1
|
Isaac J, Murugan M. Interconnected neural circuits mediating social reward. Trends Neurosci 2024; 47:1041-1054. [PMID: 39532581 PMCID: PMC11633286 DOI: 10.1016/j.tins.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Across species, social behaviors are shaped and maintained through positive reinforcement of affiliative social interactions. As with nonsocial rewards, the reinforcing properties of social interactions have been shown to involve interplay between various brain regions and the mesolimbic reward system. In this review, we summarize findings from rodent research on the neural circuits that encode and mediate different components of social reward-seeking behavior. We explore methods to parse and study social reward-related behaviors using available behavioral paradigms. We also compare the neural mechanisms that support social versus nonsocial reward-seeking. Finally, we discuss how internal state and neuromodulatory systems affect reward-seeking behavior and the neural circuits that underlie social reward.
Collapse
Affiliation(s)
- Jennifer Isaac
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Malavika Murugan
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Brandner DD, Mashal MA, Grissom NM, Rothwell PE. Sex differences in morphine sensitivity of neuroligin-3 knockout mice. Psychopharmacology (Berl) 2024; 241:2431-2440. [PMID: 39083079 DOI: 10.1007/s00213-024-06660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Sex has a strong influence on the prevalence and course of brain conditions, including autism spectrum disorders. The mechanistic basis for these sex differences remains poorly understood, due in part to historical bias in biomedical research favoring analysis of male subjects, and the exclusion of female subjects. For example, studies of male mice carrying autism-associated mutations in neuroligin-3 are over-represented in the literature, including our own prior work showing diminished responses to chronic morphine exposure in male neuroligin-3 knockout mice. We therefore studied how constitutive and conditional genetic knockout of neuroligin-3 affects morphine sensitivity of female mice, using locomotor activity as a proxy for differences in opioid sensitivity that may be related to the pathophysiology and treatment of autism spectrum disorders. In contrast to male mice, female neuroligin-3 knockout mice showed normal psychomotor sensitization after chronic morphine exposure. However, in the absence of neuroligin-3 expression, both female and male mice show a similar change in the topography of locomotor stimulation produced by morphine. Conditional genetic deletion of neuroligin-3 from dopamine neurons increased the locomotor response of female mice to high doses of morphine, contrasting with the decrease in psychomotor sensitization caused by the same manipulation in male mice. Together, our data reveal that knockout of neuroligin-3 has both common and distinct effects on morphine sensitivity in female and male mice. These results also support the notion that female sex can confer resilience against the impact of autism-associated gene variants.
Collapse
Affiliation(s)
- Dieter D Brandner
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, USA
| | - Mohammed A Mashal
- Department of Neuroscience, University of Minnesota, 4-142 Wallin Medical Biosciences Building, 2101 6 Street SE, Minneapolis, MN, 55455, USA
| | - Nicola M Grissom
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota, 4-142 Wallin Medical Biosciences Building, 2101 6 Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Cao W, Li H, Luo J. Prefrontal cortical circuits in social behaviors: an overview. J Zhejiang Univ Sci B 2024; 25:941-955. [PMID: 39626878 PMCID: PMC11634449 DOI: 10.1631/jzus.b2300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 12/13/2024]
Abstract
Social behaviors are fundamental and intricate functions in both humans and animals, governed by the interplay of social cognition and emotions. A noteworthy feature of several neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia (SCZ), is a pronounced deficit in social functioning. Despite a burgeoning body of research on social behaviors, the precise neural circuit mechanisms underpinning these phenomena remain to be elucidated. In this paper, we review the pivotal role of the prefrontal cortex (PFC) in modulating social behaviors, as well as its functional alteration in social disorders in ASD or SCZ. We posit that PFC dysfunction may represent a critical hub in the pathogenesis of psychiatric disorders characterized by shared social deficits. Furthermore, we delve into the intricate connectivity of the medial PFC (mPFC) with other cortical areas and subcortical brain regions in rodents, which exerts a profound influence on social behaviors. Notably, a substantial body of evidence underscores the role of N-methyl-D-aspartate receptors (NMDARs) and the proper functioning of parvalbumin-positive interneurons within the mPFC for social regulation. Our overarching goal is to furnish a comprehensive understanding of these intricate circuits and thereby contribute to the enhancement of both research endeavors and clinical practices concerning social behavior deficits.
Collapse
Affiliation(s)
- Wei Cao
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiyi Li
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianhong Luo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310013, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zhou P, Peng S, Wen S, Lan Q, Zhuang Y, Li X, Shi M, Zhang C. The Cerebellum-Ventral Tegmental Area Microcircuit and Its Implications for Autism Spectrum Disorder: A Narrative Review. Neuropsychiatr Dis Treat 2024; 20:2039-2048. [PMID: 39494383 PMCID: PMC11531233 DOI: 10.2147/ndt.s485487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
The cerebellum has long been implicated in the etiopathogenesis of autism spectrum disorder (ASD), and emerging evidence suggests a significant contribution by reciprocal neural circuits between the cerebellum and ventral tegmental area (VTA) in symptom expression. This review provides a concise overview of morphological and functional alterations in the cerebellum and VTA associated with ASD symptoms, primarily focusing on human studies while also integrating mechanistic insights from animal models. We propose that cerebello-VTA circuit dysfunctional is a major contributor to ASD symptoms and that these circuits are promising targets for drugs and therapeutic brain stimulation methods.
Collapse
Affiliation(s)
- Peiling Zhou
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Shiyu Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Sizhe Wen
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Qinghui Lan
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Yingyin Zhuang
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Xuyan Li
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| | - Mengliang Shi
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
- School of Education, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Changzheng Zhang
- Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children & School of Educational Sciences, Lingnan Normal University, Zhanjiang, 524048, People’s Republic of China
| |
Collapse
|
5
|
Reynolds LM, Gulmez A, Fayad SL, Campos RC, Rigoni D, Nguyen C, Le Borgne T, Topilko T, Rajot D, Franco C, Fernandez SP, Marti F, Heck N, Mourot A, Renier N, Barik J, Faure P. Transient nicotine exposure in early adolescent male mice freezes their dopamine circuits in an immature state. Nat Commun 2024; 15:9017. [PMID: 39424848 PMCID: PMC11489768 DOI: 10.1038/s41467-024-53327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
How nicotine acts on developing neurocircuitry in adolescence to promote later addiction vulnerability remains largely unknown, but may hold the key for informing more effective intervention efforts. We found transient nicotine exposure in early adolescent (PND 21-28) male mice was sufficient to produce a marked vulnerability to nicotine in adulthood (PND 60 + ), associated with disrupted functional connectivity in dopaminergic circuits. These mice showed persistent adolescent-like behavioral and physiological responses to nicotine, suggesting that nicotine exposure in adolescence prolongs an immature, imbalanced state in the function of these circuits. Chemogenetically resetting the balance between the underlying dopamine circuits unmasked the mature behavioral response to acute nicotine in adolescent-exposed mice. Together, our results suggest that the perseverance of a developmental imbalance between dopamine pathways may alter vulnerability profiles for later dopamine-dependent psychopathologies.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France.
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France.
| | - Aylin Gulmez
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | - Sophie L Fayad
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Renan Costa Campos
- Université Côte d'Azur, Nice 06560, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Daiana Rigoni
- Université Côte d'Azur, Nice 06560, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Claire Nguyen
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Tinaïg Le Borgne
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Thomas Topilko
- Laboratoire de Plasticité Structurale INSERM U1127, CNRS UMR7225, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Domitille Rajot
- Laboratoire de Plasticité Structurale INSERM U1127, CNRS UMR7225, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Clara Franco
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Sebastian P Fernandez
- Université Côte d'Azur, Nice 06560, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Fabio Marti
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Nicolas Heck
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Alexandre Mourot
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Nicolas Renier
- Laboratoire de Plasticité Structurale INSERM U1127, CNRS UMR7225, Sorbonne Université, ICM Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Jacques Barik
- Université Côte d'Azur, Nice 06560, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Philippe Faure
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France.
- Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France.
| |
Collapse
|
6
|
Xu QW, Larosa A, Wong TP. Roles of AMPA receptors in social behaviors. Front Synaptic Neurosci 2024; 16:1405510. [PMID: 39056071 PMCID: PMC11269240 DOI: 10.3389/fnsyn.2024.1405510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As a crucial player in excitatory synaptic transmission, AMPA receptors (AMPARs) contribute to the formation, regulation, and expression of social behaviors. AMPAR modifications have been associated with naturalistic social behaviors, such as aggression, sociability, and social memory, but are also noted in brain diseases featuring impaired social behavior. Understanding the role of AMPARs in social behaviors is timely to reveal therapeutic targets for treating social impairment in disorders, such as autism spectrum disorder and schizophrenia. In this review, we will discuss the contribution of the molecular composition, function, and plasticity of AMPARs to social behaviors. The impact of targeting AMPARs in treating brain disorders will also be discussed.
Collapse
Affiliation(s)
- Qi Wei Xu
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Amanda Larosa
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Hospital Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Fang YT, Kuo HC, Chen CY, Chou SJ, Lu CW, Hung CM. Brain Gene Regulatory Networks Coordinate Nest Construction in Birds. Mol Biol Evol 2024; 41:msae125. [PMID: 38916488 PMCID: PMC11223658 DOI: 10.1093/molbev/msae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Nest building is a vital behavior exhibited during breeding in birds, and is possibly induced by environmental and social cues. Although such behavioral plasticity has been hypothesized to be controlled by adult neuronal plasticity, empirical evidence, especially at the neurogenomic level, remains limited. Here, we aim to uncover the gene regulatory networks that govern avian nest construction and examine whether they are associated with circuit rewiring. We designed an experiment to dissect this complex behavior into components in response to pair bonding and nest material acquisition by manipulating the presence of mates and nest materials in 30 pairs of zebra finches. Whole-transcriptome analysis of 300 samples from five brain regions linked to avian nesting behaviors revealed nesting-associated gene expression enriched with neural rewiring functions, including neurogenesis and neuron projection. The enriched expression was observed in the motor/sensorimotor and social behavior networks of female finches, and in the dopaminergic reward system of males. Female birds exhibited predominant neurotranscriptomic changes to initiate the nesting stage, while males showed major changes after entering this stage, underscoring sex-specific roles in nesting behavior. Notably, major neurotranscriptomic changes occurred during pair bonding, with minor changes during nest material acquisition, emphasizing social interactions in nest construction. We also revealed gene expression associated with reproductive behaviors and tactile sensing for nesting behavior. This study presents novel neurogenomic evidence supporting the hypothesis of adult neural plasticity underlying avian nest-construction behavior. By uncovering the genetic toolkits involved, we offer novel insights into the evolution of animals' innate ability to construct nests.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hao-Chih Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Yost RT, Scott AM, Kurbaj JM, Walshe-Roussel B, Dukas R, Simon AF. Recovery from social isolation requires dopamine in males, but not the autism-related gene nlg3 in either sex. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240604. [PMID: 39086833 PMCID: PMC11288677 DOI: 10.1098/rsos.240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
Social isolation causes profound changes in social behaviour in a variety of species. However, the genetic and molecular mechanisms modulating behavioural responses to social isolation and social recovery remain to be elucidated. Here, we quantified the behavioural response of vinegar flies to social isolation using two distinct protocols (social space preference and sociability, the spontaneous tendencies to form groups). We found that social isolation increased social space and reduced sociability. These effects of social isolation were reversible and could be reduced after 3 days of group housing. Flies with a loss of function of neuroligin3 (orthologue of autism-related neuroligin genes) with known increased social space in a socially enriched environment were still able to recover from social isolation. We also show that dopamine (DA) is needed for a response to social isolation and recovery in males but not in females. Furthermore, only in males, DA levels are reduced after isolation and are not recovered after group housing. Finally, in socially enriched flies mutant for neuroligin3, DA levels are reduced in males, but not in females. We propose a model to explain how DA and neuroligin3 are involved in the behavioural response to social isolation and its recovery in a dynamic and sex-specific manner.
Collapse
Affiliation(s)
- Ryley T. Yost
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Judy M. Kurbaj
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, Animal Behaviour Group, McMaster University, Hamilton, Ontario, Canada
| | - Anne F. Simon
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Brandner DD, Mashal MA, Grissom NM, Rothwell PE. Sex Differences in Morphine Sensitivity of Neuroligin-3 Knockout Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596965. [PMID: 38854153 PMCID: PMC11160712 DOI: 10.1101/2024.06.01.596965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Sex has a strong influence on the prevalence and course of brain conditions, including autism spectrum disorders. The mechanistic basis for these sex differences remains poorly understood, due in part to historical bias in biomedical research favoring analysis of male subjects, and the exclusion of female subjects. For example, studies of male mice carrying autism-associated mutations in neuroligin-3 are over-represented in the literature, including our own prior work showing diminished responses to chronic morphine exposure in male neuroligin-3 knockout mice. We therefore studied how constitutive and conditional genetic knockout of neuroligin-3 affects morphine sensitivity of female mice. In contrast to male mice, female neuroligin-3 knockout mice showed normal psychomotor sensitization after chronic morphine exposure. However, in the absence of neuroligin-3 expression, both female and male mice show a similar change in the topography of locomotor stimulation produced by morphine. Conditional genetic deletion of neuroligin-3 from dopamine neurons increased the locomotor response of female mice to high doses of morphine, contrasting with the decrease in psychomotor sensitization caused by the same manipulation in male mice. Together, our data reveal that knockout of neuroligin-3 has both common and distinct effects on morphine sensitivity in female and male mice. These results also support the notion that female sex can confer resilience against the impact of autism-associated gene variants.
Collapse
|
10
|
Rappeneau V, Castillo Díaz F. Convergence of oxytocin and dopamine signalling in neuronal circuits: Insights into the neurobiology of social interactions across species. Neurosci Biobehav Rev 2024; 161:105675. [PMID: 38608828 DOI: 10.1016/j.neubiorev.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Social behaviour is essential for animal survival, and the hypothalamic neuropeptide oxytocin (OXT) critically impacts bonding, parenting, and decision-making. Dopamine (DA), is released by ventral tegmental area (VTA) dopaminergic neurons, regulating social cues in the mesolimbic system. Despite extensive exploration of OXT and DA roles in social behaviour independently, limited studies investigate their interplay. This narrative review integrates insights from human and animal studies, particularly rodents, emphasising recent research on pharmacological manipulations of OXT or DA systems in social behaviour. Additionally, we review studies correlating social behaviour with blood/cerebral OXT and DA levels. Behavioural facets include sociability, cooperation, pair bonding and parental care. In addition, we provide insights into OXT-DA interplay in animal models of social stress, autism, and schizophrenia. Emphasis is placed on the complex relationship between the OXT and DA systems and their collective influence on social behaviour across physiological and pathological conditions. Understanding OXT and DA imbalance is fundamental for unravelling the neurobiological underpinnings of social interaction and reward processing deficits observed in psychiatric conditions.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
| | - Fernando Castillo Díaz
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany
| |
Collapse
|
11
|
Dudas A, Nakahara TS, Pellissier LP, Chamero P. Parenting behaviors in mice: Olfactory mechanisms and features in models of autism spectrum disorders. Neurosci Biobehav Rev 2024; 161:105686. [PMID: 38657845 DOI: 10.1016/j.neubiorev.2024.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Rodents, along with numerous other mammals, heavily depend on olfactory cues to navigate their social interactions. Processing of olfactory sensory inputs is mediated by conserved brain circuits that ultimately trigger social behaviors, such as social interactions and parental care. Although innate, parenting is influenced by internal states, social experience, genetics, and the environment, and any significant disruption of these factors can impact the social circuits. Here, we review the molecular mechanisms and social circuits from the olfactory epithelium to central processing that initiate parental behaviors and their dysregulations that may contribute to the social impairments in mouse models of autism spectrum disorders (ASD). We discuss recent advances of the crucial role of olfaction in parental care, its consequences for social interactions, and the reciprocal influence on social interaction impairments in mouse models of ASD.
Collapse
Affiliation(s)
- Ana Dudas
- Team biology of GPCR Signaling systems (BIOS), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France
| | - Thiago S Nakahara
- Team Neuroendocrine Integration of Reproduction and Behavior (INERC), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France
| | - Lucie P Pellissier
- Team biology of GPCR Signaling systems (BIOS), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France.
| | - Pablo Chamero
- Team Neuroendocrine Integration of Reproduction and Behavior (INERC), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France.
| |
Collapse
|
12
|
Fleury S, Kolaric R, Espera J, Ha Q, Tomaio J, Gether U, Sørensen AT, Mingote S. Role of dopamine neurons in familiarity. Eur J Neurosci 2024; 59:2522-2534. [PMID: 38650479 DOI: 10.1111/ejn.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 04/25/2024]
Abstract
Dopamine neurons signal the salience of environmental stimuli and influence learning, although it is less clear if these neurons also determine the salience of memories. Ventral tegmental area (VTA) dopamine neurons increase their firing in the presence of new objects and reduce it upon repeated, inconsequential exposures, marking the shift from novelty to familiarity. This study investigates how dopamine neuron activity during repeated familiar object exposure affects an animal's preference for new objects in a subsequent novel object recognition (NOR) test. We hypothesize that a single familiarization session will not sufficiently lower dopamine activity, such that the memory of a familiar object remains salient, leading to equal exploration of familiar and novel objects and weaker NOR discrimination. In contrast, multiple familiarization sessions likely suppress dopamine activity more effectively, reducing the salience of the familiar object and enhancing subsequent novelty discrimination. Our experiments in mice indicated that multiple familiarization sessions reduce VTA dopamine neuron activation, as measured by c-Fos expression, and enhance novelty discrimination compared with a single familiarization session. Dopamine neurons that show responsiveness to novelty were primarily located in the paranigral nucleus of the VTA and expressed vesicular glutamate transporter 2 transcripts, marking them as dopamine-glutamate neurons. Chemogenetic inhibition of dopamine neurons during a single session paralleled the effects of multiple sessions, improving NOR. These findings suggest that a critical role of dopamine neurons during the transition from novelty to familiarity is to modulate the salience of an object's memory.
Collapse
Affiliation(s)
- Sixtine Fleury
- The Advanced Science Research Center, Graduate Center, City University of New York, New York, New York, USA
| | - Rhonda Kolaric
- The Advanced Science Research Center, Graduate Center, City University of New York, New York, New York, USA
| | - Justin Espera
- The Advanced Science Research Center, Graduate Center, City University of New York, New York, New York, USA
| | - Quan Ha
- The Advanced Science Research Center, Graduate Center, City University of New York, New York, New York, USA
| | - Jacquelyn Tomaio
- The Advanced Science Research Center, Graduate Center, City University of New York, New York, New York, USA
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Toft Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susana Mingote
- The Advanced Science Research Center, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
13
|
Chaves T, Török B, Fazekas CL, Correia P, Sipos E, Várkonyi D, Tóth ZE, Dóra F, Dobolyi Á, Zelena D. The Dopaminergic Cells in the Median Raphe Region Regulate Social Behavior in Male Mice. Int J Mol Sci 2024; 25:4315. [PMID: 38673899 PMCID: PMC11050709 DOI: 10.3390/ijms25084315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.
Collapse
Affiliation(s)
- Tiago Chaves
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Eszter Sipos
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Dorottya Várkonyi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and in Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Fanni Dóra
- Human Brain Tissue Bank, Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Árpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, H1117 Budapest, Hungary;
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| |
Collapse
|
14
|
Yu M, Sun F, Xiang G, Zhang Y, Wang X, Liu X, Huang B, Li X, Zhang D. Liver kinase B-1 modulates the activity of dopamine neurons in the ventral tegmental area and regulates social memory formation. Front Mol Neurosci 2024; 17:1289476. [PMID: 38646099 PMCID: PMC11026561 DOI: 10.3389/fnmol.2024.1289476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Social memory is the ability to discriminate between familiar and unknown conspecifics. It is an important component of social cognition and is therefore essential for the establishment of social relationships. Although the neural circuit mechanisms underlying social memory encoding have been well investigated, little focus has been placed on the regulatory mechanisms of social memory processing. The dopaminergic system, originating from the midbrain ventral tegmental area (VTA), is a key modulator of cognitive function. This study aimed to illustrate its role in modulating social memory and explore the possible molecular mechanisms. Here, we show that the activation of VTA dopamine (DA) neurons is required for the formation, but not the retrieval, of social memory. Inhibition of VTA DA neurons before social interaction, but not 24 h after social interaction, significantly impaired social discrimination the following day. In addition, we showed that the activation of VTA DA neurons was regulated by the serine/threonine protein kinase liver kinase B1 (Lkb1). Deletion of Lkb1 in VTA DA neurons reduced the frequency of burst firing of dopaminergic neurons. Furthermore, Lkb1 plays an important role in regulating social behaviors. Both genetic and virus-mediated deletions of Lkb1 in the VTA of adult mice impaired social memory and subsequently attenuated social familiarization. Altogether, our results provide direct evidence linking social memory formation to the activation of VTA DA neurons in mice and illustrate the crucial role of Lkb1 in regulating VTA DA neuron function.
Collapse
Affiliation(s)
- Meng Yu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Fengjiao Sun
- Institute of Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Guo Xiang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Yuhan Zhang
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xuejun Wang
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xia Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
15
|
Molas S, Freels TG, Zhao-Shea R, Lee T, Gimenez-Gomez P, Barbini M, Martin GE, Tapper AR. Dopamine control of social novelty preference is constrained by an interpeduncular-tegmentum circuit. Nat Commun 2024; 15:2891. [PMID: 38570514 PMCID: PMC10991551 DOI: 10.1038/s41467-024-47255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Animals are inherently motivated to explore social novelty cues over familiar ones, resulting in a novelty preference (NP), although the behavioral and circuit bases underlying NP are unclear. Combining calcium and neurotransmitter sensors with fiber photometry and optogenetics in mice, we find that mesolimbic dopamine (DA) neurotransmission is strongly and predominantly activated by social novelty controlling bout length of interaction during NP, a response significantly reduced by familiarity. In contrast, interpeduncular nucleus (IPN) GABAergic neurons that project to the lateral dorsal tegmentum (LDTg) were inhibited by social novelty but activated during terminations with familiar social stimuli. Inhibition of this pathway during NP increased interaction and bout length with familiar social stimuli, while activation reduced interaction and bout length with novel social stimuli via decreasing DA neurotransmission. These data indicate interest towards novel social stimuli is encoded by mesolimbic DA which is dynamically regulated by an IPN→LDTg circuit to control NP.
Collapse
Affiliation(s)
- Susanna Molas
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA.
- Institute for Behavioral Genetics, University of Colorado Boulder 1480 30th St, Boulder, 80303, CO, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder 1905 Colorado Ave, Boulder, 80309, CO, USA.
| | - Timothy G Freels
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Rubing Zhao-Shea
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Timothy Lee
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Pablo Gimenez-Gomez
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Melanie Barbini
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Gilles E Martin
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School 364 Plantation St, LRB, Worcester, 01605, MA, USA.
| |
Collapse
|
16
|
Chen Y, Kuang J, Niu Y, Zhu H, Chen X, So KF, Xu A, Shi L. Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons. Neural Regen Res 2024; 19:908-914. [PMID: 37843228 PMCID: PMC10664128 DOI: 10.4103/1673-5374.378203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 10/17/2023] Open
Abstract
Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases. They also represent a potential source of transplanted cells for therapeutic applications. In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development. Emerging evidence and impressive advances in human induced pluripotent stem cells, with tuned neural induction and differentiation protocols, makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible. Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol, we obtained multiple subtypes of neurons, including 20% tyrosine hydroxylase-positive dopaminergic neurons. To obtain more dopaminergic neurons, we next added sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF8) on day 8 of induction. This increased the proportion of dopaminergic neurons, up to 75% tyrosine hydroxylase-positive neurons, with 15% tyrosine hydroxylase and forkhead box protein A2 (FOXA2) co-expressing neurons. We further optimized the induction protocol by applying the small molecule inhibitor, CHIR99021 (CHIR).This helped facilitate the generation of midbrain dopaminergic neurons, and we obtained 31-74% midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining. Thus, we have established three induction protocols for dopaminergic neurons. Based on tyrosine hydroxylase and FOXA2 immunostaining analysis, the CHIR, SHH, and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons, which could be an ideal resource for tackling midbrain-related diseases.
Collapse
Affiliation(s)
- Yalan Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Junxin Kuang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Yimei Niu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Hongyao Zhu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaoxia Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Lingling Shi
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
17
|
Li LY, Imai A, Izumi H, Inoue R, Koshidaka Y, Takao K, Mori H, Yoshida T. Differential contribution of canonical and noncanonical NLGN3 pathways to early social development and memory performance. Mol Brain 2024; 17:16. [PMID: 38475840 PMCID: PMC10935922 DOI: 10.1186/s13041-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.
Collapse
Affiliation(s)
- Lin-Yu Li
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
18
|
Li S, May C, Pang TY, Churilov L, Hannan AJ, Johnson KA, Burrows EL. Mice with an autism-associated R451C mutation in neuroligin-3 show intact attention orienting but atypical responses to methylphenidate and atomoxetine in the mouse-Posner task. Psychopharmacology (Berl) 2024; 241:555-567. [PMID: 38170320 DOI: 10.1007/s00213-023-06520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
RATIONALE Atypical attention orienting has been associated with some autistic symptoms, but the neural mechanisms remain unclear. The human Posner task, a classic attention orienting paradigm, was recently adapted for use with mice, supporting the investigation of the neurobiological underpinnings of atypical attention orienting in preclinical mouse models. OBJECTIVE The current study tested mice expressing the autism-associated R451C gene mutation in neuroligin-3 (NL3) on the mouse-Posner (mPosner) task. METHODS NL3R451C and wild-type (WT) mice were trained to respond to a validly or invalidly cued target on a touchscreen. The cue was a peripheral non-predictive flash in the exogenous task and a central spatially predictive image in the endogenous task. The effects of dopaminergic- and noradrenergic-modulating drugs, methylphenidate and atomoxetine, on task performance were assessed. RESULTS In both tasks, mice were quicker and more accurate in the validly versus invalidly cued trials, consistent with results in the human Posner task. NL3R451C and WT mice showed similar response times and accuracy but responded differently when treated with methylphenidate and atomoxetine. Methylphenidate impaired exogenous attention disengagement in NL3R451C mice but did not significantly affect WT mice. Atomoxetine impaired endogenous orienting in WT mice but did not significantly affect NL3R451C mice. CONCLUSIONS NL3R451C mice demonstrated intact attention orienting but altered responses to the pharmacological manipulation of the dopaminergic and noradrenergic networks. These findings expand our understanding of the NL3R451C mutation by suggesting that this mutation may lead to selective alterations in attentional processes.
Collapse
Affiliation(s)
- Shuting Li
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Carlos May
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Leonid Churilov
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Katherine A Johnson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
19
|
Pizzarelli R, Pimpinella D, Jacobs C, Tartacca A, Kullolli U, Monyer H, Alberini CM, Griguoli M. Insulin-like growth factor 2 (IGF-2) rescues social deficits in NLG3 -/y mouse model of ASDs. Front Cell Neurosci 2024; 17:1332179. [PMID: 38298376 PMCID: PMC10827848 DOI: 10.3389/fncel.2023.1332179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Autism spectrum disorders (ASDs) comprise developmental disabilities characterized by impairments of social interaction and repetitive behavior, often associated with cognitive deficits. There is no current treatment that can ameliorate most of the ASDs symptomatology; thus, identifying novel therapies is urgently needed. Here, we used the Neuroligin 3 knockout mouse (NLG3-/y), a model that recapitulates the social deficits reported in ASDs patients, to test the effects of systemic administration of IGF-2, a polypeptide that crosses the blood-brain barrier and acts as a cognitive enhancer. We show that systemic IGF-2 treatment reverses the typical defects in social interaction and social novelty discrimination reflective of ASDs-like phenotypes. This effect was not accompanied by any change in spontaneous glutamatergic synaptic transmission in CA2 hippocampal region, a mechanism found to be crucial for social novelty discrimination. However, in both NLG3+/y and NLG3-/y mice IGF-2 increased cell excitability. Although further investigation is needed to clarify the cellular and molecular mechanisms underpinning IGF-2 effect on social behavior, our findings highlight IGF-2 as a potential pharmacological tool for the treatment of social dysfunctions associated with ASDs.
Collapse
Affiliation(s)
| | | | | | | | | | - Hannah Monyer
- European Brain Research Institute (EBRI), Rome, Italy
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Marilena Griguoli
- European Brain Research Institute (EBRI), Rome, Italy
- Institute of Molecular Biology and Pathology of the National Council of Research (IBPM-CNR), Rome, Italy
| |
Collapse
|
20
|
Socha J, Grochecki P, Smaga I, Jastrzębska J, Wronikowska-Denysiuk O, Marszalek-Grabska M, Slowik T, Kotlinski R, Filip M, Lubec G, Kotlinska JH. Social Interaction in Adolescent Rats with Neonatal Ethanol Exposure: Impact of Sex and CE-123, a Selective Dopamine Reuptake Inhibitor. Int J Mol Sci 2024; 25:1041. [PMID: 38256113 PMCID: PMC10816180 DOI: 10.3390/ijms25021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Children with fetal alcohol spectrum disorders (FASDs) demonstrate deficits in social functioning that contribute to early withdrawal from school and delinquency, as well as the development of anxiety and depression. Dopamine is involved in reward, motivation, and social behavior. Thus, we evaluated whether neonatal ethanol exposure (in an animal model of FASDs) has an impact on social recognition memory using the three-chamber social novelty discrimination test during early and middle adolescence in male and female rats, and whether the modafinil analog, the novel atypical dopamine reuptake inhibitor CE-123, can modify this effect. Our study shows that male and female rats neonatally exposed to ethanol exhibited sex- and age-dependent deficits in social novelty discrimination in early (male) and middle (female) adolescence. These deficits were specific to the social domain and not simply due to more general deficits in learning and memory because these animals did not exhibit changes in short-term recognition memory in the novel object recognition task. Furthermore, early-adolescent male rats that were neonatally exposed to ethanol did not show changes in the anxiety index but demonstrated an increase in locomotor activity. Chronic treatment with CE-123, however, prevented the appearance of these social deficits. In the hippocampus of adolescent rats, CE-123 increased BDNF and decreased its signal transduction TrkB receptor expression level in ethanol-exposed animals during development, suggesting an increase in neuroplasticity. Thus, selective dopamine reuptake inhibitors, such as CE-123, represent interesting drug candidates for the treatment of deficits in social behavior in adolescent individuals with FASDs.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Olga Wronikowska-Denysiuk
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| |
Collapse
|
21
|
Wang Q, Wang Y, Tian Y, Li Y, Han J, Tai F, Jia R. Social environment enrichment alleviates anxiety-like behavior in mice: Involvement of the dopamine system. Behav Brain Res 2024; 456:114687. [PMID: 37778421 DOI: 10.1016/j.bbr.2023.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Rearing environment plays a vital role in maintaining physical and mental health of both animals and humans. Plenty of studies have proved that physical environment enrichment in adolescence has protective effects on emotion, social behavior, learning and memory deficits. However, the following effects of social environment enrichment in adolescence remain largely elusive. Using the paradigm of companion rotation (CR), the present study found that social environment enrichment reduced anxiety-like behaviors of early adult male C57BL/6J mice. CR group also showed significantly higher expression of tyrosine hydroxylase in the ventral tegmental area and dopamine 1 receptor mRNA in the nucleus accumbens shell than control group. Taken together, these findings demonstrate that CR from adolescence to early adulthood can suppress the level of anxiety and upregulate dopaminergic neuron activity in early adult male C57BL/6J mice.
Collapse
Affiliation(s)
- Qun Wang
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuqian Wang
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yaoyao Tian
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yanyan Li
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Rui Jia
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
22
|
Um KB, Kwak S, Cheon SH, Kim J, Hwang SK. AST-001 Improves Social Deficits and Restores Dopamine Neuron Activity in a Mouse Model of Autism. Biomedicines 2023; 11:3283. [PMID: 38137504 PMCID: PMC10741043 DOI: 10.3390/biomedicines11123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impaired social communication and social interaction, restricted and repetitive behavior, and interests. The core symptoms of ASD are associated with deficits in mesocorticolimbic dopamine pathways that project from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). AST-001 is an investigational product currently in a phase 3 clinical trial for treating the core symptoms of ASD, with L-serine as the API (active pharmaceutical ingredient). Because the causes of ASD are extremely heterogeneous, a single genetic ASD model cannot represent all autism models. In this paper, we used the VPA-exposed model, which is more general and widely used than a single genetic model, but this is also one of the animal models of autism. Herein, we conducted experiments to demonstrate the efficacy of AST-001 as L-Serine that alters the regulation of the firing rate in dopamine neurons by inhibiting small conductance Ca2+-activated K+ channels (SK channels). Through these actions, AST-001 improved sociability and social novelty by rescuing the intrinsic excitabilities of dopamine neurons in VPA-exposed ASD mouse models that showed ASD-related behavioral abnormalities. It is thought that this effect of improving social deficits in VPA-exposed ASD mouse models is due to AST-001 normalizing aberrant SK channel activities that slowed VTA dopamine neuron firing. Overall, these findings suggest that AST-001 may be a potential therapeutic agent for ASD patients, and that its mechanism of action may involve the regulation of dopamine neuron activity and the improvement of social interaction.
Collapse
Affiliation(s)
- Ki Bum Um
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - Soyoung Kwak
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - Sun-Ha Cheon
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - JuHyun Kim
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
| | - Su-Kyeong Hwang
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Republic of Korea; (K.B.U.); (S.K.)
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
23
|
Shan Q, Tian Y, Chen H, Lin X, Tian Y. Reduction in the activity of VTA/SNc dopaminergic neurons underlies aging-related decline in novelty seeking. Commun Biol 2023; 6:1224. [PMID: 38042964 PMCID: PMC10693597 DOI: 10.1038/s42003-023-05571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023] Open
Abstract
Curiosity, or novelty seeking, is a fundamental mechanism motivating animals to explore and exploit environments to improve survival, and is also positively associated with cognitive, intrapersonal and interpersonal well-being in humans. However, curiosity declines as humans age, and the decline even positively predicts the extent of cognitive decline in Alzheimer's disease patients. Therefore, determining the underlying mechanism, which is currently unknown, is an urgent task for the present aging society that is growing at an unprecedented rate. This study finds that seeking behaviors for both social and inanimate novelties are compromised in aged mice, suggesting that the aging-related decline in curiosity and novelty-seeking is a biological process. This study further identifies an aging-related reduction in the activity (manifesting as a reduction in spontaneous firing) of dopaminergic neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Finally, this study establishes that this reduction in activity causally underlies the aging-related decline in novelty-seeking behaviors. This study potentially provides an interventional strategy for maintaining high curiosity in the aged population, i.e., compensating for the reduced activity of VTA/SNc dopaminergic neurons, enabling the aged population to cope more smoothly with the present growing aging society, physically, cognitively and socioeconomically.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Ye Tian
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Hang Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Xiaoli Lin
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, 300071, Tianjin, China
| |
Collapse
|
24
|
Willmore L, Minerva AR, Engelhard B, Murugan M, McMannon B, Oak N, Thiberge SY, Peña CJ, Witten IB. Overlapping representations of food and social stimuli in mouse VTA dopamine neurons. Neuron 2023; 111:3541-3553.e8. [PMID: 37657441 PMCID: PMC11672631 DOI: 10.1016/j.neuron.2023.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Dopamine neurons of the ventral tegmental area (VTADA) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear whether the same or different VTADA neurons encode these different stimuli. To address this question, we performed two-photon calcium imaging in mice presented with food and conspecifics and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that increasing motivation for one stimulus increases overlap. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone-related genes in individual VTADA neurons. Taken together, our functional and transcriptional data suggest overlapping VTADA populations underlie food and social motivation.
Collapse
Affiliation(s)
- Lindsay Willmore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Adelaide R Minerva
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Faculty of Medicine, Technion, Haifa 3525433, Israel.
| | - Malavika Murugan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Nirja Oak
- Faculty of Medicine, Technion, Haifa 3525433, Israel
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Catherine J Peña
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
25
|
Noh YW, Kim Y, Lee S, Kim Y, Shin JJ, Kang H, Kim IH, Kim E. The PFC-LH-VTA pathway contributes to social deficits in IRSp53-mutant mice. Mol Psychiatry 2023; 28:4642-4654. [PMID: 37730842 PMCID: PMC10914623 DOI: 10.1038/s41380-023-02257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) promote social brain functions by releasing DA onto nucleus accumbens neurons, but it remains unclear how VTA neurons communicate with cortical neurons. Here, we report that the medial prefrontal cortex (mPFC)-lateral hypothalamus (LH)-VTA pathway contributes to social deficits in mice with IRSp53 deletion restricted to cortical excitatory neurons (Emx1-Cre;Irsp53fl/fl mice). LH-projecting mutant mPFC neurons display abnormally increased excitability involving decreased potassium channel gene expression, leading to excessive excitatory synaptic input to LH-GABA neurons. A circuit-specific IRSp53 deletion in LH-projecting mPFC neurons also increases neuronal excitability and induces social deficits. LH-GABA neurons with excessive mPFC excitatory synaptic input show a compensatory decrease in excitability, weakening the inhibitory LHGABA-VTAGABA pathway and subsequently over-activating VTA-GABA neurons and over-inhibiting VTA-DA neurons. Accordingly, optogenetic activation of the LHGABA-VTAGABA pathway improves social deficits in Emx1-Cre;Irsp53fl/fl mice. Therefore, the mPFC-LHGABA-VTAGABA-VTADA pathway contributes to the social deficits in Emx1-Cre;Irsp53fl/fl mice.
Collapse
Affiliation(s)
- Young Woo Noh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yangsik Kim
- Department of Psychiatry, Inha University Hospital, Incheon, 22332, Korea
| | - Soowon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Yeonghyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jae Jin Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, 34141, Korea
| | - Il Hwan Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Korea.
| |
Collapse
|
26
|
Rojek-Sito K, Meyza K, Ziegart-Sadowska K, Nazaruk K, Puścian A, Hamed A, Kiełbiński M, Solecki W, Knapska E. Optogenetic and chemogenetic approaches reveal differences in neuronal circuits that mediate initiation and maintenance of social interaction. PLoS Biol 2023; 21:e3002343. [PMID: 38029342 PMCID: PMC10686636 DOI: 10.1371/journal.pbio.3002343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
For social interaction to be successful, two conditions must be met: the motivation to initiate it and the ability to maintain it. This study uses both optogenetic and chemogenetic approaches to reveal the specific neural pathways that selectively influence those two social interaction components.
Collapse
Affiliation(s)
- Karolina Rojek-Sito
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ksenia Meyza
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Ziegart-Sadowska
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Kinga Nazaruk
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Puścian
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kiełbiński
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Mei L, Osakada T, Lin D. Hypothalamic control of innate social behaviors. Science 2023; 382:399-404. [PMID: 37883550 PMCID: PMC11105421 DOI: 10.1126/science.adh8489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Sexual, parental, and aggressive behaviors are central to the reproductive success of individuals and species survival and thus are supported by hardwired neural circuits. The reproductive behavior control column (RBCC), which comprises the medial preoptic nucleus (MPN), the ventrolateral part of the ventromedial hypothalamus (VMHvl), and the ventral premammillary nucleus (PMv), is essential for all social behaviors. The RBCC integrates diverse hormonal and metabolic cues and adjusts an animal's physical activity, hence the chance of social encounters. The RBCC further engages the mesolimbic dopamine system to maintain social interest and reinforces cues and actions that are time-locked with social behaviors. We propose that the RBCC and brainstem form a dual-control system for generating moment-to-moment social actions. This Review summarizes recent progress regarding the identities of RBCC cells and their pathways that drive different aspects of social behaviors.
Collapse
Affiliation(s)
- Long Mei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10016, USA
| |
Collapse
|
28
|
Fleury S, Kolaric R, Espera J, Ha Q, Tomaio J, Gether U, Sørensen AT, Mingote S. Role of Dopamine Neurons in Familiarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564006. [PMID: 37961265 PMCID: PMC10634822 DOI: 10.1101/2023.10.25.564006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dopamine neurons signal the salience of environmental stimuli, influencing learning and motivation. However, research has not yet identified whether dopamine neurons also modulate the salience of memory content. Dopamine neuron activity in the ventral tegmental area (VTA) increases in response to novel objects and diminishes as objects become familiar through repeated presentations. We proposed that the declined rate of dopamine neuron activity during familiarization affects the salience of a familiar object's memory. This, in turn, influences the degree to which an animal distinguishes between familiar and novel objects in a subsequent novel object recognition (NOR) test. As such, a single familiarization session may not sufficiently reduce dopamine activity, allowing the memory of a familiar object to maintain its salience and potentially attenuating NOR. In contrast, multiple familiarization sessions could lead to more pronounced dopamine activity suppression, strengthening NOR. Our data in mice reveals that, compared to a single session, multiple sessions result in decreased VTA dopamine neuron activation, as indicated by c-Fos measurements, and enhanced novelty discrimination. Critically, when VTA dopamine neurons are chemogenetically inhibited during a single familiarization session, NOR improves, mirroring the effects of multiple familiarization sessions. In summary, our findings highlight the pivotal function of dopamine neurons in familiarity and suggest a role in modulating the salience of memory content.
Collapse
Affiliation(s)
- Sixtine Fleury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Rhonda Kolaric
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Justin Espera
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Quan Ha
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jacquelyn Tomaio
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Andreas Toft Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Susana Mingote
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| |
Collapse
|
29
|
Modi B, Guardamagna M, Stella F, Griguoli M, Cherubini E, Battaglia FP. State-dependent coupling of hippocampal oscillations. eLife 2023; 12:e80263. [PMID: 37462671 PMCID: PMC10411970 DOI: 10.7554/elife.80263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-vary simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multivariate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.
Collapse
Affiliation(s)
| | - Matteo Guardamagna
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Marilena Griguoli
- European Brain Research InstituteRomeItaly
- CNR, Institute of Molecular Biology and PathologyRomeItaly
| | | | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
30
|
Bian WJ, González OC, de Lecea L. Adolescent sleep defects and dopaminergic hyperactivity in mice with a schizophrenia-linked Shank3 mutation. Sleep 2023; 46:zsad131. [PMID: 37144901 PMCID: PMC10334736 DOI: 10.1093/sleep/zsad131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/03/2023] [Indexed: 05/06/2023] Open
Abstract
Shank3 is a shared risk gene for autism spectrum disorders and schizophrenia. Sleep defects have been characterized for autism models with Shank3 mutations; however, evidence has been lacking for the potential sleep defects caused by Shank3 mutation associated with schizophrenia and how early in development these defects may occur. Here we characterized the sleep architecture of adolescent mice carrying a schizophrenia-linked, R1117X mutation in Shank3. We further employed GRABDA dopamine sensor and fiber photometry to record dopamine release in the nucleus accumbens during sleep/wake states. Our results show that homozygous mutant R1117X mice have significantly reduced sleep in the dark phase during adolescence, altered electroencephalogram power, especially during the rapid-eye-movement sleep, and dopamine hyperactivity during sleep but not during wakefulness. Further analyses suggest that these adolescent defects in sleep architecture and dopaminergic neuromodulation tightly correlate with the social novelty preference later in adulthood and predict adult social performance during same-sex social interactions. Our results provide novel insights into the sleep phenotypes in mouse models of schizophrenia and the potential use of developmental sleep as a predictive metric for adult social symptoms. Together with recent studies in other Shank3 models, our work underscores the idea that Shank3-involved circuit disruptions may be one of the shared pathologies in certain types of schizophrenia and autism. Future research is needed to establish the causal relationship among adolescent sleep defects, dopaminergic dysregulation, and adult behavioral changes in Shank3 mutation animals and other models.
Collapse
Affiliation(s)
- Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Oscar C González
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
31
|
Wang Z, Yueh H, Chau M, Veenstra-VanderWeele J, O'Reilly KC. Circuits underlying social function and dysfunction. Autism Res 2023; 16:1268-1288. [PMID: 37458578 DOI: 10.1002/aur.2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023]
Abstract
Substantial advances have been made toward understanding the genetic and environmental risk factors for autism, a neurodevelopmental disorder with social impairment as a core feature. In combination with optogenetic and chemogenetic tools to manipulate neural circuits in vivo, it is now possible to use model systems to test how specific neural circuits underlie social function and dysfunction. Here, we review the literature that has identified circuits associated with social interest (sociability), social reward, social memory, dominance, and aggression, and we outline a preliminary roadmap of the neural circuits driving these social behaviors. We highlight the neural circuitry underlying each behavioral domain, as well as develop an interactive map of how these circuits overlap across domains. We find that some of the circuits underlying social behavior are general and are involved in the control of multiple behavioral aspects, whereas other circuits appear to be specialized for specific aspects of social behavior. Our overlapping circuit map therefore helps to delineate the circuits involved in the various domains of social behavior and to identify gaps in knowledge.
Collapse
Affiliation(s)
- Ziwen Wang
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hannah Yueh
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| | - Mirabella Chau
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
32
|
Adeyelu T, Ogundele OM. VTA multifaceted modulation of CA1 local circuits. Neurobiol Learn Mem 2023; 202:107760. [PMID: 37119849 DOI: 10.1016/j.nlm.2023.107760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Excitatory pyramidal (PYR) cell activation of interneurons (INT) produces network oscillations that underlie cognitive processes in the hippocampus (CA1). Neural projections from the ventral tegmental area (VTA) to the hippocampus contribute to novelty detection by modulating CA1 PYR and INT activity. The role of the VTA in the VTA-hippocampus loop is mostly attributed to the dopamine neurons although the VTA glutamate-releasing terminals are dominant in the hippocampus. Because of the traditional focus on VTA dopamine circuits, how VTA glutamate inputs modulate PYR activation of INT in CA1 neuronal ensembles is poorly understood and has not been distinguished from the VTA dopamine inputs. By combining CA1 extracellular recording with VTA photostimulation in anesthetized mice, we compared the effects of VTA dopamine and glutamate input on CA1 PYR/INT connections. Stimulation of VTA glutamate neurons shortened PYR/INT connection time without altering the synchronization or connectivity strength. Conversely, activation of VTA dopamine inputs delayed CA1 PYR/INT connection time and increased the synchronization in putative pairs. Taken together, we conclude that VTA dopamine and glutamate projections produce tract-specific effects on CA1 PYR/INT connectivity and synchrony. As such, selective activation or co-activation of these systems will likely produce a range of modulatory effects on local CA1 circuits.
Collapse
Affiliation(s)
- Tolulope Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, United States
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, United States.
| |
Collapse
|
33
|
Bordes J, Miranda L, Müller-Myhsok B, Schmidt MV. Advancing social behavioral neuroscience by integrating ethology and comparative psychology methods through machine learning. Neurosci Biobehav Rev 2023; 151:105243. [PMID: 37225062 DOI: 10.1016/j.neubiorev.2023.105243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/21/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Social behavior is naturally occurring in vertebrate species, which holds a strong evolutionary component and is crucial for the normal development and survival of individuals throughout life. Behavioral neuroscience has seen different influential methods for social behavioral phenotyping. The ethological research approach has extensively investigated social behavior in natural habitats, while the comparative psychology approach was developed utilizing standardized and univariate social behavioral tests. The development of advanced and precise tracking tools, together with post-tracking analysis packages, has recently enabled a novel behavioral phenotyping method, that includes the strengths of both approaches. The implementation of such methods will be beneficial for fundamental social behavioral research but will also enable an increased understanding of the influences of many different factors that can influence social behavior, such as stress exposure. Furthermore, future research will increase the number of data modalities, such as sensory, physiological, and neuronal activity data, and will thereby significantly enhance our understanding of the biological basis of social behavior and guide intervention strategies for behavioral abnormalities in psychiatric disorders.
Collapse
Affiliation(s)
- Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lucas Miranda
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Bertram Müller-Myhsok
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
34
|
Willmore L, Minerva AR, Engelhard B, Murugan M, McMannon B, Oak N, Thiberge SY, Peña CJ, Witten IB. Overlapping representations of food and social stimuli in VTA dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541104. [PMID: 37293057 PMCID: PMC10245666 DOI: 10.1101/2023.05.17.541104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dopamine neurons of the ventral tegmental area (VTA DA ) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear if the same or different VTA DA neurons encode these different stimuli. To address this question, we performed 2-photon calcium imaging in mice presented with food and conspecifics, and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that modifying motivation for one stimulus affects responses to both stimuli. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone related genes in individual VTA DA neurons. Taken together, our functional and transcriptional data suggest overlapping VTA DA populations underlie food and social motivation.
Collapse
Affiliation(s)
- Lindsay Willmore
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Adelaide R. Minerva
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
- Department of Medicine, Technion, Haifa, 3525433, Israel
| | - Malavika Murugan
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Nirja Oak
- Department of Medicine, Technion, Haifa, 3525433, Israel
| | - Stephan Y. Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Catherine J. Peña
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| | - Ilana B. Witten
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544 USA
| |
Collapse
|
35
|
Ramirez-Mejia G, Gil-Lievana E, Urrego-Morales O, Galvez-Marquez D, Hernández-Ortiz E, Carrillo-Lorenzo JA, Bermúdez-Rattoni F. Salience to remember: VTA-IC dopaminergic pathway activity is necessary for object recognition memory formation. Neuropharmacology 2023; 228:109464. [PMID: 36804534 DOI: 10.1016/j.neuropharm.2023.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Previous studies have shown that dopaminergic activity modulates the salience of novel stimuli enabling the formation of recognition memories. In this work, we hypothesize that dopamine released into the insular cortex (IC) from the ventral tegmental area (VTA) inputs enables the acquisition to consolidate object recognition memory. It has been reported that short training produces weak recognition memories; on the contrary, longer training produces lasting and robust recognition memories. Using a Cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model, we photostimulated the VTA-IC dopaminergic pathway during short training or photoinhibited the same pathway during long training while mice explored objects. Our results showed that the photostimulation of the VTA-IC pathway during a short training enables the acquisition of recognition memory. Conversely, photoinhibition of the same pathway during a long training prevents the acquisition of recognition memory. Interestingly, the exploration time of the objects under photoinhibition or photostimulation of the dopaminergic VTA-IC pathway was not altered. Significantly, this enhancement of acquisition of the object recognition memory through the photostimulation of the VTA dopaminergic neurons could be impaired by the blockage of the D1-like receptors into the IC, either before or after the photostimulation. Altogether, our results suggest that dopamine released by the VTA is required during the acquisition to consolidate the object recognition memory through D1-like receptors into the IC without affecting the activity or the motivation to explore objects.
Collapse
Affiliation(s)
- Gerardo Ramirez-Mejia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Elvi Gil-Lievana
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Oscar Urrego-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Donovan Galvez-Marquez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Eduardo Hernández-Ortiz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - José Alberto Carrillo-Lorenzo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
36
|
Rozhkova IN, Okotrub SV, Brusentsev EY, Uldanova KE, Chuyko EА, Naprimerov VA, Lipina TV, Amstislavskaya TG, Amstislavsky SY. Alterations in the social-conditioned place preference and density of dopaminergic neurons in the ventral tegmental area in Clsnt2-KO mice. Vavilovskii Zhurnal Genet Selektsii 2023; 27:177-184. [PMID: 37063509 PMCID: PMC10090113 DOI: 10.18699/vjgb-23-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 04/18/2023] Open
Abstract
The incidence of autistic spectrum disorders (ASD) constantly increases in the world. Studying the mechanisms underlying ASD as well as searching for new therapeutic targets are crucial tasks. Many researchers agree that autism is a neurodevelopmental disorder. Clstn2-KO mouse strain with a knockout of calsyntenin 2 gene (Clstn2) is model for investigating ASD. This study aims to evaluate the social-conditioned place preference as well as density of dopaminergic (DA) neurons in the ventral tegmental area (VTA), which belongs to the brain reward system, in the males of the Clstn2-KO strain using wild type C57BL/6J males as controls. Social-conditioned place preference test evaluates a reward-dependent component of social behavior. The results of this test revealed differences between the Clstn2-KO and the control males, as the former did not value socializing with the familiar partner, spending equal time in the isolation- and socializing-associated compartments. The Clstn2-KO group entered both compartments more frequently, but spent less time in the socializing-associated compartment compared to the controls. By contrast, the control males of the C57BL/6J strain spent more time in socializing-associated compartment and less time in the compartment that was associated with loneness. At the same time, an increased number of DA and possibly GABA neurons labeled with antibodies against the type 2 dopamine receptor as well as against tyrosine hydroxylase were detected in the VTA of the Clstn2-KO mice. Thus, a change in social-conditioned place preference in Clstn2-KO mice as well as a higher number of neurons expressing type 2 dopamine receptors and tyrosine hydroxylase in the VTA, the key structure of the mesolimbic dopaminergic pathway, were observed.
Collapse
Affiliation(s)
- I N Rozhkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S V Okotrub
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E Yu Brusentsev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K E Uldanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E А Chuyko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Naprimerov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State Agricultural University, Novosibirsk, Russia
| | | | - T G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - S Ya Amstislavsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
37
|
Ye H, Cao T, Shu Q, Chen Y, Lu Y, He Z, Li Z. Blockade of orexin receptor 1 attenuates morphine protracted abstinence-induced anxiety-like behaviors in male mice. Psychoneuroendocrinology 2023; 151:106080. [PMID: 36931057 DOI: 10.1016/j.psyneuen.2023.106080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
One negative emotional state from morphine protracted abstinence is anxiety which can drive craving and relapse risk in opioid addicts. Although the orexinergic system has been reported to be important in mediating emotion processing and addiction, the role of orexinergic system in anxiety from drug protracted abstinence remains elusive. In this study, by using behavioral test, western blot, electrophysiology and virus-mediated regulation of orexin receptor 1 (OX1R), we found that: (1) Intraperitoneal and intra-VTA administration of a selective OX1R antagonist SB334867 alleviated anxiety-like behaviors in open field test (OFT) but not in elevated plus maze test (EPM) in morphine protracted abstinent male mice. (2) OX1R expression in the VTA was upregulated by morphine withdrawal. (3) Virus-mediated knockdown of OX1R in the VTA prevented morphine abstinence-induced anxiety-like behaviors and virus-mediated overexpression of OX1R in the VTA was sufficient to produce anxiety-like behaviors in male mice. (4) The VTA neuronal activity was increased significantly induced by morphine protracted abstinence, which was mediated by OX1R. (5) OX1R was widely distributed in the neuronal soma and processes of dopaminergic and non-dopaminergic neurons in the VTA. The findings revealed that the OX1R mediates morphine abstinence-induced anxiety-like behaviors and the VTA plays a critical role in this effect.
Collapse
Affiliation(s)
- Hongming Ye
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Tong Cao
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qigang Shu
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Yue Chen
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Yongli Lu
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Zhi He
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.
| | - Zicheng Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.
| |
Collapse
|
38
|
Elias LJ, Succi IK, Schaffler MD, Foster W, Gradwell MA, Bohic M, Fushiki A, Upadhyay A, Ejoh LL, Schwark R, Frazer R, Bistis B, Burke JE, Saltz V, Boyce JE, Jhumka A, Costa RM, Abraira VE, Abdus-Saboor I. Touch neurons underlying dopaminergic pleasurable touch and sexual receptivity. Cell 2023; 186:577-590.e16. [PMID: 36693373 PMCID: PMC9898224 DOI: 10.1016/j.cell.2022.12.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
Pleasurable touch is paramount during social behavior, including sexual encounters. However, the identity and precise role of sensory neurons that transduce sexual touch remain unknown. A population of sensory neurons labeled by developmental expression of the G protein-coupled receptor Mrgprb4 detects mechanical stimulation in mice. Here, we study the social relevance of Mrgprb4-lineage neurons and reveal that these neurons are required for sexual receptivity and sufficient to induce dopamine release in the brain. Even in social isolation, optogenetic stimulation of Mrgprb4-lineage neurons through the back skin is sufficient to induce a conditioned place preference and a striking dorsiflexion resembling the lordotic copulatory posture. In the absence of Mrgprb4-lineage neurons, female mice no longer find male mounts rewarding: sexual receptivity is supplanted by aggression and a coincident decline in dopamine release in the nucleus accumbens. Together, these findings establish that Mrgprb4-lineage neurons initiate a skin-to-brain circuit encoding the rewarding quality of social touch.
Collapse
Affiliation(s)
- Leah J Elias
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Isabella K Succi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Melanie D Schaffler
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - William Foster
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Akira Fushiki
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lindsay L Ejoh
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Schwark
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rachel Frazer
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Brittany Bistis
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jessica E Burke
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Victoria Saltz
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jared E Boyce
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Anissa Jhumka
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
39
|
Hong N, Kim HJ, Kang K, Park JO, Mun S, Kim HG, Kang BH, Chung PS, Lee MY, Ahn JC. Photobiomodulation improves the synapses and cognitive function and ameliorates epileptic seizure by inhibiting downregulation of Nlgn3. Cell Biosci 2023; 13:8. [PMID: 36635704 PMCID: PMC9837965 DOI: 10.1186/s13578-022-00949-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) remains one of the most drug-resistant focal epilepsies. Glutamate excitotoxicity and neuroinflammation which leads to loss of synaptic proteins and neuronal death appear to represent a pathogen that characterizes the neurobiology of TLE. Photobiomodulation (PBM) is a rapidly growing therapy for the attenuation of neuronal degeneration harboring non-invasiveness benefits. However, the detailed effects of PBM on excitotoxicity or neuroinflammation remain unclear. We investigated whether tPBM exerts neuroprotective effects on hippocampal neurons in epilepsy mouse model by regulating synapse and synapse-related genes. METHODS In an in vitro study, we performed imaging analysis and western blot in primary hippocampal neurons from embryonic (E17) rat pups. In an in vivo study, RNA sequencing was performed to identify the gene regulatory by PBM. Histological stain and immunohistochemistry analyses were used to assess synaptic connections, neuroinflammation and neuronal survival. Behavioral tests were used to evaluate the effects of PBM on cognitive functions. RESULTS PBM was upregulated synaptic connections in an in vitro. In addition, it was confirmed that transcranial PBM reduced synaptic degeneration, neuronal apoptosis, and neuroinflammation in an in vivo. These effects of PBM were supported by RNA sequencing results showing the relation of PBM with gene regulatory networks of neuronal functions. Specifically, Nlgn3 showed increase after PBM and silencing the Nlgn3 reversed the positive effect of PBM in in vitro. Lastly, behavioral alterations including hypoactivity, anxiety and impaired memory were recovered along with the reduction of seizure score in PBM-treated mice. CONCLUSIONS Our findings demonstrate that PBM attenuates epileptic excitotoxicity, neurodegeneration and cognitive decline induced by TLE through inhibition of the Nlgn3 gene decrease induced by excitotoxicity.
Collapse
Affiliation(s)
- Namgue Hong
- grid.411982.70000 0001 0705 4288Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee Jung Kim
- grid.411982.70000 0001 0705 4288Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Keunsoo Kang
- grid.411982.70000 0001 0705 4288Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea
| | - Ji On Park
- grid.411982.70000 0001 0705 4288Department of Medicine, Graduate School of Dankook University, Dankook University, Cheonan, Republic of Korea
| | - Seyoung Mun
- grid.411982.70000 0001 0705 4288Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Hyung-Gun Kim
- grid.411982.70000 0001 0705 4288Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Bong Hui Kang
- grid.411982.70000 0001 0705 4288Department of Neurology, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea
| | - Phil-Sang Chung
- grid.411982.70000 0001 0705 4288Beckman Laser Institute Korea, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea
| | - Min Young Lee
- grid.411982.70000 0001 0705 4288Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Beckman Laser Institute Korea, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea
| | - Jin-Chul Ahn
- grid.411982.70000 0001 0705 4288Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Beckman Laser Institute Korea, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
40
|
Chhabra S, Nardi L, Leukel P, Sommer CJ, Schmeisser MJ. Striatal increase of dopamine receptor 2 density in idiopathic and syndromic mouse models of autism spectrum disorder. Front Psychiatry 2023; 14:1110525. [PMID: 36970280 PMCID: PMC10030619 DOI: 10.3389/fpsyt.2023.1110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.
Collapse
Affiliation(s)
- Stuti Chhabra
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Clemens J. Sommer
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Michael J. Schmeisser,
| |
Collapse
|
41
|
Molas S, Zhao-Shea R, Freels TG, Tapper AR. Viral Tracing Confirms Paranigral Ventral Tegmental Area Dopaminergic Inputs to the Interpeduncular Nucleus Where Dopamine Release Encodes Motivated Exploration. eNeuro 2023; 10:ENEURO.0282-22.2022. [PMID: 36599671 PMCID: PMC9840383 DOI: 10.1523/eneuro.0282-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Midbrain dopaminergic (DAergic) neurons of the ventral tegmental area (VTA) are engaged by rewarding stimuli and encode reward prediction error to update goal-directed learning. However, recent data indicate that VTA DAergic neurons are functionally heterogeneous with emerging roles in aversive signaling, salience, and novelty, based in part on anatomic location and projection, highlighting a need to functionally characterize the repertoire of VTA DAergic efferents in motivated behavior. Previous work identifying a mesointerpeduncular circuit consisting of VTA DAergic neurons projecting to the interpeduncular nucleus (IPN), a midbrain area implicated in aversion, anxiety-like behavior, and familiarity, has recently come into question. To verify the existence of this circuit, we combined presynaptic targeted and retrograde viral tracing in the dopamine transporter-Cre mouse line. Consistent with previous reports, synaptic tracing revealed that axon terminals from the VTA innervate the caudal IPN; whereas, retrograde tracing revealed DAergic VTA neurons, predominantly in the paranigral region, project to the nucleus accumbens shell, as well as the IPN. To test whether functional DAergic neurotransmission exists in the IPN, we expressed the genetically encoded DA sensor, dLight 1.2, in the IPN of C57BL/6J mice and measured IPN DA signals in vivo during social and anxiety-like behavior using fiber photometry. We observed an increase in IPN DA signal during social investigation of a novel but not familiar conspecific and during exploration of the anxiogenic open arms of the elevated plus maze. Together, these data confirm VTA DAergic neuron projections to the IPN and implicate this circuit in encoding motivated exploration.
Collapse
Affiliation(s)
- Susanna Molas
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Rubing Zhao-Shea
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Timothy G Freels
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
42
|
Gioia R, Seri T, Diamanti T, Fimmanò S, Vitale M, Ahlenius H, Kokaia Z, Tirone F, Micheli L, Biagioni S, Lupo G, Rinaldi A, De Jaco A, Cacci E. Adult hippocampal neurogenesis and social behavioural deficits in the R451C Neuroligin3 mouse model of autism are reverted by the antidepressant fluoxetine. J Neurochem 2022; 165:318-333. [PMID: 36583243 DOI: 10.1111/jnc.15753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Neuron generation persists throughout life in the hippocampus but is altered in animal models of neurological and neuropsychiatric diseases, suggesting that disease-associated decline in cognitive and emotional hippocampal-dependent behaviours might be functionally linked with dysregulation of postnatal neurogenesis. Depletion of the adult neural stem/progenitor cell (NSPCs) pool and neurogenic decline have been recently described in mice expressing synaptic susceptibility genes associated with autism spectrum disorder (ASDs). To gain further insight into mechanisms regulating neurogenesis in mice carrying mutations in synaptic genes related to monogenic ASDs, we used the R451C Neuroligin3 knock-in (Nlgn3 KI) mouse, which is characterized by structural brain abnormalities, deficits in synaptic functions and reduced sociability. We show that the number of adult-born neurons, but not the size of the NSPC pool, was reduced in the ventral dentate gyrus in knock-in mice. Notably, this neurogenic decline was rescued by daily injecting mice with 10 mg/Kg of the antidepressant fluoxetine for 20 consecutive days. Sustained treatment also improved KI mice's sociability and increased the number of c-Fos active adult-born neurons, compared with vehicle-injected KI mice. Our study uncovers neurogenesis-mediated alterations in the brain of R451C KI mouse, showing that the R451C Nlgn3 mutation leads to lasting, albeit pharmacologically reversible, changes in the brain, affecting neuron formation in the adult hippocampus. Our results suggest that fluoxetine can ameliorate social behaviour in KI mice, at least in part, by rescuing adult hippocampal neurogenesis, which may be relevant for the pharmacological treatment of ASDs.
Collapse
Affiliation(s)
- Roberta Gioia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Tommaso Seri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Stefania Fimmanò
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Marina Vitale
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Henrik Ahlenius
- Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Arianna Rinaldi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- Centre for Research in Neurobiology "D. Bovet", Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- Centre for Research in Neurobiology "D. Bovet", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- Centre for Research in Neurobiology "D. Bovet", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Dooling SW, Sgritta M, Wang IC, Duque ALRF, Costa-Mattioli M. The Effect of Limosilactobacillus reuteri on Social Behavior Is Independent of the Adaptive Immune System. mSystems 2022; 7:e0035822. [PMID: 36286493 PMCID: PMC9765170 DOI: 10.1128/msystems.00358-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/22/2022] [Indexed: 12/25/2022] Open
Abstract
Gut microbes can modulate almost all aspects of host physiology throughout life. As a result, specific microbial interventions are attracting considerable attention as potential therapeutic strategies for treating a variety of conditions. Nonetheless, little is known about the mechanisms through which many of these microbes work. Recently, we and others have found that the commensal bacterium Limosilactobacillus reuteri (formerly Lactobacillus reuteri) reverses social deficits in several mouse models (genetic, environmental, and idiopathic) for neurodevelopmental disorders in a vagus nerve-, oxytocin-, and biopterin-dependent manner. Given that gut microbes can signal to the brain through the immune system and L. reuteri promotes wound healing via the adaptive immune response, we sought to determine whether the prosocial effect mediated by L. reuteri also depends on adaptive immunity. Here, we found that the effects of L. reuteri on social behavior and related changes in synaptic function are independent of the mature adaptive immune system. Interestingly, these findings indicate that the same microbe (L. reuteri) can affect different host phenotypes through distinct mechanisms. IMPORTANCE Because preclinical animal studies support the idea that gut microbes could represent novel therapeutics for brain disorders, it is essential to fully understand the mechanisms by which gut microbes affect their host's physiology. Previously, we discovered that treatment with Limosilactobacillus reuteri selectively improves social behavior in different mouse models for autism spectrum disorder through the vagus nerve, oxytocin reward signaling in the brain, and biopterin metabolites (BH4) in the gut. However, given that (i) the immune system remains a key pathway for host-microbe interactions and that (ii) L. reuteri has been shown to facilitate wound healing through the adaptive immune system, we examined here whether the prosocial effects of L. reuteri require immune signaling. Unexpectedly, we found that the mature adaptive immune system (i.e., conventional B and T cells) is not required for L. reuteri to reverse social deficits and related changes in synaptic function. Overall, these findings add new insight into the mechanism through which L. reuteri modulates brain function and behavior. More importantly, they highlight that a given bacterial species can modulate different phenotypes (e.g., wound healing versus social behavior) through separate mechanisms.
Collapse
Affiliation(s)
- Sean W. Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - I-Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ana Luiza Rocha Faria Duque
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
44
|
Cao W, Li JH, Lin S, Xia QQ, Du YL, Yang Q, Ye YZ, Zeng LH, Li XY, Xu J, Luo JH. NMDA receptor hypofunction underlies deficits in parvalbumin interneurons and social behavior in neuroligin 3 R451C knockin mice. Cell Rep 2022; 41:111771. [PMID: 36476879 DOI: 10.1016/j.celrep.2022.111771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Neuroligins (NLs), a family of postsynaptic cell-adhesion molecules, have been associated with autism spectrum disorder. We have reported that dysfunction of the medial prefrontal cortex (mPFC) leads to social deficits in an NL3 R451C knockin (KI) mouse model of autism. However, the underlying molecular mechanism remains unclear. Here, we find that N-methyl-D-aspartate receptor (NMDAR) function and parvalbumin-positive (PV+) interneuron number and expression are reduced in the mPFC of the KI mice. Selective knockdown of NMDAR subunit GluN1 in the mPFC PV+ interneuron decreases its intrinsic excitability. Restoring NMDAR function by its partial agonist D-cycloserine rescues the PV+ interneuron dysfunction and social deficits in the KI mice. Interestingly, early D-cycloserine administration at adolescence prevents adult KI mice from social deficits. Together, our results suggest that NMDAR hypofunction and the resultant PV+ interneuron dysfunction in the mPFC may constitute a central node in the pathogenesis of social deficits in the KI mice.
Collapse
Affiliation(s)
- Wei Cao
- Department of Neurobiology, Affiliated Mental Health Center, College of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China; Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jia-Hui Li
- Department of Neurobiology, Affiliated Mental Health Center, College of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shen Lin
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Qiang-Qiang Xia
- Department of Neurobiology, Affiliated Mental Health Center, College of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Lan Du
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Qian Yang
- Department of Neurobiology, Affiliated Mental Health Center, College of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Zhi Ye
- Department of Neurobiology, Affiliated Mental Health Center, College of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Xiang-Yao Li
- Department of Neurobiology, Affiliated Mental Health Center, College of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyu Xu
- Department of Neurobiology, Affiliated Mental Health Center, College of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jian-Hong Luo
- Department of Neurobiology, Affiliated Mental Health Center, College of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China.
| |
Collapse
|
45
|
Impaired synaptic plasticity in an animal model of autism exhibiting early hippocampal GABAergic-BDNF/TrkB signaling alterations. iScience 2022; 26:105728. [PMID: 36582822 PMCID: PMC9793278 DOI: 10.1016/j.isci.2022.105728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In Neurodevelopmental Disorders, alterations of synaptic plasticity may trigger structural changes in neuronal circuits involved in cognitive functions. This hypothesis was tested in mice carrying the human R451C mutation of Nlgn3 gene (NLG3R451C KI), found in some families with autistic children. To this aim, the spike time dependent plasticity (STDP) protocol was applied to immature GABAergic Mossy Fibers (MF)-CA3 connections in hippocampal slices from NLG3R451C KI mice. These animals failed to exhibit STD-LTP, an effect that persisted in adulthood when these synapses became glutamatergic. Similar results were obtained in mice lacking the Nlgn3 gene (NLG3 KO mice), suggesting a loss of function. The loss of STD-LTP was associated with a premature shift of GABA from the depolarizing to the hyperpolarizing direction, a reduced BDNF availability and TrkB phosphorylation at potentiated synapses. These effects may constitute a general mechanism underlying cognitive deficits in those forms of Autism caused by synaptic dysfunctions.
Collapse
|
46
|
Abstract
Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.
Collapse
Affiliation(s)
- David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
- Current affiliation: Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
| |
Collapse
|
47
|
Cogram P, Fernández-Beltrán LC, Casarejos MJ, Sánchez-Yepes S, Rodríguez-Martín E, García-Rubia A, Sánchez-Barrena MJ, Gil C, Martínez A, Mansilla A. The inhibition of NCS-1 binding to Ric8a rescues fragile X syndrome mice model phenotypes. Front Neurosci 2022; 16:1007531. [PMID: 36466176 PMCID: PMC9709425 DOI: 10.3389/fnins.2022.1007531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/26/2022] [Indexed: 01/01/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of function of Fragile X mental retardation protein (FMRP). FXS is one of the leading monogenic causes of intellectual disability (ID) and autism. Although it is caused by the failure of a single gene, FMRP that functions as an RNA binding protein affects a large number of genes secondarily. All these genes represent hundreds of potential targets and different mechanisms that account for multiple pathological features, thereby hampering the search for effective treatments. In this scenario, it seems desirable to reorient therapies toward more general approaches. Neuronal calcium sensor 1 (NCS-1), through its interaction with the guanine-exchange factor Ric8a, regulates the number of synapses and the probability of the release of a neurotransmitter, the two neuronal features that are altered in FXS and other neurodevelopmental disorders. Inhibitors of the NCS-1/Ric8a complex have been shown to be effective in restoring abnormally high synapse numbers as well as improving associative learning in FMRP mutant flies. Here, we demonstrate that phenothiazine FD44, an NCS-1/Ric8a inhibitor, has strong inhibition ability in situ and sufficient bioavailability in the mouse brain. More importantly, administration of FD44 to two different FXS mouse models restores well-known FXS phenotypes, such as hyperactivity, associative learning, aggressive behavior, stereotype, or impaired social approach. It has been suggested that dopamine (DA) may play a relevant role in the behavior and in neurodevelopmental disorders in general. We have measured DA and its metabolites in different brain regions, finding a higher metabolic rate in the limbic area, which is also restored with FD44 treatment. Therefore, in addition to confirming that the NCS-1/Ric8a complex is an excellent therapeutic target, we demonstrate the rescue effect of its inhibitor on the behavior of cognitive and autistic FXS mice and show DA metabolism as a FXS biochemical disease marker.
Collapse
Affiliation(s)
- Patricia Cogram
- Department of Genetics, Institute of Ecology and Biodiversity (IEB), Faculty of Sciences, Universidad de Chile, Santiago, Chile
- FRAXA-DVI, FRAXA Research Foundation, Santiago, Chile
| | - Luis C. Fernández-Beltrán
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María José Casarejos
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Sonia Sánchez-Yepes
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Eulalia Rodríguez-Martín
- Department of Immunology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alfonso García-Rubia
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alicia Mansilla
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Department of Biology Systems, Universidad de Alcala, Madrid, Spain
| |
Collapse
|
48
|
Choi JE, Choi DI, Lee J, Kim J, Kim MJ, Hong I, Jung H, Sung Y, Kim JI, Kim T, Yu NK, Lee SH, Choe HK, Koo JW, Kim JH, Kaang BK. Synaptic ensembles between raphe and D 1R-containing accumbens shell neurons underlie postisolation sociability in males. SCIENCE ADVANCES 2022; 8:eabo7527. [PMID: 36223467 PMCID: PMC9555785 DOI: 10.1126/sciadv.abo7527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Social animals expend considerable energy to maintain social bonds throughout their life. Male and female mice show sexually dimorphic behaviors, yet the underlying neural mechanisms of sociability and their dysregulation during social disconnection remain unknown. Dopaminergic neurons in dorsal raphe nucleus (DRNTH) is known to contribute to a loneliness-like state and modulate sociability. We identified that activated subpopulations in DRNTH and nucleus accumbens shell (NAcsh) during 24 hours of social isolation underlie the increase in isolation-induced sociability in male but not in female mice. This effect was reversed by chemogenetically and optogenetically inhibiting the DRNTH-NAcsh circuit. Moreover, synaptic connectivity among the activated neuronal ensembles in this circuit was increased, primarily in D1 receptor-expressing neurons in NAcsh. The increase in synaptic density functionally correlated with elevated dopamine release into NAcsh. Overall, specific synaptic ensembles in DRNTH-NAcsh mediate sex differences in isolation-induced sociability, indicating that sex-dependent circuit dynamics underlie the expression of sexually dimorphic behaviors.
Collapse
Affiliation(s)
- Ja Eun Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Dong Il Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jisu Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jooyoung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Min Jung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ilgang Hong
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyunsu Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yongmin Sung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ji-il Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - TaeHyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Nam-Kyung Yu
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Technojoongang-daero, Dalseong-gun, Daegu 42988, South Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang 37673, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
49
|
Di Gesù CM, Matz LM, Bolding IJ, Fultz R, Hoffman KL, Marino Gammazza A, Petrosino JF, Buffington SA. Maternal gut microbiota mediate intergenerational effects of high-fat diet on descendant social behavior. Cell Rep 2022; 41:111461. [PMID: 36223744 PMCID: PMC9597666 DOI: 10.1016/j.celrep.2022.111461] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
Dysbiosis of the maternal gut microbiome during pregnancy is associated with adverse neurodevelopmental outcomes. We previously showed that maternal high-fat diet (MHFD) in mice induces gut dysbiosis, social dysfunction, and underlying synaptic plasticity deficits in male offspring (F1). Here, we reason that, if HFD-mediated changes in maternal gut microbiota drive offspring social deficits, then MHFD-induced dysbiosis in F1 female MHFD offspring would likewise impair F2 social behavior. Metataxonomic sequencing reveals reduced microbial richness among female F1 MHFD offspring. Despite recovery of microbial richness among MHFD-descendant F2 mice, they display social dysfunction. Post-weaning Limosilactobacillus reuteri treatment increases the abundance of short-chain fatty acid-producing taxa and rescues MHFD-descendant F2 social deficits. L. reuteri exerts a sexually dimorphic impact on gut microbiota configuration, increasing discriminant taxa between female cohorts. Collectively, these results show multigenerational impacts of HFD-induced dysbiosis in the maternal lineage and highlight the potential of maternal microbiome-targeted interventions for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy,Current address: Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston,These authors contributed equally
| | - Lisa M. Matz
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,These authors contributed equally
| | - Ian J. Bolding
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert Fultz
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelly A. Buffington
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Microbiome Research, The University of Texas Medical Branch, Galveston, TX 77555, USA,Lead contact,Correspondence:
| |
Collapse
|
50
|
Blok LER, Boon M, van Reijmersdal B, Höffler KD, Fenckova M, Schenck A. Genetics, molecular control and clinical relevance of habituation learning. Neurosci Biobehav Rev 2022; 143:104883. [PMID: 36152842 DOI: 10.1016/j.neubiorev.2022.104883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Habituation is the most fundamental form of learning. As a firewall that protects our brain from sensory overload, it is indispensable for cognitive processes. Studies in humans and animal models provide increasing evidence that habituation is affected in autism and related monogenic neurodevelopmental disorders (NDDs). An integrated application of habituation assessment in NDDs and their animal models has unexploited potential for neuroscience and medical care. With the aim to gain mechanistic insights, we systematically retrieved genes that have been demonstrated in the literature to underlie habituation. We identified 258 evolutionarily conserved genes across species, describe the biological processes they converge on, and highlight regulatory pathways and drugs that may alleviate habituation deficits. We also summarize current habituation paradigms and extract the most decisive arguments that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a conserved, quantitative, cognition- and disease-relevant process that can connect preclinical and clinical work, and hence is a powerful tool to advance research, diagnostics, and treatment of NDDs.
Collapse
Affiliation(s)
- Laura Elisabeth Rosalie Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Marina Boon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Kira Daniela Höffler
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands; Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| |
Collapse
|