. Chemical Circularity in 3D Printing with Biobased Δ-Valerolactone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310040. [PMID: 38291858 DOI: 10.1002/adma.202310040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Digital Light Processing (DLP) is a vat photopolymerization-based 3D printing technology that fabricates parts typically made of chemically crosslinked polymers. The rapidly growing DLP market has an increasing demand for polymer raw materials, along with growing environmental concerns. Therefore, circular DLP printing with a closed-loop recyclable ink is of great importance for sustainability. The low-ceiling temperature alkyl-substituted δ-valerolactone (VL) is an industrially accessible biorenewable feedstock for developing recyclable polymers. In this work, acrylate-functionalized poly(δ-valerolactone) (PVLA), synthesized through the ring-opening transesterification polymerization of VL, is used as a platform photoprecursor to improve the chemical circularity in DLP printing. A small portion of photocurable reactive diluent (RD) turns the unprintable PVLA into DLP printable ink. Various photocurable monomers can serve as RDs to modulate the properties of printed structures for applications like sacrificial molds, soft actuators, sensors, etc. The intrinsic depolymerizability of PVLA is well preserved, regardless of whether the printed polymer is a thermoplastic or thermoset. The recovery yield of virgin quality VL monomer is 93% through direct bulk thermolysis of the printed structures. This work proposes the utilization of depolymerizable photoprecursors and highlights the feasibility of biorenewable VL as a versatile material platform toward circular DLP printing.
Collapse
Affiliation(s)
- Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yong-Liang Su
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mingzhe Li
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jaehyun Cho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Blair Brettmann
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Rewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
Xiong D, Ruan P, Li Z, Yi W, Wang J. A General Strategy for Sustainable 3D Printing Based on A Multifunctional Photoinitiator. Angew Chem Int Ed Engl 2024; 63:e202406047. [PMID: 38739107 DOI: 10.1002/anie.202406047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
A multifunctional photoinitiator is presented, offering precise control over light-induced polymerization initiation at 450 nm and material degradation at 365 nm. This is accomplished by covalently linking photoactive bis(acyl)phosphane oxide and photocleavable o-nitrobenzyl ether moieties onto the surface of γ-cyclodextrin. Upon degradation, the resulting linear polymers can be easily re-dissolved in their corresponding monomer and re-cured, exhibiting superior mechanical properties compared to the pristine material. Moreover, this photoinitiator enables the successful 3D printing of intricate and precise structures, representing a promising general strategy for developing recyclable photoresins for 3D printing applications.
Collapse
Affiliation(s)
- Dajun Xiong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (NJUST), Nanjing, 210094, China
| | - Pengfei Ruan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (NJUST), Nanjing, 210094, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (NJUST), Nanjing, 210094, China
| | - Jieping Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (NJUST), Nanjing, 210094, China
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Li H, Zhang B, Ye H, Jian B, He X, Cheng J, Sun Z, Wang R, Chen Z, Lin J, Xiao R, Liu Q, Ge Q. Reconfigurable 4D printing via mechanically robust covalent adaptable network shape memory polymer. SCIENCE ADVANCES 2024; 10:eadl4387. [PMID: 38748786 PMCID: PMC11095468 DOI: 10.1126/sciadv.adl4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
4D printing enables 3D printed structures to change shape over "time" in response to environmental stimulus. Because of relatively high modulus, shape memory polymers (SMPs) have been widely used for 4D printing. However, most SMPs for 4D printing are thermosets, which only have one permanent shape. Despite the efforts that implement covalent adaptable networks (CANs) into SMPs to achieve shape reconfigurability, weak thermomechanical properties of the current CAN-SMPs exclude them from practical applications. Here, we report reconfigurable 4D printing via mechanically robust CAN-SMPs (MRC-SMPs), which have high deformability at both programming and reconfiguration temperatures (>1400%), high Tg (75°C), and high room temperature modulus (1.06 GPa). The high printability for DLP high-resolution 3D printing allows MRC-SMPs to create highly complex SMP 3D structures that can be reconfigured multiple times under large deformation. The demonstrations show that the reconfigurable 4D printing allows one printed SMP structure to fulfill multiple tasks.
Collapse
Affiliation(s)
- Honggeng Li
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Advanced Engineering, Great Bay University, Dongguan, China
| | - Biao Zhang
- Xi’an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, China
| | - Haitao Ye
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Bingcong Jian
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiangnan He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zechu Sun
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Rong Wang
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhe Chen
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ji Lin
- Center for Mechanics Plus under Extreme Environments, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China
- State Key Laboratory of Fluid Power and Mechatronic System, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power and Mechatronic System, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Qingjiang Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qi Ge
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Pruksawan S, Chong YT, Zen W, Loh TJE, Wang F. Sustainable Vat Photopolymerization-Based 3D-Printing through Dynamic Covalent Network Photopolymers. Chem Asian J 2024; 19:e202400183. [PMID: 38509002 DOI: 10.1002/asia.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Vat photopolymerization (VPP) based three-dimensional (3D) printing, including stereolithography (SLA) and digital light projection (DLP), is known for producing intricate, high-precision prototypes with superior mechanical properties. However, the challenge lies in the non-recyclability of covalently crosslinked thermosets used in these printing processes, limiting the sustainable utilization of printed prototypes. This review paper examines the recently explored avenue of VPP 3D-printed dynamic covalent network (DCN) polymers, which enable reversible crosslinks and allow for the reprocessing of printed prototypes, promoting sustainability. These reversible crosslinks facilitate the rearrangement of crosslinked polymers, providing printed polymers with chemical/physical recyclability, self-healing capabilities, and degradability. While various mechanisms for DCN polymer systems are explored, this paper focuses solely on photocurable polymers to highlight their potential to revolutionize the sustainability of VPP 3D printing.
Collapse
Affiliation(s)
- Sirawit Pruksawan
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yi Ting Chong
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wylma Zen
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore, 117583, Republic of Singapore
| | - Terence Jun En Loh
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore, 569830, Republic of Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| |
Collapse
|
9
|
Shin S, Kwon Y, Hwang C, Jeon W, Yu Y, Paik HJ, Lee W, Kwon MS, Ahn D. Visible-Light-Driven Rapid 3D Printing of Photoresponsive Resins for Optically Clear Multifunctional 3D Objects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311917. [PMID: 38288894 DOI: 10.1002/adma.202311917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Light-driven 3D printing is gaining significant attention for its unparalleled build speed and high-resolution in additive manufacturing. However, extending vat photopolymerization to multifunctional, photoresponsive materials poses challenges, such as light attenuation and interference between the photocatalysts (PCs) and photoactive moieties. This study introduces novel visible-light-driven acrylic resins that enable rapid, high-resolution photoactive 3D printing. The synergistic combination of a cyanine-based PC, borate, and iodonium coinitiators (HNu 254) achieves an excellent printing rate and feature resolution under low-intensity, red light exposure. The incorporation of novel hexaarylbiimidazole (HABI) crosslinkers allows for spatially-resolved photoactivation upon exposure to violet/blue light. Furthermore, a photobleaching mechanism inhibited by HNu 254 during the photopolymerization process results in the production of optically-clear 3D printed objects. Real-time Fourier transform infrared spectroscopy validates the rapid photopolymerization of the HABI-containing acrylic resin, whereas mechanistic evaluations reveal the underlying dynamics that are responsible for the rapid photopolymerization rate, wavelength-orthogonal photoactivation, and observed photobleaching phenomenon. Ultimately, this visible-light-based printing method demonstrates: (i) rapid printing rate of 22.5 mm h-1, (ii) excellent feature resolution (≈20 µm), and (iii) production of optically clear object with self-healing capability and spatially controlled cleavage. This study serves as a roadmap for developing next-generation "smart" 3D printing technologies.
Collapse
Affiliation(s)
- Sangbin Shin
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Chiwon Hwang
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Youngchang Yu
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Wonjoo Lee
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Dowon Ahn
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| |
Collapse
|
10
|
Jia Y, Qian J, Hao S, Zhang S, Wei F, Zheng H, Li Y, Song J, Zhao Z. New Prospects Arising from Dynamically Crosslinked Polymers: Reprogramming Their Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313164. [PMID: 38577834 DOI: 10.1002/adma.202313164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Dynamically crosslinked polymers (DCPs) have gained significant attention owing to their applications in fabricating (re)processable, recyclable, and self-healable thermosets, which hold great promise in addressing ecological issues, such as plastic pollution and resource scarcity. However, the current research predominantly focuses on redefining and/or manipulating their geometries while replicating their bulk properties. Given the inherent design flexibility of dynamic covalent networks, DCPs also exhibit a remarkable potential for various novel applications through postsynthesis reprogramming their properties. In this review, the recent advancements in strategies that enable DCPs to transform their bulk properties after synthesis are presented. The underlying mechanisms and associated material properties are overviewed mainly through three distinct strategies, namely latent catalysts, material-growth, and topology isomerizable networks. Furthermore, the mutual relationship and impact of these strategies when integrated within one material system are also discussed. Finally, the application prospects and relevant issues necessitating further investigation, along with the potential solutions are analyzed.
Collapse
Affiliation(s)
- Yunchao Jia
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Jingjing Qian
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Senyuan Hao
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Shijie Zhang
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Fengchun Wei
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Hongjuan Zheng
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Yilong Li
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Jingwen Song
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Ave., Zhengzhou, 450001, P. R. China
| | - Zhiwei Zhao
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| |
Collapse
|
11
|
Machado TO, Stubbs CJ, Chiaradia V, Alraddadi MA, Brandolese A, Worch JC, Dove AP. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature 2024; 629:1069-1074. [PMID: 38750360 PMCID: PMC11136657 DOI: 10.1038/s41586-024-07399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/09/2024] [Indexed: 05/31/2024]
Abstract
The additive manufacturing of photopolymer resins by means of vat photopolymerization enables the rapid fabrication of bespoke 3D-printed parts. Advances in methodology have continually improved resolution and manufacturing speed, yet both the process design and resin technology have remained largely consistent since its inception in the 1980s1. Liquid resin formulations, which are composed of reactive monomers and/or oligomers containing (meth)acrylates and epoxides, rapidly photopolymerize to create crosslinked polymer networks on exposure to a light stimulus in the presence of a photoinitiator2. These resin components are mostly obtained from petroleum feedstocks, although recent progress has been made through the derivatization of renewable biomass3-6 and the introduction of hydrolytically degradable bonds7-9. However, the resulting materials are still akin to conventional crosslinked rubbers and thermosets, thus limiting the recyclability of printed parts. At present, no existing photopolymer resin can be depolymerized and directly re-used in a circular, closed-loop pathway. Here we describe a photopolymer resin platform derived entirely from renewable lipoates that can be 3D-printed into high-resolution parts, efficiently deconstructed and subsequently reprinted in a circular manner. Previous inefficiencies with methods using internal dynamic covalent bonds10-17 to recycle and reprint 3D-printed photopolymers are resolved by exchanging conventional (meth)acrylates for dynamic cyclic disulfide species in lipoates. The lipoate resin platform is highly modular, whereby the composition and network architecture can be tuned to access printed materials with varied thermal and mechanical properties that are comparable to several commercial acrylic resins.
Collapse
Affiliation(s)
- Thiago O Machado
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Connor J Stubbs
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maher A Alraddadi
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Arianna Brandolese
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
- Department of Chemistry, Macromolecules Innovation Institute, Blacksburg, VA, USA.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
12
|
Yan H, Liu S, Wen N, Yin J, Jiang H. Self-healing flexible strain sensor fabricated through 3D printing template sacrifice for motion monitoring with enhanced healing and mechanical performance. NANOTECHNOLOGY 2024; 35:245503. [PMID: 38271718 DOI: 10.1088/1361-6528/ad22a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
With the advancements in flexible materials and information technology, flexible sensors are becoming increasingly pervasive in various aspects of life and production. They hold immense potential for further development in areas such as motion detection, electronic skin, soft robots, and wearable devices. Aminopropyl-terminated polydimethylsiloxane (PDMS) was used as the raw material, while a diisocyanate reagent served as the cross-linking agent for the polymerization reaction, which involved the introduction of ureido groups, containing N-H and C=O bonds, into the long siloxane chain. The dynamic hydrogen bonding between the clusters completes the self-healing of the material. Using 1-[3-(trimethoxysilyl)propyl]urea as a grafting agent, the urea groups are introduced into graphene oxide and carbon nanotubes (CNTs) as conductive fillers. Subsequently, a flexible polymer is used as the substrate to prepare conductive flexible self-healing composites. By controlling the amount of conductive fillers, flexible strain materials with varying sensitivities are obtained. Design the structure of the flexible strain sensor using three-dimensional (3D) modeling software with deposition printing method.
Collapse
Affiliation(s)
- Hui Yan
- School of Mechatronic Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, People's Republic of China
| | - Shuofu Liu
- School of Mechatronic Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, People's Republic of China
| | - Nan Wen
- Semiconductor Manufacturing International Corporation, No. 18, Wenchang Avenue, Daxing District, Beijing 100176, People's Republic of China
| | - Jiyuan Yin
- School of Mechatronic Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronic Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, People's Republic of China
| |
Collapse
|
13
|
Zhao Z, Cao Z, Wu Z, Du W, Meng X, Chen H, Wu Y, Jiang L, Liu M. Bicontinuous vitrimer heterogels with wide-span switchable stiffness-gated iontronic coordination. SCIENCE ADVANCES 2024; 10:eadl2737. [PMID: 38457508 PMCID: PMC10923496 DOI: 10.1126/sciadv.adl2737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
Currently, it remains challenging to balance intrinsic stiffness with programmability in most vitrimers. Simultaneously, coordinating materials with gel-like iontronic properties for intrinsic ion transmission while maintaining vitrimer programmable features remains underexplored. Here, we introduce a phase-engineering strategy to fabricate bicontinuous vitrimer heterogel (VHG) materials. Such VHGs exhibited high mechanical strength, with an elastic modulus of up to 116 MPa, a high strain performance exceeding 1000%, and a switchable stiffness ratio surpassing 5 × 103. Moreover, highly programmable reprocessing and shape memory morphing were realized owing to the ion liquid-enhanced VHG network reconfiguration. Derived from the ion transmission pathway in the ILgel, which responded to the wide-span switchable mechanics, the VHG iontronics had a unique bidirectional stiffness-gated piezoresistivity, coordinating both positive and negative piezoresistive properties. Our findings indicate that the VHG system can act as a foundational material in various promising applications, including smart sensors, soft machines, and bioelectronics.
Collapse
Affiliation(s)
- Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziquan Cao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenxin Du
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yuchen Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial, Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| |
Collapse
|
14
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
15
|
Liu Y, Wang S, Dong J, Huo P, Zhang D, Han S, Yang J, Jiang Z. External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers (Basel) 2024; 16:621. [PMID: 38475305 DOI: 10.3390/polym16050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Thermosets have been crucial in modern engineering for decades, finding applications in various industries. Welding cross-linked components are essential in the processing of thermosets for repairing damaged areas or fabricating complex structures. However, the inherent insolubility and infusibility of thermoset materials, attributed to their three-dimensional network structure, pose challenges to welding development. Incorporating dynamic chemical bonds into highly cross-linked networks bridges the gap between thermosets and thermoplastics presenting a promising avenue for innovative welding techniques. External stimuli, including thermal, light, solvent, pH, electric, and magnetic fields, induce dynamic bonds' breakage and reformation, rendering the cross-linked network malleable. This plasticity facilitates the seamless linkage of two parts to an integral whole, attracting significant attention for potential applications in soft actuators, smart devices, solid batteries, and more. This review provides a comprehensive overview of dynamic bonds employed in welding dynamic cross-linked networks (DCNs). It extensively discusses the classification and fabrication of common epoxy DCNs and acrylate DCNs. Notably, recent advancements in welding processes based on DCNs under external stimuli are detailed, focusing on the welding dynamics among covalent adaptable networks (CANs).
Collapse
Affiliation(s)
- Yun Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| | - Sheng Wang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jidong Dong
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Huo
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dawei Zhang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shuaiyuan Han
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zaixing Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| |
Collapse
|
16
|
Huang R, He Y, Wang J, Zou J, Wang H, Sun H, Xiao Y, Zheng D, Ma J, Yu T, Huang W. Tunable afterglow for mechanical self-monitoring 3D printing structures. Nat Commun 2024; 15:1596. [PMID: 38383670 PMCID: PMC10882007 DOI: 10.1038/s41467-024-45497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Self-monitoring materials have promising applications in structural health monitoring. However, developing organic afterglow materials for self-monitoring is a highly intriguing yet challenging task. Herein, we design two organic molecules with a twisted donor-acceptor-acceptor' configuration and achieve dual-emissive afterglow with tunable lifetimes (86.1-287.7 ms) by doping into various matrices. Based on a photosensitive resin, a series of complex structures are prepared using 3D printing technology. They exhibit tunable afterglow lifetime and Young's Modulus by manipulating the photocuring time and humidity level. With sufficient photocuring or in dry conditions, a long-lived bright green afterglow without apparent deformation under external loading is realized. We demonstrate that the mechanical properties of complex 3D printing structures can be well monitored by controlling the photocuring time and humidity, and quantitively manifested by afterglow lifetimes. This work casts opportunities for constructing flexible 3D printing devices that can achieve sensing and real-time mechanical detection.
Collapse
Affiliation(s)
- Rongjuan Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Juan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jindou Zou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Haodong Sun
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Dexin Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemistry Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemistry Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
17
|
Zhu Y, Li W, He Z, Zhang K, Nie X, Fu R, Chen J. Catalyst-Free Cardanol-Based Epoxy Vitrimers for Self-Healing, Shape Memory, and Recyclable Materials. Polymers (Basel) 2024; 16:307. [PMID: 38337195 DOI: 10.3390/polym16030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 02/12/2024] Open
Abstract
Bio-based vitrimers present a promising solution to the issues associated with non-renewable and non-recyclable attributes of traditional thermosetting resins, showcasing extensive potential for diverse applications. However, their broader adoption has been hindered by the requirement for catalyst inclusion during the synthesis process. In this study, a cardanol-based curing agent with poly-hydroxy and tertiary amine structures was prepared by a clean synthetic method under the theory of click chemistry. The reaction of a cardanol-based curing agent with diglycidyl ether of bisphenol A formed catalyst-free, self-healing, and recyclable bio-based vitrimers. The poly-hydroxy and tertiary amine structures in the vitrimers promoted the curing of epoxy-carboxylic acid in the cross-linked network and served as internal catalysts of dynamic transesterification. In the absence of catalysts, the vitrimers network can achieve topological network rearrangement through dynamic transesterification, exhibiting excellent reprocessing performance. Moreover, the vitrimers exhibited faster stress relaxation (1500 s at 180 °C), lower activation energy (92.29 kJ·mol-1) and the tensile strength of the recycled material reached almost 100% of the original sample. This work offers a new method for preparing cardanol-based epoxy vitrimers that be used to make coatings, hydrogels, biomaterials, adhesives, and commodity plastics in the future.
Collapse
Affiliation(s)
- Yu Zhu
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wenbin Li
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Zhouyu He
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kun Zhang
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Xiaoan Nie
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Renli Fu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jie Chen
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| |
Collapse
|
18
|
Wang C, Geng X, Chen J, Wang H, Wei Z, Huang B, Liu W, Wu X, Hu L, Su G, Lei J, Liu Z, He X. Multiple H-Bonding Cross-Linked Supramolecular Solid-Solid Phase Change Materials for Thermal Energy Storage and Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309723. [PMID: 38091525 DOI: 10.1002/adma.202309723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Solid-solid phase change materials (SSPCMs) are considered among the most promising candidates for thermal energy storage and management. However, the application of SSPCMs is consistently hindered by the canonical trade-off between high TES capacity and mechanical robustness. In addition, they suffer from poor recyclability due to chemical cross-linking. Herein, a straightforward but effective strategy for fabricating supramolecular SSPCMs with high latent heat and mechanical strength is proposed. The supramolecular polymer employs multiple H-bonding interactions as robust physical cross-links. This enables SSPCM with a high enthalpy of phase transition (142.5 J g-1 ), strong mechanical strength (36.9 MPa), and sound shape stability (maintaining shape integrity at 120 °C) even with a high content of phase change component (97 wt%). When SSPCM is utilized to regulate the operating temperature of lithium-ion batteries, it significantly diminishes the battery working temperature by 23 °C at a discharge rate of 3 C. The robust thermal management capability enabled through solid-solid phase change provides practical opportunities for applications in fast discharging and high-power batteries. Overall, this study presents a feasible strategy for designing linear SSPCMs with high latent heat and exceptional mechanical strength for thermal management.
Collapse
Affiliation(s)
- Chenyang Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Geng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jing Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Hailong Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengkai Wei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Bingxuan Huang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Linyu Hu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhimeng Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
19
|
Jiang H, Abdullah AM, Ding Y, Chung C, L Dunn M, Yu K. 3D Printing of continuous fiber composites using two-stage UV curable resin. MATERIALS HORIZONS 2023; 10:5508-5520. [PMID: 37791456 DOI: 10.1039/d3mh01304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
3D printing allows for moldless fabrication of continuous fiber composites with high design freedom and low manufacturing cost per part, which makes it particularly well-suited for rapid prototyping and composite product development. Compared to thermal-curable resins, UV-curable resins enable the 3D printing of composites with high fiber content and faster manufacturing speeds. However, the printed composites exhibit low mechanical strength and weak interfacial bonding for high-performance engineering applications. In addition, they are typically not reprocessable or repairable; if they could be, it would dramatically benefit the rapid prototyping of composite products with improved durability, reliability, cost savings, and streamlined workflow. In this study, we demonstrate that the recently emerged two-stage UV-curable resin is an ideal material candidate to tackle these grand challenges in 3D printing of thermoset composites with continuous carbon fiber. The resin consists primarily of acrylate monomers and crosslinkers with exchangeable covalent bonds. During the printing process, composite filaments containing up to 30.9% carbon fiber can be rapidly deposited and solidified through UV irradiation. After printing, the printed composites are subjected to post-heating. Their mechanical stiffness, strength, and inter-filament bonding are significantly enhanced due to the bond exchange reactions within the thermoset matrix. Furthermore, the utilization of the two-stage curable resin enables the repair, reshaping, and recycling of 3D printed thermosetting composites. This study represents the first detailed study to explore the benefits of using two-stage UV curable resins for composite printing. The fundamental understanding could potentially be extended to other types of two-stage curable resins with different molecular mechanisms.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217, USA.
| | - Arif M Abdullah
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217, USA.
| | - Yuchen Ding
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217, USA.
| | - Christopher Chung
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217, USA.
| | - Martin L Dunn
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217, USA.
| | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217, USA.
| |
Collapse
|
20
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
21
|
Wu YCM, Chyr G, Park H, Makar-Limanov A, Shi Y, DeSimone JM, Bao Z. Stretchable, recyclable thermosets via photopolymerization and 3D printing of hemiacetal ester-based resins. Chem Sci 2023; 14:12535-12540. [PMID: 38020396 PMCID: PMC10646930 DOI: 10.1039/d3sc03623e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving a circular plastics economy is one of our greatest environmental challenges, yet conventional mechanical recycling remains inadequate for thermoplastics and incompatible with thermosets. The next generation of plastic materials will be designed with the capacity for degradation and recycling at end-of-use. To address this opportunity in the burgeoning technologies of 3D printing and photolithography, we report a modular system for the production of degradable and recyclable thermosets via photopolymerization. The polyurethane backbone imparts robust, elastic, and tunable mechanical properties, while the use of hemiacetal ester linkages allows for facile degradation under mild acid. The synthetic design based on hemiacetal esters enables simple purification to regenerate a functional polyurethane diol.
Collapse
Affiliation(s)
- You-Chi Mason Wu
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
| | - Gloria Chyr
- Department of Materials Science and Engineering, Stanford University Stanford CA 94305 USA
| | - Hyunchang Park
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
| | | | - Yuran Shi
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Joseph M DeSimone
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
- Department of Radiology, Stanford University Stanford CA 94305 USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
| |
Collapse
|
22
|
Lan X, Boetje L, Pelras T, Ye C, Silvianti F, Loos K. Lipoic acid-based vitrimer-like elastomer. Polym Chem 2023; 14:5014-5020. [PMID: 38013676 PMCID: PMC10644234 DOI: 10.1039/d3py00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Dynamic covalent networks (DCNs) are materials that feature reversible bond formation and breaking, allowing for self-healing and recyclability. To speed up the bond exchange, significant amounts of catalyst are used, which creates safety concerns. To tackle this issue, we report the synthesis of a lipoic acid-based vitrimer-like elastomer (LAVE) by combining (i) ring-opening polymerization (ROP) of lactones, (ii) lipoic acid modification of polylactones, and (iii) UV crosslinking. The melting temperature (Tm) of LAVE is below room temperature, which ensures the elastic properties of LAVE at service temperature. By carefully altering the network, it is possible to tune the Tm, as well as the mechanical strength and stretchability of the material. An increase in polylactone chain length in LAVE was found to increase strain at break from 25% to 180% and stress at break from 0.34 to 1.41 MPa. The material showed excellent network stability under cyclic strain loading, with no apparent hysteresis. The introduction of disulfide bonds allows the material to self-heal under UV exposure, extending its shelf life. Overall, this work presents an environmentally friendly approach for producing a sustainable elastomer that has potential for use in applications such as intelligent robots, smart wearable technology, and human-machine interfaces.
Collapse
Affiliation(s)
- Xiaohong Lan
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Laura Boetje
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Théophile Pelras
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Chongnan Ye
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Fitrilia Silvianti
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
23
|
Pang Y, Zhu X, Liu S, Lee C. A Natural Gradient Biological-Enabled Multimodal Triboelectric Nanogenerator for Driving Safety Monitoring. ACS NANO 2023; 17:21878-21892. [PMID: 37924297 DOI: 10.1021/acsnano.3c08102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
A key element to ensuring driving safety is to provide a sufficient braking distance. Inspired by the nature triply periodic minimal surface (TPMS), a gradient and multimodal triboelectric nanogenerator (GM-TENG) is proposed with high sensitivity and excellent multimodal monitoring. The gradient TPMS structure exhibits the multi-stage stress-strain properties of typical porous metamaterials. Significantly, the multimodal monitoring capability depends on the implicit function of the defined level constant c, which directly contributes to the multimodal driving safety monitoring. The mechanical and electrical responsive behavior of the GM-TENG is analyzed to identify the applied speed, load, and working mode. In addition, optimized peak open-circuit voltage (Voc) is demonstrated for self-awareness of the braking condition. The braking distance factor (L) is conceived to construct the self-aware equation of the friction coefficient based on the integration of Voc with respect to time. Importantly, R-squared up to 94.29 % can be obtained, which improves self-aware accuracy and real-time capabilities. This natural structure and self-aware device provide an effective strategy to improve driving safety, which contributes to the improvement of road safety and presents self-powered sensing with potential applications in an intelligent transportation system.
Collapse
Affiliation(s)
- Yafeng Pang
- Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, P. R. China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Xingyi Zhu
- Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, P. R. China
| | - Shuainian Liu
- Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, P. R. China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| |
Collapse
|
24
|
Wink R, Majumdar S, van Benthem RATM, Heuts JPA, Sijbesma RP. RNA-inspired phosphate diester dynamic covalent networks. Polym Chem 2023; 14:4294-4302. [PMID: 38013800 PMCID: PMC10520920 DOI: 10.1039/d3py00867c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 11/29/2023]
Abstract
Neighboring group assisted rearrangement substantially increases relaxation rates in dynamic covalent networks, allowing easier (re)processing of these materials. In this work, we introduce a dynamic covalent network with anionic phosphate diesters as the sole dynamic group, incorporating β-hydroxy groups as a neighboring group, mimicking the self-cleaving backbone structure of RNA. The diester-based networks have slightly slower dynamics, but significantly better hydrolytic (and thermal) stability than analogous phosphate triester-based networks. Catalysis by the β-hydroxy group is vital for fast network rearrangement to occur, while the nature of the counterion has a negligible effect on the relaxation rate. Variable temperature 31P solid-state NMR demonstrated a dissociative bond rearrangement mechanism to be operative.
Collapse
Affiliation(s)
- Roy Wink
- Department of Chemical Engineering & Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Soumabrata Majumdar
- Department of Chemical Engineering & Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Rolf A T M van Benthem
- Department of Chemical Engineering & Chemistry, Laboratory of Physical Chemistry. Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Shell Energy Transition Center Amsterdam Grasweg 31 1031 HW Amsterdam The Netherlands
| | - Johan P A Heuts
- Department of Chemical Engineering & Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Rint P Sijbesma
- Department of Chemical Engineering & Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
25
|
Grauzeliene S, Schuller AS, Delaite C, Ostrauskaite J. Development and Digital Light Processing 3D Printing of a Vitrimer Composed of Glycerol 1,3-Diglycerolate Diacrylate and Tetrahydrofurfuryl Methacrylate. ACS APPLIED POLYMER MATERIALS 2023; 5:6958-6965. [PMID: 37705712 PMCID: PMC10497060 DOI: 10.1021/acsapm.3c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
The development of biobased reshapable and repairable vitrimers has received extensive attention due to the growing focus on an environmentally friendly society. Therefore, the objective of this research was to synthesize sustainable polymers with an environmentally friendly strategy combining the benefits of renewable resources, UV curing, and vitrimers. Two biobased monomers, glycerol 1,3-diglycerolate diacrylate and tetrahydrofurfuryl methacrylate, were chosen for the preparation of UV-curable resins and tested by real-time photorheometry and RT-FTIR spectroscopy to determine their suitability for digital light processing (DLP) 3D printing. DLP 3D-printed polymer showed shape memory, weldability, and repairability capabilities by triggering the dynamic transesterification process at high temperatures. The vitrimer with a weight ratio of 60:40 of glycerol 1,3-diglycerolate diacrylate and tetrahydrofurfuryl methacrylate showed shape memory properties with a recovery ratio of 100% and a 7-fold improved tensile strength compared to the original sample, confirming efficient weldability and repairability.
Collapse
Affiliation(s)
- Sigita Grauzeliene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT-50254 Kaunas, Lithuania
| | - Anne-Sophie Schuller
- Laboratoire
de Photochimie et d’Ingénierie Macromoléculaires—EA4567,
Université de Haute Alsace, Université
de Strasbourg, 3b Rue
Alfred Werner, 68093 Mulhouse Cedex, France
| | - Christelle Delaite
- Laboratoire
de Photochimie et d’Ingénierie Macromoléculaires—EA4567,
Université de Haute Alsace, Université
de Strasbourg, 3b Rue
Alfred Werner, 68093 Mulhouse Cedex, France
| | - Jolita Ostrauskaite
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
26
|
Lopez de Pariza X, Varela O, Catt SO, Long TE, Blasco E, Sardon H. Recyclable photoresins for light-mediated additive manufacturing towards Loop 3D printing. Nat Commun 2023; 14:5504. [PMID: 37679370 PMCID: PMC10484940 DOI: 10.1038/s41467-023-41267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Additive manufacturing (AM) of polymeric materials enables the manufacturing of complex structures for a wide range of applications. Among AM methods vat photopolymerization (VP) is desired owing to improved efficiency, excellent surface finish, and printing resolution at the micron-scale. Nevertheless, the major portion of resins available for VP are based on systems with limited or negligible recyclability. Here, we describe an approach that enables the printing of a resin that is amenable to re-printing with retained properties and appearance. To that end, we take advantage of the potential of polythiourethane chemistry, which not only permits the click reaction between polythiols and polyisocyanates in the presence of organic bases, allowing a fast-printing process but also chemical recycling, reshaping, and reparation of the printed structures, paving the way toward the development of truly sustainable recyclable photoprintable resins. We demonstrate that this closed-loop 3D printing process is feasible both at the macroscale and microscale via DLP or DLW, respectively.
Collapse
Affiliation(s)
- Xabier Lopez de Pariza
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Oihane Varela
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Samantha O Catt
- Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), 69120, Heidelberg, Germany
- Heidelberg University, Organic Chemistry Institute (OCI), 69120, Heidelberg, Germany
| | - Timothy E Long
- Arizona State University, School of Molecular Science and Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Tempe, AZ, 85281, USA
| | - Eva Blasco
- Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), 69120, Heidelberg, Germany
- Heidelberg University, Organic Chemistry Institute (OCI), 69120, Heidelberg, Germany
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain.
| |
Collapse
|
27
|
Huang X, Peng S, Zheng L, Zhuo D, Wu L, Weng Z. 3D Printing of High Viscosity UV-Curable Resin for Highly Stretchable and Resilient Elastomer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304430. [PMID: 37527974 DOI: 10.1002/adma.202304430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Elastomers prepared via vat photopolymerizationus ually exhibit unsatisfied mechanical properties owing to their insufficient growth of molecular weight upon UV exposure. Increasing the weight ratio of oligomer in the resin system is an effective approach to enhance the mechanical properties, yet the viscosity of the UV-curable resin increases dramatically; this hinders its printing. In this study, a linear scan-based vat photopolymerization (LSVP) system which can print high-viscosity resins is implemented to 3D print the oligomer-dominated UV-curable resin via a dual-curing mechanism. A polyurethane methacrylate blocking oligomer is first synthesized and then mixed with a commercialized bifunctional oligomer, photoinitiator, and primary amine as a chain extender to prepare high-viscosity UV-curable resin for the LSVP system. The deblocked isocyanate is further crosslinked with a chain extender via thermal treatment to construct a highly entangled polymer chain network. The optimal thermal treatment parameters are investigated, and the resilience of the 3D-printed elastomer is evaluated through continuous tensile loading and unloading tests. Subsequently, complex structured elastomers are printed, exhibiting favorable mechanical durability without defects. The results obtained from this work will provide a reference for preparing elastomeric devices with excellent physical properties and expand the application scope of vat photopolymerization to new fields.
Collapse
Affiliation(s)
- Xianmei Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqiang Peng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, China
| | - Longhui Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Dongxian Zhuo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Zixiang Weng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
28
|
Wu L, Dong Z. Interfacial Regulation for 3D Printing based on Slice-Based Photopolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300903. [PMID: 37147788 DOI: 10.1002/adma.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Indexed: 05/07/2023]
Abstract
3D printing, also known as additive manufacturing, can turn computer-aided designs into delicate structures directly and on demand by eliminating expensive molds, dies, or lithographic masks. Among the various technical forms, light-based 3D printing mainly involved the control of polymer-based matter fabrication and realized a field of manufacturing with high tunability of printing format, speed, and precision. Emerging slice- and light-based 3D-printing methods have prosperously advanced in recent years but still present challenges to the versatility of printing continuity, printing process, and printing details control. Herein, the field of slice- and light-based 3D printing is discussed and summarized from the view of interfacial regulation strategies to improve the printing continuity, printing process control, and the character of printed results, and several potential strategies to construct complex 3D structures of distinct characteristics with extra external fields, which are favorable for the further improvement and development of 3D printing, are proposed.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Cui J, Liu F, Lu Z, Feng S, Liang C, Sun Y, Cui J, Zhang B. Repeatedly Recyclable 3D Printing Catalyst-Free Dynamic Thermosetting Photopolymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211417. [PMID: 36921350 DOI: 10.1002/adma.202211417] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Indexed: 05/19/2023]
Abstract
Photo-curing 3D printing technology has promoted the advanced manufacturing in various fields, but has exacerbated the environmental crisis by the demand for the chemically cross-linked thermosetting photopolymers. Here, the authors report a generic strategy to develop catalyst-free dynamic thermosetting photopolymers, based on photopolymerization and transesterification, that can enable users to realize repeatable 3D printing, providing a practical solution to the environmental challenges. That the β-carbonyl group adjacent to the ester group greatly accelerates the rate of transesterification is demonstrated. The generated resins from the immobilization of the catalyst-free reversible bonds into the photopolymers leads to a dynamic covalently crosslinked network structure upon UV based 3D printing, which exhibit controllable mechanical properties with elastomeric behaviors to thermadapt shape memory polymers. Furthermore, the resulting network can be reverted into an acrylate-functioned photopolymer that is suitable for 3D printing again, presenting an on-demand, repeatedly recyclable thermosetting photopolymer platform for sustainable 3D printing.
Collapse
Affiliation(s)
- Jingjing Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Fukang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Zhe Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Shiwei Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Chen Liang
- Frontiers Science Center for Flexible Electronics (FSCFE), Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yongding Sun
- Frontiers Science Center for Flexible Electronics (FSCFE), Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jin Cui
- School of Information and Science Technology, Northwest University, 1 Xuefu Street, Xi'an, 710127, China
| | - Biao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
30
|
Fang Z, Shi Y, Mu H, Lu R, Wu J, Xie T. 3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability. Nat Commun 2023; 14:1313. [PMID: 36899070 PMCID: PMC10006071 DOI: 10.1038/s41467-023-37085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Delicate geometries and suitable mechanical properties are essential for device applications of polymer materials. 3D printing offers unprecedented versatility, but the geometries and mechanical properties are typically fixed after printing. Here, we report a 3D photo-printable dynamic covalent network that can undergo two independently controllable bond exchange reactions, allowing reprogramming the geometry and mechanical properties after printing. Specifically, the network is designed to contain hindered urea bonds and pendant hydroxyl groups. The homolytic exchange between hindered urea bonds allows reconfiguring the printed shape without affecting the network topology and mechanical properties. Under different conditions, the hindered urea bonds are transformed into urethane bonds via exchange reactions with hydroxyl groups, which permits tailoring of the mechanical properties. The freedom to reprogram the shape and properties in an on-demand fashion offers the opportunity to produce multiple 3D printed products from one single printing step.
Collapse
Affiliation(s)
- Zizheng Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, No. 733, Jianshe San Road, Xiaoshan District, Hangzhou, Zhejiang, 311200, China.,State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310030, P.R. China
| | - Yunpeng Shi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310030, P.R. China
| | - Hongfeng Mu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310030, P.R. China
| | - Runzhi Lu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310030, P.R. China
| | - Jingjun Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310030, P.R. China. .,Ningbo Innovation Center, Zhejiang University, 1 Qianhu South Road, Ningbo, 315807, P.R. China.
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310030, P.R. China.
| |
Collapse
|
31
|
Kuenstler AS, Hernandez JJ, Trujillo-Lemon M, Osterbaan A, Bowman CN. Vat Photopolymerization Additive Manufacturing of Tough, Fully Recyclable Thermosets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11111-11121. [PMID: 36795439 DOI: 10.1021/acsami.2c22081] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To advance the capabilities of additive manufacturing, novel resin formulations are needed that produce high-fidelity parts with desired mechanical properties that are also amenable to recycling. In this work, a thiol-ene-based system incorporating semicrystallinity and dynamic thioester bonds within polymer networks is presented. It is shown that these materials have ultimate toughness values >16 MJ cm-3, comparable to high-performance literature precedents. Significantly, the treatment of these networks with excess thiols facilitates thiol-thioester exchange that degrades polymerized networks into functional oligomers. These oligomers are shown to be amenable to repolymerization into constructs with varying thermomechanical properties, including elastomeric networks that recover their shape fully from >100% strain. Using a commercial stereolithographic printer, these resin formulations are printed into functional objects including both stiff (E ∼ 10-100 MPa) and soft (E ∼ 1-10 MPa) lattice structures. Finally, it is shown that the incorporation of both dynamic chemistry and crystallinity further enables advancement in the properties and characteristics of printed parts, including attributes such as self-healing and shape-memory.
Collapse
Affiliation(s)
- Alexa S Kuenstler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Juan J Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marianela Trujillo-Lemon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexander Osterbaan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Hu J, Feng H, Rong Y, Wang S, Jin D, Chen Q, Dai J, Liu X. Recyclable bio‐based epoxy resins containing hybrid cross‐linking networks. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingyuan Hu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Haoyang Feng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Yangke Rong
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| | - Shuaipeng Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| | - Dandan Jin
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| | - Qing Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Jinyue Dai
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
- Key Laboratory of Marine Materials and Related Technologies Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province Ningbo People's Republic of China
| |
Collapse
|
33
|
Shen N, Bu J, Prévôt ME, Hegmann T, Kennedy JP, Xu W. Macromolecular Engineering and Additive Manufacturing of Polyisobutylene-Based Thermoplastic Elastomers. II. The Poly(styrene-b-isobutylene-b-styrene)/Poly(phenylene oxide) System. Macromol Rapid Commun 2023; 44:e2200109. [PMID: 35355350 DOI: 10.1002/marc.202200109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Indexed: 01/11/2023]
Abstract
This series of publications describes research rendering soft polyisobutylene (PIB)-based thermoplastic elastomers 3D printable by blending with rigid chemically compatible thermoplastics. The molecular structure, morphology, physical properties, and 3D printability of such blends have been systematically investigated. The authors' first report was concerned with the rendering of soft poly(styrene-b-isobutylene-b-styrene) (SIBS) 3D printable by blending with rigid polystyrene (PS). Here they report the macromolecular engineering of SIBS/polyphenylene oxide (PPO) blends for 3D printing. PPO, a rigid high-performance thermoplastic, is compatible with the hard PS block in SIBS; however, neither PPO nor SIBS can be directly 3D printed. The microphase-separated structures and physical properties of SIBS/PPO blends are systematically tuned by controlling blending ratios and molecular weights. Suitable composition ranges and desirable properties of SIBS/PPO blends for 3D printing are optimized. The morphology and properties of SIBS/PPO blends are characterized by an ensemble of techniques, including atomic force microscopy, small-angle X-ray scattering, and thermal and mechanical properties testing. The elucidation of processing-structure-property relationship of SIBS/PPO blends is essential for 3D printing and advanced manufacturing of high-performance polymer systems.
Collapse
Affiliation(s)
- Naifu Shen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jinyu Bu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute (AMLCI), Kent State University, Kent, OH, 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute (AMLCI), Kent State University, Kent, OH, 44242, USA.,Materials Science Graduate Program, Department of Chemistry and Biochemistry, and Brain Health Research Institute (BHRI), Kent State University, Kent, OH, 44242, USA
| | - Joseph P Kennedy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
34
|
Cheng J, Wang R, Sun Z, Liu Q, He X, Li H, Ye H, Yang X, Wei X, Li Z, Jian B, Deng W, Ge Q. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nat Commun 2022; 13:7931. [PMID: 36566233 PMCID: PMC9789974 DOI: 10.1038/s41467-022-35622-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022] Open
Abstract
There are growing demands for multimaterial three-dimensional (3D) printing to manufacture 3D object where voxels with different properties and functions are precisely arranged. Digital light processing (DLP) is a high-resolution fast-speed 3D printing technology suitable for various materials. However, multimaterial 3D printing is challenging for DLP as the current multimaterial switching methods require direct contact onto the printed part to remove residual resin. Here we report a DLP-based centrifugal multimaterial (CM) 3D printing method to generate large-volume heterogeneous 3D objects where composition, property and function are programmable at voxel scale. Centrifugal force enables non-contact, high-efficiency multimaterial switching, so that the CM 3D printer can print heterogenous 3D structures in large area (up to 180 mm × 130 mm) made of materials ranging from hydrogels to functional polymers, and even ceramics. Our CM 3D printing method exhibits excellent capability of fabricating digital materials, soft robots, and ceramic devices.
Collapse
Affiliation(s)
- Jianxiang Cheng
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Rong Wang
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zechu Sun
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Qingjiang Liu
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xiangnan He
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Honggeng Li
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Haitao Ye
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.35030.350000 0004 1792 6846Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Xingxin Yang
- grid.411863.90000 0001 0067 3588School of Electronics and Communication Engineering, Guangzhou University, Guangzhou, 510006 China
| | - Xinfeng Wei
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zhenqing Li
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Bingcong Jian
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Weiwei Deng
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Qi Ge
- grid.263817.90000 0004 1773 1790Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
35
|
Casado J, Konuray O, Benet G, Fernández-Francos X, Morancho JM, Ramis X. Optimization and Testing of Hybrid 3D Printing Vitrimer Resins. Polymers (Basel) 2022; 14:polym14235102. [PMID: 36501497 PMCID: PMC9739315 DOI: 10.3390/polym14235102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The quality of photocure-based 3D printing greatly depends on the properties of the photoresin. There are still many challenges to be overcome at the material level before such additive manufacturing methods dominate the manufacturing industry. To contribute to this exciting re-search, an acrylate-epoxy hybrid and vitrimeric photoresin was studied to reveal the formulation parameters that could be leveraged to obtain improved processability, mechanical performance, and repairability/reprocessability. As the network becomes more lightly or densely crosslinked as a result of changing monomer compositions, or as its components are compatibilized to different extents by varying the types and loadings of the coupling agents, its thermomechanical, tensile, and vitrimeric behaviors are impacted. Using a particular formulation with a high concentration of dynamic β-hydroxyester linkages, samples are 3D printed and tested for repair and recyclability. When processed at sufficiently high temperatures, transesterification reactions are triggered, allowing for the full recovery of the tensile properties of the repaired or recycled materials, despite their inherently crosslinked structure.
Collapse
|
36
|
Zhang W, Wang H, Tan ATL, Sargur Ranganath A, Zhang B, Wang H, Chan JYE, Ruan Q, Liu H, Ha ST, Wang D, Ravikumar VK, Low HY, Yang JKW. Stiff Shape Memory Polymers for High-Resolution Reconfigurable Nanophotonics. NANO LETTERS 2022; 22:8917-8924. [PMID: 36354246 DOI: 10.1021/acs.nanolett.2c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reconfigurable metamaterials require constituent nanostructures to demonstrate switching of shapes with external stimuli. Yet, a longstanding challenge is in overcoming stiction caused by van der Waals forces in the deformed configuration, which impedes shape recovery. Here, we introduce stiff shape memory polymers. This designer material has a storage modulus of ∼5.2 GPa at room temperature and ∼90 MPa in the rubbery state at 150 °C, 1 order of magnitude higher than those in previous reports. Nanopillars with diameters of ∼400 nm and an aspect ratio as high as ∼10 were printed by two-photon lithography. Experimentally, we observe shape recovery as collapsed and touching structures overcome stiction to stand back up. We develop a theoretical model to explain the recoverability of these sub-micrometer structures. Reconfigurable structural color prints with a resolution of 21150 dots per inch and holograms are demonstrated, indicating potential applications of the stiff shape memory polymers in high-resolution reconfigurable nanophotonics.
Collapse
Affiliation(s)
- Wang Zhang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Alvin T L Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Anupama Sargur Ranganath
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Biao Zhang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hongtao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - John You En Chan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hailong Liu
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Son Tung Ha
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Dong Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Venkat K Ravikumar
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hong Yee Low
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
37
|
Zhang X, Liu F, Du B, Huang R, Zhang S, He Y, Wang H, Cui J, Zhang B, Yu T, Huang W. Construction of Photoresponsive 3D Structures Based on Triphenylethylene Photochromic Building Blocks. Research (Wash D C) 2022; 2022:9834140. [PMID: 36157512 PMCID: PMC9484832 DOI: 10.34133/2022/9834140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Photoresponsive materials have been widely used in sensing, bioimaging, molecular switches, information storage, and encryption nowadays. Although a large amount of photoresponsive materials have been reported, the construction of these smart materials into precisely prescribed complex 3D geometries is rarely studied. Here we designed a novel photoresponsive material methyl methacrylate containing triphenylethylene (TrPEF2-MA) that can be directly used for digital light processing (DLP) 3D printing. Based on TrPEF2-MA, a series of photoresponsive 3D structures with reversible color switching under ultraviolet/visible light irradiations were fabricated. These complex photoresponsive 3D structures show high resolutions (50 μm), excellent repeatability (25 cycles without fatigue), and tunable saturate color degrees. Multicomponent DLP 3D printing processes were also carried out to demonstrate their great properties in information hiding and information-carrying properties. This design strategy for constructing photoresponsive 3D structures is attractive in the area of adaptive camouflage, information hiding, information storage, and flexible electronics.
Collapse
Affiliation(s)
- Xiayu Zhang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Fukang Liu
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Beibei Du
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Rongjuan Huang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Simin Zhang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Jingjing Cui
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Biao Zhang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
38
|
Feng X, Yang Z, Wang S, Wu Z. The reinforcing effect of lignin‐containing cellulose nanofibrils in the methacrylate composites produced by stereolithography. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xinhao Feng
- College of Furnishings and Industrial Design Nanjing Forestry University Nanjing China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing China
- Center for Renewable Carbon University of Tennessee Knoxville Tennessee USA
| | - Zhaozhe Yang
- Institute of Chemistry and Industry of Forest Products Chinese Academy of Forestry Nanjing China
| | - Siqun Wang
- Center for Renewable Carbon University of Tennessee Knoxville Tennessee USA
| | - Zhihui Wu
- College of Furnishings and Industrial Design Nanjing Forestry University Nanjing China
| |
Collapse
|
39
|
Grauzeliene S, Kastanauskas M, Talacka V, Ostrauskaite J. Photocurable Glycerol- and Vanillin-Based Resins for the Synthesis of Vitrimers. ACS APPLIED POLYMER MATERIALS 2022; 4:6103-6110. [PMID: 35991302 PMCID: PMC9379905 DOI: 10.1021/acsapm.2c00914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 05/10/2023]
Abstract
In this study, photocurable resins based on glycerol and vanillin were designed, synthesized, and applied to digital light processing three-dimensional (3D) printing and vitrimeric abilities such as shape-memory, self-healing, and recyclability have been investigated. First, photocurable resins were prepared and synthesized by combining renewable resources and photocuring as an environmentally friendly strategy for the synthesis of vitrimers. Afterward, the most suitable resin for optical 3D printing was selected by photorheometry, and the thermal and mechanical properties of the resulting polymers were tested. Furthermore, by activating dynamic transesterification reactions at elevated temperatures, the photocured polymer exhibited self-healing, recyclability, and shape-memory properties. The vitrimer with a weight ratio of 8:2 of glycerol- and vanillin-based monomers demonstrated a welding efficiency of tensile strength up to 114.12%, 75% recyclability by alcoholysis, and shape-memory properties above and below two glass transition temperatures.
Collapse
Affiliation(s)
- Sigita Grauzeliene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Rd. 19, Kaunas LT-50254, Lithuania
| | - Marius Kastanauskas
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Rd. 19, Kaunas LT-50254, Lithuania
| | | | - Jolita Ostrauskaite
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Rd. 19, Kaunas LT-50254, Lithuania
| |
Collapse
|
40
|
Zhao Z, Wu H, Liu X, Kang D, Xiao Z, Lin Q, Zhang A. Synthesis and characterization of tung oil-based UV curable for three-dimensional printing resins. RSC Adv 2022; 12:22119-22130. [PMID: 36043097 PMCID: PMC9364080 DOI: 10.1039/d2ra03182e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
Using tung oil as the raw material, a new bio-based prepolymer was successfully synthesized by reacting with acrylic-modified rosin (β-acryloyl nutrient ethyl) ester (ARA)/acrylic-2-hydroxyethyl ester (HEA) followed by the use of the above composite material as the matrix and then reacting with the active diluent (2-HEMA, TPGDA) and the photoinitiator TPO and Irgacure1173 to successfully synthesize a new type of bio-based prepolymer-acrylate-epoxy tung oil polypolymer (AETP). The tung oil monomer before and after the epoxy formation was compared by proton NMR spectroscopy, and the chemical structure of AETP was analyzed by Fourier transform spectroscopy. Tung oil has an acid value of 1.5 mg KOH per g, an epoxy value of 5.38%, an iodine value of 11.28 g/100 g, and a refractive index of n25 = 1.475. Composite-based 3D printing resins (like AETP) were cured using digital light treatment, while some samples were also post-treated via ultraviolet (UV) light treatment. The AETP-based 3D printing resin has excellent thermal and mechanical properties, and the viscosity of its system is 313 mPa s; exposure time 4.5 s; the tensile strength, flexural strength and flexural modulus were 62 MPA, 63.84 MPa and 916.708 MPa, respectively; Shore hardness was 80 HD and shrinkage was 4.00%. The good performance of the AETP-based 3D printing resin is attributed to the rigidity of their tightly crosslinked structure. This study pioneered a method for producing photoactive acrylates (e.g., tung oil-based acrylate oligomer resins) from renewable, low-cost biomass for light-curing 3D printing. Using tung oil as the raw material, a new bio-based prepolymer was synthesized by reacting with ARA/HEA as the matrix and then reacting with the diluent and photoinitiator to synthesize a new bio-based prepolymer-acrylate-epoxy tung oil polypolymer.![]()
Collapse
Affiliation(s)
- Zicheng Zhao
- College of Mechanical Engineering and Mechanics, Xiangtan University Xiangtan 411105 China .,State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry Changsha 410000 China
| | - Hong Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry Changsha 410000 China
| | - Xudong Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry Changsha 410000 China
| | - Desheng Kang
- Hunan Xiangchun Agricultural Technology Co., Ltd Changsha 410000 China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry Changsha 410000 China
| | - Qiquan Lin
- College of Mechanical Engineering and Mechanics, Xiangtan University Xiangtan 411105 China
| | - Aihua Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry Changsha 410000 China
| |
Collapse
|
41
|
Seo J, Kearney LT, Datta S, Toomey MD, Keum JK, Naskar AK. Tailoring compatibilization potential of maleic anhydride‐grafted polypropylene by sequential rheochemical processing of polypropylene and polyamide 66 blends. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiho Seo
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Logan T. Kearney
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Siddhant Datta
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Michael D. Toomey
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Jong K. Keum
- Neutron Scattering Division and Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Amit K. Naskar
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
42
|
Dong M, Han Y, Hao XP, Yu HC, Yin J, Du M, Zheng Q, Wu ZL. Digital Light Processing 3D Printing of Tough Supramolecular Hydrogels with Sophisticated Architectures as Impact-Absorption Elements. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204333. [PMID: 35763430 DOI: 10.1002/adma.202204333] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Processing tough hydrogels into sophisticated architectures is crucial for their applications as structural elements. However, Digital Light Processing (DLP) printing of tough hydrogels is challenging because of the low-speed gelation and toughening process. Described here is a simple yet versatile system suitable for DLP printing to form tough hydrogel architectures. The aqueous precursor consists of commercial photoinitiator, acrylic acid, and zirconium ion (Zr4+ ), readily forming tough metallo-supramolecular hydrogel under digital light because of in situ formation of carboxyl-Zr4+ coordination complexes. The high-stiffness and antiswelling properties of as-printed gel enable high-efficiency printing to form high-fidelity constructs. Furthermore, swelling-induced morphing of the gel is also achieved by encoding structure gradients during the printing with grayscale digital light. Mechanical properties of the printed hydrogels are further improved after incubation in water due to the variation of local pH and rearrangement of coordination complex. The swelling-enhanced stiffness affords the printed hydrogel with shape fixation ability after manual deformations, and thereby provides an additional avenue to form more complex configurations. These printed hydrogels are used to devise an impact-absorption element or a high-sensitivity pressure sensor as proof-of-concept examples. This work should merit engineering of other tough gels and extend their scope of applications in diverse fields.
Collapse
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Han
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hai Chao Yu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
43
|
Liu Y, Yu Z, Xu X, Wang B, Feng H, Li P, Zhu J, Ma S. Crystallizable Aliphatic Chains Enhanced Covalent Adaptable Networks: Fast Reprocessing and Improved Performance. Macromol Rapid Commun 2022; 43:e2200379. [PMID: 35730398 DOI: 10.1002/marc.202200379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Indexed: 11/08/2022]
Abstract
Covalent adaptable networks (CANs) exhibit recyclability such as reprocessing, but it's a challenge to address the contradiction between reprocessing rate and performance. Here we innovatively introduce pendent aliphatic chain anhydride monoesters into epoxy CANs based on transesterification, which efficiently accelerates the reprocessing without sacrificing thermal and mechanical properties. The transesterification rate is raised on account of the flexible aliphatic chain-promoted segment movement and dynamic transfer auto-catalysis. When the carbon number reflecting the length of the pendent chain is 12, the epoxy CAN exhibits the fastest stress relaxation or reprocessing. Computation via molecular dynamics simulation demonstrates that the increased segmental mobility from the pendent aliphatic chains contributes to the enhanced reprocessability. Interestingly, the crystallization of the pendent aliphatic chains maintains or even improves the thermal and mechanical properties. Thus, introducing flexible and crystallizable aliphatic side chain is an innovative and efficient approach to accelerate dynamic reactions and network arrangement while improving performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanlin Liu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhen Yu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xiwei Xu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Binbo Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongzhi Feng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengyun Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
44
|
Shaukat U, Rossegger E, Schlögl S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers (Basel) 2022; 14:polym14122449. [PMID: 35746024 PMCID: PMC9227803 DOI: 10.3390/polym14122449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing or 3D printing of materials is a prominent process technology which involves the fabrication of materials layer-by-layer or point-by-point in a subsequent manner. With recent advancements in additive manufacturing, the technology has excited a great potential for extension of simple designs to complex multi-material geometries. Vat photopolymerization is a subdivision of additive manufacturing which possesses many attractive features, including excellent printing resolution, high dimensional accuracy, low-cost manufacturing, and the ability to spatially control the material properties. However, the technology is currently limited by design strategies, material chemistries, and equipment limitations. This review aims to provide readers with a comprehensive comparison of different additive manufacturing technologies along with detailed knowledge on advances in multi-material vat photopolymerization technologies. Furthermore, we describe popular material chemistries both from the past and more recently, along with future prospects to address the material-related limitations of vat photopolymerization. Examples of the impressive multi-material capabilities inspired by nature which are applicable today in multiple areas of life are briefly presented in the applications section. Finally, we describe our point of view on the future prospects of 3D printed multi-material structures as well as on the way forward towards promising further advancements in vat photopolymerization.
Collapse
|
45
|
Kim S, Rahman MA, Arifuzzaman M, Gilmer DB, Li B, Wilt JK, Lara-Curzio E, Saito T. Closed-loop additive manufacturing of upcycled commodity plastic through dynamic cross-linking. SCIENCE ADVANCES 2022; 8:eabn6006. [PMID: 35658043 PMCID: PMC9166624 DOI: 10.1126/sciadv.abn6006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/18/2022] [Indexed: 05/25/2023]
Abstract
A sustainable closed-loop manufacturing would become reality if commodity plastics can be upcycled into higher-performance materials with facile processability. Such circularity will be realized when the upcycled plastics can be (re)processed into custom-designed structures through energy/resource-efficient additive manufacturing methods, especially by approachable and scalable fused filament fabrication (FFF). Here, we introduce a circular model epitomized by upcycling a prominent thermoplastic, acrylonitrile butadiene styrene (ABS) into a recyclable, robust adaptive dynamic covalent network (ABS-vitrimer) (re)printable via FFF. The full FFF processing of ABS-vitrimer overcomes the major challenge of (re)printing cross-linked materials and produces stronger, tougher, solvent-resistant three-dimensional objects directly reprintable and separable from unsorted plastic waste. This study thus offers an imminently adoptable approach for advanced manufacturing toward the circular plastics economy.
Collapse
Affiliation(s)
- Sungjin Kim
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Anisur Rahman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Arifuzzaman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dustin B. Gilmer
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Bingrui Li
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Jackson K. Wilt
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Edgar Lara-Curzio
- Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
46
|
Hu S, Chen X, Bin Rusayyis MA, Purwanto NS, Torkelson JM. Reprocessable polyhydroxyurethane networks reinforced with reactive polyhedral oligomeric silsesquioxanes (POSS) and exhibiting excellent elevated temperature creep resistance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Wang M, Gao H, Wang Z, Mao Y, Yang J, Wu B, Jin L, Zhang C, Xia Y, Zhang K. Rapid self-healed vitrimers via tailored hydroxyl esters and disulfide bonds. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Mo X, Ouyang L, Xiong Z, Zhang T. Advances in Digital Light Processing of Hydrogels. Biomed Mater 2022; 17. [PMID: 35477166 DOI: 10.1088/1748-605x/ac6b04] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels, three-dimensional (3D) networks of hydrophilic polymers formed in water, are a significant type of soft matter used in fundamental and applied sciences. Hydrogels are of particular interest for biomedical applications, owing to their soft elasticity and good biocompatibility. However, the high water content and soft nature of hydrogels often make it difficult to process them into desirable solid forms. The development of 3D printing (3DP) technologies has provided opportunities for the manufacturing of hydrogels, by adopting a freeform fabrication method. Owing to its high printing speed and resolution, vat photopolymerization 3DP has recently attracted considerable interest for hydrogel fabrication, with digital light processing (DLP) becoming a widespread representative technique. Whilst acknowledging that other types of vat photopolymerization 3DP have also been applied for this purpose, we here only focus on DLP and its derivatives. In this review, we first comprehensively outline the most recent advances in both materials and fabrication, including the adaptation of novel hydrogel systems and advances in processing (e.g., volumetric printing and multimaterial integration). Secondly, we summarize the applications of hydrogel DLP, including regenerative medicine, functional microdevices, and soft robotics. To the best of our knowledge, this is the first time that either of these specific review focuses has been adopted in the literature. More importantly, we discuss the major challenges associated with hydrogel DLP and provide our perspectives on future trends. To summarize, this review aims to aid and inspire other researchers investigatng DLP, photocurable hydrogels, and the research fields related to them.
Collapse
Affiliation(s)
- Xingwu Mo
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| | - Liliang Ouyang
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| | - Zhuo Xiong
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| | - Ting Zhang
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| |
Collapse
|
49
|
Gil N, Thomas C, Mhanna R, Mauriello J, Maury R, Leuschel B, Malval JP, Clément JL, Gigmes D, Lefay C, Soppera O, Guillaneuf Y. Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization. Angew Chem Int Ed Engl 2022; 61:e202117700. [PMID: 35128770 DOI: 10.1002/anie.202117700] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) printing and especially VAT photopolymerization leads to cross-linked materials with high thermal, chemical, and mechanical stability. Nevertheless, these properties are incompatible with requirements of degradability and re/upcyclability. We show here that thionolactone and in particular dibenzo[c,e]-oxepane-5-thione (DOT) can be used as an additive (2 wt %) to acrylate-based resins to introduce weak bonds into the network via a radical ring-opening polymerization process. The low amount of additive makes it possible to modify the printability of the resin only slightly, keep its resolution intact, and maintain the mechanical properties of the 3D object. The resin with additive was used in UV microfabrication and two-photon stereolithography setups and commercial 3D printers. The fabricated objects were shown to degrade in basic solvent as well in a homemade compost. The rate of degradation is nonetheless dependent on the size of the object. This feature was used to prepare 3D objects with support structures that could be easily solubilized.
Collapse
Affiliation(s)
- Noémie Gil
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Constance Thomas
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Rana Mhanna
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Jessica Mauriello
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Romain Maury
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Benjamin Leuschel
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-Pierre Malval
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-Louis Clément
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Didier Gigmes
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Catherine Lefay
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Olivier Soppera
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Yohann Guillaneuf
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| |
Collapse
|
50
|
Sarabia-Vallejos MA, Rodríguez-Umanzor FE, González-Henríquez CM, Rodríguez-Hernández J. Innovation in Additive Manufacturing Using Polymers: A Survey on the Technological and Material Developments. Polymers (Basel) 2022; 14:1351. [PMID: 35406226 PMCID: PMC9003383 DOI: 10.3390/polym14071351] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022] Open
Abstract
This review summarizes the most recent advances from technological and physico-chemical perspectives to improve several remaining issues in polymeric materials' additive manufacturing (AM). Without a doubt, AM is experimenting with significant progress due to technological innovations that are currently advancing. In this context, the state-of-the-art considers both research areas as working separately and contributing to developing the different AM technologies. First, AM techniques' advantages and current limitations are analyzed and discussed. A detailed overview of the efforts made to improve the two most extensively employed techniques, i.e., material extrusion and VAT-photopolymerization, is presented. Aspects such as the part size, the possibility of producing parts in a continuous process, the improvement of the fabrication time, the reduction of the use of supports, and the fabrication of components using more than one material are analyzed. The last part of this review complements these technological advances with a general overview of the innovations made from a material perspective. The use of reinforced polymers, the preparation of adapted high-temperature materials, or even the fabrication of metallic and ceramic parts using polymers as supports are considered. Finally, the use of smart materials that enable the fabrication of shape-changing 3D objects and sustainable materials will also be explored.
Collapse
Affiliation(s)
| | - Fernando E. Rodríguez-Umanzor
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile;
- Programa Doctorado en Ciencia de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Carmen M. González-Henríquez
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile;
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain;
| |
Collapse
|