1
|
Antonelli F, Bernardi F, Koul A, Novembre G, Papaleo F. Emotions in multi-brain dynamics: A promising research frontier. Neurosci Biobehav Rev 2025; 168:105965. [PMID: 39617219 DOI: 10.1016/j.neubiorev.2024.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
Emotions drive and influence social interactions. Actions and reactions driven by emotions are dynamically modulated by continuous feedback loops between all interacting subjects. In this framework, interacting brains operate as an integrated system, with neural dynamics coevolving over time. Neuronal synchronization across brains has been observed in a range of species, including humans, monkeys, bats, and mice. This inter-neural synchrony (INS) has been proposed as a potential mechanism facilitating social interaction by enabling the functional integration of multiple brains. However, the role of emotions in modulating these processes remains underexplored and warrants further investigation. Here we provide a brief overview of studies on inter-neural synchrony in humans and other species, emphasizing the critical role that emotions might play in shaping multibrain dynamics.
Collapse
Affiliation(s)
- Federica Antonelli
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Fabrizio Bernardi
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Atesh Koul
- Neuroscience of Perception and Action Laboratory, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma 00161, Italy
| | - Giacomo Novembre
- Neuroscience of Perception and Action Laboratory, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma 00161, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16132, Italy.
| |
Collapse
|
2
|
Rios A, Fujita K, Isomura Y, Sato N. Adaptive circuits for action and value information in rodent operant learning. Neurosci Res 2024:S0168-0102(24)00118-4. [PMID: 39341460 DOI: 10.1016/j.neures.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Operant learning is a behavioral paradigm where animals learn to associate their actions with consequences, adapting their behavior accordingly. This review delves into the neural circuits that underpin operant learning in rodents, emphasizing the dynamic interplay between neural pathways, synaptic plasticity, and gene expression changes. We explore the cortico-basal ganglia circuits, highlighting the pivotal role of dopamine in modulating these pathways to reinforce behaviors that yield positive outcomes. We include insights from recent studies, which reveals the intricate roles of midbrain dopamine neurons in integrating action initiation and reward feedback, thereby enhancing movement-related activities in the dorsal striatum. Additionally, we discuss the molecular diversity of striatal neurons and their specific roles in reinforcement learning. The review also covers advances in transcriptome analysis techniques, such as single-cell RNA sequencing, which have provided deeper insights into the gene expression profiles associated with different neuronal populations during operant learning.
Collapse
Affiliation(s)
- Alain Rios
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Japan.
| | - Kyohei Fujita
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Japan.
| | - Nobuya Sato
- Department of Psychological Sciences Kwansei Gakuin University, Japan.
| |
Collapse
|
3
|
Choi J, Jung S, Kim J, So D, Kim A, Kim S, Choi S, Yoo E, Kim JY, Jang YC, Lee H, Kim J, Shin HS, Chae S, Keum S. ARNT2 controls prefrontal somatostatin interneurons mediating affective empathy. Cell Rep 2024; 43:114659. [PMID: 39180750 DOI: 10.1016/j.celrep.2024.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.
Collapse
Affiliation(s)
- Jiye Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Seungmoon Jung
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedicine Science, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Dahm So
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Arie Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sowon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sungjoon Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Eunsu Yoo
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jee Yeon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Yoon Cheol Jang
- Research Solution Center, Institute for Basic Science, Daejeon 34126, South Korea
| | - Hyoin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sehyun Chae
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea; Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, South Korea.
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea.
| |
Collapse
|
4
|
Miao Q, Zhu L, Shu W, Huang XQ, Zhu CY. To explore the impact of traumatic birth experiences on midwives' experience of empathy: A qualitative study. NURSE EDUCATION TODAY 2024; 139:106216. [PMID: 38696883 DOI: 10.1016/j.nedt.2024.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVE This study aimed to investigate the experiences of Chinese midwives during traumatic birth experiences and their impact. By doing so, we hope to develop effective empathetic educational strategies and provide valuable insights to improve the midwifery support system in China. METHODS This study adopted Colaizzi's phenomenological approach, which aimed to understand and explore human experiences from the standpoint of the participants. A purposive sampling method was used to select 16 midwives for semi-structured interviews. The Colaizzi 7-step method was used to analyze the interview data. FINDINGS Three themes and eight sub-themes were developed by analyzing and integrating the interview data. These included intertwined negative experiences (self-blame and guilt, regurgitated disturbances, intense and persistent physical and psychological discomfort, and low confidence in midwifery decision-making behaviours), the coexistence of positive effects (increased ability to tolerate life uncertainty, increased sense of control in coping with traumatic birth experiences), and needs and expectations (confiding in co-workers, an expectation of professional psychological support interventions). CONCLUSIONS The experiences of midwives in showing empathy during traumatic birth experiences are complex and multifaceted. It is crucial to recognize and address negative empathic experiences, provide coping strategies, and enhance positive empathic experiences. Midwives' grief counselling competence education should be strengthened, as should their psychological well-being and the midwifery support system.
Collapse
Affiliation(s)
- QunFang Miao
- Affiliated Hospital of Hangzhou Normal University (School of Clinical Medicine), Hangzhou City, Zhejiang Province, China; Department of Clinical Psychology, Affiliated Hospital of Hangzhou Normal University, Hangzhou City, Zhejiang Province, China
| | - Li Zhu
- School of Nursing, Hangzhou Normal University, Hangzhou City, Zhejiang Province, China
| | - Wan Shu
- School of Nursing, Hangzhou Normal University, Hangzhou City, Zhejiang Province, China
| | - Xiao Qin Huang
- School of Nursing, Hangzhou Normal University, Hangzhou City, Zhejiang Province, China
| | - Chun Ying Zhu
- Department of Clinical Psychology, Affiliated Hospital of Hangzhou Normal University, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
5
|
Rütgen M, Lamm C. Dissecting shared pain representations to understand their behavioral and clinical relevance. Neurosci Biobehav Rev 2024; 163:105769. [PMID: 38879099 DOI: 10.1016/j.neubiorev.2024.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Accounts of shared representations posit that the experience of pain and pain empathy rely on similar neural mechanisms. Experimental research employing novel analytical and methodological approaches has made significant advances in both the identification and targeted manipulation of such shared experiences and their neural underpinnings. This revealed that painful experiences can be shared on different representational levels, from pain-specific to domain-general features, such as negative affect and its regulation. In view of direct links between such representations and social behaviors such as prosocial behavior, conditions characterized by aberrant pain processing may come along with heavy impairments in the social domain, depending on the affected representational level. This has wide potential implications in light of the high prevalence of pain-related clinical conditions, their management, and the overuse of pain medication. In this review and opinion paper, we aim to chart the path toward a better understanding of the link between shared affect and prosocial behavior.
Collapse
Affiliation(s)
- Markus Rütgen
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden.
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Giri T, Maloney SE, Giri S, Goo YA, Song JH, Son M, Tycksen E, Conyers SB, Bice A, Ge X, Garbow JR, Quirk JD, Bauer AQ, Palanisamy A. Oxytocin-induced birth causes sex-specific behavioral and brain connectivity changes in developing rat offspring. iScience 2024; 27:108960. [PMID: 38327784 PMCID: PMC10847747 DOI: 10.1016/j.isci.2024.108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Despite six decades of the use of exogenous oxytocin for management of labor, little is known about its effects on the developing brain. Motivated by controversial reports suggesting a link between oxytocin use during labor and autism spectrum disorders (ASDs), we employed our recently validated rat model for labor induction with oxytocin to address this important concern. Using a combination of molecular biological, behavioral, and neuroimaging assays, we show that induced birth with oxytocin leads to sex-specific disruption of oxytocinergic signaling in the developing brain, decreased communicative ability of pups, reduced empathy-like behaviors especially in male offspring, and widespread sex-dependent changes in functional cortical connectivity. Contrary to our hypothesis, social behavior, typically impaired in ASDs, was largely preserved. Collectively, our foundational studies provide nuanced insights into the neurodevelopmental impact of birth induction with oxytocin and set the stage for mechanistic investigations in animal models and prospective longitudinal clinical studies.
Collapse
Affiliation(s)
- Tusar Giri
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E. Maloney
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Saswat Giri
- Graduate Student, School of Public Health and Social Justice, St. Louis University, St. Louis, MO, USA
| | - Young Ah Goo
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Mass Spectrometry Technology Access Center (MTAC), McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center (MTAC), McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Minsoo Son
- Mass Spectrometry Technology Access Center (MTAC), McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Tycksen
- Genome Technology Access Center (GTAC), McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Sara B. Conyers
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Annie Bice
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xia Ge
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel R. Garbow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - James D. Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam Q. Bauer
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arvind Palanisamy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Kitamura T, Ramesh K, Terranova JI. Understanding Others' Distress Through Past Experiences: The Role of Memory Engram Cells in Observational Fear. ADVANCES IN NEUROBIOLOGY 2024; 38:215-234. [PMID: 39008018 DOI: 10.1007/978-3-031-62983-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
For individuals to survive and function in society, it is essential that they recognize, interact with, and learn from other conspecifics. Observational fear (OF) is the well-conserved empathic ability of individuals to understand the other's aversive situation. While it is widely known that factors such as prior similar aversive experience and social familiarity with the demonstrator facilitate OF, the neural circuit mechanisms that explicitly regulate experience-dependent OF (Exp OF) were unclear. In this review, we examine the neural circuit mechanisms that regulate OF, with an emphasis on rodent models, and then discuss emerging evidence for the role of fear memory engram cells in the regulation of Exp OF. First, we examine the neural circuit mechanisms that underlie Naive OF, which is when an observer lacks prior experiences relevant to OF. In particular, the anterior cingulate cortex to basolateral amygdala (BLA) neural circuit is essential for Naive OF. Next, we discuss a recent study that developed a behavioral paradigm in mice to examine the neural circuit mechanisms that underlie Exp OF. This study found that fear memory engram cells in the BLA of observers, which form during a prior similar aversive experience with shock, are reactivated by ventral hippocampal neurons in response to shock delivery to the familiar demonstrator to elicit Exp OF. Finally, we discuss the implications of fear memory engram cells in Exp OF and directions of future research that are of both translational and basic interest.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kritika Ramesh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
8
|
Song D, Wang C, Jin Y, Deng Y, Yan Y, Wang D, Zhu Z, Ke Z, Wang Z, Wu Y, Ni J, Qing H, Quan Z. Mediodorsal thalamus-projecting anterior cingulate cortex neurons modulate helping behavior in mice. Curr Biol 2023; 33:4330-4342.e5. [PMID: 37734375 DOI: 10.1016/j.cub.2023.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Many species living in groups can perform prosocial behaviors via voluntarily helping others with or without benefits for themselves. To provide a better understanding of the neural basis of such prosocial behaviors, we adapted a preference lever-switching task in which mice can prevent harm to others by switching from using a lever that causes shocks to a conspecific one that does not. We found the harm avoidance behavior was mediated by self-experience and visual and social contact but not by gender or familiarity. By combining single-unit recordings and analysis of neural trajectory decoding, we demonstrated the dynamics of anterior cingulate cortex (ACC) neural activity changes synchronously with the harm avoidance performance of mice. In addition, ACC neurons projected to the mediodorsal thalamus (MDL) to modulate the harm avoidance behavior. Optogenetic activation of the ACC-MDL circuit during non-preferred lever pressing (nPLP) and inhibition of this circuit during preferred lever pressing (PLP) both resulted in the loss of harm avoidance ability. This study revealed the ACC-MDL circuit modulates prosocial behavior to avoid harm to conspecifics and may shed light on the treatment of neuropsychiatric disorders with dysfunction of prosocial behavior.
Collapse
Affiliation(s)
- Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yujun Deng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Deheng Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zilu Zhu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection and The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Yili Wu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
9
|
Nakamura NH, Furue H, Kobayashi K, Oku Y. Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding. Nat Commun 2023; 14:4391. [PMID: 37500646 PMCID: PMC10374532 DOI: 10.1038/s41467-023-40139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
During offline brain states, such as sleep and memory consolidation, respiration coordinates hippocampal activity. However, the role of breathing during online memory traces remains unclear. Here, we show that respiration can be recruited during online memory encoding. Optogenetic manipulation was used to control activation of the primary inspiratory rhythm generator PreBötzinger complex (PreBötC) in transgenic mice. When intermittent PreBötC-induced apnea covered the object exploration time during encoding, novel object detection was impaired. Moreover, the mice did not exhibit freezing behavior during presentation of fear-conditioned stimuli (CS+) when PreBötC-induced apnea occurred at the exact time of encoding. This apnea did not evoke changes in CA3 cell ensembles between presentations of CS+ and conditioned inhibition (CS-), whereas in normal breathing, CS+ presentations produced dynamic changes. Our findings demonstrate that components of central respiratory activity (e.g., frequency) during online encoding strongly contribute to shaping hippocampal ensemble dynamics and memory performance.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hidemasa Furue
- Division of Neurophysiology, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
10
|
Bordes J, Miranda L, Müller-Myhsok B, Schmidt MV. Advancing social behavioral neuroscience by integrating ethology and comparative psychology methods through machine learning. Neurosci Biobehav Rev 2023; 151:105243. [PMID: 37225062 DOI: 10.1016/j.neubiorev.2023.105243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/21/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Social behavior is naturally occurring in vertebrate species, which holds a strong evolutionary component and is crucial for the normal development and survival of individuals throughout life. Behavioral neuroscience has seen different influential methods for social behavioral phenotyping. The ethological research approach has extensively investigated social behavior in natural habitats, while the comparative psychology approach was developed utilizing standardized and univariate social behavioral tests. The development of advanced and precise tracking tools, together with post-tracking analysis packages, has recently enabled a novel behavioral phenotyping method, that includes the strengths of both approaches. The implementation of such methods will be beneficial for fundamental social behavioral research but will also enable an increased understanding of the influences of many different factors that can influence social behavior, such as stress exposure. Furthermore, future research will increase the number of data modalities, such as sensory, physiological, and neuronal activity data, and will thereby significantly enhance our understanding of the biological basis of social behavior and guide intervention strategies for behavioral abnormalities in psychiatric disorders.
Collapse
Affiliation(s)
- Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lucas Miranda
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Bertram Müller-Myhsok
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
11
|
Kietzman HW, Gourley SL. How social information impacts action in rodents and humans: the role of the prefrontal cortex and its connections. Neurosci Biobehav Rev 2023; 147:105075. [PMID: 36736847 PMCID: PMC10026261 DOI: 10.1016/j.neubiorev.2023.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Day-to-day choices often involve social information and can be influenced by prior social experience. When making a decision in a social context, a subject might need to: 1) recognize the other individual or individuals, 2) infer their intentions and emotions, and 3) weigh the values of all outcomes, social and non-social, prior to selecting an action. These elements of social information processing all rely, to some extent, on the medial prefrontal cortex (mPFC). Patients with neuropsychiatric disorders often have disruptions in prefrontal cortical function, likely contributing to deficits in social reasoning and decision making. To better understand these deficits, researchers have turned to rodents, which have revealed prefrontal cortical mechanisms for contending with the complex information processing demands inherent to making decisions in social contexts. Here, we first review literature regarding social decision making, and the information processing underlying it, in humans and patient populations. We then turn to research in rodents, discussing current procedures for studying social decision making, and underlying neural correlates.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, USA; Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA; Children's Healthcare of Atlanta, USA.
| |
Collapse
|
12
|
Tang HD, Dong WY, Hu R, Huang JY, Huang ZH, Xiong W, Xue T, Liu J, Yu JM, Zhu X, Zhang Z. A neural circuit for the suppression of feeding under persistent pain. Nat Metab 2022; 4:1746-1755. [PMID: 36443522 DOI: 10.1038/s42255-022-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
In humans, persistent pain often leads to decreased appetite. However, the neural circuits underlying this behaviour remain unclear. Here, we show that a circuit arising from glutamatergic neurons in the anterior cingulate cortex (GluACC) projects to glutamatergic neurons in the lateral hypothalamic area (GluLHA) to blunt food intake in a mouse model of persistent pain. In turn, these GluLHA neurons project to pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus (POMCArc), a well-known neuronal population involved in decreasing food intake. In vivo calcium imaging and multi-tetrode electrophysiological recordings reveal that the GluACC → GluLHA → Arc circuit is activated in mouse models of persistent pain and is accompanied by decreased feeding behaviour in both males and females. Inhibition of this circuit using chemogenetics can alleviate the feeding suppression symptoms. Our study indicates that the GluACC → GluLHA → Arc circuit is involved in driving the suppression of feeding under persistent pain through POMC neuronal activity. This previously unrecognized pathway could be explored as a potential target for pain-associated diseases.
Collapse
Affiliation(s)
- Hao-Di Tang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan-Ying Dong
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji-Ye Huang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhao-Huan Huang
- National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, School of Information Science and Technology, CAS Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, China
| | - Wei Xiong
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xue
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ji Liu
- National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, School of Information Science and Technology, CAS Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Jun-Ma Yu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China.
| | - Xia Zhu
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
13
|
Toyoshima M, Okuda E, Hasegawa N, Kaseda K, Yamada K. Socially Transferred Stress Experience Modulates Social Affective Behaviors in Rats. Neuroscience 2022; 502:68-76. [PMID: 36064051 DOI: 10.1016/j.neuroscience.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Social communication of affective states between individuals, as well as actual experiences, influences their internal states and behaviors. Although prior stress experiences promote empathy-like behaviors, it remains unclear whether the social transmission of stress events modulates these behaviors. Here, we provide evidence that transferred stress experiences from cage mates modulate socioaffective approach-avoidance behaviors in rats. Male Wistar-Imamichi rats were assigned to one of five experimental groups (Control (n = 15); no shock with shocked cage mates (n = 15); low (0.1 mA, n = 15), middle (0.5 mA, n = 14), and high shock (1.0 mA, n = 14)). Except for the naïve and housed with stressed mate groups, rats received two foot-shocks (5 s for each). The next day, the subjects were allowed to explore two unfamiliar conspecifics; one was a naïve, while the other was a distressed conspecific that received two foot-shocks (1.0 mA, 5 s) immediately before the test. Rats that were housed with stressed mates, as well as those that experienced a higher intensity of foot-shocks, were more likely to approach, while naïve rats avoided, a distressed conspecific. These results suggest that socially transferred stress shifts socioaffective response styles from avoidance to approach toward a stressed conspecific in rats.
Collapse
Affiliation(s)
- Michimasa Toyoshima
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; JSPS Research Fellow, Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan.
| | - Eri Okuda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Natsu Hasegawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kodai Kaseda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
14
|
Caspar EA, Ioumpa K, Arnaldo I, Di Angelis L, Gazzola V, Keysers C. Commanding or Being a Simple Intermediary: How Does It Affect Moral Behavior and Related Brain Mechanisms? eNeuro 2022; 9:ENEURO.0508-21.2022. [PMID: 36171058 PMCID: PMC9581580 DOI: 10.1523/eneuro.0508-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022] Open
Abstract
Psychology and neuroscience research have shown that fractioning operations among several individuals along a hierarchical chain allows diffusing responsibility between components of the chain, which has the potential to disinhibit antisocial actions. Here, we present two studies, one using fMRI (Study 1) and one using EEG (Study 2), designed to help understand how commanding or being in an intermediary position impacts the sense of agency and empathy for pain. In the age of military drones, we also explored whether commanding a human or robot agent influences these measures. This was done within a single behavioral paradigm in which participants could freely decide whether or not to send painful shocks to another participant in exchange for money. In Study 1, fMRI reveals that activation in social cognition-related and empathy-related brain regions was equally low when witnessing a victim receive a painful shock while participants were either commander or simple intermediary transmitting an order, compared with being the agent directly delivering the shock. In Study 2, results indicated that the sense of agency did not differ between commanders and intermediary, no matter whether the executing agent was a robot or a human. However, we observed that the neural response over P3 event-related potential was higher when the executing agent was a robot compared with a human. Source reconstruction of the EEG signal revealed that this effect was mediated by areas including the insula and ACC. Results are discussed regarding the interplay between the sense of agency and empathy for pain for decision-making.
Collapse
Affiliation(s)
- Emilie A Caspar
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- The Moral & Social Brain Lab, Department of Experimental Psychology, Ghent University, B-9000 Ghent, Belgium
| | - Kalliopi Ioumpa
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Irene Arnaldo
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Lorenzo Di Angelis
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Takayama K, Tobori S, Andoh C, Kakae M, Hagiwara M, Nagayasu K, Shirakawa H, Ago Y, Kaneko S. Autism Spectrum Disorder Model Mice Induced by Prenatal Exposure to Valproic Acid Exhibit Enhanced Empathy-Like Behavior <i>via</i> Oxytocinergic Signaling. Biol Pharm Bull 2022; 45:1124-1132. [DOI: 10.1248/bpb.b22-00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kaito Takayama
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shota Tobori
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Chihiro Andoh
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masako Hagiwara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
16
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Terranova JI, Yokose J, Osanai H, Marks WD, Yamamoto J, Ogawa SK, Kitamura T. Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron 2022; 110:1416-1431.e13. [PMID: 35139362 PMCID: PMC9035063 DOI: 10.1016/j.neuron.2022.01.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
The empathic ability to vicariously experience the other's fearful situation, a process called observational fear (OF), is critical to survive in nature and function in society. OF can be facilitated by both prior similar fear experience in the observer and social familiarity with the demonstrator. However, the neural circuit mechanisms of experience-dependent OF (Exp OF) remain unknown. Here, we demonstrate that hippocampal-basolateral amygdala (HPC-BLA) circuits in mice without involving the anterior cingulate cortex, considered a center of OF, mediate Exp OF. Dorsal HPC neurons generate fear memory engram cells in BLA encoding prior similar fear experiences, which are essential for Exp OF. On the other hand, ventral HPC neurons respond to the familiar demonstrator's aversive situation during Exp OF, which reactivates the fear memory engram cells in BLA to elicit Exp OF. Our study provides new insights into the memory engram-dependent perception-action coupling that underlies empathic behaviors like Exp OF.
Collapse
Affiliation(s)
- Joseph I Terranova
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William D Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Relationship between infantile mother preference and neural regions activated by maternal contact in C57BL/6 mice. Neurosci Res 2022; 178:69-77. [DOI: 10.1016/j.neures.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022]
|
19
|
Skversky-Blocq Y, Haaker J, Shechner T. Watch and Learn: Vicarious Threat Learning across Human Development. Brain Sci 2021; 11:brainsci11101345. [PMID: 34679409 PMCID: PMC8533719 DOI: 10.3390/brainsci11101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
Vicarious threat learning is an important pathway in learning about safety and danger in the environment and is therefore critical for survival. It involves learning by observing another person's (the demonstrator) fearful responses to threat and begins as early as infancy. The review discusses the literature on vicarious threat learning and infers how this learning pathway may evolve over human development. We begin by discussing the methods currently being used to study observational threat learning in the laboratory. Next, we focus on the social factors influencing vicarious threat learning; this is followed by a review of vicarious threat learning among children and adolescents. Finally, we examine the neural mechanisms underpinning vicarious threat learning across human development. To conclude, we encourage future research directions that will help elucidate how vicarious threat learning emerges and how it relates to the development of normative fear and pathological anxiety.
Collapse
Affiliation(s)
- Yael Skversky-Blocq
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel;
| | - Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Tomer Shechner
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel;
- Correspondence:
| |
Collapse
|
20
|
McCool BA. Ethanol modulation of cortico-basolateral amygdala circuits: Neurophysiology and behavior. Neuropharmacology 2021; 197:108750. [PMID: 34371080 DOI: 10.1016/j.neuropharm.2021.108750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
This review highlights literature relating the anatomy, physiology, and behavioral contributions by projections between rodent prefrontal cortical areas and the basolateral amygdala. These projections are robustly modulated by both environmental experience and exposure to drugs of abuse including ethanol. Recent literature relating optogenetic and chemogenetic dissection of these circuits within behavior both compliments and occasionally challenges roles defined by more traditional pharmacological or lesion-based approaches. In particular, cortico-amygdala circuits help control both aversive and reward-seeking. Exposure to pathology-producing environments or abused drugs dysregulates the relative 'balance' of these outcomes. Modern circuit-based approaches have also shown that overlapping populations of neurons within a given brain region frequently govern both aversion and reward-seeking. In addition, these circuits often dramatically influence 'local' cortical or basolateral amygdala excitatory or inhibitory circuits. Our understanding of these neurobiological processes, particularly in relation to ethanol research, has just begun and represents a significant opportunity.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
21
|
Ben-Ami Bartal I, Breton JM, Sheng H, Long KL, Chen S, Halliday A, Kenney JW, Wheeler AL, Frankland P, Shilyansky C, Deisseroth K, Keltner D, Kaufer D. Neural correlates of ingroup bias for prosociality in rats. eLife 2021; 10:65582. [PMID: 34253289 PMCID: PMC8277352 DOI: 10.7554/elife.65582] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/16/2021] [Indexed: 01/25/2023] Open
Abstract
Prosocial behavior, in particular helping others in need, occurs preferentially in response to distress of one’s own group members. In order to explore the neural mechanisms promoting mammalian helping behavior, a discovery-based approach was used here to identify brain-wide activity correlated with helping behavior in rats. Demonstrating social selectivity, rats helped others of their strain (‘ingroup’), but not rats of an unfamiliar strain (‘outgroup’), by releasing them from a restrainer. Analysis of brain-wide neural activity via quantification of the early-immediate gene c-Fos identified a shared network, including frontal and insular cortices, that was active in the helping test irrespective of group membership. In contrast, the striatum was selectively active for ingroup members, and activity in the nucleus accumbens, a central network hub, correlated with helping. In vivo calcium imaging showed accumbens activity when rats approached a trapped ingroup member, and retrograde tracing identified a subpopulation of accumbens-projecting cells that was correlated with helping. These findings demonstrate that motivation and reward networks are associated with helping an ingroup member and provide the first description of neural correlates of ingroup bias in rodents.
Collapse
Affiliation(s)
- Inbal Ben-Ami Bartal
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.,School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Jocelyn M Breton
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Huanjie Sheng
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Kimberly Lp Long
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Stella Chen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Aline Halliday
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Justin W Kenney
- The Hospital for Sick Children, Toronto, Neuroscience and Mental Health Program, Toronto, Canada
| | - Anne L Wheeler
- The Hospital for Sick Children, Toronto, Neuroscience and Mental Health Program, Toronto, Canada.,Physiology Department, University of Toronto, Toronto, Canada
| | - Paul Frankland
- The Hospital for Sick Children, Toronto, Neuroscience and Mental Health Program, Toronto, Canada.,Physiology Department, University of Toronto, Toronto, Canada.,Canadian Institute for Advanced Research, Toronto, Canada
| | - Carrie Shilyansky
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Psychiatry, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Dacher Keltner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Psychology, University of California, Berkeley, Berkeley, United States
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
22
|
Keysers C, Gazzola V. Emotional contagion: Improving survival by preparing for socially sensed threats. Curr Biol 2021; 31:R728-R730. [PMID: 34102123 DOI: 10.1016/j.cub.2021.03.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Rats respond to the emotions of others. A new study reveals how their central amygdala uses such social information to selfishly trigger defences that adapt to the nature of the danger with all the hallmarks of true emotional contagion.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute of Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute of Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
23
|
Alcohol and oxytocin: Scrutinizing the relationship. Neurosci Biobehav Rev 2021; 127:852-864. [PMID: 34102150 DOI: 10.1016/j.neubiorev.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The initial enthusiasm towards oxytocin (OXT) as a potential treatment for alcohol use disorder has been recently tempered by recognizing existing gaps in literature and the recent appearance of a relatively small number of clinical studies with negative outcomes. On the other hand, several new studies continue to support the OXT system's potential for such treatment. In this review, we thoroughly analyze existing literature assessing both alcohol's effects on the OXT system and OXT's effects on alcohol-related behaviors. Both rodent and clinical research is discussed. We identify areas that have been studied extensively and those that have been undeservingly understudied. OXT's potential effects on tolerance, withdrawal, craving, anxiety and social behaviors, and how these processes ultimately affect alcohol consumption, are critically explored. We conclude that while OXT can affect alcohol consumption in males and females, more comprehensive studies on OXT's effects on alcohol-related tolerance, withdrawal, craving, anxiety and social affiliations in subjects of both sexes and across several levels of analyses are needed.
Collapse
|
24
|
Affective empathy and prosocial behavior in rodents. Curr Opin Neurobiol 2021; 68:181-189. [PMID: 34091136 DOI: 10.1016/j.conb.2021.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
Empathy is an essential function for humans as social animals. Emotional contagion, the basic form of afffective empathy, comprises the cognitive process of perceiving and sharing the affective state of others. The observational fear assay, an animal model of emotional contagion, has enabled researchers to undertake molecular, cellular, and circuit mechanism of this behavior. Such studies have revealed that observational fear is mediated through neural circuits involved in processing the affective dimension of direct pain experiences. A mouse can also respond to milder social stimuli induced by either positive or negative emotional changes in another mouse, which seems not dependent on the affective pain circuits. Further studies should explore how different neural circuits contribute to integrating different dimensions of affective empathy.
Collapse
|
25
|
Matsumoto M, Yoshida M, Jayathilake BW, Inutsuka A, Nishimori K, Takayanagi Y, Onaka T. Indispensable role of the oxytocin receptor for allogrooming toward socially distressed cage mates in female mice. J Neuroendocrinol 2021; 33:e12980. [PMID: 34057769 PMCID: PMC8243938 DOI: 10.1111/jne.12980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022]
Abstract
Social contact reduces stress responses in social animals. Mice have been shown to show allogrooming behaviour toward distressed conspecifics. However, the precise neuronal mechanisms underlying allogrooming behaviour remain unclear. In the present study, we examined whether mice show allogrooming behaviour towards distressed conspecifics in a social defeat model and we also determined whether oxytocin receptor-expressing neurons were activated during allogrooming by examining the expression of c-Fos protein, a marker of neurone activation. Mice showed allogrooming behaviour toward socially defeated conspecifics. After allogrooming behaviour, the percentages of oxytocin receptor-expressing neurones expressing c-Fos protein were significantly increased in the anterior olfactory nucleus, cingulate cortex, insular cortex, lateral septum and medial amygdala of female mice, suggesting that oxytocin receptor-expressing neurones in these areas were activated during allogrooming behaviour toward distressed conspecifics. The duration of allogrooming was correlated with the percentages of oxytocin receptor-expressing neurones expressing c-Fos protein in the anterior olfactory nucleus, insular cortex, lateral septum and medial amygdala. In oxytocin receptor-deficient mice, allogrooming behaviour toward socially defeated cage mates was markedly reduced in female mice but not in male mice, indicating the importance of the oxytocin receptor for allogrooming behaviour in female mice toward distressed conspecifics. The results suggest that the oxytocin receptor, possibly in the anterior olfactory nucleus, insular cortex, lateral septum and/or medial amygdala, facilitates allogrooming behaviour toward socially distressed familiar conspecifics in female mice.
Collapse
Affiliation(s)
- Makiya Matsumoto
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| | - Masahide Yoshida
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| | | | - Ayumu Inutsuka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation ResearchFukushima Medical UniversityFukushima‐shiFukushima‐kenJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| | - Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| |
Collapse
|
26
|
Paradiso E, Gazzola V, Keysers C. Neural mechanisms necessary for empathy-related phenomena across species. Curr Opin Neurobiol 2021; 68:107-115. [PMID: 33756399 DOI: 10.1016/j.conb.2021.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The neural basis of empathy and prosociality has received much interest over the past decades. Neuroimaging studies localized a network of brain regions with activity that correlates with empathy. Here, we review how the emergence of rodent and nonhuman primate models of empathy-related phenomena supplements human lesion and neuromodulation studies providing evidence that activity in several nodes is necessary for these phenomena to occur. We review proof that (i) affective states triggered by the emotions of others, (ii) motivations to act in ways that benefit others, and (iii) emotion recognition can be altered by perturbing brain activity in many nodes identified by human neuroimaging, with strongest evidence for the cingulate and the amygdala. We also include evidence that manipulations of the oxytocin system and analgesics can have such effects, the latter providing causal evidence for the recruitment of an individual's own nociceptive system to feel with the pain of others.
Collapse
Affiliation(s)
- Enrica Paradiso
- Netherlands Institute for Neuroscience, KNAW, Amsterdam, Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, KNAW, Amsterdam, Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, Netherlands.
| | - Christian Keysers
- Netherlands Institute for Neuroscience, KNAW, Amsterdam, Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, Netherlands.
| |
Collapse
|
27
|
Ferreira SEMM, Soares LM, Lira CR, Yokoyama TS, Engi SA, Cruz FC, Leão RM. Ethanol-induced locomotor sensitization: Neuronal activation in the nucleus accumbens and medial prefrontal cortex. Neurosci Lett 2021; 749:135745. [PMID: 33610663 DOI: 10.1016/j.neulet.2021.135745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
Ethanol consumption may promote neuroplasticity and alterations in synapses, resulting in modifications in neuronal activity. Here, we treated male Swiss mice with ethanol (2.2 g/kg) or saline once per day for 21 consecutive days. Nine days after the last ethanol administration, they received a challenge injection of ethanol or saline, and we assessed locomotor activity. After the behavioral analysis, we evaluated neuronal activation in the medial Prefrontal Cortex (Cingulate, Prelimbic, and Infralimbic) and the Nucleus Accumbens (Shell and Core) using Fos/DAB immunohistochemistry. In another group of animals, we performed the quantitative analysis of the ARC and PSD-95 protein levels by Western blotting in the medial prefrontal cortex and nucleus accumbens brain areas. Repeated ethanol administration produced locomotor sensitization, accompanied by an increase in the nucleus accumbens shell's activation but not core. Furthermore, the ethanol pretreatment reduced ARC expression in the nucleus accumbens and medial prefrontal cortex. Our results suggest the participation of the nucleus accumbens shell in ethanol behavioral sensitization and add new pieces of evidence that neuroplasticity in synapses may contribute to the mechanism underlying this behavior.
Collapse
Affiliation(s)
- Sara Emi M M Ferreira
- Department of Bioregulation Sciences, Health Sciences Institute, Federal University of Bahia, UFBA, Brazil; Graduate Program in Pharmacy, Federal University of Bahia, UFBA, Brazil
| | - Leonardo M Soares
- Department of Bioregulation Sciences, Health Sciences Institute, Federal University of Bahia, UFBA, Brazil
| | - Clarice R Lira
- Department of Bioregulation Sciences, Health Sciences Institute, Federal University of Bahia, UFBA, Brazil; Graduate Program in Pharmacy, Federal University of Bahia, UFBA, Brazil
| | - Thais S Yokoyama
- Pharmacology Department, São Paulo Federal University, UNIFESP, Brazil
| | - Sheila A Engi
- Pharmacology Department, São Paulo Federal University, UNIFESP, Brazil
| | - Fábio C Cruz
- Pharmacology Department, São Paulo Federal University, UNIFESP, Brazil
| | - Rodrigo M Leão
- Department of Bioregulation Sciences, Health Sciences Institute, Federal University of Bahia, UFBA, Brazil; Graduate Program in Pharmacy, Federal University of Bahia, UFBA, Brazil; Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia, UFU, Brazil.
| |
Collapse
|
28
|
MeCP2 Levels Regulate the 3D Structure of Heterochromatic Foci in Mouse Neurons. J Neurosci 2020; 40:8746-8766. [PMID: 33046553 DOI: 10.1523/jneurosci.1281-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 02/02/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein critical for normal brain function, and both depletion and overexpression of MeCP2 lead to severe neurodevelopmental disease, Rett syndrome (RTT) and MECP2 multiplication disorder, respectively. However, the molecular mechanism by which abnormal MeCP2 dosage causes neuronal dysfunction remains unclear. As MeCP2 expression is nearly equivalent to that of core histones and because it binds DNA throughout the genome, one possible function of MeCP2 is to regulate the 3D structure of chromatin. Here, to examine whether and how MeCP2 levels impact chromatin structure, we used high-resolution confocal and electron microscopy and examined heterochromatic foci of neurons in mice. Using models of RTT and MECP2 triplication syndrome, we found that the heterochromatin structure was significantly affected by the alteration in MeCP2 levels. Analysis of mice expressing either MeCP2-R270X or MeCP2-G273X, which have nonsense mutations in the upstream and downstream regions of the AT-hook 2 domain, respectively, showed that the magnitude of heterochromatin changes was tightly correlated with the phenotypic severity. Postnatal alteration in MeCP2 levels also induced significant changes in the heterochromatin structure, which underscored importance of correct MeCP2 dosage in mature neurons. Finally, functional analysis of MeCP2-overexpressing mice showed that the behavioral and transcriptomic alterations in these mice correlated significantly with the MeCP2 levels and occurred in parallel with the heterochromatin changes. Taken together, our findings demonstrate the essential role of MeCP2 in regulating the 3D structure of neuronal chromatin, which may serve as a potential mechanism that drives pathogenesis of MeCP2-related disorders.SIGNIFICANCE STATEMENT Neuronal function is critically dependent on methyl-CpG binding protein 2 (MeCP2), a nuclear protein abundantly expressed in neurons. The importance of MeCP2 is underscored by the severe childhood neurologic disorders, Rett syndrome (RTT) and MECP2 multiplication disorders, which are caused by depletion and overabundance of MeCP2, respectively. To clarify the molecular function of MeCP2 and to understand the pathogenesis of MECP2-related disorders, we performed detailed structural analyses of neuronal nuclei by using mouse models and high-resolution microscopy. We show that the level of MeCP2 critically regulates 3D structure of heterochromatic foci, and this is mediated in part by the AT-hook 2 domain of MeCP2. Our results demonstrate that one primary function of MeCP2 is to regulate chromatin structure.
Collapse
|
29
|
Indirect exposure to socially defeated conspecifics using recorded video activates the HPA axis and reduces reward sensitivity in mice. Sci Rep 2020; 10:16881. [PMID: 33037312 PMCID: PMC7547068 DOI: 10.1038/s41598-020-73988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Rodents perceive the emotional states of conspecifics using vision. In the present study, we demonstrated that exposure to the video-recorded distress of conspecifics induces stress responses in male C57BL/6J mice. A single exposure to a video-recorded scene of the social defeat stress (SDS) increased plasma corticosterone levels in these mice. This physiological change was suppressed by blocking the visual information, suggesting that vision plays a crucial role in inducing stress responses. Furthermore, after exposure to the video, there were increased numbers of c-Fos-positive neurons in the anterior cingulate cortex and other brain areas that are associated with the negative valence and empathy systems, but not in the regions related to the pain signaling. In addition, repeated exposure to SDS videos induced an apparent reduction in reward sensitivity in the sucrose preference test, but did not affect avoidance behaviour in the social interaction test or immobility behaviour in the forced swim test. Reduced reward sensitivity in mice reflects anhedonia, which is a core symptom of depression in humans. Our video SDS model therefore provides a unique opportunity to not only understand the mechanisms underlying stress-induced anhedonia, but also to screen effective candidate molecules for stress-related disorders with greater reproducibility.
Collapse
|
30
|
Towards a unified theory of emotional contagion in rodents—A meta-analysis. Neurosci Biobehav Rev 2020; 132:1229-1248. [DOI: 10.1016/j.neubiorev.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|
31
|
Iwasaki S, Ikegaya Y. Contextual Fear Memory Retrieval Is Vulnerable to Hippocampal Noise. Cereb Cortex 2020; 31:785-794. [DOI: 10.1093/cercor/bhaa257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023] Open
Abstract
Abstract
Memory retrieval depends on reactivation of memory engram cells. Inadvertent activation of these cells is expected to cause memory-retrieval failure, but little is known about how noisy activity of memory-irrelevant neurons impacts mnemonic processes. Here, we report that optogenetic nonselective activation of only tens of hippocampal CA1 cells (∼0.01% of the total cells in the CA1 pyramidal cell layer) impairs contextual fear memory recall. Memory recall failure was associated with altered neuronal reactivation in the basolateral amygdala. These results indicate that hippocampal memory retrieval requires strictly regulated activation of a specific neuron ensemble and is easily disrupted by the introduction of noisy CA1 activity, suggesting that reactivating memory engram cells as well as silencing memory-irrelevant neurons are both crucial for memory retrieval.
Collapse
Affiliation(s)
- Satoshi Iwasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Zhou F, Li J, Zhao W, Xu L, Zheng X, Fu M, Yao S, Kendrick KM, Wager TD, Becker B. Empathic pain evoked by sensory and emotional-communicative cues share common and process-specific neural representations. eLife 2020; 9:e56929. [PMID: 32894226 PMCID: PMC7505665 DOI: 10.7554/elife.56929] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022] Open
Abstract
Pain empathy can be evoked by multiple cues, particularly observation of acute pain inflictions or facial expressions of pain. Previous studies suggest that these cues commonly activate the insula and anterior cingulate, yet vicarious pain encompasses pain-specific responses as well as unspecific processes (e.g. arousal) and overlapping activations are not sufficient to determine process-specific shared neural representations. We employed multivariate pattern analyses to fMRI data acquired during observation of noxious stimulation of body limbs (NS) and painful facial expressions (FE) and found spatially and functionally similar cross-modality (NS versus FE) whole-brain vicarious pain-predictive patterns. Further analyses consistently identified shared neural representations in the bilateral mid-insula. The vicarious pain patterns were not sensitive to respond to non-painful high-arousal negative stimuli but predicted self-experienced thermal pain. Finally, a domain-general vicarious pain pattern predictive of self-experienced pain but not arousal was developed. Our findings demonstrate shared pain-associated neural representations of vicarious pain.
Collapse
Affiliation(s)
- Feng Zhou
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
- Department of Psychological and Brain Sciences, Dartmouth CollegeHanoverUnited States
| | - Jialin Li
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Weihua Zhao
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Lei Xu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Xiaoxiao Zheng
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Meina Fu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Shuxia Yao
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Keith M Kendrick
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth CollegeHanoverUnited States
| | - Benjamin Becker
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
33
|
Wagner IC, Rütgen M, Lamm C. Pattern similarity and connectivity of hippocampal-neocortical regions support empathy for pain. Soc Cogn Affect Neurosci 2020; 15:273-284. [PMID: 32248233 PMCID: PMC7235961 DOI: 10.1093/scan/nsaa045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Empathy is thought to engage mental simulation, which in turn is known to rely on hippocampal-neocortical processing. Here, we tested how hippocampal-neocortical pattern similarity and connectivity contributed to pain empathy. Using this approach, we analyzed a data set of 102 human participants who underwent functional MRI while painful and non-painful electrical stimulation was delivered to themselves or to a confederate. As hypothesized, results revealed increased pattern similarity between first-hand pain and pain empathy (compared to non-painful control conditions) within the hippocampus, retrosplenial cortex, the temporo-parietal junction and anterior insula. While representations in these regions were unaffected by confederate similarity, pattern similarity in the dorsal medial prefrontal cortex was increased the more dissimilar the other individual was perceived. Hippocampal-neocortical connectivity during first-hand pain and pain empathy engaged largely distinct but neighboring primary motor regions, and empathy-related hippocampal coupling with the fusiform gyrus positively scaled with trait measures of perspective taking. These findings suggest that shared representations and mental simulation might contribute to pain empathy via hippocampal-neocortical pattern similarity and connectivity, partially affected by personality traits and the similarity of the observed individual.
Collapse
Affiliation(s)
- Isabella C Wagner
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, Vienna 1010, Austria
| |
Collapse
|
34
|
Conformity-like behaviour in mice observing the freezing of other mice: a model of empathy. BMC Neurosci 2020; 21:19. [PMID: 32357830 PMCID: PMC7195716 DOI: 10.1186/s12868-020-00566-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background Empathy refers to the ability to recognise and share emotions with others. Several research groups have recognised observational fear in mice as a useful behavioural model for assessing their ability to empathise. However, in these observation systems, it remains unclear whether the observer mouse truly recognises the movements of, and empathises with, the demonstrator mouse. We examined changes in the behaviour of an observer mouse when a demonstrator mouse was anaesthetised, when the demonstrator’s activity was increased, and when the interval of electrical stimulation was altered. If mice exhibit an ability to empathise, then the observer should display empathic behaviour when the demonstrator experiences pain or discomfort under any circumstances. Results Relative to low-frequency stimulation, frequent electrical stimulation reduced immobility time among observer mice. Moreover, when demonstrators exhibited excessive activity, the activity of the observers significantly increased. In addition, the proportion of immobility time among observer mice significantly increased when demonstrator mice exhibited fear learning and excessive immobility. Conclusion Although our results indicate that observer mice change their behaviour based on the movements of demonstrator mice, increases in immobility time may reflect conformity-like behaviour rather than emotional empathy. Thus, not only visual but also auditory and odour information additionally influenced the conformity-like behaviour shown by observer mice. Thus, our findings suggest that methods other than the fear observation system should be used to investigate rodent empathy-like behaviour.
Collapse
|
35
|
Abstract
The posterior parietal cortex (PPC) and frontal motor areas comprise a cortical network supporting goal-directed behaviour, with functions including sensorimotor transformations and decision making. In primates, this network links performed and observed actions via mirror neurons, which fire both when individuals perform an action and when they observe the same action performed by a conspecific. Mirror neurons are believed to be important for social learning, but it is not known whether mirror-like neurons occur in similar networks in other social species, such as rodents, or if they can be measured in such models using paradigms where observers passively view a demonstrator. Therefore, we imaged Ca2+ responses in PPC and secondary motor cortex (M2) while mice performed and observed pellet-reaching and wheel-running tasks, and found that cell populations in both areas robustly encoded several naturalistic behaviours. However, neural responses to the same set of observed actions were absent, although we verified that observer mice were attentive to performers and that PPC neurons responded reliably to visual cues. Statistical modelling also indicated that executed actions outperformed observed actions in predicting neural responses. These results raise the possibility that sensorimotor action recognition in rodents could take place outside of the parieto-frontal circuit, and underscore that detecting socially-driven neural coding depends critically on the species and behavioural paradigm used.
Collapse
|
36
|
Hernandez-Lallement J, Attah AT, Soyman E, Pinhal CM, Gazzola V, Keysers C. Harm to Others Acts as a Negative Reinforcer in Rats. Curr Biol 2020; 30:949-961.e7. [DOI: 10.1016/j.cub.2020.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
|
37
|
Edwards S, Vendruscolo LF, Gilpin NW, Wojnar M, Witkiewitz K. Alcohol and Pain: A Translational Review of Preclinical and Clinical Findings to Inform Future Treatment Strategies. Alcohol Clin Exp Res 2020; 44:368-383. [PMID: 31840821 PMCID: PMC11004915 DOI: 10.1111/acer.14260] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and chronic pain are enduring and devastating conditions that share an intersecting epidemiology and neurobiology. Chronic alcohol use itself can produce a characteristic painful neuropathy, while the regular analgesic use of alcohol in the context of nociceptive sensitization and heightened affective pain sensitivity may promote negative reinforcement mechanisms that underlie AUD maintenance and progression. The goal of this review was to provide a broad translational framework that communicates research findings spanning preclinical and clinical studies, including a review of genetic, molecular, behavioral, and social mechanisms that facilitate interactions between persistent pain and alcohol use. We also consider recent evidence that will shape future investigations into novel treatment mechanisms for pain in individuals suffering from AUD.
Collapse
Affiliation(s)
- Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112
| | - Leandro F. Vendruscolo
- National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224
| | - Nicholas W. Gilpin
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque NM 87131
| |
Collapse
|
38
|
Han Y, Bruls R, Soyman E, Thomas RM, Pentaraki V, Jelinek N, Heinemans M, Bassez I, Verschooren S, Pruis I, Van Lierde T, Carrillo N, Gazzola V, Carrillo M, Keysers C. Bidirectional cingulate-dependent danger information transfer across rats. PLoS Biol 2019; 17:e3000524. [PMID: 31805039 PMCID: PMC6894752 DOI: 10.1371/journal.pbio.3000524] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Social transmission of freezing behavior has been conceived of as a one-way phenomenon in which an observer "catches" the fear of another. Here, we use a paradigm in which an observer rat witnesses another rat receiving electroshocks. Bayesian model comparison and Granger causality show that rats exchange information about danger in both directions: how the observer reacts to the demonstrator's distress also influences how the demonstrator responds to the danger. This was true to a similar extent across highly familiar and entirely unfamiliar rats but is stronger in animals preexposed to shocks. Injecting muscimol in the anterior cingulate of observers reduced freezing in the observers and in the demonstrators receiving the shocks. Using simulations, we support the notion that the coupling of freezing across rats could be selected for to more efficiently detect dangers in a group, in a way similar to cross-species eavesdropping.
Collapse
Affiliation(s)
- Yingying Han
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Rune Bruls
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Efe Soyman
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Rajat Mani Thomas
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Vasiliki Pentaraki
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Naomi Jelinek
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Department of Applied Life Sciences, FH Campus Wien, Wien, Austria
| | - Mirjam Heinemans
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Iege Bassez
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Sam Verschooren
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Illanah Pruis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thijs Van Lierde
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Nathaly Carrillo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Maria Carrillo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Christian Keysers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, the Netherlands
| |
Collapse
|
39
|
Grasselli C, Carbone A, Panelli P, Giambra V, Bossi M, Mazzoccoli G, De Filippis L. Neural Stem Cells from Shank3-ko Mouse Model Autism Spectrum Disorders. Mol Neurobiol 2019; 57:1502-1515. [PMID: 31773410 DOI: 10.1007/s12035-019-01811-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASD) comprise a complex of neurodevelopmental disorders caused by a variety of genetic defects and characterized by alterations in social communication and repetitive behavior. Since the mechanisms leading to early neuronal degeneration remain elusive, we chose to examine the properties of NSCs isolated from an animal model of ASD in order to evaluate whether their neurogenic potential may recapitulate the early phases of neurogenesis in the brain of ASD patients. Mutations of the gene coding for the Shank3 protein play a key role in the impairment of brain development and synaptogenesis in ASD patients. Experiments here reported show that NSCs derived from the subventricular zone (SVZ) of adult Shank3Δ11-/- (Shank3-ko) mice retain self-renewal capacity in vitro, but differentiate earlier than wild-type (wt) cells, displaying an evident endosomal/lysosomal and ubiquitin aggregation in astroglial cells together with mitochondrial impairment and inflammasome activation, suggesting that glial degeneration likely contributes to neuronal damage in ASD. These in vitro observations obtained in our disease model are consistent with data in vivo obtained in ASD patients and suggest that Shank3 deficit could affect the late phases of neurogenesis and/or the survival of mature cells rather than NSC self-renewal. This evidence supports Shank3-ko NSCs as a reliable in vitro disease model and suggests the rescue of glial cells as a therapeutic strategy to prevent neuronal degeneration in ASD.
Collapse
Affiliation(s)
- C Grasselli
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - A Carbone
- Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - P Panelli
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy
| | - V Giambra
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy
| | - M Bossi
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - G Mazzoccoli
- Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - L De Filippis
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
40
|
Keum S, Shin HS. Neural Basis of Observational Fear Learning: A Potential Model of Affective Empathy. Neuron 2019; 104:78-86. [DOI: 10.1016/j.neuron.2019.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023]
|
41
|
Carrillo M, Han Y, Migliorati F, Liu M, Gazzola V, Keysers C. Emotional Mirror Neurons in the Rat's Anterior Cingulate Cortex. Curr Biol 2019; 29:1301-1312.e6. [PMID: 30982647 PMCID: PMC6488290 DOI: 10.1016/j.cub.2019.03.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/27/2022]
Abstract
How do the emotions of others affect us? The human anterior cingulate cortex (ACC) responds while experiencing pain in the self and witnessing pain in others, but the underlying cellular mechanisms remain poorly understood. Here we show the rat ACC (area 24) contains neurons responding when a rat experiences pain as triggered by a laser and while witnessing another rat receive footshocks. Most of these neurons do not respond to a fear-conditioned sound (CS). Deactivating this region reduces freezing while witnessing footshocks to others but not while hearing the CS. A decoder trained on spike counts while witnessing footshocks to another rat can decode stimulus intensity both while witnessing pain in another and while experiencing the pain first-hand. Mirror-like neurons thus exist in the ACC that encode the pain of others in a code shared with first-hand pain experience. A smaller population of neurons responded to witnessing footshocks to others and while hearing the CS but not while experiencing laser-triggered pain. These differential responses suggest that the ACC may contain channels that map the distress of another animal onto a mosaic of pain- and fear-sensitive channels in the observer. More experiments are necessary to determine whether painfulness and fearfulness in particular or differences in arousal or salience are responsible for these differential responses.
Collapse
Affiliation(s)
- Maria Carrillo
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Yinging Han
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Filippo Migliorati
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Ming Liu
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands.
| |
Collapse
|
42
|
Wang XS, Guan SY, Liu A, Yue J, Hu LN, Zhang K, Yang LK, Lu L, Tian Z, Zhao MG, Liu SB. Anxiolytic effects of Formononetin in an inflammatory pain mouse model. Mol Brain 2019; 12:36. [PMID: 30961625 PMCID: PMC6454770 DOI: 10.1186/s13041-019-0453-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic pain is commonly accompanied with anxiety disorder, which complicates treatment. In this study, we investigated the analgesic and anxiolytic effects of Formononetin (FMNT), an active component of traditional Chinese medicine red clover (Trifolium pratense L.) that is capable of protecting neurons from N-methyl-D-aspartate (NMDA)-evoked excitotoxic injury, on mice suffering from complete Freund’s adjuvant (CFA)-induced chronic inflammatory pain. The results show that FMNT administration significantly reduces anxiety-like behavior but does not affect the nociceptive threshold in CFA-injected mice. The treatment reverses the upregulation of NMDA, GluA1, and GABAA receptors, as well as PSD95 and CREB in the basolateral amygdala (BLA). The effects of FMNT on NMDA receptors and CREB binding protein (CBP) were further confirmed by the potential structure combination between these compounds, which was analyzed by in silico docking technology. FMNT also inhibits the activation of the NF-κB signaling pathway and microglia in the BLA of mice suffering from chronic inflammatory pain. Therefore, the anxiolytic effects of FMNT are partially due to the attenuation of inflammation and neuronal hyperexcitability through the inhibition of NMDA receptor and CBP in the BLA.
Collapse
Affiliation(s)
- Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shao-Yu Guan
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - An Liu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Yue
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Ning Hu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.,The 154th Central Hospital of PLA, Xinyang, 464000, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
43
|
Nomura H, Teshirogi C, Nakayama D, Minami M, Ikegaya Y. Prior observation of fear learning enhances subsequent self-experienced fear learning with an overlapping neuronal ensemble in the dorsal hippocampus. Mol Brain 2019; 12:21. [PMID: 30871580 PMCID: PMC6419346 DOI: 10.1186/s13041-019-0443-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 01/18/2023] Open
Abstract
Information from direct experience and observation of others is integrated in the brain to enable appropriate responses to environmental stimuli. Fear memory can be acquired by observing a conspecific’s distress. However, it remains unclear how prior fear observation affects self-experienced fear learning. In this study, we tested whether prior observation of a conspecific receiving contextual fear conditioning affects subsequent self-experienced fear conditioning and how neuronal ensembles represent the integration of the observation and self-experience. Test mice observed demonstrator mice experiencing fear conditioning on day 1 and directly experienced fear conditioning on day 2. Contextual fear memory was tested on day 3. The prior observation of fear conditioning promoted subsequent self-experienced fear conditioning in a hippocampus-dependent manner. We visualized hippocampal neurons that were activated during the observation and self-experience of fear conditioning and found that self-experienced fear conditioning preferentially activated dorsal CA1 neurons that were activated during the observation. When mice observed and directly experienced fear conditioning in different contexts, preferential reactivation was not observed in the CA1, and fear memory was not enhanced. These findings indicate that dorsal CA1 neuronal ensembles that were activated during both the observation and self-experience of fear learning are implicated in the integration of observation and self-experience for strengthening fear memory.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo, 060-0812, Japan. .,Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Chie Teshirogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daisuke Nakayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, 565-0871, Japan
| |
Collapse
|
44
|
van Heukelum S, Mogavero F, van de Wal MAE, Geers FE, França ASC, Buitelaar JK, Beckmann CF, Glennon JC, Havenith MN. Gradient of Parvalbumin- and Somatostatin-Expressing Interneurons Across Cingulate Cortex Is Differentially Linked to Aggression and Sociability in BALB/cJ Mice. Front Psychiatry 2019; 10:809. [PMID: 31803076 PMCID: PMC6873752 DOI: 10.3389/fpsyt.2019.00809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023] Open
Abstract
Successfully navigating social interactions requires the precise and balanced integration of social and environmental cues. When such flexible information integration fails, maladaptive behavioral patterns arise, including excessive aggression, empathy deficits, and social withdrawal, as seen in disorders such as conduct disorder and autism spectrum disorder. One of the main hubs for the context-dependent regulation of behavior is cingulate cortex, specifically anterior cingulate cortex (ACC) and midcingulate cortex (MCC). While volumetric abnormalities of ACC and MCC have been demonstrated in patients, little is known about the exact structural changes responsible for the dysregulation of behaviors such as aggression and social withdrawal. Here, we demonstrate that the distribution of parvalbumin (PV) and somatostatin (SOM) interneurons across ACC and MCC differentially predicts aggression and social withdrawal in BALB/cJ mice. BALB/cJ mice were phenotyped for their social behavior (three-chamber task) and aggression (resident-intruder task) compared to control (BALB/cByJ) mice. In line with previous studies, BALB/cJ mice behaved more aggressively than controls. The three-chamber task revealed two sub-groups of highly-sociable versus less-sociable BALB/cJ mice. Highly-sociable BALB/cJ mice were as aggressive as the less-sociable group-in fact, they committed more acts of socially acceptable aggression (threats and harmless bites). PV and SOM immunostaining revealed that a lack of specificity in the distribution of SOM and PV interneurons across cingulate cortex coincided with social withdrawal: both control mice and highly-sociable BALB/cJ mice showed a differential distribution of PV and SOM interneurons across the sub-areas of cingulate cortex, while for less-sociable BALB/cJ mice, the distributions were near-flat. In contrast, both highly-sociable and less-sociable BALB/cJ mice had a decreased concentration of PV interneurons in MCC compared to controls, which was therefore linked to aggressive behavior. Together, these results suggest that the dynamic balance of excitatory and inhibitory activity across ACC and MCC shapes both social and aggressive behavior.
Collapse
Affiliation(s)
- Sabrina van Heukelum
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Floriana Mogavero
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Melissa A E van de Wal
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Femke E Geers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Arthur S C França
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| | - Martha N Havenith
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|