1
|
Yamamoto de Almeida L, Dietrich C, Duverger O, Lee JS. Acute hyperlipidemia has transient effects on large-scale bone regeneration in male mice. Sci Rep 2024; 14:25610. [PMID: 39463386 PMCID: PMC11514207 DOI: 10.1038/s41598-024-76992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Excessive dietary fat intake increases plasma lipid levels and has been associated with reduced bone mineral density (BMD) and increased risk of osteoporotic fracture, especially in older postmenopausal women. The objective of this study was to investigate whether there are sex-related differences in lipid metabolism that could have an impact on large-scale bone regeneration. Because ribs provide a unique exception as the only bones capable of completely regenerating large-scale defects, we used a rib resection mouse model in which human features are recapitulated. After 10 days of exposure to a low-fat diet or high-fat diet (HFD), we performed large-scale rib resection surgeries on male and female mice (6-7 weeks old) with deletion of the low-density lipoprotein (LDL) receptor (Ldlr-/-) and age- and sex-matched wild-type (WT) mice were used as controls. Plasma analysis showed that short-term exposure to HFD significantly increases total cholesterol, LDL cholesterol, and triglycerides levels in Ldlr-/- mice but not in WT, with no differences between males and females. However, under HFD, callus bone volume was significantly reduced exclusively in male Ldlr-/- mice when compared to WT, although these differences were no longer apparent by 21 days after resection. Regardless of diet or genotype, BMD of regenerated ribs did not differ significantly between groups, although male mice typically had lower average BMD values. Together, these results suggest that short-term hyperlipidemia has transient effects on large-scale bone regeneration exclusively in male mice.
Collapse
Affiliation(s)
- Luciana Yamamoto de Almeida
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Catharine Dietrich
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Wang Z, Lin M, Pan Y, Liu Y, Yang C, Wu J, Wang Y, Yan B, Zhou J, Chen R, Liu C. Periostin + myeloid cells improved long bone regeneration in a mechanosensitive manner. Bone Res 2024; 12:59. [PMID: 39406726 PMCID: PMC11480347 DOI: 10.1038/s41413-024-00361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024] Open
Abstract
Myeloid cells are pivotal in the inflammatory and remodeling phases of fracture repair. Here, we investigate the effect of periostin expressed by myeloid cells on bone regeneration in a monocortical tibial defect (MTD) model. In this study, we show that periostin is expressed by periosteal myeloid cells, primarily the M2 macrophages during bone regeneration. Knockout of periostin in myeloid cells reduces cortical bone thickness, disrupts trabecular bone connectivity, impairs repair impairment, and hinders M2 macrophage polarization. Mechanical stimulation is a regulator of periostin in macrophages. By activating transforming growth factor-β (TGF-β), it increases periostin expression in macrophages and induces M2 polarization. This mechanosensitive effect also reverses the delayed bone repair induced by periostin deficiency in myeloid cells by strengthening the angiogenesis-osteogenesis coupling. In addition, transplantation of mechanically conditioned macrophages into the periosteum over a bone defect results in substantially enhanced repair, confirming the critical role of macrophage-secreted periostin in bone repair. In summary, our findings suggest that mechanical stimulation regulates periostin expression and promotes M2 macrophage polarization, highlighting the potential of mechanically conditioned macrophages as a therapeutic strategy for enhancing bone repair.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chengyu Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianqun Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jingjing Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Rouxi Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Batoon L, Hawse JR, McCauley LK, Weivoda MM, Roca H. Efferocytosis and Bone Dynamics. Curr Osteoporos Rep 2024; 22:471-482. [PMID: 38914730 DOI: 10.1007/s11914-024-00878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the recently published scientific evidence regarding the role of efferocytosis in bone dynamics and skeletal health. RECENT FINDINGS Several types of efferocytes have been identified within the skeleton, with macrophages being the most extensively studied. Efferocytosis is not merely a 'clean-up' process vital for maintaining skeletal homeostasis; it also plays a crucial role in promoting resolution pathways and orchestrating bone dynamics, such as osteoblast-osteoclast coupling during bone remodeling. Impaired efferocytosis has been associated with aging-related bone loss and various skeletal pathologies, including osteoporosis, osteoarthritis, rheumatoid arthritis, and metastatic bone diseases. Accordingly, emerging evidence suggests that targeting efferocytic mechanisms has the potential to alleviate these conditions. While efferocytosis remains underexplored in the skeleton, recent discoveries have shed light on its pivotal role in bone dynamics, with important implications for skeletal health and pathology. However, there are several knowledge gaps and persisting technical limitations that must be addressed to fully unveil the contributions of efferocytosis in bone.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Megan M Weivoda
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA.
| |
Collapse
|
4
|
Hachemi Y, Perrin S, Ethel M, Julien A, Vettese J, Geisler B, Göritz C, Colnot C. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma. Bone Res 2024; 12:56. [PMID: 39341816 PMCID: PMC11438896 DOI: 10.1038/s41413-024-00347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single-nucleus transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as a driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis.
Collapse
Affiliation(s)
| | - Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Maria Ethel
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Vettese
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | | | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.
| |
Collapse
|
5
|
Vu EK, Karkache IY, Pham A, Koroth J, Bradley EW. Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice. J Cell Mol Med 2024; 28:e70081. [PMID: 39261913 PMCID: PMC11390340 DOI: 10.1111/jcmm.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
Diet-induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti-inflammatory agents. Prior reports show that myeloid progenitor-directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high-fat/high-sugar (HFD) diet. Micro-CT analyses demonstrated that HFD-feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3-ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3-ablated cells exhibited a four-fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2-positve cells within bone defects was significantly higher in Hdac3-deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet-induced obesity, possibly through increased production of CCL2 by macrophages within the defect.
Collapse
Affiliation(s)
- Elizabeth K. Vu
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ismael Y. Karkache
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
| | - Anthony Pham
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Jinsha Koroth
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Elizabeth W. Bradley
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
- Stem Cell Institute, University of MinnesotaMinneapolisMNUSA
| |
Collapse
|
6
|
Takabatake K, Tsujigiwa H, Nakano K, Chang A, Piao T, Inada Y, Arashima T, Morimatsu A, Tanaka A, Kawai H, Nagatsuka H. Effect of Scaffold Geometrical Structure on Macrophage Polarization during Bone Regeneration Using Honeycomb Tricalcium Phosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4108. [PMID: 39203286 PMCID: PMC11356497 DOI: 10.3390/ma17164108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
The polarization balance of M1/M2 macrophages with different functions is important in osteogenesis and bone repair processes. In a previous study, we succeeded in developing honeycomb tricalcium phosphate (TCP), which is a cylindrical scaffold with a honeycomb arrangement of straight pores, and we demonstrated that TCP with 300 and 500 μm pore diameters (300TCP and 500TCP) induced bone formation within the pores. However, the details of the influence of macrophage polarization on bone formation using engineered biomaterials, especially with respect to the geometric structure of the artificial biomaterials, are unknown. In this study, we examined whether differences in bone tissue formation due to differences in TCP geometry were due to the polarity of the assembling macrophages. Immunohistochemistry for IBA-1, iNOS, and CD163 single staining was performed. The 300TCP showed a marked infiltration of iNOS-positive cells, which are thought to be M1 macrophages, during the osteogenesis process, while no involvement of CD163-positive cells, which are thought to be M2 macrophages, was observed in the TCP pores. In addition, 500TCP showed a clustering of iNOS-positive cells and CD163-positive cells at 2 weeks, suggesting the involvement of M2 macrophages in the formation of bone tissue in the TCP pores. In conclusion, we demonstrated for the first time that the geometrical structure of the artificial biomaterial, i.e., the pore size of honeycomb TCP, affects the polarization of M1/2 macrophages and bone tissue formation in TCP pores.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan;
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Anqi Chang
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Tianyan Piao
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Yasunori Inada
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Takuma Arashima
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Ayumi Morimatsu
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Ayumi Tanaka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| |
Collapse
|
7
|
Lagunas-Rangel FA. Aging insights from heterochronic parabiosis models. NPJ AGING 2024; 10:38. [PMID: 39154047 PMCID: PMC11330497 DOI: 10.1038/s41514-024-00166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Heterochronic parabiosis consists of surgically connecting the circulatory systems of a young and an old animal. This technique serves as a model to study circulating factors that accelerate aging in young organisms exposed to old blood or induce rejuvenation in old organisms exposed to young blood. Despite the promising results, the exact cellular and molecular mechanisms remain unclear, so this study aims to explore and elucidate them in more detail.
Collapse
|
8
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Xie W, Donat A, Jiang S, Baranowsky A, Keller J. The emerging role of tranexamic acid and its principal target, plasminogen, in skeletal health. Acta Pharm Sin B 2024; 14:2869-2884. [PMID: 39027253 PMCID: PMC11252461 DOI: 10.1016/j.apsb.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The worldwide burden of skeletal diseases such as osteoporosis, degenerative joint disease and impaired fracture healing is steadily increasing. Tranexamic acid (TXA), a plasminogen inhibitor and anti-fibrinolytic agent, is used to reduce bleeding with high effectiveness and safety in major surgical procedures. With its widespread clinical application, the effects of TXA beyond anti-fibrinolysis have been noticed and prompted renewed interest in its use. Some clinical trials have characterized the effects of TXA on reducing postoperative infection rates and regulating immune responses in patients undergoing surgery. Also, several animal studies suggest potential therapeutic effects of TXA on skeletal diseases such as osteoporosis and fracture healing. Although a direct effect of TXA on the differentiation and function of bone cells in vitro was shown, few mechanisms of action have been reported. Here, we summarize recent findings of the effects of TXA on skeletal diseases and discuss the underlying plasminogen-dependent and -independent mechanisms related to bone metabolism and the immune response. We furthermore discuss potential novel indications for TXA application as a treatment strategy for skeletal diseases.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
10
|
Okamoto K. Crosstalk between bone and the immune system. J Bone Miner Metab 2024; 42:470-480. [PMID: 39060500 DOI: 10.1007/s00774-024-01539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Bone functions not only as a critical element of the musculoskeletal system but also serves as the primary lymphoid organ harboring hematopoietic stem cells (HSCs) and immune progenitor cells. The interdisciplinary field of osteoimmunology has illuminated the dynamic interactions between the skeletal and immune systems, vital for the maintenance of skeletal tissue homeostasis and the pathogenesis of immune and skeletal diseases. Aberrant immune activation stimulates bone cells such as osteoclasts and osteoblasts, disturbing the bone remodeling and leading to skeletal disorders as seen in autoimmune diseases like rheumatoid arthritis. On the other hand, intricate multicellular network within the bone marrow creates a specialized microenvironment essential for the maintenance and differentiation of HSCs and the progeny. Dysregulation of immune-bone crosstalk in the bone marrow environment can trigger tumorigenesis and exacerbated inflammation. A comprehensive deciphering of the complex "immune-bone crosstalk" leads to a deeper understanding of the pathogenesis of immune diseases as well as skeletal diseases, and might provide insight into potential therapeutic approaches.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
11
|
Qing Y, Ono T, Kohara Y, Watanabe A, Ogiso N, Ito M, Nakashima T, Takeshita S. Emilin2 marks the target region for mesenchymal cell accumulation in bone regeneration. Inflamm Regen 2024; 44:27. [PMID: 38831448 PMCID: PMC11145771 DOI: 10.1186/s41232-024-00341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Regeneration of injured tissue is dependent on stem/progenitor cells, which can undergo proliferation and maturation processes to replace the lost cells and extracellular matrix (ECM). Bone has a higher regenerative capacity than other tissues, with abundant mesenchymal progenitor cells in the bone marrow, periosteum, and surrounding muscle. However, the treatment of bone fractures is not always successful; a marked number of clinical case reports have described nonunion or delayed healing for various reasons. Supplementation of exogenous stem cells by stem cell therapy is anticipated to improve treatment outcomes; however, there are several drawbacks including the need for special devices for the expansion of stem cells outside the body, low rate of cell viability in the body after transplantation, and oncological complications. The use of endogenous stem/progenitor cells, instead of exogenous cells, would be a possible solution, but it is unclear how these cells migrate towards the injury site. METHODS The chemoattractant capacity of the elastin microfibril interface located protein 2 (Emilin2), generated by macrophages, was identified by the migration assay and LC-MS/MS. The functions of Emilin2 in bone regeneration were further studied using Emilin2-/- mice. RESULTS The results show that in response to bone injury, there was an increase in Emilin2, an ECM protein. Produced by macrophages, Emilin2 exhibited chemoattractant properties towards mesenchymal cells. Emilin2-/- mice underwent delayed bone regeneration, with a decrease in mesenchymal cells after injury. Local administration of recombinant Emilin2 protein enhanced bone regeneration. CONCLUSION Emilin2 plays a crucial role in bone regeneration by increasing mesenchymal cells. Therefore, Emilin2 can be used for the treatment of bone fracture by recruiting endogenous progenitor cells.
Collapse
Affiliation(s)
- Yifan Qing
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Takehito Ono
- Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-Oka, Imabari-Shi, Ehime, 794-8555, Japan
| | - Yukihiro Kohara
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, 7-430, Morioka-Cho, Obu, Aichi Prefecture, 474-8511, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Atsushi Watanabe
- Equipment Management Division, Center for Core Facility Administration, National Center for Geriatrics and Gerontology, 7-430, Morioka-Cho, Obu, Aichi Prefecture, 474-8511, Japan
| | - Noboru Ogiso
- Laboratory of Experimental Animal, Center for Core Facility Administration, National Center for Geriatrics and Gerontology, 7-430, Morioka-Cho, Obu, Aichi Prefecture, 474-8511, Japan
| | - Masako Ito
- Nagasaki University, 1-14, Bunkyomachi, Nagasaki, 852-8521, Japan
| | - Tomoki Nakashima
- Faculty of Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
| | - Sunao Takeshita
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, 7-430, Morioka-Cho, Obu, Aichi Prefecture, 474-8511, Japan.
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, 7-430, Morioka-Cho, Obu, Aichi Prefecture, 474-8511, Japan.
- Angitia Biopharmaceuticals, 2F, Unit 2, Building4, 188 Kaiyuan Avenue, Huangpu District, Guangzhou, 510530, China.
| |
Collapse
|
12
|
Wu Z, Guo S, Yue H, Huang H, Zhang Z, Chen X, Lan C, Ren L, Hei P, Wang X, Wang N, Li X. Effect of M2-macrophage treated lymphatic endothelial cells on angiogenesis that promoted osteointegration. Exp Cell Res 2024; 439:114096. [PMID: 38768700 DOI: 10.1016/j.yexcr.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Early vascularization plays an essential role during the whole process in bone regeneration because of the function of secreting cytokines, transporting nutrients and metabolic wastes. As the preliminary basis of bone repair, angiogenesis is regulated by immune cells represented by macrophages to a great extent. However, with the discovery of the endolymphatic circulation system inside bone tissue, the role of vascularization became complicated and confusing. Herein, we developed a macrophage/lymphatic endothelial cells (LECs)/human umbilical vein endothelial cells (HUVECs) co-culture system to evaluate the effect of macrophage treated lymphatic endothelial cells on angiogenesis in vitro and in vivo. In this study, we collected the medium from macrophage (CM) for LECs culture. We found that CM2 could promote the expression of LECs markers and migration ability, which indicated the enhanced lymphogenesis. In addition, the medium from LECs was collected for culturing HUVECs. The CM2-treated LECs showed superior angiogenesis property including the migration capacity and expression of angiogenetic markers, which suggested the superior vascularization. Rat femoral condyle defect model was applied to confirm the hypothesis in vivo. Generally, M2-macrophage treated LECs showed prominent angiogenetic potential coupling with osteogenesis.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China; Department of Orthopaedics, The 63750 Hospital of People's Liberation Army, Xi'an, 710043, Shaanxi, China
| | - Shuo Guo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China; Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Haixia Yue
- Physical Education Department, Xi 'an University of Science and Technology, Xi'an, 710054, China
| | - Hai Huang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Ziru Zhang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xuexue Chen
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China; Graduate School, Xi'an Physical Education University, Xi'an, 710068, China
| | - Chaoyu Lan
- Graduate School, Xi'an Physical Education University, Xi'an, 710068, China
| | - Lu Ren
- Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Hei
- Graduate School, Xi'an Physical Education University, Xi'an, 710068, China
| | - Xinyu Wang
- Graduate School, Xi'an Physical Education University, Xi'an, 710068, China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
13
|
Yu K, Wu H, Xiong H, Wang G, Wei X, Liang X, Chen R, Zhang Y, Zhang K, Wang Z. Ante- and Post-Mortem Fracture Identification Protocol Based on Low- and High-Level Fusion Using Fourier Transform Infrared Spectroscopy and Raman Spectroscopy Association. APPLIED SPECTROSCOPY 2024; 78:605-615. [PMID: 38404185 DOI: 10.1177/00037028241231994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, the application of low-level fusion (LLF) and high-level fusion (HLF) strategies using a combination of Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy in the identification of antemortem and postmortem fracture at different postmortem intervals (PMIs) was investigated. On a technical level, the same hard tissue sample can be detected using a mix of FT-IR and Raman techniques. At the method level, two cutting-edge chemometrics approaches (LLF and HLF) combining FT-IR and Raman spectroscopic data are explored. The models were ranked in accordance with their parametric quality as follows: HLF and LLF + HLF models > LLF single model > Raman single model > FT-IR single model. The LLF model performed marginally better than the Raman model, however, when compared to other models, the HLF model performed considerably better. The HLF model achieved the best performance, with both cross-validation accuracy and test data set accuracy of 0.88. The importance of the feature wavelengths in the model construction process was subsequently evaluated by intersection fusion, and it was found that the absorbance bands of amide I, PO43- ν1 ν3, and CH2 in FT-IR and phenylalanine, CO32- ν1- PO43- ν3, and amide III in Raman have outstanding contributions to the construction of antemortem and postmortem fractures identification models. Overall, the combination of FT-IR and Raman with the HLF strategy is a novel and promising approach for developing antemortem and postmortem fracture identification models at different PMIs.
Collapse
Affiliation(s)
- Kai Yu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hongli Xiong
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Gongji Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xin Wei
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xinggong Liang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Run Chen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | - Kai Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Molitoris KH, Huang M, Baht GS. Osteoimmunology of Fracture Healing. Curr Osteoporos Rep 2024; 22:330-339. [PMID: 38616228 PMCID: PMC11186872 DOI: 10.1007/s11914-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize what is known in the literature about the role inflammation plays during bone fracture healing. Bone fracture healing progresses through four distinct yet overlapping phases: formation of the hematoma, development of the cartilaginous callus, development of the bony callus, and finally remodeling of the fracture callus. Throughout this process, inflammation plays a critical role in robust bone fracture healing. RECENT FINDINGS At the onset of injury, vessel and matrix disruption lead to the generation of an inflammatory response: inflammatory cells are recruited to the injury site where they differentiate, activate, and/or polarize to secrete cytokines for the purposes of cell signaling and cell recruitment. This process is altered by age and by sex. Bone fracture healing is heavily influenced by the presence of inflammatory cells and cytokines within the healing tissue.
Collapse
Affiliation(s)
- Kristin Happ Molitoris
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, 300 North Duke Street, Durham, NC, 27701, USA
| | - Mingjian Huang
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, 300 North Duke Street, Durham, NC, 27701, USA
| | - Gurpreet Singh Baht
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, 300 North Duke Street, Durham, NC, 27701, USA.
| |
Collapse
|
15
|
Hachemi Y, Perrin S, Ethel M, Julien A, Vettese J, Geisler B, Göritz C, Colnot C. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591608. [PMID: 38746344 PMCID: PMC11092472 DOI: 10.1101/2024.04.29.591608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single cell transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis. Summary Hachemi et al. report the immune cell atlas of bone repair revealing macrophages as pro-fibrotic regulators and a therapeutic target for musculoskeletal regeneration. Genetic depletion or pharmacological inhibition of macrophages improves bone healing in musculoskeletal trauma.
Collapse
|
16
|
Molitoris KH, Balu AR, Huang M, Baht GS. The impact of age and sex on the inflammatory response during bone fracture healing. JBMR Plus 2024; 8:ziae023. [PMID: 38560342 PMCID: PMC10978063 DOI: 10.1093/jbmrpl/ziae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammation is thought to be dysregulated with age leading to impaired bone fracture healing. However, broad analyses of inflammatory processes during homeostatic bone aging and during repair are lacking. Here, we assessed changes in inflammatory cell and cytokine profiles in circulation and in bone tissue to identify age- and sex-dependent differences during homeostasis and repair. During homeostatic aging, male mice demonstrated accumulation of CD4+ helper T cells and CD8+ cytotoxic T cells within bone while both pro-inflammatory "M1" and anti-inflammatory "M2" macrophage numbers decreased. Female mice saw no age-associated changes in immune-cell population in homeostatic bone. Concentrations of IL-1β, IL-9, IFNγ, and CCL3/MIP-1α increased with age in both male and female mice, whereas concentrations of IL-2, TNFα, TNFR1, IL-4, and IL-10 increased only in female mice - thus we termed these "age-accumulated" cytokines. There were no notable changes in immune cell populations nor cytokines within circulation during aging. Sex-dependent analysis demonstrated slight changes in immune cell and cytokine levels within bone and circulation, which were lost upon fracture injury. Fracture in young male mice caused a sharp decrease in number of M1 macrophages; however, this was not seen in aged male mice nor in female mice of any age. Injury itself induced a decrease in the number of CD8+ T cells within the local tissue of aged male and of female mice but not of young mice. Cytokine analysis of fractured mice revealed that age-accumulated cytokines quickly dissipated after fracture injury, and did not re-accumulate in newly regenerated tissue. Conversely, CXCL1/KC-GRO, CXCL2/MIP-2, IL-6, and CCL2/MCP-1 acted as "fracture response" cytokines: increasing sharply after fracture, eventually returning to baseline. Collectively, we classify measured cytokines into three groups: (1) age-accumulated cytokines, (2) female-specific age-accumulated cytokines, and (3) fracture response cytokines. These inflammatory molecules represent potential points of intervention to improve fracture healing outcome.
Collapse
Affiliation(s)
- Kristin Happ Molitoris
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| | - Abhinav Reddy Balu
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Mingjian Huang
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| | - Gurpreet Singh Baht
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| |
Collapse
|
17
|
Yang B, Qiao Y, Yan D, Meng Q. Targeting Interactions between Fibroblasts and Macrophages to Treat Cardiac Fibrosis. Cells 2024; 13:764. [PMID: 38727300 PMCID: PMC11082988 DOI: 10.3390/cells13090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/13/2024] Open
Abstract
Excessive extracellular matrix (ECM) deposition is a defining feature of cardiac fibrosis. Most notably, it is characterized by a significant change in the concentration and volume fraction of collagen I, a disproportionate deposition of collagen subtypes, and a disturbed ECM network arrangement, which directly affect the systolic and diastolic functions of the heart. Immune cells that reside within or infiltrate the myocardium, including macrophages, play important roles in fibroblast activation and consequent ECM remodeling. Through both direct and indirect connections to fibroblasts, monocyte-derived macrophages and resident cardiac macrophages play complex, bidirectional, regulatory roles in cardiac fibrosis. In this review, we discuss emerging interactions between fibroblasts and macrophages in physiology and pathologic conditions, providing insights for future research aimed at targeting macrophages to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Bo Yang
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| | - Yan Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China;
| | - Qinghang Meng
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| |
Collapse
|
18
|
He H, Yang F, Zhang S, Liu Z, Liu Z, Yu L, Xiao J. Bone morphogenetic protein-2 loaded triple helix recombinant collagen-based hydrogels for enhancing bone defect healing. Biomed Mater 2024; 19:035029. [PMID: 38518364 DOI: 10.1088/1748-605x/ad3701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
The development of efficacious bone substitute biomaterials remains a major challenge for research and clinical surgical. Herein, we constructed triple helix recombinant collagen (THRC) -based hydrogels loading bone morphogenetic protein-2 (BMP-2) to stimulate bone regeneration in cranial defects. A series of in situ forming hydrogels, denoted as THRC-oxidized carboxymethylcellulose (OCMC)-N-succinyl-chitosan (NSC) hydrogels, was synthesized via a Schiff base reaction involving OCMC, THRC and NSC. The hydrogels underwent rapid formation under physiological pH and temperature conditions. The composite hydrogel exhibits a network structure characterized by uniform pores, the dimensions of which can be tuned by varying THRC concentrations. The THRC-OCMC-NSC and THRC-OCMC-NSC-BMP2 hydrogels display heightened mechanical strength, substantial biodegradability, and lower swelling properties. The THRC-OCMC-NSC hydrogels show exceptional biocompatibility and bioactivity, accelerating cell proliferation, adhesion, and differentiation. Magnetic resonance imaging, computed tomography and histological analysis of rat cranial defects models revealed that the THRC-OCMC-NSC-BMP2 hydrogels substantially promote new bone formation and expedite bone regeneration. The novel THRC-OCMC-NSC-BMP2 hydrogels emerge as promising candidates for bone substitutes, demonstrating substantial potential in bone repair and regeneration applications.
Collapse
Affiliation(s)
- Huixia He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Fan Yang
- Lanzhou University First Hospital, Lanzhou 730000, People's Republic of China
| | - Shanshan Zhang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Zhao Liu
- Lanzhou University First Hospital, Lanzhou 730000, People's Republic of China
| | - Zaiman Liu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Linghui Yu
- Lanzhou University First Hospital, Lanzhou 730000, People's Republic of China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
19
|
Zou NY, Liu R, Huang M, Jiao YR, Wei J, Jiang Y, He WZ, Huang M, Xu YL, Liu L, Sun YC, Yang M, Guo Q, Huang Y, Su T, Xiao Y, Wang WS, Zeng C, Lei GH, Luo XH, Li CJ. Age-related secretion of grancalcin by macrophages induces skeletal stem/progenitor cell senescence during fracture healing. Bone Res 2024; 12:6. [PMID: 38267422 PMCID: PMC10808101 DOI: 10.1038/s41413-023-00309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Skeletal stem/progenitor cell (SSPC) senescence is a major cause of decreased bone regenerative potential with aging, but the causes of SSPC senescence remain unclear. In this study, we revealed that macrophages in calluses secrete prosenescent factors, including grancalcin (GCA), during aging, which triggers SSPC senescence and impairs fracture healing. Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair. Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence. Mechanistically, GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction, resulting in cellular senescence. Depletion of Plxnb2 in SSPCs impaired fracture healing. Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice. Thus, our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence, and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.
Collapse
Affiliation(s)
- Nan-Yu Zou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Yangzi Jiang
- School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wen-Zhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yi-Li Xu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yu-Chen Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Wei-Shan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, Hunan, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
20
|
Lee KK, Changoor A, Grynpas MD, Mitchell J. Increased Osteoblast Gα S Promotes Ossification by Suppressing Cartilage and Enhancing Callus Mineralization During Fracture Repair in Mice. JBMR Plus 2023; 7:e10841. [PMID: 38130768 PMCID: PMC10731140 DOI: 10.1002/jbm4.10841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
GαS, the stimulatory G protein α-subunit that raises intracellular cAMP levels by activating adenylyl cyclase, plays a vital role in bone development, maintenance, and remodeling. Previously, using transgenic mice overexpressing GαS in osteoblasts (GS-Tg), we demonstrated the influence of osteoblast GαS level on osteogenesis, bone turnover, and skeletal responses to hyperparathyroidism. To further investigate whether alterations in GαS levels affect endochondral bone repair, a postnatal bone regenerative process that recapitulates embryonic bone development, we performed stabilized tibial osteotomy in male GS-Tg mice at 8 weeks of age and examined the progression of fracture healing by micro-CT, histomorphometry, and gene expression analysis over a 4-week period. Bone fractures from GS-Tg mice exhibited diminished cartilage formation at the time of peak soft callus formation at 1 week post-fracture followed by significantly enhanced callus mineralization and new bone formation at 2 weeks post-fracture. The opposing effects on chondrogenesis and osteogenesis were validated by downregulation of chondrogenic markers and upregulation of osteogenic markers. Histomorphometric analysis at times of increased bone formation (2 and 3 weeks post-fracture) revealed excess fibroblast-like cells on newly formed woven bone surfaces and elevated osteocyte density in GS-Tg fractures. Coincident with enhanced callus mineralization and bone formation, GS-Tg mice showed elevated active β-catenin and Wntless proteins in osteoblasts at 2 weeks post-fracture, further substantiated by increased mRNA encoding various canonical Wnts and Wnt target genes, suggesting elevated osteoblastic Wnt secretion and Wnt/β-catenin signaling. The GS-Tg bony callus at 4 weeks post-fracture exhibited greater mineral density and decreased polar moment of inertia, resulting in improved material stiffness. These findings highlight that elevated GαS levels increase Wnt signaling, conferring an increased osteogenic differentiation potential at the expense of chondrogenic differentiation, resulting in improved mechanical integrity. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kathy K Lee
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Adele Changoor
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of SurgeryUniversity of TorontoTorontoCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
| | - Marc D Grynpas
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of SurgeryUniversity of TorontoTorontoCanada
| | - Jane Mitchell
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
| |
Collapse
|
21
|
Zhu L, Hou Q, Yan M, Gao W, Tang G, Liu Z. Flexible Fabrication and Hybridization of Bioactive Hydrogels with Robust Osteogenic Potency. Pharmaceutics 2023; 15:2384. [PMID: 37896145 PMCID: PMC10610325 DOI: 10.3390/pharmaceutics15102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Osteogenic scaffolds reproducing the natural bone composition, structures, and properties have represented the possible frontier of artificially orthopedic implants with the great potential to revolutionize surgical strategies against the bone-related diseases. However, it is difficult to achieve an all-in-one formula with the simultaneous requirement of favorable biocompatibility, flexible adhesion, high mechanical strength, and osteogenic effects. Here in this work, an osteogenic hydrogel scaffold fabricated by inorganic-in-organic integration between amine-modified bioactive glass (ABG) nanoparticles and poly(ethylene glycol) succinimidyl glutarate-polyethyleneimine (TSG-PEI) network was introduced as an all-in-one tool to flexibly adhere onto the defective tissue and subsequently accelerate the bone formation. Since the N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer could quickly react with the NH2-abundant polyethyleneimine (PEI) polymer and ABG moieties, the TSG-PEI@ABG hydrogel was rapidly formed with tailorable structures and properties. Relying on the dense integration between the TSG-PEI network and ABG moieties on a nano-scale level, this hydrogel expressed powerful adhesion to tissue as well as durable stability for the engineered scaffolds. Therefore, its self-endowed biocompatibility, high adhesive strength, compressive modulus, and osteogenic potency enabled the prominent capacities on modulation of bone marrow mesenchymal stem cell (BMSCs) proliferation and differentiation, which may propose a potential strategy on the simultaneous scaffold fixation and bone regeneration promotion for the tissue engineering fields.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Orthopedics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412001, China; (L.Z.); (W.G.)
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China;
| | - Qian Hou
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Meijun Yan
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China;
| | - Wentao Gao
- Department of Orthopedics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412001, China; (L.Z.); (W.G.)
| | - Guoke Tang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China;
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhiqing Liu
- Department of Orthopedics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412001, China; (L.Z.); (W.G.)
| |
Collapse
|
22
|
Mi B, Xiong Y, Zha K, Cao F, Zhou W, Abbaszadeh S, Ouyang L, Liao Y, Hu W, Dai G, Zhao Z, Feng Q, Shahbazi MA, Liu G. Immune homeostasis modulation by hydrogel-guided delivery systems: a tool for accelerated bone regeneration. Biomater Sci 2023; 11:6035-6059. [PMID: 37522328 DOI: 10.1039/d3bm00544e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Immune homeostasis is delicately mediated by the dynamic balance between effector immune cells and regulatory immune cells. Local deviations from immune homeostasis in the microenvironment of bone fractures, caused by an increased ratio of effector to regulatory cues, can lead to excessive inflammatory conditions and hinder bone regeneration. Therefore, achieving effective and localized immunomodulation of bone fractures is crucial for successful bone regeneration. Recent research has focused on developing localized and specific immunomodulatory strategies using local hydrogel-based delivery systems. In this review, we aim to emphasize the significant role of immune homeostasis in bone regeneration, explore local hydrogel-based delivery systems, discuss emerging trends in immunomodulation for enhancing bone regeneration, and address the limitations of current delivery strategies along with the challenges of clinical translation.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Weixian Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guandong Dai
- Department of Orthopedic Surgery, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
23
|
Maisuria R, Norton A, Shao C, Bradley EW, Mansky K. Conditional Loss of MEF2C Expression in Osteoclasts Leads to a Sex-Specific Osteopenic Phenotype. Int J Mol Sci 2023; 24:12686. [PMID: 37628864 PMCID: PMC10454686 DOI: 10.3390/ijms241612686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Myocyte enhancement factor 2C (MEF2C) is a transcription factor studied in the development of skeletal and smooth muscles. Bone resorption studies have exhibited that the reduced expression of MEF2C contributes to osteopetrosis and the dysregulation of pathological bone remodeling. Our current study aims to determine how MEF2C contributes to osteoclast differentiation and to analyze the skeletal phenotype of Mef2c-cKO mice (Cfms-cre; Mef2cfl/fl). qRT-PCR and Western blot demonstrated that Mef2c expression is highest during the early days of osteoclast differentiation. Osteoclast genes, including c-Fos, c-Jun, Dc-stamp, Cathepsin K, and Nfatc1, had a significant reduction in expression, along with a reduction in osteoclast size. Despite reduced CTX activity, female Mef2c cKO mice were osteopenic, with decreased bone formation as determined via a P1NP ELISA, and a reduced number of osteoblasts. There was no difference between male WT and Mef2c-cKO mice. Our results suggest that Mef2c is critical for osteoclastogenesis, and that its dysregulation leads to a sex-specific osteopenic phenotype.
Collapse
Affiliation(s)
- Ravi Maisuria
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| | - Andrew Norton
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| | - Cynthia Shao
- College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Elizabeth W. Bradley
- Department of Orthopedics, School of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kim Mansky
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| |
Collapse
|
24
|
Zhang B, Lee DE, Trapp A, Tyshkovskiy A, Lu AT, Bareja A, Kerepesi C, McKay LK, Shindyapina AV, Dmitriev SE, Baht GS, Horvath S, Gladyshev VN, White JP. Multi-omic rejuvenation and life span extension on exposure to youthful circulation. NATURE AGING 2023; 3:948-964. [PMID: 37500973 PMCID: PMC11095548 DOI: 10.1038/s43587-023-00451-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/06/2023] [Indexed: 07/29/2023]
Abstract
Heterochronic parabiosis (HPB) is known for its functional rejuvenation effects across several mouse tissues. However, its impact on biological age and long-term health is unknown. Here we performed extended (3-month) HPB, followed by a 2-month detachment period of anastomosed pairs. Old detached mice exhibited improved physiological parameters and lived longer than control isochronic mice. HPB drastically reduced the epigenetic age of blood and liver based on several clock models using two independent platforms. Remarkably, this rejuvenation effect persisted even after 2 months of detachment. Transcriptomic and epigenomic profiles of anastomosed mice showed an intermediate phenotype between old and young, suggesting a global multi-omic rejuvenation effect. In addition, old HPB mice showed gene expression changes opposite to aging but akin to several life span-extending interventions. Altogether, we reveal that long-term HPB results in lasting epigenetic and transcriptome remodeling, culminating in the extension of life span and health span.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Lee
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Alexandre Trapp
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Retro Biosciences, Redwood City, CA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Akshay Bareja
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Csaba Kerepesi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Eötvös Loránd Research Network, Budapest, Hungary
| | - Lauren K McKay
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Retro Biosciences, Redwood City, CA, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
25
|
Liu Z, Liu J, Li J, Li Y, Sun J, Deng Y, Zhou H. Substrate stiffness can affect the crosstalk between adipose derived mesenchymal stem cells and macrophages in bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1133547. [PMID: 37576988 PMCID: PMC10415109 DOI: 10.3389/fbioe.2023.1133547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose: This study aimed to explore the effect of biomaterials with different stiffness on Adipose Derived Mesenchymal Stem Cells (ADSC)-macrophage crosstalk in bone tissue engineering and its role in bone repair. Methods: Biomaterials with Young's modulus of 64 and 0.2 kPa were selected, and the crosstalk between ADSCs and macrophages was investigated by means of conditioned medium treatment and cell co-culture, respectively. Polymerase chain reaction (PCR) and flow cytometry were used to evaluate the polarization of macrophages. Alkaline phosphatase (ALP) and alizarin red staining (ARS) solutions were used to evaluate the osteogenic differentiation of ADSCs. Transwell assay was used to evaluate the chemotaxis of ADSCs and macrophages. Moreover, mass spectrometry proteomics was used to analyze the secreted protein profile of ADSCs of different substrates and macrophages in different polarization states. Results: On exploring the influence of biomaterials on macrophages from ADSCs on different substrates, we found that CD163 and CD206 expression levels in macrophages were significantly higher in the 64-kPa group than in the 0.2-kPa group in conditioned medium treatment and cell co-culture. Flow cytometry showed that more cells became CD163+ or CD206+ cells in the 64-kPa group under conditioned medium treatment or cell co-culture. The Transwell assay showed that more macrophages migrated to the lower chamber in the 64-kPa group. The proteomic analysis found that ADSCs in the 64-kPa group secreted more immunomodulatory proteins, such as LBP and RBP4, to improve the repair microenvironment. On exploring the influence of biomaterials on ADSCs from macrophages in different polarization states, we found that ALP and ARS levels in ADSCs were significantly higher in the M2 group than in the other three groups (NC, M0, and M1 groups) in both conditioned medium treatment and cell co-culture. The Transwell assay showed that more ADSCs migrated to the lower chamber in the M2 group. The proteomic analysis found that M2 macrophages secreted more extracellular remodeling proteins, such as LRP1, to promote bone repair. Conclusion: In bone tissue engineering, the stiffness of repair biomaterials can affect the crosstalk between ADSCs and macrophages, thereby regulating local repair immunity and affecting bone repair.
Collapse
Affiliation(s)
- Zeyang Liu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Liu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Deng
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Ruden DM, Singh A, Rappolee DA. Pathological epigenetic events and reversibility review: the intersection between hallmarks of aging and developmental origin of health and disease. Epigenomics 2023; 15:741-754. [PMID: 37667910 PMCID: PMC10503466 DOI: 10.2217/epi-2023-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
We discuss pathological epigenetic events that are reversible (PEERs). A recent study by Poganik and colleagues showed that severe stress in mice and humans transiently elevates biological age of several tissues, and this transient age increase is reversible when the stress is removed. These studies suggest new strategies for reversing normal aging. However, it is important to note that developmental origin of health and disease studies have shown that developmental exposure to toxic chemicals such as lead causes permanent changes in neuron shape, connectivity and cellular hyperplasia of organs such as the heart and liver. In this review, the PEER hypothesis speculates that the hallmarks of aging and the hallmarks of developmental origin of health and disease intersect at PEERs.
Collapse
Affiliation(s)
- Douglas M Ruden
- CS Mott Center for Human Health and Development, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Aditi Singh
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Health and Development, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
- Reproductive Stress, Grosse Pointe Farms, MI 48236, USA
| |
Collapse
|
27
|
Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618:698-707. [PMID: 37344646 PMCID: PMC10649266 DOI: 10.1038/s41586-023-06002-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/23/2023] [Indexed: 06/23/2023]
Abstract
Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis-establishing stable spatial and functional relationships with specialized tissue cells-and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sergio Juarez-Carreño
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
28
|
Yang Y, Zhao N, Wang R, Zhan Z, Guo S, Song H, Wiemer EAC, Ben J, Ma J. Macrophage MVP regulates fracture repair by promoting M2 polarization via JAK2-STAT6 pathway. Int Immunopharmacol 2023; 120:110313. [PMID: 37267856 DOI: 10.1016/j.intimp.2023.110313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Major vault protein (MVP) is vital in various macrophage-related inflammatory diseases. However, the effects of MVP on macrophage polarization during fracture repair are still unknown. METHODS We used Mvpflox/floxLyz2-Cre mice (myeloid-specific MVP gene knockout, abbreviated as MacKO) and Mvpflox/flox (abbreviated as MacWT) mice to compare their fracture healing phenotype. Next, we traced the changes in macrophage immune status in vivo and in vitro. We further explored the effects of MVP on osteogenesis and osteoclastogenesis. Finally, we re-expressed MVP in MacKO mice to confirm the role of MVP in fracture healing. RESULTS The lack of MVP in macrophages impaired their transition from a pro-inflammatory to an anti-inflammatory phenotype during fracture repair. The increased secretion of pro-inflammatory cytokines by macrophages promoted their osteoclastic differentiation and impaired BMSC osteogenic differentiation, ultimately leading to impaired fracture repair in MacKO mice. Last, adeno-associated virus (AAV)-Mvp tibial injection significantly promoted fracture repair in MacKO mice. CONCLUSIONS Our findings showed MVP has a previously unknown immunomodulatory role in macrophages during fracture repair. Targeting macrophage MVP may represent a novel therapeutic method for fracture treatment.
Collapse
Affiliation(s)
- Yan Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Na Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ruobing Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zhuorong Zhan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Haiyang Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Wang C, Zhao Q, Chen C, Li J, Zhang J, Qu S, Tang H, Zeng H, Zhang Y. CD301b + macrophage: the new booster for activating bone regeneration in periodontitis treatment. Int J Oral Sci 2023; 15:19. [PMID: 37198150 DOI: 10.1038/s41368-023-00225-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023] Open
Abstract
Periodontal bone regeneration is a major challenge in the treatment of periodontitis. Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed by inflammation, via conventional treatment. CD301b+ macrophages were recently identified as a subpopulation that is characteristic of a regenerative environment, but their role in periodontal bone repair has not been reported. The current study indicates that CD301b+ macrophages may be a constituent component of periodontal bone repair, and that they are devoted to bone formation in the resolving phase of periodontitis. Transcriptome sequencing suggested that CD301b+ macrophages could positively regulate osteogenesis-related processes. In vitro, CD301b+ macrophages could be induced by interleukin 4 (IL-4) unless proinflammatory cytokines such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were present. Mechanistically, CD301b+ macrophages promoted osteoblast differentiation via insulin-like growth factor 1 (IGF-1)/thymoma viral proto-oncogene 1 (Akt)/mammalian target of rapamycin (mTOR) signaling. An osteogenic inducible nano-capsule (OINC) consisting of a gold nanocage loaded with IL-4 as the "core" and mouse neutrophil membrane as the "shell" was designed. When injected into periodontal tissue, OINCs first absorbed proinflammatory cytokines in inflamed periodontal tissue, then released IL-4 controlled by far-red irradiation. These events collectively promoted CD301b+ macrophage enrichment, which further boosted periodontal bone regeneration. The current study highlights the osteoinductive role of CD301b+ macrophages, and suggests a CD301b+ macrophage-targeted induction strategy based on biomimetic nano-capsules for improved therapeutic efficacy, which may also provide a potential therapeutic target and strategy for other inflammatory bone diseases.
Collapse
Affiliation(s)
- Can Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaojiao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuyuan Qu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hua Tang
- Institute of Infection and Immunity, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Bai L, Liu Y, Zhang X, Chen P, Hang R, Xiao Y, Wang J, Liu C. Osteoporosis remission via an anti-inflammaging effect by icariin activated autophagy. Biomaterials 2023; 297:122125. [PMID: 37058900 DOI: 10.1016/j.biomaterials.2023.122125] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
The pace of bone formation slows down with aging, which leads to the development of osteoporosis. In addition to senescent bone marrow mesenchymal stem cells (S-BMSCs), senescent macrophages (S-MΦs) present in the bone marrow produce numerous inflammatory cytokines that contribute to the inflammaged microenvironment and are involved in the development of osteoporosis. Although autophagy activation has shown a significant anti-aging effect, its influence on inflammaging and its role in osteoporosis treatment remain unclear. Traditional Chinese herbal medicine contains bioactive components that exhibit remarkable advantages in bone regeneration. We have demonstrated that icariin (ICA), a bioactive component of traditional Chinese herbal medicine, activates autophagy, exerts a significant anti-inflammaging effect on S-MΦs, and rejuvenates osteogenesis of S-BMSCs, thereby alleviating bone loss in osteoporotic mice. The transcriptomic analysis further reveals that the TNF-α signaling pathway, which is significantly associated with the level of autophagy, regulates this effect. Moreover, the expression of senescence-associated secretory phenotype (SASP) is significantly reduced after ICA treatment. In summary, our findings suggest that bioactive components/materials targeting autophagy can effectively modulate the inflammaging of S-MΦs, offering an innovative treatment strategy for osteoporosis remission and various age-related comorbidities.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanpeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohui Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia.
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
31
|
Orvalho JM, Fernandes JCH, Moraes Castilho R, Fernandes GVO. The Macrophage’s Role on Bone Remodeling and Osteogenesis: a Systematic Review. Clin Rev Bone Miner Metab 2023. [DOI: 10.1007/s12018-023-09286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
32
|
McColl LF, Chen X, Solga MD, Schlegel K, Haughey SP, Lobo PI, Fread K, Zunder E, Cha R, Park S, Christophel JJ, Cui Q, Dighe AS. BMP-6 promotes type 2 immune response during enhancement of rat mandibular bone defect healing. Front Immunol 2023; 14:1064238. [PMID: 36845161 PMCID: PMC9950738 DOI: 10.3389/fimmu.2023.1064238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Bone morphogenetic proteins (BMPs) are used as key therapeutic agents for the treatment of difficult fractures. While their effects on osteoprogenitors are known, little is known about their effects on the immune system. Methods We used permutations of BMP-6 (B), vascular endothelial growth factor (V), and Hedgehog signaling pathway activator smoothened agonist (S), to treat a rat mandibular defect and investigated healing outcomes at week 8, in correlation with the cellular landscape of the immune cells in the fracture callus at week 2. Results Maximum recruitment of immune cells to the fracture callus is known to occur at week 2. While the control, S, V, and VS groups remained as nonunions at week 8; all BMP-6 containing groups - B, BV, BS and BVS, showed near-complete to complete healing. This healing pattern was strongly associated with significantly higher ratios of CD4 T (CD45+CD3+CD4+) to putative CD8 T cells (CD45+CD3+CD4-), in groups treated with any permutation of BMP-6. Although, the numbers of putative M1 macrophages (CD45+CD3-CD11b/c+CD38high) were significantly lower in BMP-6 containing groups in comparison with S and VS groups, percentages of putative - Th1 cells or M1 macrophages (CD45+CD4+IFN-γ+) and putative - NK, NKT or cytotoxic CD8T cells (CD45+CD4-IFN-γ+) were similar in control and all treatment groups. Further interrogation revealed that the BMP-6 treatment promoted type 2 immune response by significantly increasing the numbers of CD45+CD3-CD11b/c+CD38low putative M2 macrophages, putative - Th2 cells or M2 macrophages (CD45+CD4+IL-4+) cells and putative - mast cells, eosinophils or basophils (CD45+CD4-IL-4+ cells). CD45- non-haematopoietic fractions of cells which encompass all known osteoprogenitor stem cells populations, were similar in control and treatment groups. Discussion This study uncovers previously unidentified regulatory functions of BMP-6 and shows that BMP-6 enhances fracture healing by not only acting on osteoprogenitor stem cells but also by promoting type 2 immune response.
Collapse
Affiliation(s)
- Logan F. McColl
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Xizhao Chen
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Michael D. Solga
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, United States
| | - Kailo Schlegel
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Sean P. Haughey
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Peter I. Lobo
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Kristen Fread
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eli Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ryan Cha
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Stephen Park
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - J. Jared Christophel
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Quanjun Cui
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Abhijit S. Dighe
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States,*Correspondence: Abhijit S. Dighe,
| |
Collapse
|
33
|
Frade BB, Dias RB, Gemini Piperni S, Bonfim DC. The role of macrophages in fracture healing: a narrative review of the recent updates and therapeutic perspectives. Stem Cell Investig 2023; 10:4. [PMID: 36817259 PMCID: PMC9936163 DOI: 10.21037/sci-2022-038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
Objective This review addresses the latest advances in research on the role of macrophages in fracture healing, exploring their relationship with failures in bone consolidation and the perspectives for the development of advanced and innovative therapies to promote bone regeneration. Background The bone can fully restore its form and function after a fracture. However, the regenerative process of fracture healing is complex and is influenced by several factors, including macrophage activity. These cells have been found in the fracture site at all stages of bone regeneration, and their general depletion or the knockdown of receptors that mediate their differentiation, polarization, and/or function result in impaired fracture healing. Methods The literature search was carried out in the PubMed database, using combinations of the keywords "macrophage", "fracture healing, "bone regeneration", and "bone repair". Articles published within the last years (2017-2022) reporting evidence from in vivo long bone fracture healing experiments were included. Conclusions Studies published in the last five years on the role of macrophages in fracture healing strengthened the idea that what appears to be essential when it comes to a successful consolidation is the right balance between the M1/M2 populations, which have different but complementary roles in the process. These findings opened promising new avenues for the development of several macrophage-targeted therapies, including the administration of molecules and/or biomaterials intended to regulate macrophage differentiation and polarization, the local transplantation of macrophage precursors, and the use of exosomes to deliver signaling molecules that influence macrophage activities. However, more research is still warranted to better understand the diversity of macrophage phenotypes and their specific roles in each step of fracture healing and to decipher the key molecular mechanisms involved in the in vivo crosstalk between macrophages and other microenvironmental cell types, such as endothelial and skeletal stem/progenitor cells.
Collapse
Affiliation(s)
- Bianca Braga Frade
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;,Postgraduation Program in Biological Sciences-Biophysics, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rhayra Braga Dias
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;,Postgraduation Program in Morphological Sciences, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Gemini Piperni
- Laboratory of Biotechnology, Bioengineering and Nanostructured Biomaterials, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Cabral Bonfim
- Laboratory of Stem Cells and Bone Regeneration, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Research Progress of Macrophages in Bone Regeneration. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/1512966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bone tissue regeneration plays an increasingly important role in contemporary clinical treatment. The reconstruction of bone defects remains a huge challenge for clinicians. Bone regeneration is regulated by the immune system, in which inflammation is an important regulating factor in bone formation and remodeling. As the main cells involved in inflammation, macrophages play a key role in osteogenesis by polarizing into different phenotypes during different stages of bone regeneration. Considering this, this review mainly summarizes the function of macrophage in bone regeneration based on mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, and vascular cells. In conclusion, anti-inflammatory macrophages (M2) have a greater potentiality to promote bone regeneration than M0 and classically activated proinflammatory macrophages (M1). In the fracture and bone defect models, tissue engineering materials can induce the transition from M1 to M2, alter the bone microenvironment, and promote bone regeneration through interactions with bone-related cells and blood vessels. The review provides a further understanding of macrophage polarization behavior in the evolving field of bone immunology.
Collapse
|
35
|
Liu J, Lane S, Lall R, Russo M, Farrell L, Debreli Coskun M, Curtin C, Araujo-Gutierrez R, Scherrer-Crosbie M, Trachtenberg BH, Kim J, Tolosano E, Ghigo A, Gerszten RE, Asnani A. Circulating hemopexin modulates anthracycline cardiac toxicity in patients and in mice. SCIENCE ADVANCES 2022; 8:eadc9245. [PMID: 36563141 PMCID: PMC9788780 DOI: 10.1126/sciadv.adc9245] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Anthracyclines such as doxorubicin (Dox) are effective chemotherapies, but their use is limited by cardiac toxicity. We hypothesized that plasma proteomics in women with breast cancer could identify new mechanisms of anthracycline cardiac toxicity. We measured changes in 1317 proteins in anthracycline-treated patients (n = 30) and replicated key findings in a second cohort (n = 31). An increase in the heme-binding protein hemopexin (Hpx) 3 months after anthracycline initiation was associated with cardiac toxicity by echocardiography. To assess the functional role of Hpx, we administered Hpx to wild-type (WT) mice treated with Dox and observed improved cardiac function. Conversely, Hpx-/- mice demonstrated increased Dox cardiac toxicity compared to WT mice. Initial mechanistic studies indicate that Hpx is likely transported to the heart by circulating monocytes/macrophages and that Hpx may mitigate Dox-induced ferroptosis to confer cardioprotection. Together, these observations suggest that Hpx induction represents a compensatory response during Dox treatment.
Collapse
Affiliation(s)
- Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Lane
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rahul Lall
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Melis Debreli Coskun
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Casie Curtin
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Raquel Araujo-Gutierrez
- Division of Advanced Heart Failure and Transplantation, Houston Methodist Heart and Vascular Center, Houston, TX, USA
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Barry H. Trachtenberg
- Division of Advanced Heart Failure and Transplantation, Houston Methodist Heart and Vascular Center, Houston, TX, USA
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Lee DE, McKay LK, Bareja A, Li Y, Khodabukus A, Bursac N, Taylor GA, Baht GS, White JP. Meteorin-like is an injectable peptide that can enhance regeneration in aged muscle through immune-driven fibro/adipogenic progenitor signaling. Nat Commun 2022; 13:7613. [PMID: 36494364 PMCID: PMC9734561 DOI: 10.1038/s41467-022-35390-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Pathologies associated with sarcopenia include decline in muscular strength, lean mass and regenerative capacity. Despite the substantial impact on quality of life, no pharmacological therapeutics are available to counteract the age-associated decline in functional capacity and/or, resilience. Evidence suggests immune-secreted cytokines can improve muscle regeneration, a strategy which we leverage in this study by rescuing the age-related deficiency in Meteorin-like through several in vivo add-back models. Notably, the intramuscular, peptide injection of recombinant METRNL was sufficient to improve muscle regeneration in aging. Using ex vivo media exchange and in vivo TNF inhibition, we demonstrate a mechanism of METRNL action during regeneration, showing it counteracts a pro-fibrotic gene program by triggering TNFα-induced apoptosis of fibro/adipogenic progenitor cells. These findings demonstrate therapeutic applications for METRNL to improve aged muscle, and show Fibro/Adipogenic Progenitors are viable therapeutic targets to counteract age-related loss in muscle resilience.
Collapse
Affiliation(s)
- David E Lee
- Department of Medicine, Division of Hematology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Lauren K McKay
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Akshay Bareja
- Department of Medicine, Division of Hematology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Yongwu Li
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Gregory A Taylor
- Geriatric Research, Education, and Clinical Center, VA Health Care System, Durham, NC, 27701, USA
- Department of Medicine, Division of Geriatrics, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - James P White
- Department of Medicine, Division of Hematology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, 27701, USA.
| |
Collapse
|
37
|
Feng H, Jiang B, Xing W, Sun J, Greenblatt MB, Zou W. Skeletal stem cells: origins, definitions, and functions in bone development and disease. LIFE MEDICINE 2022; 1:276-293. [PMID: 36811112 PMCID: PMC9938638 DOI: 10.1093/lifemedi/lnac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Skeletal stem cells (SSCs) are tissue-specific stem cells that can self-renew and sit at the apex of their differentiation hierarchy, giving rise to mature skeletal cell types required for bone growth, maintenance, and repair. Dysfunction in SSCs is caused by stress conditions like ageing and inflammation and is emerging as a contributor to skeletal pathology, such as the pathogenesis of fracture nonunion. Recent lineage tracing experiments have shown that SSCs exist in the bone marrow, periosteum, and resting zone of the growth plate. Unraveling their regulatory networks is crucial for understanding skeletal diseases and developing therapeutic strategies. In this review, we systematically introduce the definition, location, stem cell niches, regulatory signaling pathways, and clinical applications of SSCs.
Collapse
Affiliation(s)
- Heng Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Research Division, Hospital for Special Surgery, New York, NY 10065, USA
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
38
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
39
|
Chang S, Wang J, Xu N, Wang S, Cai H, Liu Z, Wang X. Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration. Gels 2022; 8:745. [PMID: 36421567 PMCID: PMC9690256 DOI: 10.3390/gels8110745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
The significant efforts being made towards the utilization of artificial soft materials holds considerable promise for developing tissue engineering scaffolds for bone-related diseases in clinics. However, most of these biomaterials cannot simultaneously satisfy the multiple requirements of high mechanics, good compatibility, and biological osteogenesis. In this study, an osteogenic hybrid hydrogel between the amine-functionalized bioactive glass (ABG) and 4-armed poly(ethylene glycol) succinimidyl glutarate-gelatin network (SGgel) is introduced to flexibly adhere onto the defective tissue and to subsequently guide bone regeneration. Relying on the rapid ammonolysis reaction between amine groups (-NH2) of gelatin and ABG components and N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer, the hydrogel networks were formed within seconds, offering a multifunctional performance, including easy injection, favorable biocompatibility, biological and mechanical properties (compressive strength: 4.2 MPa; storage modulus: 104 kPa; adhesive strength: 56 kPa), which could facilitate the stem cell viability, proliferation, migration and differentiation into osteocytes. In addition, the integration between the SGgel network and ABG moieties within a nano-scale level enabled the hybrid hydrogel to form adhesion to tissue, maintain the durable osteogenesis and accelerate bone regeneration. Therefore, a robust approach to the simultaneously satisfying tough adhesion onto the tissue defects and high efficiency for bone regeneration on a mouse skull was achieved, which may represent a promising strategy to design therapeutic scaffolds for tissue engineering in clinical applications.
Collapse
Affiliation(s)
- Shuai Chang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiedong Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nanfang Xu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Shaobo Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Huang R, Balu AR, Molitoris KH, White JP, Robling AG, Ayturk UM, Baht GS. The role of Meteorin-like in skeletal development and bone fracture healing. J Orthop Res 2022; 40:2510-2521. [PMID: 35076116 PMCID: PMC9309188 DOI: 10.1002/jor.25286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023]
Abstract
Meteorin-like protein (Metrnl), homologous to the initially identified neurotrophic factor Meteorin, is a secreted, multifunctional protein. Here we used mouse models to investigate Metrnl's role in skeletal development and bone fracture healing. During development Metrnl was expressed in the perichondrium and primary ossification center. In neonates, single cell RNA-seq of diaphyseal bone demonstrated strongest expression of Metrnl transcript by osteoblasts. In vitro, Metrnl was osteoinductive, increasing osteoblast differentiation and mineralization in tissue culture models. In vivo, loss of Metrnl expression resulted in no change in skeletal metrics in utero, at birth, or during postnatal growth. Six-week-old Metrnl-null mice displayed similar body length, body weight, tibial length, femoral length, BV/TV, trabecular number, trabecular thickness, and cortical thickness as littermate controls. In 4-month-old mice, lack of Metrnl expression did not change structural stiffness, ultimate force, or energy to fracture of femora under 3-point-bending. Last, we investigated the role of Metrnl in bone fracture healing. Metrnl expression increased in response to tibial injury, however, loss of Metrnl expression did not affect the amount of bone deposited within the healing tissue nor did it change the structural parameters of healing tissue. This work identifies Metrnl as a dispensable molecule for skeletal development. However, the osteoinductive capabilities of Metrnl may be utilized to modulate osteoblast differentiation in cell-based orthopedic therapies.
Collapse
Affiliation(s)
- Rong Huang
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA,Department of Orthopaedic SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - Abhinav R. Balu
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA,Department of Orthopaedic SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - Kristin H. Molitoris
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA,Department of Orthopaedic SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - James P. White
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA
| | - Alexander G. Robling
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ugur M. Ayturk
- Department of ResearchHospital for Special SurgeryNew York CityNew YorkUSA,Department of Orthopaedic SurgeryWeill Cornell MedicineNew York CityNew YorkUSA
| | - Gurpreet S. Baht
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA,Department of Orthopaedic SurgeryDuke UniversityDurhamNorth CarolinaUSA,Department of PathologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
41
|
Nadine S, Fernandes I, Patrício SG, Correia CR, Mano JF. Liquefied Microcapsules Compartmentalizing Macrophages and Umbilical Cord-Derived Cells for Bone Tissue Engineering. Adv Healthc Mater 2022; 11:e2200651. [PMID: 35904030 DOI: 10.1002/adhm.202200651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/22/2022] [Indexed: 01/28/2023]
Abstract
Extraordinary capabilities underlie the potential use of immune cells, particularly macrophages, in bone tissue engineering. Indeed, the depletion of macrophages during bone repair often culminates in disease scenarios. Inspired by the native dynamics between immune and skeletal systems, this work proposes a straightforward in vitro method to bioengineer biomimetic bone niches using biological waste. For that, liquefied and semipermeable reservoirs generated by electrohydrodynamic atomization and layer-by-layer techniques are developed to coculture umbilical cord-derived human cells, namely monocyte-derived macrophages, mesenchymal-derived stromal cells (MSCs), and human umbilical vein endothelial cells (HUVECs). Poly(ε-caprolactone) microparticles are also added to the liquefied core to act as cell carriers. The fabricated microcapsules grant the successful development of viable microtissues, ensuring the high diffusion of bioactive factors. Interestingly, macrophages within the bioengineered microcapsules increase the release of osteocalcin, osteoprotegerin, and vascular endothelial growth factor. The cytokines profile variation indicates macrophages' polarization into a prohealing phenotype. Altogether, the incorporation of macrophages within the fabricated microcapsules allows to recreate an appropriate bone microenvironment for developing new bone mineralized microtissues. The proposed bioencapsulation protocol is a powerful self-regulated system, which might find great applicability in bone tissue engineering based on bottom-up approaches or disease modeling.
Collapse
Affiliation(s)
- Sara Nadine
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Inês Fernandes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Sónia G Patrício
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Clara R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
42
|
Chang S, Li C, Xu N, Wang J, Jing Z, Cai H, Tian Y, Wang S, Liu Z, Wang X. A sustained release of alendronate from an injectable tetra-PEG hydrogel for efficient bone repair. Front Bioeng Biotechnol 2022; 10:961227. [PMID: 36177182 PMCID: PMC9513246 DOI: 10.3389/fbioe.2022.961227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023] Open
Abstract
Significant efforts on construction of smart drug delivery for developing minimally invasive gelling system to prolong local delivery of bisphosphonates are considered as promising perspectives for the bone-related diseases, which provide the hydrogels with unique bioactivities for bone repair in clinic. Herein, we have constructed an alendronate (ALN)-conjoined injectable tetra-PEG hydrogel with excellent biocompatibility, uniform network, and favorable mechanical properties in one-pot strategy. In views of the quick ammonolysis reaction between N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG and amine groups of tetra-PEG-NH2 polymer and ALN molecules, the uniform networks were formed within seconds along with the easy injection, favorable biocompatibility and mechanical properties for hydrogel scaffolds. On account of the simultaneous physical encapsulation and chemical linkage of the ALN within the hydrogels, the ALN-conjoined tetra-PEG hydrogel exhibited a sustained drug release delivery that could persistently and effectively facilitate viability, growth, proliferation, and osteogenesis differentiation of stem cells, thereby allowing the consequent adaptation of hydrogels into the bone defects with irregular shapes, which endowed the ALN-conjoined tetra-PEG hydrogel with depot formulation capacity for governing the on-demand release of ALN drugs. Consequently, the findings imply that these drug-based tetra-PEG hydrogels mediate optimal release of therapeutic cargoes and effective promotion of in situ bone regeneration, which will be broadly utilized as therapeutic scaffolds in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shuai Chang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Chao Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Nanfang Xu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Jiedong Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Shaobo Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhongjun Liu, ; Xing Wang,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhongjun Liu, ; Xing Wang,
| |
Collapse
|
43
|
Lu YN, Wang L, Zhang YZ. The promising roles of macrophages in geriatric hip fracture. Front Cell Dev Biol 2022; 10:962990. [PMID: 36092716 PMCID: PMC9458961 DOI: 10.3389/fcell.2022.962990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
As aging becomes a global burden, the incidence of hip fracture (HF), which is the most common fracture in the elderly population and can be fatal, is rapidly increasing, and its extremely high fatality rate places significant medical and financial burdens on patients. Fractures trigger a complex set of immune responses, and recent studies have shown that with aging, the immune system shows decreased activity or malfunctions in a process known as immune senescence, leading to disease and death. These phenomena are the reasons why elderly individuals typically exhibit chronically low levels of inflammation and increased rates of infection and chronic disease. Macrophages, which are key players in the inflammatory response, are critical in initiating the inflammatory response, clearing pathogens, controlling the innate and adaptive immune responses and repairing damaged tissues. Tissue-resident macrophages (TRMs) are widely present in tissues and perform immune sentinel and homeostatic functions. TRMs are combinations of macrophages with different functions and phenotypes that can be directly influenced by neighboring cells and the microenvironment. They form a critical component of the first line of defense in all tissues of the body. Immune system disorders caused by aging could affect the biology of macrophages and thus the cascaded immune response after fracture in various ways. In this review, we outline recent studies and discuss the potential link between monocytes and macrophages and their potential roles in HF in elderly individuals.
Collapse
Affiliation(s)
- Yi-ning Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| | - Ying-ze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| |
Collapse
|
44
|
Zhang X, Baht GS, Huang R, Chen Y, Molitoris KH, Miller SE, Kraus VB. Rejuvenation of neutrophils and their extracellular vesicles is associated with enhanced aged fracture healing. Aging Cell 2022; 21:e13651. [PMID: 35657721 PMCID: PMC9282841 DOI: 10.1111/acel.13651] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
Tissue repair is negatively affected by advanced age. Recent evidence indicates that hematopoietic cell-derived extracellular vesicles (EVs) are modulators of regenerative capacity. Here, we report that plasma EVs carrying specific surface markers indicate the degree of age-associated immunosenescence; moreover, this immunosenescence phenotype was accentuated by fracture injury. The number of CD11b+ Ly6Cintermediate Ly6Ghigh neutrophils significantly decreased with age in association with defective tissue regeneration. In response to fracture injury, the frequencies of neutrophils and associated plasma EVs were significantly higher in fracture calluses than in peripheral blood. Exposure of aged mice to youthful circulation through heterochronic parabiosis increased the number of neutrophils and their correlated Ly6G+ plasma EVs, which were associated with improved fracture healing in aged mice of heterochronic parabiosis pairs. Our findings create a foundation for utilizing specific immune cells and EV subsets as potential biomarkers and therapeutic strategies to promote resilience to stressors during aging.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Gurpreet Singh Baht
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Rong Huang
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Yu‐Hsiu Chen
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Kristin Happ Molitoris
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Sara E. Miller
- Department of PathologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Electron Microscopy and Nanoscale Technology, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Orthopaedic Surgery, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
- Department of Medicine, Duke University School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
45
|
Yang Y, Chu C, Xiao W, Liu L, Man Y, Lin J, Qu Y. Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomed Mater 2022; 17. [PMID: 35168224 DOI: 10.1088/1748-605x/ac5572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
The usage of bone substitute granule materials has improved the clinical results of alveolar bone deficiencies treatment and thus broadened applications in implant dentistry. However, because of the complicated mechanisms controlling the foreign body response, no perfect solution can avoid the fibrotic encapsulation of materials till now, which may impair the results of bone regeneration, even cause the implant materials rejection. Recently, the concept of 'osteoimmunology' has been stressed. The outcomes of bone regeneration are proved to be related to the bio-physicochemical properties of biomaterials, which allow them to regulate the biological behaviours of both innate and adaptive immune cells. With the development of single cell transcriptome, the truly heterogeneity of osteo-immune cells has been clarifying, which is helpful to overcome the limitations of traditional M1/M2 macrophage nomenclature and drive the advancements of particulate biomaterials applications. This review aims at introducing the mechanisms of optimal osseointegration regulated by immune systems and provides feasible strategies for the design of next generation 'osteoimmune-smart' particulate bone substitute materials in dental clinic.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenyu Chu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenlan Xiao
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Man
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jie Lin
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yili Qu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
46
|
Shirato K, Sato S. Macrophage Meets the Circadian Clock: Implication of the Circadian Clock in the Role of Macrophages in Acute Lower Respiratory Tract Infection. Front Cell Infect Microbiol 2022; 12:826738. [PMID: 35281442 PMCID: PMC8904936 DOI: 10.3389/fcimb.2022.826738] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The circadian rhythm is a biological system that creates daily variations of physiology and behavior with a 24-h cycle, which is precisely controlled by the molecular circadian clock. The circadian clock dominates temporal activity of physiological homeostasis at the molecular level, including endocrine secretion, metabolic, immune response, coupled with extrinsic environmental cues (e.g., light/dark cycles) and behavioral cues (e.g., sleep/wake cycles and feeding/fasting cycles). The other side of the clock is that the misaligned circadian rhythm contributes to the onset of a variety of diseases, such as cancer, metabolic diseases, and cardiovascular diseases, the acceleration of aging, and the development of systemic inflammation. The role played by macrophages is a key mediator between circadian disruption and systemic inflammation. At the molecular level, macrophage functions are under the direct control of the circadian clock, and thus the circadian misalignment remodels the phenotype of macrophages toward a ‘killer’ mode. Remarkably, the inflammatory macrophages induce systemic and chronic inflammation, leading to the development of inflammatory diseases and the dampened immune defensive machinery against infectious diseases such as COVID-19. Here, we discuss how the circadian clock regulates macrophage immune functions and provide the potential risk of misaligned circadian rhythms against inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, Mitaka, Japan
| | - Shogo Sato
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, United States
- *Correspondence: Shogo Sato,
| |
Collapse
|
47
|
Yang J, Zhang X, Chen J, Heng BC, Jiang Y, Hu X, Ge Z. Macrophages promote cartilage regeneration in a time- and phenotype-dependent manner. J Cell Physiol 2022; 237:2258-2270. [PMID: 35147979 DOI: 10.1002/jcp.30694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Immune regulation of osteochondral defect regeneration has not yet been rigorously characterized. Although macrophages have been demonstrated to regulate the regeneration process in various tissues, their direct contribution to cartilage regeneration remains to be investigated, particularly the functions of polarized macrophage subpopulations. In this study, we investigated the origins and functions of macrophages during healing of osteochondral injury in the murine model. Upon osteochondral injury, joint macrophages are predominantly derived from circulating monocytes. Macrophages are essential for spontaneous cartilage regeneration in juvenile C57BL/6 mice, by modulating proliferation and apoptosis around the injury site. Exogeneous macrophages also exhibit therapeutic potential in promoting cartilage regeneration in adult mice with poor regenerative capacity, possibly via regulation of PDGFRα+ stem cells, with this process being influenced by initial phenotype and administration timing. Only M2c macrophages are able to promote regeneration of both cartilage tissues and subchondral bone. Overall, we reveal the direct link between macrophages and osteochondral regeneration and highlight the key roles of relevant immunological niches in successful regeneration.
Collapse
Affiliation(s)
- Jiabei Yang
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Xuewei Zhang
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Jiaqing Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| | | | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Centre for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Zigang Ge
- Department of Biomedical Engineering, Peking University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
48
|
Xu H, Zhang S, Sathe AA, Jin Z, Guan J, Sun W, Xing C, Zhang H, Yan B. CCR2 + Macrophages Promote Orthodontic Tooth Movement and Alveolar Bone Remodeling. Front Immunol 2022; 13:835986. [PMID: 35185928 PMCID: PMC8854866 DOI: 10.3389/fimmu.2022.835986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
During mechanical force-induced alveolar bone remodeling, macrophage-mediated local inflammation plays a critical role. Yet, the detailed heterogeneity of macrophages is still unknown. Single-cell RNA sequencing was used to study the transcriptome heterogeneity of macrophages during alveolar bone remodeling. We identified macrophage subclusters with specific gene expression profiles and functions. CellChat and trajectory analysis revealed a central role of the Ccr2 cluster during development, with the CCL signaling pathway playing a crucial role. We further demonstrated that the Ccr2 cluster modulated bone remodeling associated inflammation through an NF-κB dependent pathway. Blocking CCR2 could significantly reduce the Orthodontic tooth movement (OTM) progression. In addition, we confirmed the variation of CCR2+ macrophages in human periodontal tissues. Our findings reveal that mechanical force-induced functional shift of the Ccr2 macrophages cluster mediated by NF-κB pathway, leading to a pro-inflammatory response and bone remodeling. This macrophage cluster may represent a potential target for the manipulation of OTM.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shuting Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jiani Guan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
49
|
Zhao R, Jin X, Li A, Xu B, Shen Y, Wang W, Huang J, Zhang Y, Li X. Precise Diabetic Wound Therapy: PLS Nanospheres Eliminate Senescent Cells via DPP4 Targeting and PARP1 Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104128. [PMID: 34738744 PMCID: PMC8728814 DOI: 10.1002/advs.202104128] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 05/14/2023]
Abstract
Diabetic ulcers, a difficult problem faced by clinicians, are strongly associated with an increase in cellular senescence. Few empirical studies have focused on exploring a targeted strategy to cure diabetic wounds by eliminating senescent fibroblasts (SFs) and reducing side effects. In this study, poly-l-lysine/sodium alginate (PLS) is modified with talabostat (PT100) and encapsulates a PARP1 plasmid (PARP1@PLS-PT100) for delivery to target the dipeptidyl peptidase 4 (DPP4) receptor and eliminate SFs. PARP1@PLS-PT100 releases encapsulated plasmids, displaying high selectivity for SFs over normal fibroblasts by targeting the DPP4 receptor, decreasing senescence-associated secretory phenotypes (SASPs), and stimulating the secretion of anti-inflammatory factors. Furthermore, the increased apoptosis of SFs and the disappearance of cellular senescence alleviates SASPs, accelerates re-epithelialization and collagen deposition, and significantly induces macrophage M2 polarization, which mediates tissue repair and the inflammatory response. This innovative strategy has revealed the previously undefined role of PARP1@PLS-PT100 in promoting diabetic wound healing, suggesting its therapeutic potential in refractory wound repair.
Collapse
Affiliation(s)
- Renliang Zhao
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Xiangyun Jin
- Department of Orthopedic TraumaRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Ang Li
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Bitong Xu
- Department of SpineCenter for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Yifan Shen
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Wei Wang
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jinghuan Huang
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yadong Zhang
- Department of SpineCenter for Orthopaedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Xiaolin Li
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
50
|
Okada K, Kawao N, Nakai D, Wakabayashi R, Horiuchi Y, Okumoto K, Kurashimo S, Takafuji Y, Matsuo O, Kaji H. Role of Macrophages and Plasminogen Activator Inhibitor-1 in Delayed Bone Repair Induced by Glucocorticoids in Mice. Int J Mol Sci 2022; 23:478. [PMID: 35008904 PMCID: PMC8745285 DOI: 10.3390/ijms23010478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids delay fracture healing and induce osteoporosis. However, the mechanisms by which glucocorticoids delay bone repair have yet to be clarified. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. We herein investigated the roles of macrophages in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered with dexamethasone (Dex). Dex significantly decreased the number of F4/80-positive macrophages at the damaged site two days after femoral bone injury. It also attenuated bone injury-induced decreases in the number of hematopoietic stem cells in bone marrow in wild-type and PAI-1-deficient mice. PAI-1 deficiency significantly weakened Dex-induced decreases in macrophage number and macrophage colony-stimulating factor (M-CSF) mRNA levels at the damaged site two days after bone injury. It also significantly ameliorated the Dex-induced inhibition of macrophage phagocytosis at the damaged site. In conclusion, we herein demonstrated that Dex decreased the number of macrophages at the damaged site during early bone repair after femoral bone injury partly through PAI-1 and M-CSF in mice.
Collapse
Affiliation(s)
- Kiyotaka Okada
- Department of Arts and Sciences, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan;
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan; (N.K.); (D.N.); (R.W.); (Y.T.); (O.M.)
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan; (N.K.); (D.N.); (R.W.); (Y.T.); (O.M.)
| | - Daisho Nakai
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan; (N.K.); (D.N.); (R.W.); (Y.T.); (O.M.)
| | - Rei Wakabayashi
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan; (N.K.); (D.N.); (R.W.); (Y.T.); (O.M.)
| | - Yoshitaka Horiuchi
- Life Science Research Institute, Kindai University, Osaka 589-8511, Japan; (Y.H.); (K.O.); (S.K.)
| | - Katsumi Okumoto
- Life Science Research Institute, Kindai University, Osaka 589-8511, Japan; (Y.H.); (K.O.); (S.K.)
| | - Shinji Kurashimo
- Life Science Research Institute, Kindai University, Osaka 589-8511, Japan; (Y.H.); (K.O.); (S.K.)
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan; (N.K.); (D.N.); (R.W.); (Y.T.); (O.M.)
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan; (N.K.); (D.N.); (R.W.); (Y.T.); (O.M.)
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan; (N.K.); (D.N.); (R.W.); (Y.T.); (O.M.)
| |
Collapse
|