1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Zhang L, Duan Y, Ma R, Han J, Pan N, Gao L, Wang Y. Clinical phenotype and functional influence of GRIN2A variants in epilepsy-aphasia syndrome. Epilepsia Open 2024; 9:2306-2318. [PMID: 39474911 PMCID: PMC11633710 DOI: 10.1002/epi4.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE N-methyl-D-aspartate receptors are glutamate-gated ion channels that play a crucial role in brain function. Numerous inherited or de novo variants in the GRIN2A gene, encoding the GluN2A subunit of the receptor, have been identified in patients with epilepsy. In addition, it is worth noting that GRIN2A variants exhibit a strong correlation with epilepsy-aphasia syndromes, a group of age-dependent epileptic, cognitive, and language disorders with a characteristic electroencephalographic pattern. METHODS Whole exome sequencing was conducted in enrolled patients with epilepsy-aphasia syndromes, and GRIN2A variants were screened. The conservation of substituted residues, conformational changes of mutant subunits, and in silico predictions of pathogenicity were thoroughly assessed in our study. Functional alterations of the variants were examined using whole-cell voltage-clamp current recordings while the relative surface expression levels of subunit proteins were assessed via immunofluorescence assays. A summary of previously published GRIN2A missense variants was conducted to investigate the genotypic-phenotypic-functional correlations. RESULTS Two missense GRIN2A variants (c. 2482A >G/p. M828V, c. 2627 T >C/p. I876T) were identified, which are located in the transmembrane helix M4 and C-terminus domain of the GluN2A subunit, respectively. Both variants exhibited reduced current density of NMDARs and surface/total expression levels of GluN2A subunits, while M828V showed a decreased extent of desensitization as well. A further summary of the previously reported GRIN2A variants demonstrated that more variable phenotypes were observed for variants situated in the C-terminus domain or those with loss-of-function effects. SIGNIFICANCE Our study expands the phenotypic and functional range of GRIN2A-related disorders. In order to optimally establish the domain-function-phenotype correlations in GRIN2A variants, it is imperative to gather a more extensive set of clinical and functional data. PLAIN LANGUAGE SUMMARY This study has identified two genetic variants of the GRIN2A gene in patients with epilepsy-aphasia syndrome. We assess the variants' harmfulness through a variety of functional experiments, including evaluating the expression level of the mutated protein and the resulting changes in electrophysiological activities. Also, we reviewed previously published papers about GRIN2A variants in epilepsy to learn more about the correlations between their locations, functional changes, and clinical manifestations.
Collapse
Affiliation(s)
- Lu Zhang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yiran Duan
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Present address:
Department of NeurologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Rui Ma
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Present address:
Department of Endocrinology, Genetics and MetabolismNational Center for Children's Health, Beijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Jiaqi Han
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Na Pan
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Lehong Gao
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Center of Epilepsy, Beijing Institute for Brain DisordersCapital Medical University, Ministry of Science and TechnologyBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Liang Q, Liu D, Zhu B, Wang F. NMDAR-CaMKII Pathway as a Central Regulator of Aggressiveness: Evidence from Transcriptomic and Metabolomic Analysis in Swimming Crabs Portunus trituberculatus. Int J Mol Sci 2024; 25:12560. [PMID: 39684272 DOI: 10.3390/ijms252312560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Aggressiveness is one of the personality traits of crustaceans, playing a crucial role in their growth, life history, and adaptability by influencing resource acquisition. However, the neuroregulatory mechanisms of aggressiveness in crustaceans remain poorly understood. The thoracic ganglion offers valuable insights into complementary aspects of aggression control. This study identified the aggressiveness of swimming crabs Portunus trituberculatus, conducted transcriptomic and metabolomic analyses of the thoracic ganglia, and confirmed the neural regulatory effects on aggressiveness. Behavioral analyses showed that highly aggressive individuals exhibited increased frequency and duration of chela extension, more frequent attacks, approaches and retreats, as well as extended movement distances. Omics analysis revealed 11 key candidate genes and three metabolites associated with aggressiveness, which were primarily enriched in pathways related to energy metabolism and neurodegeneration. Injection of an NMDAR activator significantly decreased aggressiveness in highly aggressive crabs, accompanied by a significant increase in NMDAR protein fluorescence intensity and downregulation of NR2B, CaMKII, and CREB genes. Conversely, when lowly aggressive crabs were injected with an NMDAR inhibitor, they showed increased aggressiveness alongside significantly decreased NMDAR protein fluorescence intensity, upregulated NR2B expression, and downregulated CaMKII and CREB genes. These results suggest that NMDAR within the thoracic ganglia serves as a key receptor in modulating aggressiveness in P. trituberculatus, potentially by influencing neural energy state via the NMDAR-CaMKII pathway, which in turn affects oxidative phosphorylation, cAMP, and FoxO pathways.
Collapse
Affiliation(s)
- Qihang Liang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Dapeng Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Boshan Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Fang Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
4
|
Tumdam R, Hussein Y, Garin-Shkolnik T, Stern S. NMDA Receptors in Neurodevelopmental Disorders: Pathophysiology and Disease Models. Int J Mol Sci 2024; 25:12366. [PMID: 39596430 PMCID: PMC11594297 DOI: 10.3390/ijms252212366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical components of the mammalian central nervous system, involved in synaptic transmission, plasticity, and neurodevelopment. This review focuses on the structural and functional characteristics of NMDARs, with a particular emphasis on the GRIN2 subunits (GluN2A-D). The diversity of GRIN2 subunits, driven by alternative splicing and genetic variants, significantly impacts receptor function, synaptic localization, and disease manifestation. The temporal and spatial expression of these subunits is essential for typical neural development, with each subunit supporting distinct phases of synaptic formation and plasticity. Disruptions in their developmental regulation are linked to neurodevelopmental disorders, underscoring the importance of understanding these dynamics in NDD pathophysiology. We explore the physiological properties and developmental regulation of these subunits, highlighting their roles in the pathophysiology of various NDDs, including ASD, epilepsy, and schizophrenia. By reviewing current knowledge and experimental models, including mouse models and human-induced pluripotent stem cells (hiPSCs), this article aims to elucidate different approaches through which the intricacies of NMDAR dysfunction in NDDs are currently being explored. The comprehensive understanding of NMDAR subunit composition and their mutations provides a foundation for developing targeted therapeutic strategies to address these complex disorders.
Collapse
Affiliation(s)
- Roshan Tumdam
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
5
|
Xie D, Zhang P, You S, Shen Y, Xu W, Zhan C, Zhang J. Salidroside derivative SHPL-49 attenuates glutamate excitotoxicity in acute ischemic stroke via promoting NR2A-CAMKⅡα-Akt /CREB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155583. [PMID: 39173548 DOI: 10.1016/j.phymed.2024.155583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Ischemic stroke is a significant cause of death and disability with a limited treatment time window. The reduction of early glutamate excitotoxicity using neuroprotective agents targeting N-methyl-d-aspartic acid (NMDA) receptors have attracted recent research attention. SHPL-49, a structurally modified derivative of salidroside, was synthesized by our team. Previous studies have confirmed the neuroprotective efficacy of SHPL-49 in rats with ischemic stroke. However, the underlying mechanisms need to be clarified. METHODS We conducted in vivo experiments using the permanent middle cerebral artery occlusion rat model to investigate the role of SHPL-49 in glutamate release at different time points and treatment durations. Glutamate transporters and receptor proteins and neural survival proteins in the brain were also examined at the same time points. In vitro, primary neurons and the coculture system of primary neurons-astrocytes were subjected to oxygen-glucose deprivation and glutamate injury. Proteomics and parallel reaction monitoring analyses were performed to identify potential therapeutic targets of SHPL-49, which were further confirmed through in vitro experiments on the inhibition and mutation of the target. RESULTS SHPL-49 significantly reduced glutamate release caused by hypoxia-ischemia. One therapeutic pathway of SHPL-49 was promoting the expression of glutamate transporter-1 to increase glutamate reuptake and further reduce the occurrence of subsequent neurotoxicity. In addition, we explored the therapeutic targets of SHPL-49 and its regulatory effects on glutamate receptors for the first time. SHPL-49 enhanced neuroprotection by activating the NMDA subunit NR2A, which upregulated the cyclic-AMP response binding protein (CREB) neural survival pathway and Akt phosphorylation. Since calcium/calmodulin-dependent kinase IIα (CaMKIIα) is necessary for synaptic transmission of NMDA receptors, we explored the interaction between CaMKIIα and SHPL-49, which protected CaMKIIα from hypoxia-ischemia-induced autophosphorylation damage. CONCLUSION Overall, SHPL-49 enhanced neuronal survival and attenuated acute ischemic stroke by promoting the NR2A-CAMKⅡα-Akt/CREB pathway. Our study provides the first evidence demonstrating that the neuroprotective effect of SHPL-49 is achieved by promoting the NR2A subunit to extend the treatment time window, making it a promising drug for ischemic stroke.
Collapse
Affiliation(s)
- Dong Xie
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Yue Shen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Wenwen Xu
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201400, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201400, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| |
Collapse
|
6
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Tan Y, Hashimoto K. Therapeutic potential of ketamine in management of epilepsy: Clinical implications and mechanistic insights. Asian J Psychiatr 2024; 101:104246. [PMID: 39366036 DOI: 10.1016/j.ajp.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024]
Abstract
Epilepsy, a widespread neurological disorder, affects approximately 50 million people worldwide. This disorder is typified by recurring seizures due to abnormal neuron communication in the brain. The seizures can lead to severe ischemia and hypoxia, potentially threatening patients' lives. However, with proper diagnosis and treatment, up to 70 % of patients can live without seizures. The causes of epilepsy are complex and multifactorial, encompassing genetic abnormalities, structural brain anomalies, ion channel dysfunctions, neurotransmitter imbalances, neuroinflammation, and immune system involvement. These factors collectively disrupt the crucial balance between excitation and inhibition within the brain, leading to epileptic seizures. The management of treatment-resistant epilepsy remains a considerable challenge, necessitating innovative therapeutic approaches. Among emerging potential treatments, ketamine-a drug traditionally employed for anesthesia and depression-has demonstrated efficacy in reducing seizures. It is noteworthy that, independent of its anti-epileptic effects, ketamine has been found to improve the balance between excitatory and inhibitory (E/I) activities in the brain. The balance is crucial for maintaining normal neural function, and its disruption is widely considered a key driver of epileptic seizures. By acting on N-methyl-D-aspartate (NMDA) receptors and other potential mechanisms, ketamine may regulate neuronal excitability, reduce excessive synchronized neural activity, and counteract epileptic seizures. This positive impact on E/I balance reinforces the potential of ketamine as a promising drug for treating epilepsy, especially in patients who are insensitive to traditional anti-epileptic drugs. This review aims to consolidate the current understanding of ketamine's therapeutic role in epilepsy. It will focus its impact on neuronal excitability and synaptic plasticity, its neuroprotective qualities, and elucidate the drug's potential mechanisms of action in treating epilepsy. By scrutinizing ketamine's impact and mechanisms in various types of epilepsy, we aspire to contribute to a more comprehensive and holistic approach to epilepsy management.
Collapse
Affiliation(s)
- Yunfei Tan
- Center for Rehabilitation Medicine, Department of Psychiatry, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan.
| |
Collapse
|
8
|
Rumian NL, Barker CM, Larsen ME, Tullis JE, Freund RK, Taslimi A, Coultrap SJ, Tucker CL, Dell'Acqua ML, Bayer KU. LTP expression mediated by autonomous activity of GluN2B-bound CaMKII. Cell Rep 2024; 43:114866. [PMID: 39395168 PMCID: PMC11563194 DOI: 10.1016/j.celrep.2024.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
Learning and memory are thought to require the induction and maintenance of long-term potentiation (LTP) of synaptic strength. LTP induction requires the Ca2+/calmodulin-dependent protein kinase II (CaMKII) but for structural rather than enzymatic functions. We show that the relevant structural function is regulated by CaMKII binding to the NMDA-type glutamate receptor subunit GluN2B. This binding directly generates Ca2+-independent autonomous CaMKII activity, and we show that this enzymatic activity is dispensable for LTP induction (within 5 min) but required for a subsequent LTP phase (within 15 min). This requirement for CaMKII activity provides an objective temporal definition for the intermediary phase of LTP expression. Later LTP maintenance may still require structural functions of GluN2B-bound CaMKII but not the resulting enzymatic CaMKII activity or their co-condensation. Thus, autonomous CaMKII activity mediates post-induction LTP but (1) via GluN2B binding, not T286 autophosphorylation, and (2) during the intermediary expression phase rather than for long-term maintenance.
Collapse
Affiliation(s)
- Nicole L Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - C Madison Barker
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew E Larsen
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan E Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amir Taslimi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Steven J Coultrap
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chandra L Tucker
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Song Q, E S, Zhang Z, Liang Y. Neuroplasticity in the transition from acute to chronic pain. Neurotherapeutics 2024; 21:e00464. [PMID: 39438166 PMCID: PMC11585895 DOI: 10.1016/j.neurot.2024.e00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Acute pain is a transient sensation that typically serves as part of the body's defense mechanism. However, in certain patients, acute pain can evolve into chronic pain, which persists for months or even longer. Neuroplasticity refers to the capacity for variation and adaptive alterations in the morphology and functionality of neurons and synapses, and it plays a significant role in the transmission and modulation of pain. In this paper, we explore the molecular mechanisms and signaling pathways underlying neuroplasticity during the transition of pain. We also examine the effects of neurotransmitters, inflammatory mediators, and central sensitization on neuroplasticity, as well as the potential of neuroplasticity as a therapeutic strategy for preventing chronic pain. The aims of this article is to clarify the role of neuroplasticity in the transformation from acute pain to chronic pain, with the hope of providing a novel theoretical basis for unraveling the pathogenesis of chronic pain and offering more effective strategies and approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Qingbiao Song
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Sihan E
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Zhiyu Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, China
| | - Yingxia Liang
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
10
|
Anna O, Michael A, Apostolakis M, Mammadov E, Mitka A, Kalatta MA, Koumas M, Georgiou A, Chatzittofis A, Panayiotou G, Gergiou P, Zarate CA, Zanos P. Ketamine and hydroxynorketamine as novel pharmacotherapies for the treatment of Opioid-Use Disorders. Biol Psychiatry 2024:S0006-3223(24)01591-9. [PMID: 39293647 DOI: 10.1016/j.biopsych.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Opioid use disorder (OUD) has reached epidemic proportions, with many countries facing high opioid use and related fatalities. Although currently-prescribed medications for OUD (MOUD) are considered life-saving, they inadequately address negative affect and cognitive impairment, resulting in high relapse rates to non-medical opioid use, even years after drug cessation (protracted abstinence). Evidence supports the notion that ketamine, an anesthetic and rapid-acting antidepressant drug, holds promise as a candidate for OUD treatment, including the management of acute withdrawal somatic symptoms, negative affect during protracted opioid abstinence and prevention of re-taking non-medical opioids. In this review, we comprehensively discuss preclinical and clinical research evaluating ketamine and its metabolites as potential novel therapeutic strategies for treating OUDs. We further examine evidence supporting the relevance of the molecular targets of ketamine and its metabolites in relation to their potential effects and therapeutic outcomes in OUDs. Overall, existing evidence demonstrates that ketamine and its metabolites can effectively modulate pathophysiological processes affected in OUD, suggesting their promising therapeutic role in the treatment of OUD and the prevention of return to opioid use during abstinence.
Collapse
Affiliation(s)
- Onisiforou Anna
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andria Michael
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Markos Apostolakis
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Elmar Mammadov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Angeliki Mitka
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Maria A Kalatta
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Morfeas Koumas
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andrea Georgiou
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andreas Chatzittofis
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden; Medical School, University of Cyprus, Nicosia, Cyprus
| | - Georgia Panayiotou
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Gergiou
- Department of Psychology, University of Wisconsin-Milwaukee, Wisconsin, 53211, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA.
| |
Collapse
|
11
|
Oliveira-Lima OC, de Carvalho GA, do Prado Assunção L, Bailão AM, Ulrich H, Marques BL, de Oliveira ACP, Gomez RS, Pinto MCX. GlyT1 Inhibition by NFPS Promotes Neuroprotection in Amyloid-β-Induced Alzheimer's Disease Animal Model. Neurochem Res 2024; 49:2535-2555. [PMID: 38888830 DOI: 10.1007/s11064-024-04190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β, leading to N-methyl-D-aspartate (NMDA) receptor-dependent synaptic depression, spine elimination, and memory deficits. Glycine transporter type 1 (GlyT1) modulates glutamatergic neurotransmission via NMDA receptors (NMDAR), presenting a potential alternative therapeutic approach for AD. This study investigates the neuroprotective potential of GlyT1 inhibition in an amyloid-β-induced AD mouse model. C57BL/6 mice were treated with N-[3-([1,1-Biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine (NFPS), a GlyT1 inhibitor, 24 h prior to intrahippocampal injection of amyloid-β. NFPS pretreatment prevented amyloid-β-induced cognitive deficits in short-term and long-term memory, evidenced by novel object recognition and spatial memory tasks. Moreover, NFPS pretreatment curbed microglial activation, astrocytic reactivity, and subsequent neuronal damage from amyloid-β injection. An extensive label-free quantitative UPLC-MSE proteomic analysis was performed on the hippocampi of mice treated with NFPS. In proteomics, KEGG enrichment analysis revealed increased in dopaminergic synapse, purine-containing compound biosynthetic process and long-term potentiation, and a reduction in Glucose catabolic process and glycolytic process pathways. The western blot analysis confirmed that NFPS treatment elevated BDNF levels, correlating with enhanced TRKB phosphorylation and mTOR activation. Moreover, NFPS treatment reduced the GluN2B expression after 6 h, which was associated with an increase on CaMKIV and CREB phosphorylation. Collectively, these findings demonstrate that GlyT1 inhibition by NFPS activates diverse neuroprotective pathways, enhancing long-term potentiation signaling and countering amyloid-β-induced hippocampal damage.
Collapse
Affiliation(s)
- Onésia Cristina Oliveira-Lima
- Laboratório de Neuroquímica e Neurofarmacologia Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, S/N, UFG, Prédio ICB II, Sala 114, Goiânia-GO, CEP 74690-900, Brazil
| | - Gustavo Almeida de Carvalho
- Laboratório de Neuroquímica e Neurofarmacologia Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, S/N, UFG, Prédio ICB II, Sala 114, Goiânia-GO, CEP 74690-900, Brazil
| | - Leandro do Prado Assunção
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO, CEP 74690-900, Brazil
| | - Alexandre Melo Bailão
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO, CEP 74690-900, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Bruno Lemes Marques
- Laboratório de Neuroquímica e Neurofarmacologia Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, S/N, UFG, Prédio ICB II, Sala 114, Goiânia-GO, CEP 74690-900, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Departamento de Farmacologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte-MG, 6627, 31270-901, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Belo Horizonte-MG, 30130-100, Brazil
| | - Mauro Cunha Xavier Pinto
- Laboratório de Neuroquímica e Neurofarmacologia Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, S/N, UFG, Prédio ICB II, Sala 114, Goiânia-GO, CEP 74690-900, Brazil.
| |
Collapse
|
12
|
Moosavi M, Soukhaklari R, Bagheri-Mohammadi S, Firouzan B, Javadpour P, Ghasemi R. Nanocurcumin prevents memory impairment, hippocampal apoptosis, Akt and CaMKII-α signaling disruption in the central STZ model of Alzheimer's disease in rat. Behav Brain Res 2024; 471:115129. [PMID: 38942084 DOI: 10.1016/j.bbr.2024.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
The central route of streptozotocin (STZ) administration has been introduced as a rat model of sporadic Alzheimer's disease (AD). Curcumin was suggested to possess possible neuroprotective effects, which may be profitable in AD. However, the low bioavailability of curcumin hinders its beneficial effects in clinical studies. Earlier studies suggested that a bovine serum albumin-based nanocurcumin, produces superior neuroprotective effects compared to natural curcumin. In the present study, the protective effect of nanocurcumin in rat model of central STZ induced memory impairment was assessed. In addition, due to the importance of the hippocampus in memory, the amounts of hippocampal active caspase-3, Akt, and CaMKII-α were evaluated. Adult male Wistar rats weighing 250-300 g were used. STZ (icv) was injected during days 1 and 3 (3 mg/kg in divided), and nanocurcumin or curcumin 50 mg/kg/oral gavage was administered daily during days 4-14. Morris water maze training was performed on days 15-17, and the retention memory test was achieved on the 18th day. Following memory assessment, the rats were sacrificed and the hippocampi were used to assess caspase-3 cleavage, Akt, and CaMKII-α signaling. The findings revealed that nanocurcumin ingestion (but not natural curcumin) in the dose of 50 mg/kg was capable to prevent the impairment of water maze learning and memory induced by central STZ. Molecular assessments indicated that STZ treatment increased the caspase-3 cleavage in the hippocampus while deactivating Akt and CaMKII-α. Nanocurcumin reduced caspase-3 cleavage to a non-significant level compared to control group and restored Akt and CaMKII-α within the hippocampus while natural curcumin exerted no significant effect. These findings might suggest that nanocurcumin can restore memory deficit, hippocampal apoptosis as well as Akt and CaMKII-α signaling disruption associated with brain insulin resistance.
Collapse
Affiliation(s)
- Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Roksana Soukhaklari
- Shiraz Neuroscience Research Centre, Shiraz University of Medical sciences, Shiraz, Iran; Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Bita Firouzan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. PLoS One 2024; 19:e0301063. [PMID: 38995900 PMCID: PMC11244776 DOI: 10.1371/journal.pone.0301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vernon R. J. Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
14
|
Tullis JE, Bayer KU. Induction of LTP mechanisms in dually innervated dendritic spines. Sci Rep 2024; 14:15855. [PMID: 38982271 PMCID: PMC11233660 DOI: 10.1038/s41598-024-66871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
Dendritic spines are the postsynaptic compartments of excitatory synapses, however, a substantial subset of spines additionally receives inhibitory input. In such dually innervated spines (DiSs), excitatory long-term potentiation (LTP) mechanisms are suppressed, but can be enabled by blocking tonic inhibitory GABAB receptor signaling. Here we show that LTP mechanisms at DiSs are also enabled by two other excitatory LTP stimuli. In hippocampal neurons, these chemical LTP (cLTP) stimuli induced robust movement of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to DiSs. Such synaptic CaMKII accumulation is an essential LTP mechanism at singly innervated spines (SiSs). Indeed, CaMKII accumulation at DiSs was also accompanied by other readouts for successful LTP induction: spine growth and surface insertion of GluA1. Thus, DiSs are capable of the same LTP mechanisms as SiSs, although induction of these mechanism additionally requires either reduced inhibitory signaling or increased excitatory stimulation. This additional regulation may provide further computational control.
Collapse
Affiliation(s)
- Jonathan E Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
15
|
Dahleh MMM, Mello CF, Ferreira J, Rubin MA, Prigol M, Guerra GP. CaMKIIα mediates spermidine-induced memory enhancement in rats: A potential involvement of PKA/CREB pathway. Pharmacol Biochem Behav 2024; 240:173774. [PMID: 38648866 DOI: 10.1016/j.pbb.2024.173774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Memory consolidation is associated with the regulation of protein kinases, which impact synaptic functions and promote synaptogenesis. The administration of spermidine (SPD) has been shown to modulate major protein kinases associated with memory improvement, including the Ca2+-dependent protein kinase (PKC) and cAMP-dependent protein kinase (PKA), key players in the cAMP response element-binding protein (CREB) activation. Nevertheless, the initial mechanism underlying SPD-mediated memory consolidation remains unknown, as we hypothesize a potential involvement of the memory consolidation precursor, Ca2+/calmodulin-dependent protein kinase II-α (CaMKIIα), in this process. Based on this, our study aimed to investigate potential interactions among PKC, PKA, and CREB activation, mediated by CaMKIIα activation, in order to elucidate the SPD memory consolidation pathway. Our findings suggest that the post-training administration of the CaMKII inhibitor, KN-62 (0.25 nmol, intrahippocampal), prevented the memory enhancement induced by SPD (0.2 nmol, intrahippocampal) in the inhibitory avoidance task. Through western immunoblotting, we observed that phosphorylation of CaMKIIα in the hippocampus was facilitated 15 min after intrahippocampal SPD administration, resulting in the activation of PKA and CREB, 180 min after infusion, suggesting a possible sequential mechanism, since SPD with KN-62 infusion leads to a downregulation in CaMKIIα/PKA/CREB pathway. However, KN-62 does not alter the memory-facilitating effect of SPD on PKC, possibly demonstrating a parallel cascade in memory acquisition via PKA, without modulating CAMKIIα. These results suggest that memory enhancement induced by SPD administration involves crosstalk between CaMKIIα and PKA/CREB, with no PKC interaction.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Carlos Fernando Mello
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Juliano Ferreira
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maribel Antonello Rubin
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil.
| |
Collapse
|
16
|
Rao S, Liang F, Herring BE. RhoGEF Tiam2 Regulates Glutamatergic Synaptic Transmission in Hippocampal CA1 Pyramidal Neurons. eNeuro 2024; 11:ENEURO.0500-21.2024. [PMID: 38871458 PMCID: PMC11262554 DOI: 10.1523/eneuro.0500-21.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Glutamatergic synapses exhibit significant molecular diversity, but circuit-specific mechanisms that underlie synaptic regulation are not well characterized. Prior reports show that Rho-guanine nucleotide exchange factor (RhoGEF) Tiam1 regulates perforant path→dentate gyrus granule neuron synapses. In the present study, we report Tiam1's homolog Tiam2 is implicated in glutamatergic neurotransmission in CA1 pyramidal neurons. We find that Tiam2 regulates evoked excitatory glutamatergic currents via a postsynaptic mechanism mediated by the catalytic Dbl-homology domain. Overall, we present evidence for RhoGEF Tiam2's role in glutamatergic synapse function at Schaffer collateral→CA1 pyramidal neuron synapses.
Collapse
Affiliation(s)
- Sadhna Rao
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089
| | - Feng Liang
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089
| | - Bruce E Herring
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
17
|
Chen X, Cai Q, Zhou J, Pleasure SJ, Schulman H, Zhang M, Nicoll RA. CaMKII autophosphorylation is the only enzymatic event required for synaptic memory. Proc Natl Acad Sci U S A 2024; 121:e2402783121. [PMID: 38889145 PMCID: PMC11214084 DOI: 10.1073/pnas.2402783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of target protein phosphorylation. Thus, autophosphorylation and binding to the GluN2B subunit are the only two requirements for CaMKII in synaptic memory.
Collapse
Affiliation(s)
- Xiumin Chen
- Department of Neurology and Institute of Neuroscience of Soochow University, Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94158
| | - Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Laboratory Medicine, State Key Laboratory of Vaccines for Infectious Diseases,School of Public Heath, Xiamen University, Xiamen, Fujian361102, China
| | - Jing Zhou
- Department of Neurology, University of California, San Francisco, CA94158
| | - Samuel J. Pleasure
- Department of Neurology, University of California, San Francisco, CA94158
| | - Howard Schulman
- Department of Pharmacology, Stanford University School of Medicine, Stanford, CA
- Department of Pharmacology, Panorama Research Institute, Sunnyvale, CA
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Laboratory Medicine, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94158
| |
Collapse
|
18
|
Gao X, Li R, Luo L, Liao C, Yang H, Mao S. Alpha-Asarone Ameliorates Neurological Dysfunction of Subarachnoid Hemorrhagic Rats in Both Acute and Recovery Phases via Regulating the CaMKII-Dependent Pathways. Transl Stroke Res 2024; 15:476-494. [PMID: 36781743 DOI: 10.1007/s12975-023-01139-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 02/05/2023] [Indexed: 02/15/2023]
Abstract
Early brain injury (EBI) is the leading cause of poor prognosis for patients suffering from subarachnoid hemorrhage (SAH), particularly learning and memory deficits in the repair phase. A recent report has involved calcium/calmodulin-dependent protein kinase II (CaMKII) in the pathophysiological process underlying SAH-induced EBI. Alpha-asarone (ASA), a major compound isolated from the Chinese medicinal herb Acorus tatarinowii Schott, was proven to reduce secondary brain injury by decreasing CaMKII over-phosphorylation in rats' model of intracerebral hemorrhage in our previous report. However, the effect of ASA on SAH remains unclear, and the role of CaMKII in both acute and recovery stages of SAH needs further investigation. In this work, we first established a classic SAH rat model by endovascular perforation and intraperitoneally administrated different ASA doses (10, 20, and 40 mg/kg) 2 h after successful modeling. Then, the short- and long-term neurobehavioral performances were blindly evaluated to confirm ASA's efficacy against SAH. Subsequently, we explored ASA's therapeutic mechanism in both acute and recovery stages using histopathological examination, TUNEL staining, flow cytometry, Western-blot, double-immunofluorescence staining, and transmission electron microscopy (TEM) observation. Finally, KN93, a selective CaMKII inhibitor, was applied in oxyhemoglobin-damaged HT22 cells to explore the role of CaMKII in ASA's neuroprotective effect. The results demonstrated that ASA alleviated short- and long-term neurological dysfunction, reduced mortality and seizure rate within 24 h, and prolonged 14-day survival in SAH rats. Histopathological examination showed a reduction of neuronal damage and a restoration of the hippocampal structure after ASA treatment in both acute and recovery phases of SAH. In the acute stage, the Western-blot and flow cytometer analyses showed that ASA restored E/I balance, reduced calcium overload and CaMKII phosphorylation, and inhibited mitochondrion-involved apoptosis, thus preventing neuronal damage and apoptosis underlying EBI post-SAH. In the recovery stage, the TEM observation, double-immunofluorescence staining, and Western-blot analyses indicated that ASA increased the numbers of synapses and enhanced synaptic plasticity in the ipsilateral hippocampi, probably by promoting NR2B/CaMKII interaction and activating subsequent CREB/BDNF/TrkB signaling pathways. Furthermore, KN93 notably reversed ASA's neuroprotective effect on oxyhemoglobin-damaged HT22 cells, confirming CaMKII a potential target for ASA's efficacy against SAH. Our study confirmed for the first time that ASA ameliorated the SAH rats' neurobehavioral deterioration, possibly via modulating CaMKII-involved pathways. These findings provided a promising candidate for the clinical treatment of SAH and shed light on future drug discovery against SAH.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Can Liao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Huiyuan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China.
| |
Collapse
|
19
|
Espadas I, Wingfield JL, Nakahata Y, Chanda K, Grinman E, Ghosh I, Bauer KE, Raveendra B, Kiebler MA, Yasuda R, Rangaraju V, Puthanveettil S. Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity. Nat Commun 2024; 15:2694. [PMID: 38538603 PMCID: PMC10973417 DOI: 10.1038/s41467-024-46972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Karl E Bauer
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
20
|
Perez-Corredor P, Vanderleest TE, Vacano GN, Sanchez JS, Villalba-Moreno ND, Marino C, Krasemann S, Mendivil-Perez MA, Aguillón D, Jiménez-Del-Río M, Baena A, Sepulveda-Falla D, Lopera F, Quiroz YT, Arboleda-Velasquez JF, Mazzarino RC. APOE3 Christchurch modulates β-catenin/Wnt signaling in iPS cell-derived cerebral organoids from Alzheimer's cases. Front Mol Neurosci 2024; 17:1373568. [PMID: 38571814 PMCID: PMC10987717 DOI: 10.3389/fnmol.2024.1373568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
A patient with the PSEN1 E280A mutation and homozygous for APOE3 Christchurch (APOE3Ch) displayed extreme resistance to Alzheimer's disease (AD) cognitive decline and tauopathy, despite having a high amyloid burden. To further investigate the differences in biological processes attributed to APOE3Ch, we generated induced pluripotent stem (iPS) cell-derived cerebral organoids from this resistant case and a non-protected control, using CRISPR/Cas9 gene editing to modulate APOE3Ch expression. In the APOE3Ch cerebral organoids, we observed a protective pattern from early tau phosphorylation. ScRNA sequencing revealed regulation of Cadherin and Wnt signaling pathways by APOE3Ch, with immunostaining indicating elevated β-catenin protein levels. Further in vitro reporter assays unexpectedly demonstrated that ApoE3Ch functions as a Wnt3a signaling enhancer. This work uncovered a neomorphic molecular mechanism of protection of ApoE3 Christchurch, which may serve as the foundation for the future development of protected case-inspired therapeutics targeting AD and tauopathies.
Collapse
Affiliation(s)
- Paula Perez-Corredor
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical School, Boston, MA, United States
| | - Timothy E. Vanderleest
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical School, Boston, MA, United States
| | | | - Justin S. Sanchez
- Massachusetts General Hospital and Department of Neurology at Harvard Medical School, Boston, MA, United States
| | - Nelson D. Villalba-Moreno
- Molecular Neuropathology of Alzheimer’s Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical School, Boston, MA, United States
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - David Aguillón
- The Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | | | - Ana Baena
- The Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Diego Sepulveda-Falla
- Molecular Neuropathology of Alzheimer’s Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francisco Lopera
- The Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Yakeel T. Quiroz
- Massachusetts General Hospital and Department of Neurology at Harvard Medical School, Boston, MA, United States
- The Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
- Massachusetts General Hospital and Department of Psychiatry at Harvard Medical School, Boston, MA, United States
| | - Joseph F. Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical School, Boston, MA, United States
| | - Randall C. Mazzarino
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology at Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Anjum R, Clarke VRJ, Nagasawa Y, Murakoshi H, Paradis S. Rem2 interacts with CaMKII at synapses and restricts long-term potentiation in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584540. [PMID: 38558974 PMCID: PMC10979978 DOI: 10.1101/2024.03.11.584540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme CaMKII plays a well-established and critical role in the induction of a variety of forms of synaptic plasticity such as long-term potentiation (LTP), long-term depression (LTD) and depotentiation. Previously, we identified the GTPase Rem2 as a potent, endogenous inhibitor of CaMKII. Here, we report that knock out of Rem2 enhances LTP at the Schaffer collateral to CA1 synapse in hippocampus, consistent with an inhibitory action of Rem2 on CaMKII in vivo. Further, re-expression of WT Rem2 rescues the enhanced LTP observed in slices obtained from Rem2 conditional knock out (cKO) mice, while expression of a mutant Rem2 construct that is unable to inhibit CaMKII in vitro fails to rescue increased LTP. In addition, we demonstrate that CaMKII and Rem2 interact in dendritic spines using a 2pFLIM-FRET approach. Taken together, our data lead us to propose that Rem2 serves as a brake on runaway synaptic potentiation via inhibition of CaMKII activity. Further, the enhanced LTP phenotype we observe in Rem2 cKO slices reveals a previously unknown role for Rem2 in the negative regulation of CaMKII function.
Collapse
Affiliation(s)
- Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies; Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences; Okazaki, Aichi 444-8585, Japan
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, United States of America
| |
Collapse
|
22
|
Claiborne N, Anisimova M, Zito K. Activity-Dependent Stabilization of Nascent Dendritic Spines Requires Nonenzymatic CaMKIIα Function. J Neurosci 2024; 44:e1393222023. [PMID: 38050081 PMCID: PMC10860566 DOI: 10.1523/jneurosci.1393-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The outgrowth and stabilization of nascent dendritic spines are crucial processes underlying learning and memory. Most new spines retract shortly after growth; only a small subset is stabilized and integrated into the new circuit connections that support learning. New spine stabilization has been shown to rely upon activity-dependent molecular mechanisms that also contribute to long-term potentiation (LTP) of synaptic strength. Indeed, disruption of the activity-dependent targeting of the kinase CaMKIIα to the GluN2B subunit of the NMDA-type glutamate receptor disrupts both LTP and activity-dependent stabilization of new spines. Yet it is not known which of CaMKIIα's many enzymatic and structural functions are important for new spine stabilization. Here, we used two-photon imaging and photolysis of caged glutamate to monitor the activity-dependent stabilization of new dendritic spines on hippocampal CA1 neurons from mice of both sexes in conditions where CaMKIIα functional and structural interactions were altered. Surprisingly, we found that inhibiting CaMKIIα kinase activity either genetically or pharmacologically did not impair activity-dependent new spine stabilization. In contrast, shRNA knockdown of CaMKIIα abolished activity-dependent new spine stabilization, which was rescued by co-expressing shRNA-resistant full-length CaMKIIα, but not by a truncated monomeric CaMKIIα. Notably, overexpression of phospho-mimetic CaMKIIα-T286D, which exhibits activity-independent targeting to GluN2B, enhanced basal new spine survivorship in the absence of additional glutamatergic stimulation, even when kinase activity was disrupted. Together, our results support a model in which nascent dendritic spine stabilization requires structural and scaffolding interactions mediated by dodecameric CaMKIIα that are independent of its enzymatic activities.
Collapse
Affiliation(s)
- Nicole Claiborne
- Center for Neuroscience, University of California, Davis, California 95618
| | | | - Karen Zito
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
23
|
Cui LL, Wang XX, Liu H, Luo F, Li CH. Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats. Mol Pain 2024; 20:17448069241226960. [PMID: 38172075 PMCID: PMC10851759 DOI: 10.1177/17448069241226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2013] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.
Collapse
Affiliation(s)
- Ling-Ling Cui
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi-Xi Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Liu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Hong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
24
|
Tan JZA, Jang SE, Batallas-Borja A, Bhembre N, Chandra M, Zhang L, Guo H, Ringuet MT, Widagdo J, Collins BM, Anggono V. Copine-6 is a Ca 2+ sensor for activity-induced AMPA receptor exocytosis. Cell Rep 2023; 42:113460. [PMID: 37979168 DOI: 10.1016/j.celrep.2023.113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
The recruitment of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors underlies the strengthening of neuronal connectivity during learning and memory. This process is triggered by N-methyl-D-aspartate (NMDA) receptor-dependent postsynaptic Ca2+ influx. Synaptotagmin (Syt)-1 and -7 have been proposed as Ca2+ sensors for AMPA receptor exocytosis but are functionally redundant. Here, we identify a cytosolic C2 domain-containing Ca2+-binding protein, Copine-6, that forms a complex with AMPA receptors. Loss of Copine-6 expression impairs activity-induced exocytosis of AMPA receptors in primary neurons, which is rescued by wild-type Copine-6 but not Ca2+-binding mutants. In contrast, Copine-6 loss of function does not affect steady-state expression or tetrodotoxin-induced synaptic upscaling of surface AMPA receptors. Loss of Syt-1/Syt-7 significantly reduces Copine-6 protein expression. Interestingly, overexpression of wild-type Copine-6, but not the Ca2+-binding mutants, restores activity-dependent exocytosis of AMPA receptors in Syt-1/Syt-7 double-knockdown neurons. We conclude that Copine-6 is a postsynaptic Ca2+ sensor that mediates AMPA receptor exocytosis during synaptic potentiation.
Collapse
Affiliation(s)
- Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Se Eun Jang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ana Batallas-Borja
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nishita Bhembre
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lingrui Zhang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huimin Guo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mitchell T Ringuet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
25
|
Pushkin AN, Kay Y, Herring BE. Protein 4.1N Plays a Cell Type-Specific Role in Hippocampal Glutamatergic Synapse Regulation. J Neurosci 2023; 43:8336-8347. [PMID: 37845032 PMCID: PMC10711697 DOI: 10.1523/jneurosci.0185-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Many glutamatergic synapse proteins contain a 4.1N protein binding domain. However, a role for 4.1N in the regulation of glutamatergic neurotransmission has been controversial. Here, we observe significantly higher expression of protein 4.1N in granule neurons of the dentate gyrus (DG granule neurons) compared with other hippocampal regions. We discover that reducing 4.1N expression in rat DG granule neurons of either sex results in a significant reduction in glutamatergic synapse function that is caused by a decrease in the number of glutamatergic synapses. By contrast, we find reduction of 4.1N expression in hippocampal CA1 pyramidal neurons has no impact on basal glutamatergic neurotransmission. We also find 4.1N's C-terminal domain (CTD) to be nonessential to its role in the regulation of glutamatergic synapses of DG granule neurons. Instead, we show that 4.1N's four-point-one, ezrin, radixin, and moesin (FERM) domain is essential for supporting synaptic AMPA receptor (AMPAR) function in these neurons. Altogether, this work demonstrates a novel, cell type-specific role for protein 4.1N in governing glutamatergic synapse function.SIGNIFICANCE STATEMENT Glutamatergic synapses exhibit immense molecular diversity. In comparison to heavily studied Schaffer collateral, CA1 glutamatergic synapses, significantly less is known about perforant path-dentate gyrus (DG) synapses. Our data demonstrate that compromising 4.1N function in CA1 pyramidal neurons produces no alteration in basal glutamatergic synaptic transmission. However, in DG granule neurons, compromising 4.1N function leads to a significant decrease in the strength of glutamatergic neurotransmission at perforant pathway synapses. Together, our data identifies 4.1N as a cell type-specific regulator of synaptic transmission within the hippocampus and reveals a unique molecular program that governs perforant pathway synapse function.
Collapse
Affiliation(s)
- Anna N Pushkin
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089
| | - Yuni Kay
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089
| | - Bruce E Herring
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089
- Department of Biological Sciences, Neurobiology Section, Dornslife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
26
|
Lučić I, Jiang P, Franz A, Bursztyn Y, Liu F, Plested AJR. Controlling the interaction between CaMKII and Calmodulin with a photocrosslinking unnatural amino acid. Protein Sci 2023; 32:e4798. [PMID: 37784242 PMCID: PMC10588329 DOI: 10.1002/pro.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Using unnatural amino acid mutagenesis, we made a mutant of CaMKII that forms a covalent linkage to Calmodulin upon illumination by UV light. Like wild-type CaMKII, the L308BzF mutant stoichiometrically binds to Calmodulin, in a calcium-dependent manner. Using this construct, we demonstrate that Calmodulin binding to CaMKII, even under these stochiometric conditions, does not perturb the CaMKII oligomeric state. Furthermore, we were able to achieve activation of CaMKII L308BzF by UV-induced binding of Calmodulin, which, once established, is further insensitive to calcium depletion. In addition to the canonical auto-inhibitory role of the regulatory segment, inter-subunit crosslinking in the absence of CaM indicates that kinase domains and regulatory segments are substantially mobile in basal conditions. Characterization of CaMKIIL308BzF in vitro, and its expression in mammalian cells, suggests it could be a promising candidate for control of CaMKII activity in mammalian cells with light.
Collapse
Affiliation(s)
- Iva Lučić
- Institute of Biology, Cellular BiophysicsHumboldt Universität zu BerlinBerlinGermany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Pin‐Lian Jiang
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Andreas Franz
- Freie Universität Berlin, Institute of Chemistry and BiochemistryBerlinGermany
| | - Yuval Bursztyn
- Institute of Biology, Cellular BiophysicsHumboldt Universität zu BerlinBerlinGermany
| | - Fan Liu
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Charité‐Universitätsmedizin BerlinBerlinGermany
| | - Andrew J. R. Plested
- Institute of Biology, Cellular BiophysicsHumboldt Universität zu BerlinBerlinGermany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- NeuroCure, Charité UniversitätsmedizinBerlinGermany
| |
Collapse
|
27
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
28
|
Barone I, Gilette NM, Hawks-Mayer H, Handy J, Zhang KJ, Chifamba FF, Mostafa E, Johnson-Venkatesh EM, Sun Y, Gibson JM, Rotenberg A, Umemori H, Tsai PT, Lipton JO. Synaptic BMAL1 phosphorylation controls circadian hippocampal plasticity. SCIENCE ADVANCES 2023; 9:eadj1010. [PMID: 37878694 PMCID: PMC10599629 DOI: 10.1126/sciadv.adj1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
The time of day strongly influences adaptive behaviors like long-term memory, but the correlating synaptic and molecular mechanisms remain unclear. The circadian clock comprises a canonical transcription-translation feedback loop (TTFL) strictly dependent on the BMAL1 transcription factor. We report that BMAL1 rhythmically localizes to hippocampal synapses in a manner dependent on its phosphorylation at Ser42 [pBMAL1(S42)]. pBMAL1(S42) regulates the autophosphorylation of synaptic CaMKIIα and circadian rhythms of CaMKIIα-dependent molecular interactions and LTP but not global rest/activity behavior. Therefore, our results suggest a model in which repurposing of the clock protein BMAL1 to synapses locally gates the circadian timing of plasticity.
Collapse
Affiliation(s)
- Ilaria Barone
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Nicole M. Gilette
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hannah Hawks-Mayer
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jonathan Handy
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kevin J. Zhang
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Fortunate F. Chifamba
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Engie Mostafa
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Erin M. Johnson-Venkatesh
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yan Sun
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jennifer M. Gibson
- Departments of Neurology, Neuroscience, Pediatrics, and Psychiatry, University of Texas at Southwestern, Dallas, TX 75390, USA
| | - Alexander Rotenberg
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Peter T. Tsai
- Departments of Neurology, Neuroscience, Pediatrics, and Psychiatry, University of Texas at Southwestern, Dallas, TX 75390, USA
| | - Jonathan O. Lipton
- Department of Neurology and F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
30
|
Tullis JE, Larsen ME, Rumian NL, Freund RK, Boxer EE, Brown CN, Coultrap SJ, Schulman H, Aoto J, Dell'Acqua ML, Bayer KU. LTP induction by structural rather than enzymatic functions of CaMKII. Nature 2023; 621:146-153. [PMID: 37648853 PMCID: PMC10482691 DOI: 10.1038/s41586-023-06465-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.
Collapse
Affiliation(s)
- Jonathan E Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew E Larsen
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicole L Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emma E Boxer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven J Coultrap
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
31
|
Lorenz-Guertin JM, Povysheva N, Chapman CA, MacDonald ML, Fazzari M, Nigam A, Nuwer JL, Das S, Brady ML, Vajn K, Bambino MJ, Weintraub ST, Johnson JW, Jacob TC. Inhibitory and excitatory synaptic neuroadaptations in the diazepam tolerant brain. Neurobiol Dis 2023; 185:106248. [PMID: 37536384 PMCID: PMC10578451 DOI: 10.1016/j.nbd.2023.106248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlyn A Chapman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aparna Nigam
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katarina Vajn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antoni, TX, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Chen X, Cai Q, Zhou J, Pleasure SJ, Schulman H, Zhang M, Nicoll RA. CaMKII autophosphorylation but not downstream kinase activity is required for synaptic memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554912. [PMID: 37662326 PMCID: PMC10473743 DOI: 10.1101/2023.08.25.554912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
CaMKII plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of kinase activity. Thus, autophosphorylation, together with binding to the GluN2B subunit, are the only two requirements for CaMKII in synaptic memory.
Collapse
|
33
|
Majumder S, Hirokawa K, Yang Z, Paletzki R, Gerfen CR, Fontolan L, Romani S, Jain A, Yasuda R, Inagaki HK. Cell-type-specific plasticity shapes neocortical dynamics for motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552699. [PMID: 37609277 PMCID: PMC10441538 DOI: 10.1101/2023.08.09.552699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neocortical spiking dynamics control aspects of behavior, yet how these dynamics emerge during motor learning remains elusive. Activity-dependent synaptic plasticity is likely a key mechanism, as it reconfigures network architectures that govern neural dynamics. Here, we examined how the mouse premotor cortex acquires its well-characterized neural dynamics that control movement timing, specifically lick timing. To probe the role of synaptic plasticity, we have genetically manipulated proteins essential for major forms of synaptic plasticity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Cofilin, in a region and cell-type-specific manner. Transient inactivation of CaMKII in the premotor cortex blocked learning of new lick timing without affecting the execution of learned action or ongoing spiking activity. Furthermore, among the major glutamatergic neurons in the premotor cortex, CaMKII and Cofilin activity in pyramidal tract (PT) neurons, but not intratelencephalic (IT) neurons, is necessary for learning. High-density electrophysiology in the premotor cortex uncovered that neural dynamics anticipating licks are progressively shaped during learning, which explains the change in lick timing. Such reconfiguration in behaviorally relevant dynamics is impeded by CaMKII manipulation in PT neurons. Altogether, the activity of plasticity-related proteins in PT neurons plays a central role in sculpting neocortical dynamics to learn new behavior.
Collapse
Affiliation(s)
- Shouvik Majumder
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Koichi Hirokawa
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Zidan Yang
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Ronald Paletzki
- National Institute of Mental Health, Bethesda, MD 20814, USA
| | | | - Lorenzo Fontolan
- Turing Centre for Living Systems, Aix- Marseille University, INSERM, INMED U1249, Marseille, France
- Janelia Research Campus, HHMI, Ashburn VA 20147, USA
| | - Sandro Romani
- Janelia Research Campus, HHMI, Ashburn VA 20147, USA
| | - Anant Jain
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | | |
Collapse
|
34
|
Ahad MA, Chear NJY, Keat LG, Has ATC, Murugaiyah V, Hassan Z. Bio-enhanced fraction from Clitoria ternatea root extract ameliorates cognitive functions and in vivo hippocampal neuroplasticity in chronic cerebral hypoperfusion rat model. Ageing Res Rev 2023; 89:101990. [PMID: 37343678 DOI: 10.1016/j.arr.2023.101990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Research employing a bio-enhanced fraction of Clitoria ternatea (CT) to treat cognitive decline in the animal model has not yet been found. This study aimed to determine the neuroprotective effect of CT root bioactive fraction (CTRF) in chronic cerebral hypoperfusion (CCH) rat model. CTRF and its major compound, clitorienolactones A (CLA), were obtained using column chromatography. A validated HPLC-UV method was employed for the standardization of CTRF. CCH rats were given orally either vehicle or fraction (10, 20 and 40 mg/kg). Behavioural and hippocampal neuroplasticity studies were conducted following 4 weeks post-surgery. The brain hippocampus was extracted for proteins and neurotransmitters analyses. HPLC analysis showed that CTRF contained 25% (w/w) of CLA. All tested doses of CTRF and CLA (10 mg/kg) significantly restored cognitive deficits and reversed the inhibition of neuroplasticity by CCH. However, only CTRF (40 mg/kg) and CLA (10 mg/kg) significantly reversed the elevation of amyloid-beta plaque. Subsequently, treatment with CTRF (40 mg/kg) and CLA (10 mg/kg) alleviated the downregulation of molecular synaptic signalling proteins levels caused by CCH. The neurotransmitters level was restored following treatment of CTRF and CLA. Our finding suggested that CTRF improves memory and neuroplasticity in CCH rats which was mainly contributed by CLA.
Collapse
Affiliation(s)
| | | | - Lim Gin Keat
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, USM Health Campus Kota Bharu, Kelantan, Malaysia
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
35
|
Larsen ME, Buonarati OR, Qian H, Hell JW, Bayer KU. Stimulating β-adrenergic receptors promotes synaptic potentiation by switching CaMKII movement from LTD to LTP mode. J Biol Chem 2023; 299:104706. [PMID: 37061000 PMCID: PMC10200978 DOI: 10.1016/j.jbc.2023.104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating β-adrenergic receptors (βARs) enables LTP induction also by low-frequency stimulation (1 Hz) or theta frequencies (∼5 Hz) that do not cause plasticity by themselves. In contrast to high-frequency stimulation-LTP, such βAR-LTP requires Ca2+-flux through L-type voltage-gated Ca2+-channels, not N-methyl-D-aspartate-type glutamate receptors. Surprisingly, we found that βAR-LTP still required a nonionotropic scaffolding function of the N-methyl-D-aspartate-type glutamate receptor: the stimulus-induced binding of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to its GluN2B subunit that mediates CaMKII movement to excitatory synapses. In hippocampal neurons, β-adrenergic stimulation with isoproterenol (Iso) transformed LTD-type CaMKII movement to LTP-type movement, resulting in CaMKII movement to excitatory instead of inhibitory synapses. Additionally, Iso enabled induction of a major cell-biological feature of LTP in response to LTD stimuli: increased surface expression of GluA1 fused with super-ecliptic pHluorein. Like for βAR-LTP in hippocampal slices, the Iso effects on CaMKII movement and surface expression of GluA1 fused with super-ecliptic pHluorein involved L-type Ca2+-channels and specifically required β2-ARs. Taken together, these results indicate that Iso transforms LTD stimuli to LTP signals by switching CaMKII movement and GluN2B binding to LTP mode.
Collapse
Affiliation(s)
- Matthew E Larsen
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Olivia R Buonarati
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hai Qian
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | - Johannes W Hell
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, USA; Department of Pharmacology, University of California at Davis, Davis, California, USA.
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
36
|
Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron 2023:S0896-6273(23)00344-6. [PMID: 37236178 DOI: 10.1016/j.neuron.2023.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
N-Methyl-D-aspartate ionotropic glutamate receptors (NMDARs) play key roles in synaptogenesis, synaptic maturation, long-term plasticity, neuronal network activity, and cognition. Mirroring this wide range of instrumental functions, abnormalities in NMDAR-mediated signaling have been associated with numerous neurological and psychiatric disorders. Thus, identifying the molecular mechanisms underpinning the physiological and pathological contributions of NMDAR has been a major area of investigation. Over the past decades, a large body of literature has flourished, revealing that the physiology of ionotropic glutamate receptors cannot be restricted to fluxing ions, and involves additional facets controlling synaptic transmissions in health and disease. Here, we review newly discovered dimensions of postsynaptic NMDAR signaling supporting neural plasticity and cognition, such as the nanoscale organization of NMDAR complexes, their activity-dependent redistributions, and non-ionotropic signaling capacities. We also discuss how dysregulations of these processes may directly contribute to NMDAR-dysfunction-related brain diseases.
Collapse
Affiliation(s)
- Julien P Dupuis
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Laurent Groc
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
37
|
Grzelka K, Wilhelms H, Dodt S, Dreisow ML, Madara JC, Walker SJ, Wu C, Wang D, Lowell BB, Fenselau H. A synaptic amplifier of hunger for regaining body weight in the hypothalamus. Cell Metab 2023; 35:770-785.e5. [PMID: 36965483 PMCID: PMC10160008 DOI: 10.1016/j.cmet.2023.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/15/2022] [Accepted: 03/01/2023] [Indexed: 03/27/2023]
Abstract
Restricting caloric intake effectively reduces body weight, but most dieters fail long-term adherence to caloric deficit and eventually regain lost weight. Hypothalamic circuits that control hunger drive critically determine body weight; yet, how weight loss sculpts these circuits to motivate food consumption until lost weight is regained remains unclear. Here, we probe the contribution of synaptic plasticity in discrete excitatory afferents on hunger-promoting AgRP neurons. We reveal a crucial role for activity-dependent, remarkably long-lasting amplification of synaptic activity originating from paraventricular hypothalamus thyrotropin-releasing (PVHTRH) neurons in long-term body weight control. Silencing PVHTRH neurons inhibits the potentiation of excitatory input to AgRP neurons and diminishes concomitant regain of lost weight. Brief stimulation of the pathway is sufficient to enduringly potentiate this glutamatergic hunger synapse and triggers an NMDAR-dependent gaining of body weight that enduringly persists. Identification of this activity-dependent synaptic amplifier provides a previously unrecognized target to combat regain of lost weight.
Collapse
Affiliation(s)
- Katarzyna Grzelka
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Hannah Wilhelms
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Stephan Dodt
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Marie-Luise Dreisow
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel J Walker
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chen Wu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daqing Wang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
38
|
Rumian NL, Brown CN, Hendry-Hofer TB, Rossetti T, Orfila JE, Tullis JE, Dwoskin LP, Buonarati OR, Lisman JE, Quillinan N, Herson PS, Bebarta VS, Bayer KU. Short-term CaMKII inhibition with tatCN19o does not erase pre-formed memory in mice and is neuroprotective in pigs. J Biol Chem 2023; 299:104693. [PMID: 37037305 PMCID: PMC10189404 DOI: 10.1016/j.jbc.2023.104693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/12/2023] Open
Abstract
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with the neuroprotective peptide tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. These results were obtained with ≥500-fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce the return of spontaneous circulation. Of additional importance for therapy development, our preliminary cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, although prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.
Collapse
Affiliation(s)
- Nicole L Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tara B Hendry-Hofer
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Rossetti
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - James E Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jonathan E Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Olivia R Buonarati
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John E Lisman
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
39
|
Koren DT, Shrivastava R, Ghosh S. Ca 2+/Calmodulin-Dependent Protein Kinase II Disrupts the Voltage Dependency of the Voltage-Dependent Anion Channel on the Lipid Bilayer Membrane. J Phys Chem B 2023; 127:3372-3381. [PMID: 37040575 DOI: 10.1021/acs.jpcb.3c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a key enzyme that plays a significant role in intracellular signaling and the modulation of mitochondrial membrane properties. It is known that the voltage-dependent anion channel (VDAC) is one of the most abundant outer mitochondrial membrane (OMM) proteins acting as a significant passageway and regulatory site for various enzymes, proteins, ions, and metabolites. Considering this, we hypothesize that VDAC could be one of the targets for CaMKII enzymatic activity. Our in vitro experiments indicate that VDAC can be phosphorylated by the CaMKII enzyme. Moreover, the bilayer electrophysiology experimental data indicate that CaMKII significantly reduces VDAC's single-channel conductivity; its open probability remains high at all the applied potentials between +60 and -60 mV, and the voltage dependency was lost, which suggests that CaMKII disrupted the VDAC's single-channel activities. Hence, we can infer that VDAC interacts with CaMKII and thus acts as a vital target for its activity. Furthermore, our findings suggest that CaMKII could play a significant role during the transport of ions and metabolites across the outer mitochondrial membrane (OMM) through VDAC and thus regulate apoptotic events.
Collapse
Affiliation(s)
| | - Rajan Shrivastava
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
40
|
Haile MT, Khoja S, de Carvalho G, Hunt RF, Chen LY. Conditional deletion of Neurexin-2 alters neuronal network activity in hippocampal circuitries and leads to spontaneous seizures. Transl Psychiatry 2023; 13:97. [PMID: 36941261 PMCID: PMC10027846 DOI: 10.1038/s41398-023-02394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Neurexins (Nrxns) have been extensively studied for their role in synapse organization and have been linked to many neuropsychiatric disorders, including autism spectrum disorder (ASD), and epilepsy. However, no studies have provided direct evidence that Nrxns may be the key regulator in the shared pathogenesis of these conditions largely due to complexities among Nrxns and their non-canonical functions in different synapses. Recent studies identified NRXN2 mutations in ASD and epilepsy, but little is known about Nrxn2's role in a circuit-specific manner. Here, we report that conditional deletion of Nrxn2 from the hippocampus and cortex (Nrxn2 cKO) results in behavioral abnormalities, including reduced social preference and increased nestlet shredding behavior. Electrophysiological recordings identified an overall increase in hippocampal CA3→CA1 network activity in Nrxn2 cKO mice. Using intracranial electroencephalogram recordings, we observed unprovoked spontaneous reoccurring electrographic and behavioral seizures in Nrxn2 cKO mice. This study provides the first evidence that conditional deletion of Nrxn2 induces increased network activity that manifests into spontaneous recurrent seizures and behavioral impairments.
Collapse
Affiliation(s)
- Mulatwa T Haile
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sheraz Khoja
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Gregory de Carvalho
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Lulu Y Chen
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
41
|
Espadas I, Wingfield J, Grinman E, Ghosh I, Chanda K, Nakahata Y, Bauer K, Raveendra B, Kiebler M, Yasuda R, Rangaraju V, Puthanveettil S. SLAMR, a synaptically targeted lncRNA, facilitates the consolidation of contextual fear memory. RESEARCH SQUARE 2023:rs.3.rs-2489387. [PMID: 36993323 PMCID: PMC10055528 DOI: 10.21203/rs.3.rs-2489387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute, Jupiter, FL, USA
| | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Karl Bauer
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael Kiebler
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | | | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
42
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
43
|
Cai Q, Chen X, Zhu S, Nicoll RA, Zhang M. Differential roles of CaMKII isoforms in phase separation with NMDA receptors and in synaptic plasticity. Cell Rep 2023; 42:112146. [PMID: 36827181 DOI: 10.1016/j.celrep.2023.112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Calcium calmodulin-dependent kinase II (CaMKII) is critical for synaptic transmission and plasticity. Two major isoforms of CaMKII, CaMKIIα and CaMKIIβ, play distinct roles in synaptic transmission and long-term potentiation (LTP) with unknown mechanisms. Here, we show that the length of the unstructured linker between the kinase domain and the oligomerizing hub determines the ability of CaMKII to rescue the basal synaptic transmission and LTP defects caused by removal of both CaMKIIα and CaMKIIβ (double knockout [DKO]). Remarkably, although CaMKIIβ binds to GluN2B with a comparable affinity as CaMKIIα does, only CaMKIIα with the short linker forms robust dense clusters with GluN2B via phase separation. Lengthening the linker of CaMKIIα with unstructured "Gly-Gly-Ser" repeats impairs its phase separation with GluN2B, and the mutant enzyme cannot rescue the basal synaptic transmission and LTP defects of DKO mice. Our results suggest that the phase separation capacity of CaMKII with GluN2B is critical for its cellular functions in the brain.
Collapse
Affiliation(s)
- Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Heath, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiumin Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shihan Zhu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
44
|
Rumian NL, Brown CN, Hendry-Hofer TB, Rossetti T, Orfila JE, Tullis JE, Dwoskin LP, Buonarati OR, Lisman JE, Quillinan N, Herson PS, Bebarta VS, Bayer KU. Short-term CaMKII inhibition with tatCN19o does not erase pre-formed memory and is neuroprotective in non-rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.523316. [PMID: 36747773 PMCID: PMC9900743 DOI: 10.1101/2023.01.23.523316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. This was at ≥500fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce return of spontaneous circulation. Of additional importance for therapeutic development, cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, even though prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.
Collapse
Affiliation(s)
- Nicole L. Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tara B. Hendry-Hofer
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas Rossetti
- Department of Biology, Brandeis University, Waltham, MA 02453, USA,present address: Department of Pharmacology, Weill Cornell Medicine, NY 10021, USA
| | - James E. Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jonathan E. Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Linda P. Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Olivia R. Buonarati
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John E. Lisman
- Department of Biology, Brandeis University, Waltham, MA 02453, USA,deceased
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paco S. Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA,Correspondence should be addressed to Paco S. Herson (), Vikhyat S. Bebarta (), or K. Ulrich Bayer ()
| | - Vikhyat S. Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Correspondence should be addressed to Paco S. Herson (), Vikhyat S. Bebarta (), or K. Ulrich Bayer ()
| | - K. Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Correspondence should be addressed to Paco S. Herson (), Vikhyat S. Bebarta (), or K. Ulrich Bayer ()
| |
Collapse
|
45
|
Mazzarino RC, Perez-Corredor P, Vanderleest TE, Vacano GN, Sanchez JS, Villalba-Moreno ND, Krausemann S, Mendivil-Perez MA, Aguillón D, Jimenez-Del-Río M, Baena A, Sepulveda-Falla D, Lopera FJ, Quiroz YT, Arboleda-Velasquez JF. APOE3 Christchurch modulates tau phosphorylation and β-catenin/Wnt/Cadherin signaling in induced pluripotent stem cell-derived cerebral organoids from Alzheimer's cases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523290. [PMID: 36712026 PMCID: PMC9882052 DOI: 10.1101/2023.01.11.523290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among older adults. APOE3 Christchurch (R136S, APOE3Ch ) variant homozygosity was reported in an individual with extreme resistance to autosomal dominant AD due to the PSEN1 E280A mutation. This subject had a delayed clinical age at onset and resistance to tauopathy and neurodegeneration despite extremely high amyloid plaque burden. We established induced pluripotent stem (iPS) cell-derived cerebral organoids from this resistant case and from a non-protected kindred control (with PSEN1 E280A and APOE3/3 ). We used CRISPR/Cas9 gene editing to successfully remove the APOE3Ch to wild type in iPS cells from the protected case and to introduce the APOE3Ch as homozygote in iPS cells from the non-protected case to examine causality. We found significant reduction of tau phosphorylation (pTau 202/205 and pTau396) in cerebral organoids with the APOE3Ch variant, consistent with the strikingly reduced tau pathology found in the resistant case. We identified Cadherin and Wnt pathways as signaling mechanisms regulated by the APOE3Ch variant through single cell RNA sequencing in cerebral organoids. We also identified elevated β-catenin protein, a regulator of tau phosphorylation, as a candidate mediator of APOE3Ch resistance to tauopathy. Our findings show that APOE3Ch is necessary and sufficient to confer resistance to tauopathy in an experimental ex-vivo model establishing a foundation for the development of novel, protected case-inspired therapeutics for tauopathies, including Alzheimer's.
Collapse
|
46
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
47
|
Alpha7 nicotinic acetylcholine receptor agonist PHA-543613 improves memory deficits in presenilin 1 and presenilin 2 conditional double knockout mice. Exp Neurol 2023; 359:114271. [PMID: 36370840 DOI: 10.1016/j.expneurol.2022.114271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Cholinergic system dysfunction has been considered as a critical feature of neurodegenerative progression in Alzheimer's disease (AD). The α7 nicotinic acetylcholine receptors (α7-nAChRs) are widely expressed in the hippocampus cortex and play an important role in memory formation, considered as potential therapeutic agents targets. However, underlying mechanisms have not been fully elucidated. Here, we combine behavioral, molecular biological methods with in vitro slice and in vivo multichannel electrophysiological recording techniques to investigate the molecular, cellular synaptic and neuronal mechanisms of activating α7-nAChR by PHA-543613 (a selective α7-nAChR agonist), which influences the impaired cognitive function using presenilin 1 (PS1) and presenilin 2 (PS2) conditional double knockout (cDKO) mice. Our results demonstrated that PHA-543613 treatment significantly improved the impaired hippocampus-related memory via recovering the reduced the hippocampal synaptic protein levels of α7-nAChR, NMADAR and AMPAR, thereby restoring the impaired post-tetanic potentiation (PTP), long-term potentiation (LTP), activation of molecular signaling pathway for neuronal protection, theta power and strength of theta-gamma phase-amplitude coupling (PAC) at hippocampus in 6-month-old cDKO mice. For the first time, we systematically reveal the mechanisms by which PHA-543613 improves memory deficits at different levels. Therefore, our findings may be significant for the development of therapeutic strategies for AD.
Collapse
|
48
|
Luo Y, Yu Y, Zhang M, Fan N. GluN1 antibody causes behavioral deficits in prepulse inhibition and memory through CaMKIIβ signaling. J Neuroimmunol 2022; 373:577998. [PMID: 36417808 DOI: 10.1016/j.jneuroim.2022.577998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Accumulating evidence suggests that some patients with schizophrenia have high production of autoantibodies against the N-methyl-d-aspartate receptor (NMDAR) subunit GluN1 and that these antibodies lead to cognitive impairment. However, the molecular mechanisms of the deficits seen in these patients are largely unknown. In the present study, we found that passive infusion of GluN1 antibody into the hippocampus of mice for 7 days led to decreased expression of GluN1, phosphor-Ser897-GluN1, and EphrinB2 receptor (EphB2R); deficits in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; impairment in prepulse inhibition (PPI); and deterioration of recognition memory in novel object recognition test. We also found decreased expression of CaMKIIβ, ERK1/2, CREB, and NF-κB after 7 days of GluN1 antibody exposure, as was the phosphorylation of these signaling molecules. The decrease in GluN1 and phosphor-Ser897-GluN1 expression and the deficits in LTP, PPI, and recognition memory were ameliorated by CaMKIIβ overexpression. These results suggest that downregulation of CaMKIIβ-ERK1/2-CREB-NF-κB signaling is responsiable for GluN1 antibody-associated impairment in PPI and memory and that GluN1 antibody-induced NMDAR hypofunction is the underlying mechanism of this impairment. Our findings indicate possible strategies to ameliorate NMDAR antibody-associated cognitive impairment in neuropsychiatric disease. They also provide evidence that NMDAR hypofunction is an underlying mechanism for cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Yayan Luo
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Minling Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
49
|
Start spreading the news! CaMKII shares activity with naive molecules. Proc Natl Acad Sci U S A 2022; 119:e2216529119. [PMID: 36449548 PMCID: PMC9894193 DOI: 10.1073/pnas.2216529119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
50
|
Wang Y, Wernersbach I, Strehle J, Li S, Appel D, Klein M, Ritter K, Hummel R, Tegeder I, Schäfer MKE. Early posttraumatic CSF1R inhibition via PLX3397 leads to time- and sex-dependent effects on inflammation and neuronal maintenance after traumatic brain injury in mice. Brain Behav Immun 2022; 106:49-66. [PMID: 35933030 DOI: 10.1016/j.bbi.2022.07.164] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/08/2022] [Accepted: 07/30/2022] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND There is a need for early therapeutic interventions after traumatic brain injury (TBI) to prevent neurodegeneration. Microglia/macrophage (M/M) depletion and repopulation after treatment with colony stimulating factor 1 receptor (CSF1R) inhibitors reduces neurodegeneration. The present study investigates short- and long-term consequences after CSF1R inhibition during the early phase after TBI. METHODS Sex-matched mice were subjected to TBI and CSF1R inhibition by PLX3397 for 5 days and sacrificed at 5 or 30 days post injury (dpi). Neurological deficits were monitored and brain tissues were examined for histo- and molecular pathological markers. RNAseq was performed with 30 dpi TBI samples. RESULTS At 5 dpi, CSF1R inhibition attenuated the TBI-induced perilesional M/M increase and associated gene expressions by up to 50%. M/M attenuation did not affect structural brain damage at this time-point, impaired hematoma clearance, and had no effect on IL-1β expression. At 30 dpi, following drug discontinuation at 5 dpi and M/M repopulation, CSF1R inhibition attenuated brain tissue loss regardless of sex, as well as hippocampal atrophy and thalamic neuronal loss in male mice. Selected gene markers of brain inflammation and apoptosis were reduced in males but increased in females after early CSF1R inhibition as compared to corresponding TBI vehicle groups. Neurological outcome in behaving mice was almost not affected. RNAseq and gene set enrichment analysis (GSEA) of injured brains at 30 dpi revealed more genes associated with dendritic spines and synapse function after early CSF1R inhibition as compared to vehicle, suggesting improved neuronal maintenance and recovery. In TBI vehicle mice, GSEA showed high oxidative phosphorylation, oxidoreductase activity and ribosomal biogenesis suggesting oxidative stress and increased abundance of metabolically highly active cells. More genes associated with immune processes and phagocytosis in PLX3397 treated females vs males, suggesting sex-specific differences in response to early CSF1R inhibition after TBI. CONCLUSIONS M/M attenuation after CSF1R inhibition via PLX3397 during the early phase of TBI reduces long-term brain tissue loss, improves neuronal maintenance and fosters synapse recovery. Overall effects were not sex-specific but there is evidence that male mice benefit more than female mice.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Isa Wernersbach
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Shuailong Li
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Dominik Appel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|