1
|
Zhu Y, Beaumont M, Solin K, Spiliopoulos P, Zhao B, Tao H, Kontturi E, Bai L, Rojas OJ. Interfacial Membranization of Regenerated Cellulose Nanoparticles and a Protein Renders Stable Water-in-Water Emulsion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400952. [PMID: 39011941 DOI: 10.1002/smll.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Pickering water-in-water (W/W) emulsions stabilized by biobased colloids are pertinent to engineering biomaterials with hierarchical and confined architectures. In this study, stable W/W emulsions are developed through membranization utilizing biopolymer structures formed by the adsorption of cellulose II nanospheres and a globular protein, bovine serum albumin (BSA), at droplet surfaces. The produced cellulose II nanospheres (NPcat, 63 nm diameter) bearing a soft and highly accessible shell, endow rapid and significant binding (16 mg cm- 2) with BSA. NPcat and BSA formed complexes that spontaneously stabilized liquid droplets, resulting in stable W/W emulsions. It is proposed that such a system is a versatile all-aqueous platform for encapsulation, (bio)catalysis, delivery, and synthetic cell mimetics.
Collapse
Affiliation(s)
- Ya Zhu
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Marco Beaumont
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 24, Tulln, A-3430, Austria
| | - Katariina Solin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Panagiotis Spiliopoulos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Bin Zhao
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Han Tao
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Long Bai
- Key Laboratory of Biobased Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang, 150040, P. R. China
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
Moon J, Kim SW, Lee JS. Metal Ion-Condensed DNA Nanoparticle Library: Phase Separation and Transition and Antisense Therapy Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59116-59127. [PMID: 39427257 DOI: 10.1021/acsami.4c16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
DNA condensation has long been investigated as a fundamental cellular activity and is known to be driven by the mediation of diverse condensing agents. The phase behaviors of DNA during condensation are particularly interesting because the complicated molecular structure of natural nucleotides fundamentally allows electrostatic, coordinate covalent, and various other secondary interactions with the condensing agents. Recently, metal ion (Mn+)-induced DNA condensation has emerged as a powerful approach to synthesizing nanoparticulate DNA structures suitable for therapeutic gene delivery. However, how the DNA phase changes during Mn+-induced DNA condensation has rarely been observed and is not understood yet. In this study, a library of Mn+-condensed DNA nanoparticles (Mn+-CDNPs) was established using 30 different types of Mn+s, and their phase behaviors during condensation were elucidated using spherical nucleic acids (SNAs) as electron microscopic labels. Importantly, the phase transition and separation of DNA were demonstrated to be driven by the Mn+s into either the growth of individual DNA particles or the fission of bulky DNA aggregates. Pt2+ and Eu3+ were chosen as model systems for the demonstration. The hard and soft acid nature of Mn+ is presumably the underlying driving force of these phase transitions. In addition, the Mn+-controlled anticancer therapeutic efficiency of the Mn+-CDNP library as a state-of-the-art gene delivery platform was demonstrated even for unmodified antisense oligonucleotides in association with the potential toxicity of the Mn+s released from the Mn+-CDNPs. This comprehensive study of the Mn+-dependent condensation of nucleic acids provides profound insights into the chemistry of the nucleic acid-Mn+ interactions and the reliable theragnostic applications of Mn+-CDNPs as functional nucleic acid nanostructures.
Collapse
Affiliation(s)
- Jeesu Moon
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang-Won Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Shang L, Xu K, Lu PJ, Abbaspourrad A, Zhao Y, Weitz DA. Dramatic droplet deformation through interfacial particles jamming. Proc Natl Acad Sci U S A 2024; 121:e2403953121. [PMID: 39388273 PMCID: PMC11494287 DOI: 10.1073/pnas.2403953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Droplets of one fluid in a second, immiscible fluid are typically spherical in shape due to the interfacial tension between the two fluids. Shear forces can lead to droplet deformation when they are subjected to flow, and these effects can be further modified when the droplet is stabilized by a surfactant due to a flow-induced gradients in the surfactant concentration. An alternative method of stabilizing droplets is through the use of colloidal particles, whose stabilization behavior is intrinsically different from molecular surfactants. Under the same flow condition, a gradient of particle concentration can result in the jamming of particles in regions with a high packing density, making the interface solid-like, albeit only under compression and not tension. However, how this asymmetry in the surfactant properties alters the droplet shape under shear is unknown. Here, we show that shear of particle-stabilized droplets can lead to a remarkable array of shape deformations as the droplets flow through a constrained microchannel. The shear-induced migration of particles on the surface results in the formation of an elastic shell at the back of the droplet, which can wrinkle and invaginate, ultimately leading to a unique core-shell structure. The shapes depend on the Peclet number of the flow, reflecting the balance of shear forces that drive the particles and diffusion that randomizes them. These findings highlight the consequences of the asymmetry in the forces between the particles and provide a unique method to controllably create droplets with a vast array of different shapes.
Collapse
Affiliation(s)
- Luoran Shang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- The Shanghai Key Laboratory of Medical Epigenetics, the International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Ke Xu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing100871, China
| | - Peter J. Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02215
| |
Collapse
|
4
|
Cui H, Zhang Y, Liu S, Cao Y, Ma Q, Liu Y, Lin H, Li C, Xiao Y, Hassan SU, Shum HC. Thermo-responsive aqueous two-phase system for two-level compartmentalization. Nat Commun 2024; 15:6771. [PMID: 39117632 PMCID: PMC11310206 DOI: 10.1038/s41467-024-51043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Hierarchical compartmentalization responding to changes in intracellular and extracellular environments is ubiquitous in living eukaryotic cells but remains a formidable task in synthetic systems. Here we report a two-level compartmentalization approach based on a thermo-responsive aqueous two-phase system (TR-ATPS) comprising poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX). Liquid membraneless compartments enriched in PNIPAM are phase-separated from the continuous DEX solution via liquid-liquid phase separation at 25 °C and shrink dramatically with small second-level compartments generated at the interface, resembling the structure of colloidosome, by increasing the temperature to 35 °C. The TR-ATPS can store biomolecules, program the spatial distribution of enzymes, and accelerate the overall biochemical reaction efficiency by nearly 7-fold. The TR-ATPS inspires on-demand, stimulus-triggered spatiotemporal enrichment of biomolecules via two-level compartmentalization, creating opportunities in synthetic biology and biochemical engineering.
Collapse
Affiliation(s)
- Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yage Zhang
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, Guangdong, China
| | - Sihan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, 266071, Qingdao, China
| | - Yuan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Haisong Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yang Xiao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, China
| | - Sammer Ul Hassan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China.
| |
Collapse
|
5
|
Song Y. Liquid-liquid phase separation-inspired design of biomaterials. Biomater Sci 2024; 12:1943-1949. [PMID: 38465963 DOI: 10.1039/d3bm02008h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Liquid-liquid phase separation (LLPS) is a crucial biological process that governs biomolecular condensation, assembly, and functionality within phase-separated aqueous environments. This phenomenon serves as a source of inspiration for the creation of artificial designs in both structured and functional biomaterials, presenting novel strategies for manipulating the structures of functional protein aggregates in a wide range of biomedical applications. This mini review summarizes my past research endeavors, offering a panoramic overview of LLPS-inspired biomaterials utilized in the design of structured materials, the development of cell mimetics, and the advancement of intelligent biomaterials.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science & Engineering, Shanghai Jiao Tong University, China.
| |
Collapse
|
6
|
Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S, Li J. Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions. Commun Chem 2024; 7:79. [PMID: 38594355 PMCID: PMC11004187 DOI: 10.1038/s42004-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Dynamic microscale droplets produced by liquid-liquid phase separation (LLPS) have emerged as appealing biomaterials due to their remarkable features. However, the instability of droplets limits the construction of population-level structures with collective behaviors. Here we first provide a brief background of droplets in the context of materials properties. Subsequently, we discuss current strategies for stabilizing droplets including physical separation and chemical modulation. We also discuss the recent development of LLPS droplets for various applications such as synthetic cells and biomedical materials. Finally, we give insights on how stabilized droplets can self-assemble into higher-order structures displaying coordinated functions to fully exploit their potentials in bottom-up synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Lin Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Chong Chen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| |
Collapse
|
7
|
Kaufmann A, Vigogne M, Neuendorf TA, Reverte-López M, Rivas G, Thiele J. Studying Nucleoid-Associated Protein-DNA Interactions Using Polymer Microgels as Synthetic Mimics. ACS Synth Biol 2023; 12:3695-3703. [PMID: 37965889 DOI: 10.1021/acssynbio.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Microfluidically fabricated polymer microgels are used as an experimental platform to analyze protein-DNA interactions regulating bacterial cell division. In particular, we focused on the nucleoid-associated protein SlmA, which forms a nucleoprotein complex with short DNA binding sequences (SBS) that acts as a negative regulator of the division ring stability in Escherichia coli. To mimic the bacterial nucleoid as a dense DNA region of a bacterial cell and investigate the influence of charge and permeability on protein binding and diffusion in there, we have chosen nonionic polyethylene glycol and anionic hyaluronic acid as precursor materials for hydrogel formation, previously functionalized with SBS. SlmA binds specifically to the coupled SBS for both types of microgels while preferentially accumulating at the microgels' surface. We could control the binding specificity by adjusting the buffer composition of the DNA-functionalized microgels. The microgel charge did not impact protein binding; however, hyaluronic acid-based microgels exhibit a higher permeability, promoting protein diffusion; thus, they were the preferred choice for preparing nucleoid mimics. The approaches described here provide attractive tools for bottom-up reconstitution of essential cellular processes in media that more faithfully reproduce intracellular environments.
Collapse
Affiliation(s)
- Anika Kaufmann
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Michelle Vigogne
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Talika A Neuendorf
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - María Reverte-López
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
- Institute of Chemistry, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
8
|
Zhou S, Yang J, Li R, Chen Y, Li C, Chen C, Tao Y, Fan S, Wu D, Wen L, Qiu B, Ding W. Live Imaging of 3D Hanging Drop Arrays through Manipulation of Light-Responsive Pyroelectric Slippery Surface and Chip Adhesion. NANO LETTERS 2023; 23:10710-10718. [PMID: 38010943 DOI: 10.1021/acs.nanolett.3c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Three-dimensional (3D) hanging drop cell culture is widely used in organoid culture because of its lack of selection pressure and rapid cell aggregation. However, current hanging drop technology has limitations, such as a dependence on complex microfluidic transport channels or specific capillary force templates for drop formation, which leads to unchangeable drop features. These methods also hinder live imaging because of space and complexity constraints. Here, we have developed a hanging drop construction method and created a flexible 3D hanging drop construction platform composed of a manipulation module and an adhesion module. Their harmonious operation allows for the easy construction of hanging drops of varying sizes, types, and patterns. Our platform produces a cell hanging drop chip with small sizes and clear fields of view, thereby making it compatible with live imaging. This platform has great potential for personalized medicine, cancer and drug discovery, tissue engineering, and stem cell research.
Collapse
Affiliation(s)
- Shuneng Zhou
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Junfeng Yang
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Rui Li
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yiyu Chen
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chao Chen
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yuan Tao
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Shengying Fan
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Li Wen
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
9
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
10
|
Orabi M, Lo JF. Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology. Gels 2023; 9:790. [PMID: 37888363 PMCID: PMC10606214 DOI: 10.3390/gels9100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Hydrogel droplets are biodegradable and biocompatible materials with promising applications in tissue engineering, cell encapsulation, and clinical treatments. They represent a well-controlled microstructure to bridge the spatial divide between two-dimensional cell cultures and three-dimensional tissues, toward the recreation of entire organs. The applications of hydrogel droplets in regenerative medicine require a thorough understanding of microfluidic techniques, the biocompatibility of hydrogel materials, and droplet production and manipulation mechanisms. Although hydrogel droplets were well studied, several emerging advances promise to extend current applications to tissue engineering and beyond. Hydrogel droplets can be designed with high surface-to-volume ratios and a variety of matrix microstructures. Microfluidics provides precise control of the flow patterns required for droplet generation, leading to tight distributions of particle size, shape, matrix, and mechanical properties in the resultant microparticles. This review focuses on recent advances in microfluidic hydrogel droplet generation. First, the theoretical principles of microfluidics, materials used in fabrication, and new 3D fabrication techniques were discussed. Then, the hydrogels used in droplet generation and their cell and tissue engineering applications were reviewed. Finally, droplet generation mechanisms were addressed, such as droplet production, droplet manipulation, and surfactants used to prevent coalescence. Lastly, we propose that microfluidic hydrogel droplets can enable novel shear-related tissue engineering and regeneration studies.
Collapse
Affiliation(s)
| | - Joe F. Lo
- Department of Mechanical Engineering, University of Michigan, 4901 Evergreen Road, Dearborn, MI 48128, USA;
| |
Collapse
|
11
|
Yan S, Regenstein JM, Zhang S, Huang Y, Qi B, Li Y. Edible particle-stabilized water-in-water emulsions: Stabilization mechanisms, particle types, interfacial design, and practical applications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Sakuta H, Nakatani N, Torisawa T, Sumino Y, Tsumoto K, Oiwa K, Yoshikawa K. Self-emergent vortex flow of microtubule and kinesin in cell-sized droplets under water/water phase separation. Commun Chem 2023; 6:80. [PMID: 37100870 PMCID: PMC10133263 DOI: 10.1038/s42004-023-00879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
By facilitating a water/water phase separation (w/wPS), crowded biopolymers in cells form droplets that contribute to the spatial localization of biological components and their biochemical reactions. However, their influence on mechanical processes driven by protein motors has not been well studied. Here, we show that the w/wPS droplet spontaneously entraps kinesins as well as microtubules (MTs) and generates a micrometre-scale vortex flow inside the droplet. Active droplets with a size of 10-100 µm are generated through w/wPS of dextran and polyethylene glycol mixed with MTs, molecular-engineered chimeric four-headed kinesins and ATP after mechanical mixing. MTs and kinesin rapidly created contractile network accumulated at the interface of the droplet and gradually generated vortical flow, which can drive translational motion of a droplet. Our work reveals that the interface of w/wPS contributes not only to chemical processes but also produces mechanical motion by assembling species of protein motors in a functioning manner.
Collapse
Affiliation(s)
- Hiroki Sakuta
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Naoki Nakatani
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yutaka Sumino
- Department of Applied Physics, Faculty of Advanced Engineering, WaTUS and DCIS, Tokyo University of Science, Katsushika, Tokyo, 125-8585, Japan.
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, 651-2492, Japan.
- Department of Life Science, Graduate School of Science, University of Hyogo, Ako, Hyogo, 678-1297, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| |
Collapse
|
13
|
Hu B, Zhao Y, Ye Z, Wang H. Water-in-Water Emulsions Stabilized by Silica Janus Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206215. [PMID: 36670084 DOI: 10.1002/smll.202206215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Water-in-water (w/w) emulsions have been recognized for their broad applications in foods, cosmetics, and biomedical engineering. In this work, silica Janus nanosheets (JNs) with polyacrylic acid (PAA) chains grafted on one surface via crushing functional silica foams, and used silica JNs as Pickering stabilizer to produce stable water-in-water (w/w) emulsions from the aqueous two-phase system (ATPS) containing methacrylic acid (MAA) and NaCl are prepared. The interfacial area of w/w emulsions increases linearly with the concentration of silica JNs, and the interfacial coverage of nanosheets is calculated to be about 98%. After polymerizing w/w emulsions prepared from MAA/NaCl ATPS, it is found that silica JNs are entrapped at the interface of w/w emulsions with the smooth PAA-grafted surface located toward MAA-rich phase due to their specific interaction. These results show that functional silica JNs can be used as a promising amphiphilic Pickering stabilizer to produce well-defined w/w emulsions for numerous application fields.
Collapse
Affiliation(s)
- Bintao Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yongliang Zhao
- Shanghai Dilato Materials Company Limited, Shanghai, 200433, P. R. China
| | - Zhangfan Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
14
|
Cai L, Luo Z, Chen H, Zhao Y. Lithographic Microneedle-Motors from Multimodal Microfluidics for Cargo Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206108. [PMID: 36587990 DOI: 10.1002/smll.202206108] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Micromotors have led to an unprecedented revolution in the field of cargo delivery. Attempts in this area trend toward enriching their structures and improving their functions to promote their further applications. Herein, novel microneedle-motors (MNMs) for active drug delivery through a flexible multimodal microfluidic lithographic approach are presented. The multimodal microfluidics is composed of a co-flow geometry-derived droplet fluid and an active cargo mixed laminar flow in a triangular microchannel. The MNMs with sharp tips and spherical fuel-loading cavities are obtained continuously from microfluidics with the assistance of flow lithography. The structural parameters of the MNMs could be precisely tailored by simply choosing the flow speed or the shape of the photomask. As the actives are mixed into the phase solution during the generation, the resultant MNMs are loaded with cargoes for direct applications without any extra complex operation. Based on these features, it is demonstrated that with sharp tips and autonomous movement, the MNMs can efficiently penetrate the tissue-like substrates, indicating the potential in overcoming physiological barriers for cargo release. These results indicate that the proposed multimodal microfluidic lithographic MNMs are valuable for practical active cargo delivery in biomedical and other relative areas.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hanxu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
15
|
Yuan H, Li F, Jia L, Guo T, Kong T, Meng T. Bacteria-Inspired Aqueous-in-Aqueous Compartmentalization by In Situ Interfacial Biomineralization. SMALL METHODS 2023; 7:e2201309. [PMID: 36549693 DOI: 10.1002/smtd.202201309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Compartmentalization is essential for living cells to orchestrate their biological processes with controlled external influences. Thus, compartmentalization has been a constant theme for cell-mimicking materials. Despite recent advances in engineering compartmentalized materials as synthetic cells and organelles, it remains difficult to produce robust and well-ordered compartments with secluded environments in aqueous surroundings. Nature creates hierarchically ordered compartmentalized materials by utilizing bio-catalyzed mineralization, inspired by which, mechanically robust all-aqueous compartments are developed by engineering a mild biomimetic mineralization at aqueous/aqueous interfaces. The enzyme-induced biomineralization generates a layer of densely-packed particles, acting as an armor to enclose aqueous interiors. This strategy of in situ bio-synthesized compartments is different from current strategies, where compartments are constructed by randomly adsorbed particles at interface, leading to inadequately controlled properties of compartments. To demonstrate the robustness and adaptiveness of the in situ bio-synthesized all-aqueous compartments, these are utilized as drug delivery materials by sequestering protein drugs at their aqueous interiors and releasing when exposing to gastric environments. The study provides new ways to fabricate compartmentalized materials with well-defined properties, unlocking routes to the next generation of self-assembled materials and structures by integrating aqueous two-phase systems with biomineralization.
Collapse
Affiliation(s)
- Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Fei Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Lufan Jia
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Ting Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Tao Meng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
16
|
Bernasconi R, Carniani D, Kim MS, Pané S, Magagnin L. Inkjet-Assisted Electroformation of Magnetically Guidable Water Striders for Interfacial Microfluidic Manipulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2396-2408. [PMID: 36512696 PMCID: PMC9837820 DOI: 10.1021/acsami.2c17792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Gerridae, colloquially called water striders, are a peculiar class of insects characterized by the extraordinary ability to walk on the surface of water bodies. Owing to this capacity, they constitute an ideal source of inspiration for designing untethered microdevices capable of navigating the interface between two fluids. Such steerable micrometric objects can be of great interest for various applications, ranging from the handling of floating objects to the remote control of microreactions and the manipulation of self-assembled monolayers. This paper describes the realization of artificial water striders via an inkjet-assisted electroforming approach. Inkjet deposition patterns the negative mask, which is subsequently filled with different layers of metals through electroforming. One of such layers is the magnetic alloy NiFe, which allows wireless propulsion of the striders by means of externally applied magnetic fields. The magnetic actuation tests prove good maneuverability at the water-air and silicone oil-air interfaces, with superior control over the speed and position of the devices. The surface of the devices is modified to tune its superficial energy in order to maximize buoyancy on these different combinations of fluids. A magnetic field-controlled strider manipulates a droplet and demonstrates collecting oil microdroplets and synthesizing platinum nanoparticles by chemical microreactions. Finally, the remotely operated microrobot could be employed in laboratories as a real avatar of chemists.
Collapse
Affiliation(s)
- Roberto Bernasconi
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
| | - Davide Carniani
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
| | - Min-Soo Kim
- Multi-Scale
Robotics Lab, Institute of Robotics and
Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092Zürich, Switzerland
| | - Salvador Pané
- Multi-Scale
Robotics Lab, Institute of Robotics and
Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092Zürich, Switzerland
| | - Luca Magagnin
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
| |
Collapse
|
17
|
Cui H, Zhang Y, Shen Y, Zhu S, Tian J, Li Q, Shen Y, Liu S, Cao Y, Shum HC. Dynamic Assembly of Viscoelastic Networks by Aqueous Liquid-Liquid Phase Separation and Liquid-Solid Phase Separation (AqLL-LS PS 2 ). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205649. [PMID: 36222390 DOI: 10.1002/adma.202205649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Living cells comprise diverse subcellular structures, such as cytoskeletal networks, which can regulate essential cellular activities through dynamic assembly and synergistic interactions with biomolecular condensates. Despite extensive efforts, reproducing viscoelastic networks for modulating biomolecular condensates in synthetic systems remains challenging. Here, a new aqueous two-phase system (ATPS) is proposed, which consists of poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX), to construct viscoelastic networks capable of being assembled and dissociated dynamically to regulate the self-assembly of condensates on-demand. Viscoelastic networks are generated using liquid-liquid phase-separated DEX droplets as templates and the following liquid-to-solid transition of the PNIPAM-rich phase. The resulting networks can dissolve liquid fused in sarcoma (FUS) condensates within 5 min. This work demonstrates rich phase-separation behaviors in a single ATPS through incorporating stimuli-responsive polymers. The concept can potentially be applied to other macromolecules through other stimuli to develop materials with rich phase behaviors and hierarchical structures.
Collapse
Affiliation(s)
- Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Yinan Shen
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| | - Qingchuan Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, China
| | - Yi Shen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sihan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen, 518000, China
- The Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| |
Collapse
|
18
|
Aqueous two-phase emulsions toward biologically relevant applications. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
May A, Hartmann J, Hardt S. Phase separation in evaporating all-aqueous sessile drops. SOFT MATTER 2022; 18:6313-6317. [PMID: 35993409 DOI: 10.1039/d2sm00613h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The phase transition and phase distribution in an all-aqueous sessile drop containing polyethylene glycol (PEG) and dextran is studied. Evaporation of water triggers the formation of dextran-rich droplets close to the contact line of the drop that subsequently migrate towards the drop center. The likely reason for the droplet migration is Marangoni convection due to stresses at the interface between the dextran-rich droplets and the surrounding liquid.
Collapse
Affiliation(s)
- Alexander May
- Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Nano-und Mikrofluidik, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany.
| | - Johannes Hartmann
- Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Nano-und Mikrofluidik, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany.
| | - Steffen Hardt
- Technische Universität Darmstadt, Fachbereich Maschinenbau, Fachgebiet Nano-und Mikrofluidik, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany.
| |
Collapse
|
20
|
Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
22
|
Zhou S, Chen C, Yang J, Liao L, Wang Z, Wu D, Chu J, Wen L, Ding W. On-Demand Maneuvering of Diverse Prodrug Liquids on a Light-Responsive Candle-Soot-Hybridized Lubricant-Infused Slippery Surface for Highly Effective Toxicity Screening. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31667-31676. [PMID: 35791814 DOI: 10.1021/acsami.2c06973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
At present, microscale high-throughput screening (HTS) for drug toxicity has drawn increased attention. Reported methods are often constrained by the inability to execute rapid fusion over diverse droplets or the inflexibility of relying on rigid customized templates. Herein, a light-responsive candle-soot-hybridized lubricant-infused slippery surface (CS-LISS) was reported by one-step femtosecond laser cross-scanning to realize highly effective and flexible drug HTS. Due to its low-hysteresis merits, the CS-LISS can readily steer diverse droplets toward arbitrary directions at a velocity over 1.0 mm/s with the help of tracing lateral near-infrared irradiation; additionally, it has the capability of self-cleaning and self-deicing. Significantly, by integrating the CS-LISS with a GFP HeLa cell chip, high-efficiency drug toxicity screening can be successfully achieved with the aid of fluorescence imaging. This work provides insights into the design of microscale high-throughput drug screening.
Collapse
Affiliation(s)
- Shuneng Zhou
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chao Chen
- Department of Materials Physics and New Energy Device, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junfeng Yang
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Lirui Liao
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Zekun Wang
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Jiaru Chu
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Li Wen
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Weiping Ding
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
23
|
Xu Z, Shan G, Hao N, Li L, Lan T, Dong Y, Wen J, Tian R, Zhang Y, Jiang L, Sui X. Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate. Biomaterials 2022; 283:121455. [DOI: 10.1016/j.biomaterials.2022.121455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
|
24
|
Hu Y. Controlled evaporation-induced phase separation of droplets containing nanogels and salt molecules. RSC Adv 2022; 12:27977-27986. [PMID: 36320278 PMCID: PMC9523661 DOI: 10.1039/d2ra04585k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Droplets without protection from surfactants or surfactant-like objects normally experience merging or a coalescence process since it is thermodynamically favored. However, division or replication of droplets is thermodynamically unfavored and comparably more difficult to realize. Herein, we demonstrate that a population of droplets that are composed of nanogels and salt spontaneously undergo a separation process under a slow solvent evaporation condition. Each individual droplet underwent changes in size, shape and eventually developed into two domains, which was caused by the screening effect due to the increased salt concentration as a result of solvent evaporation. The two domains gradually separated into nanogel-rich and salt-rich parts. These two parts eventually evolved into nanogel aggregates and branched structures, respectively. This separation was mainly due to the salting out effect and dewetting. Comparison studies indicate that both the nanogels and salt are indispensable ingredients for the phase separation. These discoveries may have profound applications in the fields of biomimetics and offer new routes for self-replication systems. An individual droplet containing nanogels and salts can evolve into gel-rich and salt-rich two separate parts upon evaporation.![]()
Collapse
Affiliation(s)
- Yuandu Hu
- Departments of Materials Science and Engineering, Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
25
|
Ma Q, Xu J. Green microfluidics in microchemical engineering for carbon neutrality. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Booth R, Insua I, Ahmed S, Rioboo A, Montenegro J. Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets. Nat Commun 2021; 12:6421. [PMID: 34741043 PMCID: PMC8571317 DOI: 10.1038/s41467-021-26681-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/17/2021] [Indexed: 02/02/2023] Open
Abstract
One-dimensional (1D) supramolecular polymers are commonly found in natural and synthetic systems to prompt functional responses that capitalise on hierarchical molecular ordering. Despite amphiphilic self-assembly being significantly studied in the context of aqueous encapsulation and autopoiesis, very little is currently known about the physico-chemical consequences and functional role of 1D supramolecular polymerisation confined in aqueous compartments. Here, we describe the different phenomena that resulted from the chemically triggered supramolecular fibrillation of synthetic peptide amphiphiles inside water microdroplets. The confined connection of suitable dormant precursors triggered a physically autocatalysed chemical reaction that resulted in functional environmental responses such as molecular uptake, fusion and chemical exchange. These results demonstrate the potential of minimalistic 1D supramolecular polymerisation to modulate the behaviour of individual aqueous entities with their environment and within communities.
Collapse
Affiliation(s)
- Richard Booth
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Sahnawaz Ahmed
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Alicia Rioboo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Chen G, Wang F, Nie M, Zhang H, Zhang H, Zhao Y. Roe-inspired stem cell microcapsules for inflammatory bowel disease treatment. Proc Natl Acad Sci U S A 2021; 118:e2112704118. [PMID: 34686606 PMCID: PMC8639345 DOI: 10.1073/pnas.2112704118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which exert regulatory effects on various immune cells, have been a promising therapy for inflammatory bowel disease treatment. However, their therapeutic effects are limited by lack of nutritional supply, immune system attack, and low accumulation on the target site. Here, inspired by the natural incubation mechanism of roe, we present immune-isolating, wet-adhesive, and nutrient-rich microcapsules for therapeutic MSCs encapsulation. The adhesive shells were fabricated by ionic cross-linking of alginate and visible curing of epsilon-poly-L-lysine-graft-methacrylamide and dopamine methacrylamide, which encapsulated the liquid core of the MSCs and roe proteins. Due to the core-shell construction of the resultant microcapsules, the MSCs might escape from attack of the immune system while still maintaining immunomodulating functions. In addition, the roe proteins encapsulated in the core phase offered sufficient nutrient supply for MSCs' survival and proliferation. Furthermore, after intraperitoneal transplantation, the wet-adhesive radicals on the shell surface could immobilize the MSCs-encapsulating microcapsules onto the bowel. Based on these features, practical values of the roe-inspired microcapsules with MSCs encapsulation were demonstrated by applying them to treat dextran sulfate sodium (DSS)-induced colitis through increasing residence time, regulating immune imbalance, and relieving disease progression. We believe that the proposed roe-inspired microcapsules with MSCs encapsulation are potential for clinical application.
Collapse
Affiliation(s)
- Guopu Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Fengyuan Wang
- Department of Dermatology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Min Nie
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China;
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Chen G, Yu Y, Fu X, Wang G, Wang Z, Wu X, Ren J, Zhao Y. Microfluidic encapsulated manganese organic frameworks as enzyme mimetics for inflammatory bowel disease treatment. J Colloid Interface Sci 2021; 607:1382-1390. [PMID: 34583043 DOI: 10.1016/j.jcis.2021.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Metal organic frameworks (MOFs) with physicochemical properties and adjustable structures have been proposed as very attractive materials. The studies on development of such functional materials tended to fabricate featured MOF objects with fascinating catalytic capabilities to utilize their biomedical values. In this paper, we present novel biocompatible manganese metal organic framework (Mn-MOF)-based catalase mimetics with microfluidic microcapsule encapsulation for intravital inflammatory bowel disease (IBD) treatment. Phosphoserine, a component of the cell membrane, served as an organic ligand to ensure biocompatibility of Mn-MOF. Owing to the core-shell structure of the microcapsule, the Mn-MOF exhibited a well-organized distribution and controlled release features, which could protect them from gastric juice and provide function in the intestine. Upon reaching the sites of the inflammatory bowel, Mn-MOF could effectively scavenge reactive oxygen species (ROS) over-produced by neutrophils and macrophages under various gastrointestinal pH environments, protecting intestinal epithelial cells from ROS damage. The Mn-MOF-encapsulated microcapsules exhibited high performances in treating spontaneous IBD in interleukin-10-deficient mice by relieving the oxidative stress, reducing the inflammation, and restoring the intestinal barrier. These results indicate that the functional Mn-MOF-encapsulated microcapsules have practical applications in the treatment of ROS-associated diseases.
Collapse
Affiliation(s)
- Guopu Chen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yunru Yu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiao Fu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Gefei Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhiming Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Yuanjin Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
29
|
Protocell arrays for simultaneous detection of diverse analytes. Nat Commun 2021; 12:5724. [PMID: 34588445 PMCID: PMC8481512 DOI: 10.1038/s41467-021-25989-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
Simultaneous detection of multiple analytes from a single sample (multiplexing), particularly when done at the point of need, can guide complex decision-making without increasing the required sample volume or cost per test. Despite recent advances, multiplexed analyte sensing still typically faces the critical limitation of measuring only one type of molecule (e.g., small molecules or nucleic acids) per assay platform. Here, we address this bottleneck with a customizable platform that integrates cell-free expression (CFE) with a polymer-based aqueous two-phase system (ATPS), producing membrane-less protocells containing transcription and translation machinery used for detection. We show that multiple protocells, each performing a distinct sensing reaction, can be arrayed in the same microwell to detect chemically diverse targets from the same sample. Furthermore, these protocell arrays are compatible with human biofluids, maintain function after lyophilization and rehydration, and can produce visually interpretable readouts, illustrating this platform's potential as a minimal-equipment, field-deployable, multi-analyte detection tool.
Collapse
|
30
|
|
31
|
Xu Y, Qi R, Zhu H, Li B, Shen Y, Krainer G, Klenerman D, Knowles TPJ. Liquid-Liquid Phase-Separated Systems from Reversible Gel-Sol Transition of Protein Microgels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008670. [PMID: 34235786 PMCID: PMC11468722 DOI: 10.1002/adma.202008670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Liquid-liquid phase-separated biomolecular systems are increasingly recognized as key components in the intracellular milieu where they provide spatial organization to the cytoplasm and the nucleoplasm. The widespread use of phase-separated systems by nature has given rise to the inspiration of engineering such functional systems in the laboratory. In particular, reversible gelation of liquid-liquid phase-separated systems could confer functional advantages to the generation of new soft materials. Such gelation processes of biomolecular condensates have been extensively studied due to their links with disease. However, the inverse process, the gel-sol transition, has been less explored. Here, a thermoresponsive gel-sol transition of an extracellular protein in microgel form is explored, resulting in an all-aqueous liquid-liquid phase-separated system with high homogeneity. During this gel-sol transition, elongated gelatin microgels are demonstrated to be converted to a spherical geometry due to interfacial tension becoming the dominant energetic contribution as elasticity diminishes. The phase-separated system is further explored with respect to the diffusion of small particles for drug-release scenarios. Together, this all-aqueous system opens up a route toward size-tunable and monodisperse synthetic biomolecular condensates and controlled liquid-liquid interfaces, offering possibilities for applications in bioengineering and biomedicine.
Collapse
Affiliation(s)
- Yufan Xu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Runzhang Qi
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Hongjia Zhu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Bing Li
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Yi Shen
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Georg Krainer
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| |
Collapse
|
32
|
Dimitriou P, Li J, Tornillo G, McCloy T, Barrow D. Droplet Microfluidics for Tumor Drug-Related Studies and Programmable Artificial Cells. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000123. [PMID: 34267927 PMCID: PMC8272004 DOI: 10.1002/gch2.202000123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Indexed: 05/11/2023]
Abstract
Anticancer drug development is a crucial step toward cancer treatment, that requires realistic predictions of malignant tissue development and sophisticated drug delivery. Tumors often acquire drug resistance and drug efficacy, hence cannot be accurately predicted in 2D tumor cell cultures. On the other hand, 3D cultures, including multicellular tumor spheroids (MCTSs), mimic the in vivo cellular arrangement and provide robust platforms for drug testing when grown in hydrogels with characteristics similar to the living body. Microparticles and liposomes are considered smart drug delivery vehicles, are able to target cancerous tissue, and can release entrapped drugs on demand. Microfluidics serve as a high-throughput tool for reproducible, flexible, and automated production of droplet-based microscale constructs, tailored to the desired final application. In this review, it is described how natural hydrogels in combination with droplet microfluidics can generate MCTSs, and the use of microfluidics to produce tumor targeting microparticles and liposomes. One of the highlights of the review documents the use of the bottom-up construction methodologies of synthetic biology for the formation of artificial cellular assemblies, which may additionally incorporate both target cancer cells and prospective drug candidates, as an integrated "droplet incubator" drug assay platform.
Collapse
Affiliation(s)
- Pantelitsa Dimitriou
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Jin Li
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Giusy Tornillo
- Hadyn Ellis BuildingCardiff UniversityMaindy RoadCardiffCF24 4HQUK
| | - Thomas McCloy
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - David Barrow
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| |
Collapse
|
33
|
Zhao C, Chen G, Wang H, Zhao Y, Chai R. Bio-inspired intestinal scavenger from microfluidic electrospray for detoxifying lipopolysaccharide. Bioact Mater 2021; 6:1653-1662. [PMID: 33313445 PMCID: PMC7701841 DOI: 10.1016/j.bioactmat.2020.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
Lipopolysaccharide (LPS) plays an important role in metabolic syndrome (MetS) and other gut-derived diseases, and detoxifying LPS is considered to be a fundamental approach to prevent and treat these diseases. Here, inspired by the feeding behaviour of scavenger, novel microfluidic microcapsules with alkaline phosphatase (ALP) encapsulation and the scavenger-like molecular sieve shell are presented for cleaning intestinal LPS. Benefiting from the precisely controlled of the pore size and microfluidic electrospray, the generated microcapsules were imparted with porous molecular-sieve shells and ALP encapsulated active cores. These microcapsules could continuously work as an intestinal scavenger after colonized in intestine. It has been demonstrated that the microcapsules could englobe LPS while inhibit the permeation of digestive enzyme, and this ability contributes to promising ALP's activity, protecting cells at the presence of LPS and reducing inflammation. In addition, this scavenger inspired microcapsule could effectively decrease the LPS in organs, reduce inflammation and regulating fat metabolism in vivo. These features make the ALP encapsulated microcapsules an ideal candidate for treating MetS and other LPS related diseases.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Endocrinology, Shenzhen Second People's Hospital, Center for Diabetes, Obesity and Metabolic Diseases of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, 518035, PR China
| | - Guopu Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210002, China
| | - Huan Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Endocrinology, Shenzhen Second People's Hospital, Center for Diabetes, Obesity and Metabolic Diseases of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, 518035, PR China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Endocrinology, Shenzhen Second People's Hospital, Center for Diabetes, Obesity and Metabolic Diseases of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen, 518035, PR China
| | - Renjie Chai
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
34
|
Guo W, Kinghorn AB, Zhang Y, Li Q, Poonam AD, Tanner JA, Shum HC. Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat Commun 2021; 12:3194. [PMID: 34045455 PMCID: PMC8160217 DOI: 10.1038/s41467-021-23410-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
The synthetic pathways of life’s building blocks are envisaged to be through a series of complex prebiotic reactions and processes. However, the strategy to compartmentalize and concentrate biopolymers under prebiotic conditions remains elusive. Liquid-liquid phase separation is a mechanism by which membraneless organelles form inside cells, and has been hypothesized as a potential mechanism for prebiotic compartmentalization. Associative phase separation of oppositely charged species has been shown to partition RNA, but the strongly negative charge exhibited by RNA suggests that RNA-polycation interactions could inhibit RNA folding and its functioning inside the coacervates. Here, we present a prebiotically plausible pathway for non-associative phase separation within an evaporating all-aqueous sessile droplet. We quantitatively investigate the kinetic pathway of phase separation triggered by the non-uniform evaporation rate, together with the Marangoni flow-driven hydrodynamics inside the sessile droplet. With the ability to undergo liquid-liquid phase separation, the drying droplets provide a robust mechanism for formation of prebiotic membraneless compartments, as demonstrated by localization and storage of nucleic acids, in vitro transcription, as well as a three-fold enhancement of ribozyme activity. The compartmentalization mechanism illustrated in this model system is feasible on wet organophilic silica-rich surfaces during early molecular evolution. Prebiotic compartmentalization could prove essential for the evolution of life. Guo et al. show that liquid-liquid separation in an aqueous two-phase system driven by evaporation may already suffice to facilitate chemical processes required for the RNA world hypothesis.
Collapse
Affiliation(s)
- Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Yage Zhang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Qingchuan Li
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China.,School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, China
| | - Aditi Dey Poonam
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| |
Collapse
|
35
|
Shen Y, Levin A, Kamada A, Toprakcioglu Z, Rodriguez-Garcia M, Xu Y, Knowles TPJ. From Protein Building Blocks to Functional Materials. ACS NANO 2021; 15:5819-5837. [PMID: 33760579 PMCID: PMC8155333 DOI: 10.1021/acsnano.0c08510] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
Proteins are the fundamental building blocks for high-performance materials in nature. Such materials fulfill structural roles, as in the case of silk and collagen, and can generate active structures including the cytoskeleton. Attention is increasingly turning to this versatile class of molecules for the synthesis of next-generation green functional materials for a range of applications. Protein nanofibrils are a fundamental supramolecular unit from which many macroscopic protein materials are formed. In this Review, we focus on the multiscale assembly of such protein nanofibrils formed from naturally occurring proteins into new supramolecular architectures and discuss how they can form the basis of material systems ranging from bulk gels, films, fibers, micro/nanogels, condensates, and active materials. We review current and emerging approaches to process and assemble these building blocks in a manner which is different to their natural evolutionarily selected role but allows the generation of tailored functionality, with a focus on microfluidic approaches. We finally discuss opportunities and challenges for this class of materials, including applications that can be involved in this material system which consists of fully natural, biocompatible, and biodegradable feedstocks yet has the potential to generate materials with performance and versatility rivalling that of the best synthetic polymers.
Collapse
Affiliation(s)
- Yi Shen
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- School
of Chemical and Biomolecular Engineering, The University of Sydney, 2006 Sydney, New South Wales, Australia
| | - Aviad Levin
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ayaka Kamada
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Zenon Toprakcioglu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marc Rodriguez-Garcia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Xampla, the BioInnovation Building, 25 Cambridge
Science Park Road, Cambridge CB4 0FW, U.K.
| | - Yufan Xu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
36
|
Ma Q, Ma H, Xu F, Wang X, Sun W. Microfluidics in cardiovascular disease research: state of the art and future outlook. MICROSYSTEMS & NANOENGINEERING 2021; 7:19. [PMID: 34567733 PMCID: PMC8433381 DOI: 10.1038/s41378-021-00245-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 05/21/2023]
Abstract
Due to extremely severe morbidity and mortality worldwide, it is worth achieving a more in-depth and comprehensive understanding of cardiovascular diseases. Tremendous effort has been made to replicate the cardiovascular system and investigate the pathogenesis, diagnosis and treatment of cardiovascular diseases. Microfluidics can be used as a versatile primary strategy to achieve a holistic picture of cardiovascular disease. Here, a brief review of the application of microfluidics in comprehensive cardiovascular disease research is presented, with specific discussions of the characteristics of microfluidics for investigating cardiovascular diseases integrally, including the study of pathogenetic mechanisms, the development of accurate diagnostic methods and the establishment of therapeutic treatments. Investigations of critical pathogenetic mechanisms for typical cardiovascular diseases by microfluidic-based organ-on-a-chip are categorized and reviewed, followed by a detailed summary of microfluidic-based accurate diagnostic methods. Microfluidic-assisted cardiovascular drug evaluation and screening as well as the fabrication of novel delivery vehicles are also reviewed. Finally, the challenges with and outlook on further advancing the use of microfluidics technology in cardiovascular disease research are highlighted and discussed.
Collapse
Affiliation(s)
- Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266071 China
| | - Haixia Ma
- Center for Prenatal Diagnosis, Zibo Maternal and Child Health Care Hospital, Zibo, 255000 China
| | - Fenglan Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University, Jinan, 250061 China
| | - Wentao Sun
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & School of Medicine, Nankai University, Tianjin, 300457 China
| |
Collapse
|
37
|
Zhang Y, Ettelaie R, Binks BP, Yang H. Highly Selective Catalysis at the Liquid–Liquid Interface Microregion. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yabin Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | | | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
38
|
Jia TZ, Wang PH, Niwa T, Mamajanov I. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci 2021; 46:79. [PMID: 34373367 PMCID: PMC8342986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
One aspect of the study of the origins of life focuses on how primitive chemistries assembled into the first cells on Earth and how these primitive cells evolved into modern cells. Membraneless droplets generated from liquid-liquid phase separation (LLPS) are one potential primitive cell-like compartment; current research in origins of life includes study of the structure, function, and evolution of such systems. However, the goal of primitive LLPS research is not simply curiosity or striving to understand one of life's biggest unanswered questions, but also the possibility to discover functions or structures useful for application in the modern day. Many applicational fields, including biotechnology, synthetic biology, and engineering, utilize similar phaseseparated structures to accomplish specific functions afforded by LLPS. Here, we briefly review LLPS applied to primitive compartment research and then present some examples of LLPS applied to biomolecule purification, drug delivery, artificial cell construction, waste and pollution management, and flavor encapsulation. Due to a significant focus on similar functions and structures, there appears to be much for origins of life researchers to learn from those working on LLPS in applicational fields, and vice versa, and we hope that such researchers can start meaningful cross-disciplinary collaborations in the future.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154 USA
| | - Po-Hsiang Wang
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Graduate Institute of Environmental Engineering, National Central University, Zhongli Dist, 300 Zhongda Rd, Taoyuan City, 32001 Taiwan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8503 Japan
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
39
|
Lin D, Liu T, Yuan Q, Yang H, Ma H, Shi S, Wang D, Russell TP. Stabilizing Aqueous Three-Dimensional Printed Constructs Using Chitosan-Cellulose Nanocrystal Assemblies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55426-55433. [PMID: 33228355 DOI: 10.1021/acsami.0c16602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The assembly and binding of nanoparticles at the interfaces of aqueous two-phase systems enable the three-dimensional (3D) printing of all-aqueous naturally occurring materials. When a dispersion of cellulose nanocrystals (CNCs) in an aqueous solution of polyethylene glycol (PEG) is brought into contact with chitosan dissolved in an aqueous solution of dextran, the CNCs and chitosan diffuse to the interface between the two immiscible aqueous solutions, electrostatically interact, and form a solid, membranous layer sufficiently rapidly to 3D print tubules of one liquid in the other. The diameter, length, spatial arrangement, and stability of the printed tubules can be broadly controlled. Adsorption and directional diffusion of ionic species across the membranous layer make heavy metal ion removal possible. The results present a platform for fabricating and developing all-aqueous compartmentalized systems where function can be independently coupled to the inherent functionality of the nanoparticles or ligands.
Collapse
Affiliation(s)
- Dandan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingqing Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongkun Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Zhang MJ, Zhang P, Qiu LD, Chen T, Wang W, Chu LY. Controllable microfluidic fabrication of microstructured functional materials. BIOMICROFLUIDICS 2020; 14:061501. [PMID: 33193936 PMCID: PMC7644275 DOI: 10.1063/5.0027907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/21/2020] [Indexed: 05/16/2023]
Abstract
Microstructured functional materials such as microfibers and microparticles are widely used for a myriad of applications. Precise manipulation of the functional components and structure is important for the microstructured functional materials to achieve desired functions for advanced application. This review highlights the recent progress on the controllable microfluidic fabrication of microstructured functional materials from liquid templates. First, microfluidic strategies for controllable generation of liquid templates including laminar jets and emulsion droplets are introduced. Then, strategies for fabricating microfibers and microparticles with diverse structures and advanced functions from the liquid templates are highlighted. These strategies mainly focus on precisely engineering the functional components and microstructures of the microfibers and microparticles by tailoring those of their liquid templates to achieve desired advanced functions. Finally, future development of microfluidic techniques for industrial-scale production of the microstructured functional materials is discussed.
Collapse
Affiliation(s)
- Mao-Jie Zhang
- College of Engineering, Sichuan Normal University, Chengdu 610101, China
| | - Ping Zhang
- College of Engineering, Sichuan Normal University, Chengdu 610101, China
| | - Lian-Di Qiu
- College of Engineering, Sichuan Normal University, Chengdu 610101, China
| | - Ting Chen
- College of Engineering, Sichuan Normal University, Chengdu 610101, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Author to whom correspondence should be addressed:
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
41
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
42
|
Zhu S, Forth J, Xie G, Chao Y, Tian J, Russell TP, Shum HC. Rapid Multilevel Compartmentalization of Stable All-Aqueous Blastosomes by Interfacial Aqueous-Phase Separation. ACS NANO 2020; 14:11215-11224. [PMID: 32515582 DOI: 10.1021/acsnano.0c02923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Producing artificial multicellular structures to process multistep cascade reactions and mimic the fundamental aspects of living systems is an outstanding challenge. Highly biocompatible, artificial systems consisting of all-aqueous, compartmentalized multicellular systems have yet to be realized. Here, a rapid multilevel compartmentalization of an all-aqueous system where a 3D sheet of subcolloidosomes encloses a mother colloidosome by interfacial phase separation is demonstrated. These spatially organized multicellular structures are termed "blastosomes" since they are similar to blastula in appearance. The barrier to nanoparticle assembly at the water-water interface is overcome using oppositely charged polyelectrolytes that form a coacervate-nanoparticle-composite network. The conditions required to trigger interfacial phase separation and form blastosomes are quantified in a mapped state diagram. We show a versatile model for constructing artificial multicellular spheroids in all-aqueous systems. The rapid interfacial assembly of charged particles and polyelectrolytes can lock in nonequilibrium shapes of water, which also enables top-down technologies, such as 3D printing and microfluidics, to program flexible compartmentalized structures.
Collapse
Affiliation(s)
- Shipei Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen 518000, China
| | - Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, California 94720, United States
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, California 94720, United States
| | - Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen 518000, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen 518000, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, California 94720, United States
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, Massachusetts 01003, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute for Research and Innovation (HKU-SIRI), Shenzhen 518000, China
| |
Collapse
|
43
|
Nan L, Cao Y, Yuan S, Shum HC. Oil-mediated high-throughput generation and sorting of water-in-water droplets. MICROSYSTEMS & NANOENGINEERING 2020; 6:70. [PMID: 34567680 PMCID: PMC8433215 DOI: 10.1038/s41378-020-0180-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 05/27/2023]
Abstract
Aqueous two-phase system (ATPS) droplets have demonstrated superior compatibility over conventional water-in-oil droplets for various biological assays. However, the ultralow interfacial tension hampers efficient and stable droplet generation, limiting further development and more extensive use of such approaches. Here, we present a simple strategy to employ oil as a transient medium for ATPS droplet generation. Two methods based on passive flow focusing and active pico-injection are demonstrated to generate water-water-oil double emulsions, achieving a high generation frequency of ~2.4 kHz. Through evaporation of the oil to break the double emulsions, the aqueous core can be released to form uniform-sized water-in-water droplets. Moreover, this technique can be used to fabricate aqueous microgels, and the introduction of the oil medium enables integration of droplet sorting to produce single-cell-laden hydrogels with a harvest rate of over 90%. We believe that the demonstrated high-throughput generation and sorting of ATPS droplets represent an important tool to advance droplet-based tissue engineering and single-cell analyses.
Collapse
Affiliation(s)
- Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shuai Yuan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
44
|
Niu F, Yan Z, Kusema BT, Bahri M, Ersen O, Khodakov AY, Ordomsky VV. Disassembly of Supported Co and Ni Nanoparticles by Carbon Deposition for the Synthesis of Highly Dispersed and Active Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Niu
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
- E2P2L, UMI 3464 CNRS-Solvay, 3966 Jin Du Road, 201108 Shanghai, People’s Republic of China
| | - Zhen Yan
- E2P2L, UMI 3464 CNRS-Solvay, 3966 Jin Du Road, 201108 Shanghai, People’s Republic of China
| | - Bright T. Kusema
- E2P2L, UMI 3464 CNRS-Solvay, 3966 Jin Du Road, 201108 Shanghai, People’s Republic of China
| | - Mounib Bahri
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)-UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)-UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Andrei Y. Khodakov
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Vitaly V. Ordomsky
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| |
Collapse
|
45
|
Wang J, Yu Y, Guo J, Lu W, Wei Q, Zhao Y. The Construction and Application of Three-Dimensional Biomaterials. ACTA ACUST UNITED AC 2020; 4:e1900238. [PMID: 32293130 DOI: 10.1002/adbi.201900238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely explored and applied in many areas, especially in the field of tissue engineering. The interface of biomaterials and cells has been deeply investigated. However, it has been demonstrated that conventional 2D biomaterials fail to maintain the 3D structures and phenotypes of cells, which is the result of their limited ability to mimic the latter's complex extracellular matrix. To overcome this challenge, cell cultivation dependent on 3D biomaterials has emerged as an alternative strategy to make the recovery of 3D structures and functions of cells possible. Thus, with the thriving development of 3D cell culture in tissue engineering, a holistic review of the construction and application of 3D biomaterials is desired. Here, recent developments in 3D biomaterials for tissue engineering are reviewed. An overview of various approaches to construct 3D biomaterials, such as electro-jetting/-spinning, micro-molding, microfluidics, and 3D bio-printing, is first presented. Their typical applications in constructing cell sheets, vascular structures, cell spheroids, and macroscopic cellular constructs are described as well. Following these two sections, the current status and challenges are analyzed, as well as the future outlook of 3D biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Jie Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
46
|
Ma Q, Song Y, Sun W, Cao J, Yuan H, Wang X, Sun Y, Shum HC. Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid-Liquid Phase Separation toward Advanced Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903359. [PMID: 32274317 PMCID: PMC7141073 DOI: 10.1002/advs.201903359] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Indexed: 05/24/2023]
Abstract
Living cells have evolved over billions of years to develop structural and functional complexity with numerous intracellular compartments that are formed due to liquid-liquid phase separation (LLPS). Discovery of the amazing and vital roles of cells in life has sparked tremendous efforts to investigate and replicate the intracellular LLPS. Among them, all-aqueous emulsions are a minimalistic liquid model that recapitulates the structural and functional features of membraneless organelles and protocells. Here, an emerging all-aqueous microfluidic technology derived from micrometer-scaled manipulation of LLPS is presented; the technology enables the state-of-art design of advanced biomaterials with exquisite structural proficiency and diversified biological functions. Moreover, a variety of emerging biomedical applications, including encapsulation and delivery of bioactive gradients, fabrication of artificial membraneless organelles, as well as printing and assembly of predesigned cell patterns and living tissues, are inspired by their cellular counterparts. Finally, the challenges and perspectives for further advancing the cell-inspired all-aqueous microfluidics toward a more powerful and versatile platform are discussed, particularly regarding new opportunities in multidisciplinary fundamental research and biomedical applications.
Collapse
Affiliation(s)
- Qingming Ma
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Yang Song
- Wallace H Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory School of MedicineAtlantaGA30332USA
| | - Wentao Sun
- Center for Basic Medical ResearchTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China
| | - Jie Cao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Hao Yuan
- Institute of Applied MechanicsNational Taiwan UniversityTaipei10617Taiwan
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong UniversityJinan250061China
| | - Yong Sun
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Ho Cheung Shum
- Department of Mechanical EngineeringUniversity of Hong KongPokfulam RoadHong Kong
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI)Shenzhen518000China
| |
Collapse
|
47
|
Tsumoto K, Sakuta H, Takiguchi K, Yoshikawa K. Nonspecific characteristics of macromolecules create specific effects in living cells. Biophys Rev 2020; 12:425-434. [PMID: 32144739 PMCID: PMC7242541 DOI: 10.1007/s12551-020-00673-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, the important role of microphase separation in living cells has been attracting considerable interest in relation to cell organization and function. For example, many studies have focused on liquid-liquid phase separation (LLPS) as a very plausible mechanism for the presence of membraneless organelles. To confirm the role of phase separation in living cells, experimental studies on models and/or reconstructed systems are needed. In this short review, we discuss current paradigms of LLPS and provide some example "review data" to demonstrate particular points relating to the specific localization of biological macromolecules like DNAs and actin proteins with spontaneous domain formation in microdroplets emerging in an aqueous two-phase system (ATPS) (we use polyethylene glycol (PEG)/dextran (DEX)-a binary polymer solution). We also suggest that phase separation and transition may play basic roles in regulation of the biochemical reactivity of individual long genomic DNAs.
Collapse
Affiliation(s)
- Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, 514-8507, Japan.
| | - Hiroki Sakuta
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kingo Takiguchi
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Kenichi Yoshikawa
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| |
Collapse
|
48
|
Roberts S, Miao V, Costa S, Simon J, Kelly G, Shah T, Zauscher S, Chilkoti A. Complex microparticle architectures from stimuli-responsive intrinsically disordered proteins. Nat Commun 2020; 11:1342. [PMID: 32165622 PMCID: PMC7067844 DOI: 10.1038/s41467-020-15128-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/14/2020] [Indexed: 11/27/2022] Open
Abstract
The controllable production of microparticles with complex geometries is useful for a variety of applications in materials science and bioengineering. The formation of intricate microarchitectures typically requires sophisticated fabrication techniques such as flow lithography or multiple-emulsion microfluidics. By harnessing the molecular interactions of a set of artificial intrinsically disordered proteins (IDPs), we have created complex microparticle geometries, including porous particles, core-shell and hollow shell structures, and a unique ‘fruits-on-a-vine’ arrangement, by exploiting the metastable region of the phase diagram of thermally responsive IDPs within microdroplets. Through multi-site unnatural amino acid (UAA) incorporation, these protein microparticles can also be photo-crosslinked and stably extracted to an all-aqueous environment. This work expands the functional utility of artificial IDPs as well as the available microarchitectures of this class of biocompatible IDPs, with potential applications in drug delivery and tissue engineering. The production of microparticles with complex geometries for biotechnological use historically requires sophisticated fabrication techniques. Here, the authors create complex particle geometries by exploiting the metastable region of the phase diagram of thermally responsive intrinsically disordered proteins within microdroplets.
Collapse
Affiliation(s)
- Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Vincent Miao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Simone Costa
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joseph Simon
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Tejank Shah
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
49
|
Abstract
The manipulation of liquid droplets demonstrates great importance in various areas from laboratory research to our daily life. Here, inspired by the unique microstructure of plant stomata, we present a surface with programmable wettability arrays for droplets manipulation. The substrate film of this surface is constructed by using a coaxial capillary microfluidics to emulsify and pack graphene oxide (GO) hybrid N-isopropylacrylamide (NIPAM) hydrogel solution into silica nanoparticles-dispersed ethoxylated trimethylolpropane triacrylate (ETPTA) phase. Because of the distribution of the silica nanoparticles on the ETPTA interface, the outer surface of the film could achieve favorable hydrophobic property under selective fluorosilane decoration. Owing to the outstanding photothermal energy transformation property of the GO, the encapsulated hydrophilic hydrogel arrays could shrink back into the holes to expose their hydrophobic surface with near-infrared (NIR) irradiation; this imparts the composite film with remotely switchable surface droplet adhesion status. Based on this phenomenon, we have demonstrated controllable droplet sliding on programmable wettability pathways, together with effective droplet transfer for printing with mask integration, which remains difficult to realize by existing techniques.
Collapse
|
50
|
Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 2020; 49:114-142. [DOI: 10.1039/c9cs00466a] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes recent advances of aqueous two-phase systems (ATPSs), particularly their interfaces, with a focus on biomedical applications.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| |
Collapse
|