1
|
Wei M, Wang X, Qiao Y. Multiphase coacervates: mimicking complex cellular structures through liquid-liquid phase separation. Chem Commun (Camb) 2024; 60:13169-13178. [PMID: 39439431 DOI: 10.1039/d4cc04533e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coacervate microdroplets, arising from liquid-liquid phase separation, have emerged as promising models for primary cells, demonstrating the ability to regulate biomolecular enrichment, create chemical gradients, accelerate confined reactions, and even express proteins. Notably, multiphase coacervation provides a robust framework to replicate hierarchically complex cellular structures, offering valuable insights into cellular organization and function. In this review, we explore the recent advancements in the study of multiphase coacervates, focusing on design strategies, underlying mechanisms, structural control, and their applications in biomimetics. These developments highlight the potential of multiphase coacervates as powerful tools in the field of synthetic biology and material science.
Collapse
Affiliation(s)
- Minghao Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Mukherjee S, Schäfer LV. Heterogeneous Slowdown of Dynamics in the Condensate of an Intrinsically Disordered Protein. J Phys Chem Lett 2024:11244-11251. [PMID: 39486437 DOI: 10.1021/acs.jpclett.4c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The high concentration of proteins and other biological macromolecules inside biomolecular condensates leads to dense and confined environments, which can affect the dynamic ensembles and the time scales of the conformational transitions. Here, we use atomistic molecular dynamics (MD) simulations of the intrinsically disordered low complexity domain (LCD) of the human fused in sarcoma (FUS) RNA-binding protein to study how self-crowding inside a condensate affects the dynamic motions of the protein. We found a heterogeneous retardation of the protein dynamics in the condensate with respect to the dilute phase, with large-amplitude motions being strongly slowed by up to 2 orders of magnitude, whereas small-scale motions, such as local backbone fluctuations and side-chain rotations, are less affected. The results support the notion of a liquid-like character of the condensates and show that different protein motions respond differently to the environment.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
3
|
Wadsworth GM, Srinivasan S, Lai LB, Datta M, Gopalan V, Banerjee PR. RNA-driven phase transitions in biomolecular condensates. Mol Cell 2024; 84:3692-3705. [PMID: 39366355 DOI: 10.1016/j.molcel.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
RNAs and RNA-binding proteins can undergo spontaneous or active condensation into phase-separated liquid-like droplets. These condensates are cellular hubs for various physiological processes, and their dysregulation leads to diseases. Although RNAs are core components of many cellular condensates, the underlying molecular determinants for the formation, regulation, and function of ribonucleoprotein condensates have largely been studied from a protein-centric perspective. Here, we highlight recent developments in ribonucleoprotein condensate biology with a particular emphasis on RNA-driven phase transitions. We also present emerging future directions that might shed light on the role of RNA condensates in spatiotemporal regulation of cellular processes and inspire bioengineering of RNA-based therapeutics.
Collapse
Affiliation(s)
- Gable M Wadsworth
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Sukanya Srinivasan
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Lien B Lai
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Moulisubhro Datta
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Priya R Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Codispoti S, Yamaguchi T, Makarov M, Giacobelli VG, Mašek M, Kolář MH, Sanchez Rocha AC, Fujishima K, Zanchetta G, Hlouchová K. The interplay between peptides and RNA is critical for protoribosome compartmentalization and stability. Nucleic Acids Res 2024:gkae823. [PMID: 39340303 DOI: 10.1093/nar/gkae823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The ribosome, owing to its exceptional conservation, harbours a remarkable molecular fossil known as the protoribosome. It surrounds the peptidyl transferase center (PTC), responsible for peptide bond formation. While previous studies have demonstrated the PTC activity in RNA alone, our investigation reveals the intricate roles of the ribosomal protein fragments (rPeptides) within the ribosomal core. This research highlights the significance of rPeptides in stability and coacervation of two distinct protoribosomal evolutionary stages. The 617nt 'big' protoribosome model, which associates with rPeptides specifically, exhibits a structurally defined and rigid nature, further stabilized by the peptides. In contrast, the 136nt 'small' model, previously linked to peptidyltransferase activity, displays greater structural flexibility. While this construct interacts with rPeptides with lower specificity, they induce coacervation of the 'small' protoribosome across a wide concentration range, which is concomitantly dependent on the RNA sequence and structure. Moreover, these conditions protect RNA from degradation. This phenomenon suggests a significant evolutionary advantage in the RNA-protein interaction at the early stages of ribosome evolution. The distinct properties of the two protoribosomal stages suggest that rPeptides initially provided compartmentalization and prevented RNA degradation, preceding the emergence of specific RNA-protein interactions crucial for the ribosomal structural integrity.
Collapse
Affiliation(s)
- Simone Codispoti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Segrate 20054, Italy
| | - Tomoko Yamaguchi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 12800, Czech Republic
| | - Mikhail Makarov
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 12800, Czech Republic
| | - Valerio G Giacobelli
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 12800, Czech Republic
| | - Martin Mašek
- Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, 16628 Prague, Czech Republic
| | - Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, 16628 Prague, Czech Republic
| | | | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa 252-0882, Japan
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Segrate 20054, Italy
| | - Klára Hlouchová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 12800, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| |
Collapse
|
5
|
Agrawal A, Radakovic A, Vonteddu A, Rizvi S, Huynh VN, Douglas JF, Tirrell MV, Karim A, Szostak JW. Did the exposure of coacervate droplets to rain make them the first stable protocells? SCIENCE ADVANCES 2024; 10:eadn9657. [PMID: 39167649 PMCID: PMC11338219 DOI: 10.1126/sciadv.adn9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Membraneless coacervate microdroplets have long been proposed as model protocells as they can grow, divide, and concentrate RNA by natural partitioning. However, the rapid exchange of RNA between these compartments, along with their rapid fusion, both within minutes, means that individual droplets would be unable to maintain their separate genetic identities. Hence, Darwinian evolution would not be possible, and the population would be vulnerable to collapse due to the rapid spread of parasitic RNAs. In this study, we show that distilled water, mimicking rain/freshwater, leads to the formation of electrostatic crosslinks on the interface of coacervate droplets that not only suppress droplet fusion indefinitely but also allow the spatiotemporal compartmentalization of RNA on a timescale of days depending on the length and structure of RNA. We suggest that these nonfusing membraneless droplets could potentially act as protocells with the capacity to evolve compartmentalized ribozymes in prebiotic environments.
Collapse
Affiliation(s)
- Aman Agrawal
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Aleksandar Radakovic
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Anusha Vonteddu
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Syed Rizvi
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivian N. Huynh
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, IL, 60439 USA
| | - Alamgir Karim
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Holtmannspötter AL, Machatzke C, Begemann C, Salibi E, Donau C, Späth F, Boekhoven J, Mutschler H. Regulating Nucleic Acid Catalysis Using Active Droplets. Angew Chem Int Ed Engl 2024:e202412534. [PMID: 39119638 DOI: 10.1002/anie.202412534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Cells use transient membraneless organelles to regulate biological reaction networks. For example, stress granules selectively store mRNA to downregulate protein expression in response to heat or oxidative stress. Models mimicking this active behavior should be established to better understand in vivo regulation involving compartmentalization. Here we use active, complex coacervate droplets as a model for membraneless organelles to spatiotemporally control the activity of a catalytic DNA (DNAzyme). Upon partitioning into these peptide-RNA droplets, the DNAzyme unfolds and loses its ability to catalyze the cleavage of a nucleic acid strand. We can transiently pause the DNAzyme activity upon inducing droplet formation with fuel. After fuel consumption, the DNAzyme activity autonomously restarts. We envision this system could be used to up and downregulate multiple reactions in a network, helping understand the complexity of a cell's pathways. By creating a network where the DNAzyme could reciprocally regulate the droplet properties, we would have a powerful tool for engineering synthetic cells.
Collapse
Affiliation(s)
- Anna-Lena Holtmannspötter
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Corbin Machatzke
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Christian Begemann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Carsten Donau
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Fabian Späth
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Saha R, Choi JA, Chen IA. Protocell Effects on RNA Folding, Function, and Evolution. Acc Chem Res 2024; 57:2058-2066. [PMID: 39005057 PMCID: PMC11308369 DOI: 10.1021/acs.accounts.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
ConspectusCreating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic "RNA World" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today. At the same time, cooperative systems require a mechanism such as cellular compartmentalization in order to survive and evolve. Minimal cells might therefore consist of simple vesicles enclosing a prebiotic RNA metabolism.The internal volume of a vesicle is a distinctive environment due to its closed boundary, which alters diffusion and available volume for macromolecules and changes effective molecular concentrations, among other considerations. These physical effects are mechanistically distinct from chemical interactions, such as electrostatic repulsion, that might also occur between the membrane boundary and encapsulated contents. Both indirect and direct interactions between the membrane and RNA can give rise to nonintuitive, "emergent" behaviors in the model protocell system. We have been examining how encapsulation inside membrane vesicles would affect the folding and activity of entrapped RNA.Using biophysical techniques such as FRET, we characterized ribozyme folding and activity inside vesicles. Encapsulation inside model protocells generally promoted RNA folding, consistent with an excluded volume effect, independently of chemical interactions. This energetic stabilization translated into increased ribozyme activity in two different systems that were studied (hairpin ribozyme and self-aminoacylating RNAs). A particularly intriguing finding was that encapsulation could rescue the activity of mutant ribozymes, suggesting that encapsulation could affect not only folding and activity but also evolution. To study this further, we developed a high-throughput sequencing assay to measure the aminoacylation kinetics of many thousands of ribozyme variants in parallel. The results revealed an unexpected tendency for encapsulation to improve the better ribozyme variants more than worse variants. During evolution, this effect would create a tilted playing field, so to speak, that would give additional fitness gains to already-high-activity variants. According to Fisher's Fundamental Theorem of Natural Selection, the increased variance in fitness should manifest as faster evolutionary adaptation. This prediction was borne out experimentally during in vitro evolution, where we observed that the initially diverse ribozyme population converged more quickly to the most active sequences when they were encapsulated inside vesicles.The studies in this Account have expanded our understanding of emergent protocell behavior, by showing how simply entrapping an RNA inside a vesicle, which could occur spontaneously during vesicle formation, might profoundly affect the evolutionary landscape of the RNA. Because of the exponential dynamics of replication and selection, even small changes to activity and function could lead to major evolutionary consequences. By closely studying the details of minimal yet surprisingly complex protocells, we might one day trace a pathway from encapsulated RNA to a living system.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Jongseok A. Choi
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Irene A. Chen
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| |
Collapse
|
8
|
Mori M, Sugai H, Sato K, Okada A, Matsuo T, Kinbara K. A bioinspired bifunctional catalyst: an amphiphilic organometallic catalyst for ring-closing metathesis forming liquid droplets in aqueous media. Chem Commun (Camb) 2024; 60:7979-7982. [PMID: 38976255 DOI: 10.1039/d4cc01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Inspired by phase-separated biopolymers with enzymatic activity, we developed an amphiphilic catalyst consisting of alternating hydrophilic oligo(ethylene glycol) and hydrophobic aromatic units bearing a Hoveyda-Grubbs catalyst center (MAHGII). MAHGII served as both a droplet-forming scaffold and a catalyst for ring-closing metathesis reactions, providing a new biomimetic system that promotes organic reactions in an aqueous environment.
Collapse
Affiliation(s)
- Miki Mori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Hiroka Sugai
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Asuki Okada
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Takashi Matsuo
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
9
|
Smokers IB, Visser BS, Slootbeek AD, Huck WTS, Spruijt E. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Acc Chem Res 2024; 57:1885-1895. [PMID: 38968602 PMCID: PMC11256357 DOI: 10.1021/acs.accounts.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
ConspectusCoacervates are droplets formed by liquid-liquid phase separation (LLPS) and are often used as model protocells-primitive cell-like compartments that could have aided the emergence of life. Their continued presence as membraneless organelles in modern cells gives further credit to their relevance. The local physicochemical environment inside coacervates is distinctly different from the surrounding dilute solution and offers an interesting microenvironment for prebiotic reactions. Coacervates can selectively take up reactants and enhance their effective concentration, stabilize products, destabilize reactants and lower transition states, and can therefore play a similar role as micellar catalysts in providing rate enhancement and selectivity in reaction outcome. Rate enhancement and selectivity must have been essential for the origins of life by enabling chemical reactions to occur at appreciable rates and overcoming competition from hydrolysis.In this Accounts, we dissect the mechanisms by which coacervate protocells can accelerate reactions and provide selectivity. These mechanisms can similarly be exploited by membraneless organelles to control cellular processes. First, coacervates can affect the local concentration of reactants and accelerate reactions by copartitioning of reactants or exclusion of a product or inhibitor. Second, the local environment inside the coacervate can change the energy landscape for reactions taking place inside the droplets. The coacervate is more apolar than the surrounding solution and often rich in charged moieties, which can affect the stability of reactants, transition states and products. The crowded nature of the droplets can favor complexation of large molecules such as ribozymes. Their locally different proton and water activity can facilitate reactions involving a (de)protonation step, condensation reactions and reactions that are sensitive to hydrolysis. Not only the coacervate core, but also the surface can accelerate reactions and provides an interesting site for chemical reactions with gradients in pH, water activity and charge. The coacervate is often rich in catalytic amino acids and can localize catalysts like divalent metal ions, leading to further rate enhancement inside the droplets. Lastly, these coacervate properties can favor certain reaction pathways, and thereby give selectivity over the reaction outcome.These mechanisms are further illustrated with a case study on ribozyme reactions inside coacervates, for which there is a fine balance between concentration and reactivity that can be tuned by the coacervate composition. Furthermore, coacervates can both catalyze ribozyme reactions and provide product selectivity, demonstrating that coacervates could have functioned as enzyme-like catalytic microcompartments at the origins of life.
Collapse
Affiliation(s)
- Iris B.
A. Smokers
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| | - Brent S. Visser
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| | - Annemiek D. Slootbeek
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| |
Collapse
|
10
|
Singh A, Thutupalli S, Kumar M, Ameta S. Constrained dynamics of DNA oligonucleotides in phase-separated droplets. Biophys J 2024; 123:1458-1466. [PMID: 38169216 PMCID: PMC11163293 DOI: 10.1016/j.bpj.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Understanding the dynamics of biomolecules in complex environments is crucial for elucidating the effect of condensed and heterogeneous environments on their functional properties. A relevant environment-and one that can also be mimicked easily in vitro-is that of phase-separated droplets. While phase-separated droplet systems have been shown to compartmentalize a wide range of functional biomolecules, the effects of internal structuration of droplets on the dynamics and mobility of internalized molecules remain poorly understood. Here, we use fluorescence correlation spectroscopy to measure the dynamics of short oligonucleotides encapsulated within two representative kinds of uncharged and charged phase-separated droplets. We find that the internal structuration controls the oligonucleotide dynamics in these droplets, revealed by measuring physical parameters at high spatiotemporal resolution. By varying oligonucleotide length and salt concentrations (and thereby charge screening), we found that the dynamics are significantly affected in the noncharged droplets compared to the charged system. Our work lays the foundation for unraveling and quantifying the physical parameters governing biomolecular transport in the condensed environment.
Collapse
Affiliation(s)
- Anupam Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| | - Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India; Trivedi School of Biosciences, Ashoka University, Sonepat, India.
| |
Collapse
|
11
|
Schmit JD, Michaels TCT. Physical limits to acceleration of enzymatic reactions inside phase-separated compartments. Phys Rev E 2024; 109:064401. [PMID: 39020956 DOI: 10.1103/physreve.109.064401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
We present a theoretical analysis of phase-separated compartments to facilitate enzymatic chemical reactions. While phase separation can facilitate reactions by increasing local concentration, it can also hinder the mobility of reactants. In particular, we find that the attractive interactions that concentrate reactants within the dense phase can inhibit reactions by lowering the mobility of the reactants. This mobility loss severely limits the potential to enhance reaction rates. Phase separation provides greater benefit in situations where multiple sequential reactions occur and/or high order reactions, provided the enzymes are unsaturated, transport to the condensate is not limiting, and the reactants are mobile. We show that mobility can be maintained if recruitment to the condensed phase is driven by multiple attractive moieties that can bind and release independently. However, the spacers necessary to ensure independence between stickers are prone to entangle with the dense phase scaffold. We find an optimal sticker affinity that balances the need for rapid binding/unbinding kinetics and minimal entanglement. Reaction rates can be accelerated by shrinking the size of the dense phase with a corresponding increase in the number of stickers. Our results showcase the potential capabilities of phase-separated compartments to act as biochemical reaction crucibles within living cells.
Collapse
|
12
|
Abraham GR, Chaderjian AS, N Nguyen AB, Wilken S, Saleh OA. Nucleic acid liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066601. [PMID: 38697088 DOI: 10.1088/1361-6633/ad4662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
The confluence of recent discoveries of the roles of biomolecular liquids in living systems and modern abilities to precisely synthesize and modify nucleic acids (NAs) has led to a surge of interest in liquid phases of NAs. These phases can be formed primarily from NAs, as driven by base-pairing interactions, or from the electrostatic combination (coacervation) of negatively charged NAs and positively charged molecules. Generally, the use of sequence-engineered NAs provides the means to tune microsopic particle properties, and thus imbue specific, customizable behaviors into the resulting liquids. In this way, researchers have used NA liquids to tackle fundamental problems in the physics of finite valence soft materials, and to create liquids with novel structured and/or multi-functional properties. Here, we review this growing field, discussing the theoretical background of NA liquid phase separation, quantitative understanding of liquid material properties, and the broad and growing array of functional demonstrations in these materials. We close with a few comments discussing remaining open questions and challenges in the field.
Collapse
Affiliation(s)
- Gabrielle R Abraham
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Aria S Chaderjian
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Anna B N Nguyen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
| | - Sam Wilken
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| | - Omar A Saleh
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| |
Collapse
|
13
|
Cao N, Guo R, Song P, Wang S, Liu G, Shi J, Wang L, Li M, Zuo X, Yang X, Fan C, Li M, Zhang Y. DNA Framework-Programmed Nanoscale Enzyme Assemblies. NANO LETTERS 2024; 24:4682-4690. [PMID: 38563501 DOI: 10.1021/acs.nanolett.4c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Multienzyme assemblies mediated by multivalent interaction play a crucial role in cellular processes. However, the three-dimensional (3D) programming of an enzyme complex with defined enzyme activity in vitro remains unexplored, primarily owing to limitations in precisely controlling the spatial topological configuration. Herein, we introduce a nanoscale 3D enzyme assembly using a tetrahedral DNA framework (TDF), enabling the replication of spatial topological configuration and maintenance of an identical edge-to-edge distance akin to natural enzymes. Our results demonstrate that 3D nanoscale enzyme assemblies in both two-enzyme systems (glucose oxidase (GOx)/horseradish peroxidase (HRP)) and three-enzyme systems (amylglucosidase (AGO)/GOx/HRP) lead to enhanced cascade catalytic activity compared to the low-dimensional structure, resulting in ∼5.9- and ∼7.7-fold enhancements over homogeneous diffusional mixtures of free enzymes, respectively. Furthermore, we demonstrate the enzyme assemblies for the detection of the metabolism biomarkers creatinine and creatine, achieving a low limit of detection, high sensitivity, and broad detection range.
Collapse
Affiliation(s)
- Nan Cao
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiyan Guo
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Ping Song
- State Key Laboratory of Oncogenes and Related Genes School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shaopeng Wang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Min Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiurong Yang
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueyue Zhang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
14
|
Shen HY, Xing F, Shang SY, Jiang K, Kuzmanović M, Huang FW, Liu Y, Luo E, Edeleva M, Cardon L, Huang S, Xiang Z, Xu JZ, Li ZM. Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18658-18670. [PMID: 38587811 DOI: 10.1021/acsami.4c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.
Collapse
Affiliation(s)
- Hui-Yuan Shen
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Si-Yuan Shang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Jiang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Maja Kuzmanović
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fu-Wen Huang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mariya Edeleva
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium
| | - Shishu Huang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S, Li J. Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions. Commun Chem 2024; 7:79. [PMID: 38594355 PMCID: PMC11004187 DOI: 10.1038/s42004-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Dynamic microscale droplets produced by liquid-liquid phase separation (LLPS) have emerged as appealing biomaterials due to their remarkable features. However, the instability of droplets limits the construction of population-level structures with collective behaviors. Here we first provide a brief background of droplets in the context of materials properties. Subsequently, we discuss current strategies for stabilizing droplets including physical separation and chemical modulation. We also discuss the recent development of LLPS droplets for various applications such as synthetic cells and biomedical materials. Finally, we give insights on how stabilized droplets can self-assemble into higher-order structures displaying coordinated functions to fully exploit their potentials in bottom-up synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Lin Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Chong Chen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| |
Collapse
|
16
|
Fu H, Huang J, van der Tol JJB, Su L, Wang Y, Dey S, Zijlstra P, Fytas G, Vantomme G, Dankers PYW, Meijer EW. Supramolecular polymers form tactoids through liquid-liquid phase separation. Nature 2024; 626:1011-1018. [PMID: 38418913 PMCID: PMC10901743 DOI: 10.1038/s41586-024-07034-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024]
Abstract
Liquid-liquid phase separation (LLPS) of biopolymers has recently been shown to play a central role in the formation of membraneless organelles with a multitude of biological functions1-3. The interplay between LLPS and macromolecular condensation is part of continuing studies4,5. Synthetic supramolecular polymers are the non-covalent equivalent of macromolecules but they are not reported to undergo LLPS yet. Here we show that continuously growing fibrils, obtained from supramolecular polymerizations of synthetic components, are responsible for phase separation into highly anisotropic aqueous liquid droplets (tactoids) by means of an entropy-driven pathway. The crowding environment, regulated by dextran concentration, affects not only the kinetics of supramolecular polymerizations but also the properties of LLPS, including phase-separation kinetics, morphology, internal order, fluidity and mechanical properties of the final tactoids. In addition, substrate-liquid and liquid-liquid interfaces proved capable of accelerating LLPS of supramolecular polymers, allowing the generation of a myriad of three-dimensional-ordered structures, including highly ordered arrays of micrometre-long tactoids at surfaces. The generality and many possibilities of supramolecular polymerizations to control emerging morphologies are demonstrated with several supramolecular polymers, opening up a new field of matter ranging from highly structured aqueous solutions by means of stabilized LLPS to nanoscopic soft matter.
Collapse
Affiliation(s)
- Hailin Fu
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jingyi Huang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering and Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joost J B van der Tol
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lu Su
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Swayandipta Dey
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Peter Zijlstra
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - George Fytas
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Max Planck Institute for Polymer Research, Mainz, Germany
- Institute of Electronic Structure and Laser, FO.R.T.H, Heraklion, Greece
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering and Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
17
|
Cook AB, Gonzalez BD, van Hest JCM. Tuning of Cationic Polymer Functionality in Complex Coacervate Artificial Cells for Optimized Enzyme Activity. Biomacromolecules 2024; 25:425-435. [PMID: 38064593 PMCID: PMC10777345 DOI: 10.1021/acs.biomac.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Complex coacervates are a versatile platform to mimic the structure of living cells. In both living systems and artificial cells, a macromolecularly crowded condensate phase has been shown to be able to modulate enzyme activity. Yet, how enzyme activity is affected by interactions (particularly with cationic charges) inside coacervates is not well studied. Here, we synthesized a series of amino-functional polymers to investigate the effect of the type of amine and charge density on coacervate formation, stability, protein partitioning, and enzyme function. The polymers were prepared by RAFT polymerization using as monomers aminoethyl methacrylate (AEAM), 2-(dimethylamino)ethyl methacrylate (DMAEMA), imidazolepropyl methacrylamide (IPMAm), and [2-(methacryloyloxy)ethyl] trimethylammonium chloride (TMAEMA). Membranized complex coacervate artificial cells were formed with these polycations and an anionic amylose derivative. Results show that polycations with reduced charge density result in higher protein mobility in the condensates and also higher enzyme activity. Insights described here could help guide the use of coacervate artificial cells in applications such as sensing, catalysis, and therapeutic formulations.
Collapse
Affiliation(s)
- Alexander B Cook
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Bruno Delgado Gonzalez
- Departamento
de Química Orgánica, Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela 15782, Spain
| | - Jan C M van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
- Biomedical
Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| |
Collapse
|
18
|
Cao S, Ivanov T, Heuer J, Ferguson CTJ, Landfester K, Caire da Silva L. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis. Nat Commun 2024; 15:39. [PMID: 38169470 PMCID: PMC10761997 DOI: 10.1038/s41467-023-44278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Artificial organelles can manipulate cellular functions and introduce non-biological processes into cells. Coacervate droplets have emerged as a close analog of membraneless cellular organelles. Their biomimetic properties, such as molecular crowding and selective partitioning, make them promising components for designing cell-like materials. However, their use as artificial organelles has been limited by their complex molecular structure, limited control over internal microenvironment properties, and inherent colloidal instability. Here we report the design of dipeptide coacervates that exhibit enhanced stability, biocompatibility, and a hydrophobic microenvironment. The hydrophobic character facilitates the encapsulation of hydrophobic species, including transition metal-based catalysts, enhancing their efficiency in aqueous environments. Dipeptide coacervates carrying a metal-based catalyst are incorporated as active artificial organelles in cells and trigger an internal non-biological chemical reaction. The development of coacervates with a hydrophobic microenvironment opens an alternative avenue in the field of biomimetic materials with applications in catalysis and synthetic biology.
Collapse
Affiliation(s)
- Shoupeng Cao
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Julian Heuer
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany.
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada.
| |
Collapse
|
19
|
Roy S, Sengupta S. The RNA-DNA world and the emergence of DNA-encoded heritable traits. RNA Biol 2024; 21:1-9. [PMID: 38785360 PMCID: PMC11135857 DOI: 10.1080/15476286.2024.2355391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| |
Collapse
|
20
|
Wang J, Abbas M, Wang J, Spruijt E. Selective amide bond formation in redox-active coacervate protocells. Nat Commun 2023; 14:8492. [PMID: 38129391 PMCID: PMC10739716 DOI: 10.1038/s41467-023-44284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Coacervate droplets are promising protocell models because they sequester a wide range of guest molecules and may catalyze their conversion. However, it remains unclear how life's building blocks, including peptides, could be synthesized from primitive precursor molecules inside such protocells. Here, we develop a redox-active protocell model formed by phase separation of prebiotically relevant ferricyanide (Fe(CN)63-) molecules and cationic peptides. Their assembly into coacervates can be regulated by redox chemistry and the coacervates act as oxidizing hubs for sequestered metabolites, like NAD(P)H and gluthathione. Interestingly, the oxidizing potential of Fe(CN)63- inside coacervates can be harnessed to drive the formation of new amide bonds between prebiotically relevant amino acids and α-amidothioacids. Aminoacylation is enhanced in Fe(CN)63-/peptide coacervates and selective for amino acids that interact less strongly with the coacervates. We finally use Fe(CN)63--containing coacervates to spatially control assembly of fibrous networks inside and at the surface of coacervate protocells. These results provide an important step towards the prebiotically relevant integration of redox chemistry in primitive cell-like compartments.
Collapse
Affiliation(s)
- Jiahua Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
21
|
Chen C, Yi R, Igisu M, Sakaguchi C, Afrin R, Potiszil C, Kunihiro T, Kobayashi K, Nakamura E, Ueno Y, Antunes A, Wang A, Chandru K, Hao J, Jia TZ. Spectroscopic and Biophysical Methods to Determine Differential Salt-Uptake by Primitive Membraneless Polyester Microdroplets. SMALL METHODS 2023; 7:e2300119. [PMID: 37203261 DOI: 10.1002/smtd.202300119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/23/2023] [Indexed: 05/20/2023]
Abstract
α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets. These salts could be essential cofactors of compartmentalized prebiotic reactions or even directly affect protocell structure. However, fully understanding polyester-salt interactions remains elusive, partially due to technical challenges of quantitative measurements in condensed phases. Here, spectroscopic and biophysical methods are applied to analyze salt uptake by polyester microdroplets. Inductively coupled plasma mass spectrometry is applied to measure the cation concentration within polyester microdroplets after addition of chloride salts. Combined with methods to determine the effects of salt uptake on droplet turbidity, size, surface potential and internal water distribution, it was observed that polyester microdroplets can selectively partition salt cations, leading to differential microdroplet coalescence due to ionic screening effects reducing electrostatic repulsion forces between microdroplets. Through applying existing techniques to novel analyses related to primitive compartment chemistry and biophysics, this study suggests that even minor differences in analyte uptake can lead to significant protocellular structural change.
Collapse
Affiliation(s)
- Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Motoko Igisu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Rehana Afrin
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau, SAR, China
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW, 2052, Australia
- RNA Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Synthetic Biology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor, 43650, Malaysia
| | - Jihua Hao
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Deep Space Exploration Laboratory/CAS Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, 230026, China
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| |
Collapse
|
22
|
Wadsworth GM, Zahurancik WJ, Zeng X, Pullara P, Lai LB, Sidharthan V, Pappu RV, Gopalan V, Banerjee PR. RNAs undergo phase transitions with lower critical solution temperatures. Nat Chem 2023; 15:1693-1704. [PMID: 37932412 PMCID: PMC10872781 DOI: 10.1038/s41557-023-01353-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Co-phase separation of RNAs and RNA-binding proteins drives the biogenesis of ribonucleoprotein granules. RNAs can also undergo phase transitions in the absence of proteins. However, the physicochemical driving forces of protein-free, RNA-driven phase transitions remain unclear. Here we report that various types of RNA undergo phase separation with system-specific lower critical solution temperatures. This entropically driven phase separation is an intrinsic feature of the phosphate backbone that requires Mg2+ ions and is modulated by RNA bases. RNA-only condensates can additionally undergo enthalpically favourable percolation transitions within dense phases. This is enabled by a combination of Mg2+-dependent bridging interactions between phosphate groups and RNA-specific base stacking and base pairing. Phase separation coupled to percolation can cause dynamic arrest of RNAs within condensates and suppress the catalytic activity of an RNase P ribozyme. Our work highlights the need to incorporate RNA-driven phase transitions into models for ribonucleoprotein granule biogenesis.
Collapse
Affiliation(s)
- Gable M Wadsworth
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Xiangze Zeng
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Paul Pullara
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Lien B Lai
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Vaishnavi Sidharthan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA.
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Priya R Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
23
|
Wang Z, Zhang M, Zhou Y, Zhang Y, Wang K, Liu J. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications. SMALL METHODS 2023; 7:e2300042. [PMID: 36908048 DOI: 10.1002/smtd.202300042] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Synthetic protocells are minimal systems that mimic certain properties of natural cells and are used to research the emergence of life from a nonliving chemical network. Currently, coacervate microdroplets, which are formed via liquid-liquid phase separation, are receiving wide attention in the context of cell biology and protocell research; these microdroplets are notable because they can provide liquid-like compartment structures for biochemical reactions by creating highly macromolecular crowded local environments. In this review, an overview of recent research on the formation of coacervate microdroplets through phase separation; the design of coacervate-based stimuli-responsive protocells, multichamber protocells, and membranized protocells; and their cell mimic behaviors, is provided. The simplified protocell models with precisely defined and tunable compositions advance the understanding of the requirements for cellular structure and function. Efforts are then discussed to establish signal communication systems in protocell and protocell consortia, as communication is a fundamental feature of life that coordinates matter exchanges and energy fluxes dynamically in space and time. Finally, some perspectives on the challenges and future developments of synthetic protocell research in biomimetic science and biomedical applications are provided.
Collapse
Affiliation(s)
- Zefeng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Min Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yanwen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
24
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
25
|
Biswas S, Hecht AL, Noble SA, Huang Q, Gillilan RE, Xu AY. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates. Biomacromolecules 2023; 24:4771-4782. [PMID: 37815312 PMCID: PMC10646951 DOI: 10.1021/acs.biomac.3c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Complex coacervation refers to the liquid-liquid phase separation (LLPS) process occurring between charged macromolecules. The study of complex coacervation is of great interest due to its implications in the formation of membraneless organelles (MLOs) in living cells. However, the impacts of the crowded intracellular environment on the behavior and interactions of biomolecules involved in MLO formation are not fully understood. To address this knowledge gap, we investigated the effects of crowding on a model protein-polymer complex coacervate system. Specifically, we examined the influence of sucrose as a molecular crowder and polyethylene glycol (PEG) as a macromolecular crowder. Our results reveal that the presence of crowders led to the formation of larger coacervate droplets that remained stable over a 25-day period. While sucrose had a minimal effect on the physical properties of the coacervates, PEG led to the formation of coacervates with distinct characteristics, including higher density, increased protein and polymer content, and a more compact internal structure. These differences in coacervate properties can be attributed to the effects of crowders on individual macromolecules, such as the conformation of model polymers, and nonspecific interactions among model protein molecules. Moreover, our results show that sucrose and PEG have different partition behaviors: sucrose was present in both the coacervate and dilute phases, while PEG was observed to be excluded from the coacervate phase. Collectively, our findings provide insights into the understanding of crowding effects on complex coacervation, shedding light on the formation and properties of coacervates in the context of MLOs.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alison L Hecht
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sadie A Noble
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
26
|
Bergmann AM, Bauermann J, Bartolucci G, Donau C, Stasi M, Holtmannspötter AL, Jülicher F, Weber CA, Boekhoven J. Liquid spherical shells are a non-equilibrium steady state of active droplets. Nat Commun 2023; 14:6552. [PMID: 37848445 PMCID: PMC10582082 DOI: 10.1038/s41467-023-42344-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Liquid-liquid phase separation yields spherical droplets that eventually coarsen to one large, stable droplet governed by the principle of minimal free energy. In chemically fueled phase separation, the formation of phase-separating molecules is coupled to a fuel-driven, non-equilibrium reaction cycle. It thus yields dissipative structures sustained by a continuous fuel conversion. Such dissipative structures are ubiquitous in biology but are poorly understood as they are governed by non-equilibrium thermodynamics. Here, we bridge the gap between passive, close-to-equilibrium, and active, dissipative structures with chemically fueled phase separation. We observe that spherical, active droplets can undergo a morphological transition into a liquid, spherical shell. We demonstrate that the mechanism is related to gradients of short-lived droplet material. We characterize how far out of equilibrium the spherical shell state is and the chemical power necessary to sustain it. Our work suggests alternative avenues for assembling complex stable morphologies, which might already be exploited to form membraneless organelles by cells.
Collapse
Affiliation(s)
- Alexander M Bergmann
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Jonathan Bauermann
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Giacomo Bartolucci
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Carsten Donau
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Anna-Lena Holtmannspötter
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01307, Dresden, Germany
| | - Christoph A Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstrasse 1, 86159, Augsburg, Germany.
| | - Job Boekhoven
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
27
|
García Coll J, Ulrich S. Nucleic-Acid-Templated Synthesis of Smart Polymer Vectors for Gene Delivery. Chembiochem 2023; 24:e202300333. [PMID: 37401911 DOI: 10.1002/cbic.202300333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Nucleic acids are information-rich and readily available biomolecules, which can be used to template the polymerization of synthetic macromolecules. Here, we highlight the control over the size, composition, and sequence one can nowadays obtain by using this methodology. We also highlight how templated processes exploiting dynamic covalent polymerization can, in return, result in therapeutic nucleic acids fabricating their own dynamic delivery vector - a biomimicking concept that can provide original solutions for gene therapies.
Collapse
Affiliation(s)
- José García Coll
- IBMM, Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| |
Collapse
|
28
|
Sweeney KJ, Le T, Jorge MZ, Schellinger JG, Leman LJ, Müller UF. Peptide conjugates with polyaromatic hydrocarbons can benefit the activity of catalytic RNAs. Chem Sci 2023; 14:10318-10328. [PMID: 37772096 PMCID: PMC10529712 DOI: 10.1039/d3sc03540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Early stages of life likely employed catalytic RNAs (ribozymes) in many functions that are today filled by proteins. However, the earliest life forms must have emerged from heterogenous chemical mixtures, which included amino acids, short peptides, and many other compounds. Here we explored whether the presence of short peptides can help the emergence of catalytic RNAs. To do this, we conducted an in vitro selection for catalytic RNAs from randomized sequence in the presence of ten different peptides with a prebiotically plausible length of eight amino acids. This in vitro selection generated dozens of ribozymes, one of them with ∼900-fold higher activity in the presence of one specific peptide. Unexpectedly, the beneficial peptide had retained its N-terminal Fmoc protection group, and this group was required to benefit ribozyme activity. The same, or higher benefit resulted from peptide conjugates with prebiotically plausible polyaromatic hydrocarbons (PAHs) such as fluorene and naphthalene. This shows that PAH-peptide conjugates can act as potent cofactors to enhance ribozyme activity. The results are discussed in the context of the origin of life.
Collapse
Affiliation(s)
- Kevin J Sweeney
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Tommy Le
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Micaella Z Jorge
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Joan G Schellinger
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Luke J Leman
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
29
|
Meyer MO, Yamagami R, Choi S, Keating CD, Bevilacqua PC. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. SCIENCE ADVANCES 2023; 9:eadh5152. [PMID: 37729412 PMCID: PMC10511188 DOI: 10.1126/sciadv.adh5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Compartmentalization of RNA in biopolymer-rich membraneless organelles is now understood to be pervasive and critical for the function of extant biology and has been proposed as a prebiotically plausible way to accumulate RNA. However, compartment-RNA interactions that drive encapsulation have the potential to influence RNA structure and function in compartment- and RNA sequence-dependent ways. Here, we detail next-generation sequencing (NGS) experiments performed in membraneless compartments called complex coacervates to characterize the fold of many different transfer RNAs (tRNAs) simultaneously under the potentially denaturing conditions of these compartments. Notably, we find that natural modifications favor the native fold of tRNAs in these compartments. This suggests that covalent RNA modifications could have played a critical role in metabolic processes at the origin of life.
Collapse
Affiliation(s)
- McCauley O. Meyer
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryota Yamagami
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Saehyun Choi
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christine D. Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C. Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
30
|
Siddika MA, Oi H, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. Structural Expansion of Catalytic RNA Nanostructures through Oligomerization of a Cyclic Trimer of Engineered Ribozymes. Molecules 2023; 28:6465. [PMID: 37764241 PMCID: PMC10535472 DOI: 10.3390/molecules28186465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The multimolecular assembly of three-dimensionally structured proteins forms their quaternary structures, some of which have high geometric symmetry. The size and complexity of protein quaternary structures often increase in a hierarchical manner, with simpler, smaller structures serving as units for larger quaternary structures. In this study, we exploited oligomerization of a ribozyme cyclic trimer to achieve larger ribozyme-based RNA assembly. By installing kissing loop (KL) interacting units to one-, two-, or three-unit RNA molecules in the ribozyme trimer, we constructed dimers, open-chain oligomers, and branched oligomers of ribozyme trimer units. One type of open-chain oligomer preferentially formed a closed tetramer containing 12 component RNAs to provide 12 ribozyme units. We also observed large assembly of ribozyme trimers, which reached 1000 nm in size.
Collapse
Affiliation(s)
- Mst. Ayesha Siddika
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
| | - Hiroki Oi
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8501, Kyoto, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Kyoto, Japan; (H.S.); (M.E.)
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Kyoto, Japan; (H.S.); (M.E.)
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita 564-8680, Osaka, Japan
| | - Shigeyoshi Matsumura
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| | - Yoshiya Ikawa
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Toyama, Japan (S.M.)
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Toyama, Japan
| |
Collapse
|
31
|
Fang YN, Rumyantsev AM, Neitzel AE, Liang H, Heller WT, Nealey PF, Tirrell MV, de Pablo JJ. Scattering evidence of positional charge correlations in polyelectrolyte complexes. Proc Natl Acad Sci U S A 2023; 120:e2302151120. [PMID: 37523553 PMCID: PMC10410704 DOI: 10.1073/pnas.2302151120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/30/2023] [Indexed: 08/02/2023] Open
Abstract
Polyelectrolyte complexation plays an important role in materials science and biology. The internal structure of the resultant polyelectrolyte complex (PEC) phase dictates properties such as physical state, response to external stimuli, and dynamics. Small-angle scattering experiments with X-rays and neutrons have revealed structural similarities between PECs and semidilute solutions of neutral polymers, where the total scattering function exhibits an Ornstein-Zernike form. In spite of consensus among different theoretical predictions, the existence of positional correlations between polyanion and polycation charges has not been confirmed experimentally. Here, we present small-angle neutron scattering profiles where the polycation scattering length density is matched to that of the solvent to extract positional correlations among anionic monomers. The polyanion scattering functions exhibit a peak at the inverse polymer screening radius of Coulomb interactions, q* ≈ 0.2 Å-1. This peak, attributed to Coulomb repulsions between the fragments of polyanions and their attractions to polycations, is even more pronounced in the calculated charge scattering function that quantifies positional correlations of all polymer charges within the PEC. Screening of electrostatic interactions by adding salt leads to the gradual disappearance of this correlation peak, and the scattering functions regain an Ornstein-Zernike form. Experimental scattering results are consistent with those calculated from the random phase approximation, a scaling analysis, and molecular simulations.
Collapse
Affiliation(s)
- Yan N. Fang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
| | - Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC27695
| | - Angelika E. Neitzel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - William T. Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN37831
| | - Paul F. Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL60439
| |
Collapse
|
32
|
Le Vay KK, Salibi E, Ghosh B, Tang TYD, Mutschler H. Ribozyme activity modulates the physical properties of RNA-peptide coacervates. eLife 2023; 12:e83543. [PMID: 37326308 DOI: 10.7554/elife.83543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Condensed coacervate phases are now understood to be important features of modern cell biology, as well as valuable protocellular models in origin-of-life studies and synthetic biology. In each of these fields, the development of model systems with varied and tuneable material properties is of great importance for replicating properties of life. Here, we develop a ligase ribozyme system capable of concatenating short RNA fragments into long chains. Our results show that the formation of coacervate microdroplets with the ligase ribozyme and poly(L-lysine) enhances ribozyme rate and yield, which in turn increases the length of the anionic polymer component of the system and imparts specific physical properties to the droplets. Droplets containing active ribozyme sequences resist growth, do not wet or spread on unpassivated surfaces, and exhibit reduced transfer of RNA between droplets when compared to controls containing inactive sequences. These altered behaviours, which stem from RNA sequence and catalytic activity, constitute a specific phenotype and potential fitness advantage, opening the door to selection and evolution experiments based on a genotype-phenotype linkage.
Collapse
Affiliation(s)
- Kristian Kyle Le Vay
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Basusree Ghosh
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - T Y Dora Tang
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
33
|
Zheng Y, Wegner T, Di Iorio D, Pierau M, Glorius F, Wegner SV. NTA-Cholesterol Analogue for the Nongenetic Liquid-Ordered Phase-Specific Functionalization of Lipid Membranes with Proteins. ACS Chem Biol 2023; 18:1435-1443. [PMID: 37184283 DOI: 10.1021/acschembio.3c00180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The nongenetic modification of cell membranes with proteins is a straightforward way of cellular engineering. In these processes, it is important to specifically address the proteins to liquid-ordered (Lo) or liquid-disordered (Ld) domains as this can largely affect their biological functions. Herein, we report a cholesterol analogue (CHIM) with a nitrilotriacetic acid (NTA) headgroup, named CHIM-NTA. CHIM-NTA integrates into lipid membranes similar to the widely used phospholipid-derived DGS-NTA and, when loaded with Ni2+, allows for specific membrane immobilization of any polyhistidine-tagged proteins of choice. Yet, unlike DGS-NTA, it localizes to the Lo phase in phase-separated giant unilamellar vesicles (GUVs) and allows addressing His-tagged proteins to Lo domains. Furthermore, CHIM-NTA readily integrates into the membranes of live cells and thus enables the nongenetic modification of the cell surface with proteins. Overall, CHIM-NTA provides a facile and flexible way to modify biological membranes, in particular Lo domains, with His-tagged proteins and can serve as a broadly applicable molecular tool for cell surface engineering.
Collapse
Affiliation(s)
- Yanjun Zheng
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Münster 48149, Germany
| | - Tristan Wegner
- University of Münster, Institute of Organic Chemistry, Münster 48149, Germany
| | - Daniele Di Iorio
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Münster 48149, Germany
| | - Marco Pierau
- University of Münster, Institute of Organic Chemistry, Münster 48149, Germany
| | - Frank Glorius
- University of Münster, Institute of Organic Chemistry, Münster 48149, Germany
| | - Seraphine V Wegner
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Münster 48149, Germany
| |
Collapse
|
34
|
Sadihov-Hanoch H, Bandela AK, Chotera-Ouda A, Ben David O, Cohen-Luria R, Lynn DG, Ashkenasy G. Dynamic exchange controls the assembly structure of nucleic-acid-peptide chimeras. SOFT MATTER 2023; 19:3940-3945. [PMID: 37211859 DOI: 10.1039/d2sm01528e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent attempts to develop the next generation of functional biomaterials focus on systems chemistry approaches exploiting dynamic networks of hybrid molecules. This task is often found challenging, but we herein present ways for profiting from the multiple interaction interfaces forming Nucleic-acid-Peptide assemblies and tuning their formation. We demonstrate that the formation of well-defined structures by double-stranded DNA-peptide conjugates (dsCon) is restricted to a specific range of environmental conditions and that precise DNA hybridization, satisfying the interaction interfaces, is a crucial factor in this process. We further reveal the impact of external stimuli, such as competing free DNA elements or salt additives, which initiate dynamic interconversions, resulting in hybrid structures exhibiting spherical and fibrillar domains or a mixture of spherical and fibrillar particles. This extensive analysis of the co-assembly systems chemistry offers new insights into prebiotic hybrid assemblies that may now facilitate the design of new functional materials. We discuss the implications of these findings for the emergence of function in synthetic materials and during early chemical evolution.
Collapse
Affiliation(s)
- Hava Sadihov-Hanoch
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Anil Kumar Bandela
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Agata Chotera-Ouda
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Oshrat Ben David
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - David G Lynn
- Departments of Chemistry and Biology, Emory University, Atlanta, GA, USA
| | - Gonen Ashkenasy
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
35
|
Fraccia TP, Martin N. Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling. Nat Commun 2023; 14:2606. [PMID: 37160869 PMCID: PMC10169843 DOI: 10.1038/s41467-023-38163-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Modern cells are complex chemical compartments tightly regulated by an underlying DNA-encoded program. Achieving a form of coupling between molecular content, chemical reactions, and chassis in synthetic compartments represents a key step to the assembly of evolvable protocells but remains challenging. Here, we design coacervate droplets that promote non-enzymatic oligonucleotide polymerization and that restructure as a result of the reaction dynamics. More specifically, we rationally exploit complexation between end-reactive oligonucleotides able to stack into long physical polymers and a cationic azobenzene photoswitch to produce three different phases-soft solids, liquid crystalline or isotropic coacervates droplets-each of them having a different impact on the reaction efficiency. Dynamical modulation of coacervate assembly and dissolution via trans-cis azobenzene photo-isomerization is used to demonstrate cycles of light-actuated oligonucleotide ligation. Remarkably, changes in the population of polynucleotides during polymerization induce phase transitions due to length-based DNA self-sorting to produce multiphase coacervates. Overall, by combining a tight reaction-structure coupling and environmental responsiveness, our reactive coacervates provide a general route to the non-enzymatic synthesis of polynucleotides and pave the way to the emergence of a primitive compartment-content coupling in membrane-free protocells.
Collapse
Affiliation(s)
- Tommaso P Fraccia
- Institut Pierre-Gilles de Gennes, Chimie Biologie et Innovation, UMR 8231, ESPCI Paris, PSL University, CNRS, 6 rue Jean Calvin, 75005, Paris, France.
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133, Milano, Italy.
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France.
| |
Collapse
|
36
|
Ameta S, Kumar M, Chakraborty N, Matsubara YJ, S P, Gandavadi D, Thutupalli S. Multispecies autocatalytic RNA reaction networks in coacervates. Commun Chem 2023; 6:91. [PMID: 37156998 PMCID: PMC10167250 DOI: 10.1038/s42004-023-00887-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Robust localization of self-reproducing autocatalytic chemistries is a key step in the realization of heritable and evolvable chemical systems. While autocatalytic chemical reaction networks already possess attributes such as heritable self-reproduction and evolvability, localizing functional multispecies networks within complex primitive phases, such as coacervates, has remained unexplored. Here, we show the self-reproduction of the Azoarcus ribozyme system within charge-rich coacervates where catalytic ribozymes are produced by the autocatalytic assembly of constituent smaller RNA fragments. We systematically demonstrate the catalytic assembly of active ribozymes within phase-separated coacervates-both in micron-sized droplets as well as in a coalesced macrophase, underscoring the facility of the complex, charge-rich phase to support these reactions in multiple configurations. By constructing multispecies reaction networks, we show that these newly assembled molecules are active, participating both in self- and cross-catalysis within the coacervates. Finally, due to differential molecular transport, these phase-separated compartments endow robustness to the composition of the collectively autocatalytic networks against external perturbations. Altogether, our results establish the formation of multispecies self-reproducing reaction networks in phase-separated compartments which in turn render transient robustness to the network composition.
Collapse
Affiliation(s)
- Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India.
- Trivedi School of Biosciences, Ashoka University, Plot No. 2, Rajiv Gandhi Education City, P.O. Rai, Sonepat, Haryana, 131029, India.
| | - Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Nayan Chakraborty
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Yoshiya J Matsubara
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Prashanth S
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Dhanush Gandavadi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India.
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India.
| |
Collapse
|
37
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
38
|
Chen J, Bai Q, Li Y, Liu Z, Li Y, Liang D. Coacervates Forming Coexisting Phases on a Mineral Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5814-5824. [PMID: 37053474 DOI: 10.1021/acs.langmuir.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Minerals played a crucial role in the chemical evolution of small molecules into biopolymers. Yet, it is still not clear how the minerals are related to the formation and the evolution of protocells on early Earth. In this work, using the coacervate formed by quaternized dextran (Q-dextran) and single-stranded oligonucleotides (ss-oligo) as the protocell model, we systematically studied the phase separation of Q-dextran and ss-oligo on the muscovite surface. Serving as rigid and 2D polyelectrolytes, the muscovite surface can be treated by Q-dextran to become negatively charged, neutral, or positively charged. We observed that Q-dextran and ss-oligo form uniform coacervates on naked and neutral muscovite surfaces, while they form biphasic coacervates containing Q-dextran-rich phases and ss-oligo-rich phases on positively or negatively charged muscovite surfaces that were pretreated by Q-dextran. The evolution of the phases is caused by the redistribution of the components as the coacervate touches the surface. Our study indicates that the mineral surface could be a potential driving force for the formation of protocells with hierarchical structures and desirable functions on prebiotic Earth.
Collapse
Affiliation(s)
- Jiaxin Chen
- Beijing National Laboratory for Molecular Sciences, and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qingwen Bai
- Beijing National Laboratory for Molecular Sciences, and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanzhang Li
- Beijing Key Laboratory of Mineral Environmental Function, and the Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing 100871, China
| | - Zhijun Liu
- Beijing National Laboratory for Molecular Sciences, and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Li
- Beijing Key Laboratory of Mineral Environmental Function, and the Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing 100871, China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences, and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Liu Y, Chen YC, Yan B, Liu F. Suppressing Kaposi's Sarcoma-Associated Herpesvirus Lytic Gene Expression and Replication by RNase P Ribozyme. Molecules 2023; 28:molecules28083619. [PMID: 37110852 PMCID: PMC10142857 DOI: 10.3390/molecules28083619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Kaposi's sarcoma, an AIDS-defining illness, is caused by Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus. In this study, we engineered ribozymes derived from ribonuclease P (RNase P) catalytic RNA with targeting against the mRNA encoding KSHV immediate early replication and transcription activator (RTA), which is vital for KSHV gene expression. The functional ribozyme F-RTA efficiently sliced the RTA mRNA sequence in vitro. In cells, KSHV production was suppressed with ribozyme F-RTA expression by 250-fold, and RTA expression was suppressed by 92-94%. In contrast, expression of control ribozymes hardly affected RTA expression or viral production. Further studies revealed both overall KSHV early and late gene expression and viral growth decreased because of F-RTA-facilitated suppression of RTA expression. Our results indicate the first instance of RNase P ribozymes having potential for use in anti-KSHV therapy.
Collapse
Affiliation(s)
- Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Xu S, Wang J, Dong J. Nonspecific interaction and overlap concentration influence macromolecular crowding effect on glucose oxidase activity. Int J Biol Macromol 2023; 241:124525. [PMID: 37086776 DOI: 10.1016/j.ijbiomac.2023.124525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
Macromolecular crowding can change kinetics of enzyme catalysis. How interaction between enzymes and neighboring macromolecules contributes to the crowding effect on enzyme catalysis has not been quantitatively revealed. In this study, crowding effects of dextran and poly(ethylene glycol) (PEG) on glucose oxidase (GOx) are studied. Fluorescence resonance energy transfer experiments show the high transfer efficiency and stable interaction between the dextran and GOx. Further fluorescence quenching analysis also proves that the association of the dextran-GOx pair can become stronger than that of the PEG-GOx pair. Dextrans with concentrations above or below their chain overlap concentrations (c*) reduce Michaelis constants (Km) of GOx catalysis by 90 % or 45 %, respectively, through volume exclusion mechanism, and in the meantime elevate the enzymatic efficiency (kcat/Km) by 8-fold or by 3-fold, respectively, which is more dramatic than that found in other enzymes before. Strong association between the enzyme and the dextran results in slow turnover rates (kcat). Intermediate crowding with weak to moderate affinity to the enzyme below the c* can tune the kcat higher than in the free state. Catalysis under crowded conditions is a joint effect of the enzyme-crowder nonspecific interaction, volume exclusion and overlap condition of the crowders.
Collapse
Affiliation(s)
- Siyuan Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang Province 312000, China
| | - Jie Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang Province 312000, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang Province 312000, China.
| |
Collapse
|
41
|
Bressler SG, Mitrany A, Wenger A, Näthke I, Friedler A. The Oligomerization Domains of the APC Protein Mediate Liquid-Liquid Phase Separation That Is Phosphorylation Controlled. Int J Mol Sci 2023; 24:ijms24076478. [PMID: 37047451 PMCID: PMC10095272 DOI: 10.3390/ijms24076478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
One of the most important properties of intrinsically disordered proteins is their ability to undergo liquid-liquid phase separation and form droplets. The Adenomatous Polyposis Coli (APC) protein is an IDP that plays a key role in Wnt signaling and mutations in Apc initiate cancer. APC forms droplets via its 20R domains and self-association domain (ASAD) and in the context of Axin. However, the mechanism involved is unknown. Here, we used peptides to study the molecular mechanism and regulation of APC droplet formation. We found that a peptide derived from the ASAD of APC-formed droplets. Peptide array screening showed that the ASAD bound other APC peptides corresponding to the 20R3 and 20R5 domains. We discovered that the 20R3/5 peptides also formed droplets by themselves and mapped specific residues within 20R3/5 that are necessary for droplet formation. When incubated together, the ASAD and 20R3/5 did not form droplets. Thus, the interaction of the ASAD with 20R3 and 20R5 may regulate the droplet formation as a means of regulating different cellular functions. Phosphorylation of 20R3 or 20R5 at specific residues prevented droplet formation of 20R3/5. Our results reveal that phosphorylation and the ability to undergo liquid-liquid phase separation, which are both important properties of intrinsically disordered proteins, are related to each other in APC. Phosphorylation inhibited the liquid-liquid phase separation of APC, acting as an ‘on-off’ switch for droplet formation. Phosphorylation may thus be a common mechanism regulating LLPS in intrinsically disordered proteins.
Collapse
Affiliation(s)
- Shachar G. Bressler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Amit Mitrany
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Alon Wenger
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Inke Näthke
- Division of Molecular Cell and Developmental Biology, University of Dundee, Dundee DD1 5AA, Scotland, UK
- Correspondence: (I.N.); (A.F.)
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Correspondence: (I.N.); (A.F.)
| |
Collapse
|
42
|
Meyer MO, Yamagami R, Choi S, Keating CD, Bevilacqua PC. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530264. [PMID: 36909509 PMCID: PMC10002651 DOI: 10.1101/2023.02.27.530264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Compartmentalization of RNA in biopolymer-rich membraneless organelles is now understood to be pervasive and critical for the function of extant biology and has been proposed as a prebiotically-plausible way to accumulate RNA. However, compartment-RNA interactions that drive encapsulation have the potential to influence RNA structure and function in compartment- and RNA sequence-dependent ways. Herein, we detail Next-Generation Sequencing (NGS) experiments performed for the first time in membraneless compartments called complex coacervates to characterize the fold of many different transfer RNAs (tRNAs) simultaneously under the potentially denaturing conditions of these compartments. Strikingly, we find that natural modifications favor the native fold of tRNAs in these compartments. This suggests that covalent RNA modifications could have played a critical role in metabolic processes at the origin of life. One Sentence Summary We demonstrate that RNA folds into native secondary and tertiary structures in protocell models and that this is favored by covalent modifications, which is critical for the origins of life.
Collapse
|
43
|
Chowdhuri S, Das S, Kushwaha R, Das T, Das BK, Das D. Cumulative Effect of pH and Redox Triggers on Highly Adaptive Transient Coacervates. Chemistry 2023; 29:e202203820. [PMID: 36786201 DOI: 10.1002/chem.202203820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
An intricate synergism between multiple biochemical processes and physical conditions determines the formation and function of various biological self-assemblies. Thus, a complex set of variables dictate the far-from-equilibrium nature of these biological assemblies. Mimicking such systems synthetically is a challenging task. We report multi-stimuli responsive transient coacervation of an aldehyde-appended polymer and a short peptide. The coacervates are formed by the disulphide linkages between the peptide molecules and the imine bond between the polymer and the peptide. Imines are susceptible to pH changes and the disulphide bonds can be tuned by oxidation/reduction processes. Thus, the coacervation is operational only under the combined effect of appropriate pH and oxidative conditions. Taking advantage of these facts, the coacervates are transiently formed under a pH cycle (urea-urease/gluconolactone) and a non-equilibrium redox cycle (TCEP/H2 O2 ). Importantly, the system showed high adaptability toward environmental changes. The transient existence of the coacervates can be generated without any apparent change in size and shape within the same system through the sequential application of the above-mentioned nonequilibrium reaction cycles. Additionally, the coacervation allows for efficient encapsulation/stabilisation of proteins. Thus, the system has the potential to be used for protein/drug delivery purposes in the future.
Collapse
Affiliation(s)
- Sumit Chowdhuri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Ritvika Kushwaha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Basab Kanti Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
44
|
Pavlinova P, Lambert CN, Malaterre C, Nghe P. Abiogenesis through gradual evolution of autocatalysis into template-based replication. FEBS Lett 2023; 597:344-379. [PMID: 36203246 DOI: 10.1002/1873-3468.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
How life emerged from inanimate matter is one of the most intriguing questions posed to modern science. Central to this research are experimental attempts to build systems capable of Darwinian evolution. RNA catalysts (ribozymes) are a promising avenue, in line with the RNA world hypothesis whereby RNA pre-dated DNA and proteins. Since evolution in living organisms relies on template-based replication, the identification of a ribozyme capable of replicating itself (an RNA self-replicase) has been a major objective. However, no self-replicase has been identified to date. Alternatively, autocatalytic systems involving multiple RNA species capable of ligation and recombination may enable self-reproduction. However, it remains unclear how evolution could emerge in autocatalytic systems. In this review, we examine how experimentally feasible RNA reactions catalysed by ribozymes could implement the evolutionary properties of variation, heredity and reproduction, and ultimately allow for Darwinian evolution. We propose a gradual path for the emergence of evolution, initially supported by autocatalytic systems leading to the later appearance of RNA replicases.
Collapse
Affiliation(s)
- Polina Pavlinova
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Camille N Lambert
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Christophe Malaterre
- Laboratory of Philosophy of Science (LAPS) and Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Université du Québec à Montréal (UQAM), Canada
| | - Philippe Nghe
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| |
Collapse
|
45
|
Guo W, Ji D, Kinghorn AB, Chen F, Pan Y, Li X, Li Q, Huck WTS, Kwok CK, Shum HC. Tuning Material States and Functionalities of G-Quadruplex-Modulated RNA-Peptide Condensates. J Am Chem Soc 2023; 145:2375-2385. [PMID: 36689740 DOI: 10.1021/jacs.2c11362] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RNA encodes sequence- and structure-dependent interactions to modulate the assembly and properties of biomolecular condensates. RNA G-quadruplexes (rG4s) formed by guanine-rich sequences can trigger the formation of liquid- or solid-like condensates that are involved in many aberrant phase transitions. However, exactly how rG4 motifs modulate different phase transitions and impart distinct material properties to condensates is unclear. Here, using RNA oligonucleotides and cationic peptides as model systems, we show that RNA-peptide condensates exhibit tunability in material properties over a wide spectrum via interactions arising from rG4 folding/unfolding kinetics. rG4-containing oligonucleotides formed strong pairwise attraction with peptides and tended to form solid-like condensates, while their less-structured non-G4 mutants formed liquid-like droplets. We find that the coupling between rG4 dissociation and RNA-peptide complex coacervation triggers solid-to-liquid transition of condensates prior to the complete unfolding of rG4s. This coupling points to a mechanism that material states of rG4-modulated condensates can be finely tuned from solid-like to liquid-like by the addition of less-structured RNA oligonucleotides, which have weak but dominant binding with peptides. We further show that the tunable material states of condensates can enhance RNA aptamer compartmentalization and RNA cleavage reactions. Our results suggest that condensates with complex properties can emerge from subtle changes in RNA oligonucleotides, contributing ways to treat dysfunctional condensates in diseases and insights into prebiotic compartmentalization.
Collapse
Affiliation(s)
- Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| | - Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Feipeng Chen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yi Pan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| | - Qingchuan Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong 999077,China
| |
Collapse
|
46
|
Yuan H, Li F, Jia L, Guo T, Kong T, Meng T. Bacteria-Inspired Aqueous-in-Aqueous Compartmentalization by In Situ Interfacial Biomineralization. SMALL METHODS 2023; 7:e2201309. [PMID: 36549693 DOI: 10.1002/smtd.202201309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Compartmentalization is essential for living cells to orchestrate their biological processes with controlled external influences. Thus, compartmentalization has been a constant theme for cell-mimicking materials. Despite recent advances in engineering compartmentalized materials as synthetic cells and organelles, it remains difficult to produce robust and well-ordered compartments with secluded environments in aqueous surroundings. Nature creates hierarchically ordered compartmentalized materials by utilizing bio-catalyzed mineralization, inspired by which, mechanically robust all-aqueous compartments are developed by engineering a mild biomimetic mineralization at aqueous/aqueous interfaces. The enzyme-induced biomineralization generates a layer of densely-packed particles, acting as an armor to enclose aqueous interiors. This strategy of in situ bio-synthesized compartments is different from current strategies, where compartments are constructed by randomly adsorbed particles at interface, leading to inadequately controlled properties of compartments. To demonstrate the robustness and adaptiveness of the in situ bio-synthesized all-aqueous compartments, these are utilized as drug delivery materials by sequestering protein drugs at their aqueous interiors and releasing when exposing to gastric environments. The study provides new ways to fabricate compartmentalized materials with well-defined properties, unlocking routes to the next generation of self-assembled materials and structures by integrating aqueous two-phase systems with biomineralization.
Collapse
Affiliation(s)
- Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Fei Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Lufan Jia
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Ting Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Tao Meng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
47
|
Ma L, Fang X, Wang C. Peptide-based coacervates in therapeutic applications. Front Bioeng Biotechnol 2023; 10:1100365. [PMID: 36686257 PMCID: PMC9845597 DOI: 10.3389/fbioe.2022.1100365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Coacervates are droplets formed by liquid‒liquid phase separation. An increasing number of studies have reported that coacervates play an important role in living cells, such as in the generation of membraneless organelles, and peptides contribute to condensate droplet formation. Peptides with versatile functional groups and special secondary structures, including α-helices, β-sheets and intrinsically disordered regions, provide novel insights into coacervation, such as biomimetic protocells, neurodegenerative diseases, modulations of signal transmission, and drug delivery systems. In this review, we introduce different types of peptide-based coacervates and the principles of their interactions. Additionally, we summarize the thermodynamic and kinetic mechanisms of peptide-based coacervates and the associated factors, including salt, pH, and temperature, affecting the phase separation process. We illustrate recent studies on modulating the functions of peptide-based coacervates applied in biological diseases. Finally, we propose their promising broad applications and describe the challenges of peptide-based coacervates in the future.
Collapse
Affiliation(s)
- Lilusi Ma
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Xiaocui Fang, ; Chen Wang,
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Xiaocui Fang, ; Chen Wang,
| |
Collapse
|
48
|
Donau C, Boekhoven J. The chemistry of chemically fueled droplets. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Donau C, Späth F, Stasi M, Bergmann AM, Boekhoven J. Phase Transitions in Chemically Fueled, Multiphase Complex Coacervate Droplets. Angew Chem Int Ed Engl 2022; 61:e202211905. [PMID: 36067054 PMCID: PMC9828839 DOI: 10.1002/anie.202211905] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 01/12/2023]
Abstract
Membraneless organelles are droplets in the cytosol that are regulated by chemical reactions. Increasing studies suggest that they are internally organized. However, how these subcompartments are regulated remains elusive. Herein, we describe a complex coacervate-based model composed of two polyanions and a short peptide. With a chemical reaction cycle, we control the affinity of the peptide for the polyelectrolytes leading to distinct regimes inside the phase diagram. We study the transitions from one regime to another and identify new transitions that can only occur under kinetic control. Finally, we show that the chemical reaction cycle controls the liquidity of the droplets offering insights into how active processes inside cells play an important role in tuning the liquid state of membraneless organelles. Our work demonstrates that not only thermodynamic properties but also kinetics should be considered in the organization of multiple phases in droplets.
Collapse
Affiliation(s)
- Carsten Donau
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Fabian Späth
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Michele Stasi
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Alexander M. Bergmann
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| | - Job Boekhoven
- Department of ChemistryTechnical University of MunichLichtenbergstrasse 485748GarchingGermany
| |
Collapse
|
50
|
Liu W, Samanta A, Deng J, Akintayo CO, Walther A. Mechanistic Insights into the Phase Separation Behavior and Pathway-Directed Information Exchange in all-DNA Droplets. Angew Chem Int Ed Engl 2022; 61:e202208951. [PMID: 36112754 PMCID: PMC9828218 DOI: 10.1002/anie.202208951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Liquid-liquid phase separation provides a versatile approach to fabricating cell-mimicking coacervates. Recently, it was discovered that phase separation of single-stranded DNA (ssDNA) allows for forming protocells and microgels in multicomponent systems. However, the mechanism of the ssDNA phase separation is not comprehensively understood. Here, we present mechanistic insights into the metal-dependent phase separation of ssDNA and leverage this understanding for a straightforward formation of all-DNA droplets. Two phase separation temperatures are found that correspond to the formation of primary nuclei and a growth process. Ca2+ allows for irreversible, whereas Mg2+ leads to reversible phase separation. Capitalizing on these differences makes it possible to control the information transfer of one-component DNA droplets and two-component core-shell protocells. This study introduces new kinetic traps of phase separating ssDNA that lead to new phenomena in cell-mimicking systems.
Collapse
Affiliation(s)
- Wei Liu
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Avik Samanta
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Jie Deng
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany,Present address: Department of Cancer BiologyDana-Farber Cancer Institute and Wyss Institute for Biologically Inspired EngineeringHarvard Medical SchoolBostonMA 02115USA
| | - Cecilia Oluwadunsin Akintayo
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany,Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany,Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|