1
|
McCormick N, Joshi AD, Yokose C, Yu B, Tin A, Terkeltaub R, Merriman TR, Zeleznik O, Eliassen AH, Curhan GC, Ea HK, Nayor M, Raffield LM, Choi HK. Prediagnostic Amino Acid Metabolites and Risk of Gout, Accounting for Serum Urate: Prospective Cohort Study and Mendelian Randomization. Arthritis Care Res (Hoboken) 2024; 76:1666-1674. [PMID: 39169570 DOI: 10.1002/acr.25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Our objective was to prospectively investigate prediagnostic population-based metabolome for risk of hospitalized gout (ie, most accurate, severe, and costly cases), accounting for serum urate. METHODS We conducted prediagnostic metabolome-wide analyses among 249,677 UK Biobank participants with nuclear magnetic resonance metabolomic profiling (N = 168 metabolites, including eight amino acids) from baseline blood samples (2006-2010) without a history of gout. We calculated multivariable hazard ratios (HRs) for hospitalized incident gout, before and after adjusting for serum urate levels; we included patients with nonhospitalized incident gout in a sensitivity analysis. Potential causal effects were evaluated with two-sample Mendelian randomization. RESULTS Correcting for multiple testing, 107 metabolites were associated with incidence of hospitalized gout (n = 2,735) before urate adjustment, including glycine and glutamine (glutamine HR 0.64, 95% confidence interval [CI] 0.54-0.75, P = 8.3 × 10-8; glycine HR 0.69, 95% CI 0.61-0.78, P = 3.3 × 10-9 between extreme quintiles), and glycoprotein acetyls (HR 2.48, 95% CI 2.15-2.87, P = 1.96 × 10-34). Associations remained significant and directionally consistent following urate adjustment (HR 0.83, 95% CI 0.70-0.98; HR 0.86, 95% CI 0.76-0.98; HR 1.41, 95% CI 1.21-1.63 between extreme quintiles), respectively; corresponding HRs per SD were 0.91 (95% CI 0.86-0.97), 0.94 (95% CI 0.91-0.98), and 1.10 (95% CI 1.06-1.14). Findings persisted when including patients with nonhospitalized incident gout. Mendelian randomization corroborated their potential causal role on hyperuricemia or gout risk; with change in urate levels of -0.05 mg/dL (95% CI -0.08 to -0.01) and -0.12 mg/dL (95% CI -0.22 to -0.03) per SD of glycine and glutamine, respectively, and odds ratios of 0.94 (95% CI 0.88-1.00) and 0.81 (95% CI 0.67-0.97) for gout. CONCLUSION These prospective findings with causal implications could lead to biomarker-based risk prediction and potential supplementation-based interventions with glycine or glutamine.
Collapse
Affiliation(s)
- Natalie McCormick
- Massachusetts General Hospital and Harvard Medical School, Boston, and Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - Amit D Joshi
- Brigham and Women's Hospital, Boston, Massachusetts
| | - Chio Yokose
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Bing Yu
- The University of Texas Health Science Center at Houston
| | - Adrienne Tin
- University of Mississippi Medical Center, Jackson
| | | | - Tony R Merriman
- University of Alabama at Birmingham and the University of Otago, Dunedin, New Zealand
| | - Oana Zeleznik
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - A Heather Eliassen
- Brigham and Women's Hospital and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gary C Curhan
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | - Hyon K Choi
- Massachusetts General Hospital and Harvard Medical School, Boston, and Arthritis Research Canada, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Tong J, Han X, Li Y, Wang Y, Liu M, Liu H, Pan J, Zhang L, Liu Y, Jiang M, Zhao H. Distinct metabolites in atherosclerosis based on metabolomics: A systematic review and meta-analysis primarily in Chinese population. Nutr Metab Cardiovasc Dis 2024:103789. [PMID: 39690044 DOI: 10.1016/j.numecd.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
AIMS Atherosclerosis is a life-threatening disease that develops when a plaque builds up inside an artery and progresses silently. Identifying the early pathological changes and the biomarkers of atherosclerosis deserves attention. We aimed to systematically study and integrate the various metabolites of atherosclerosis in the level of disease to provide more evidences to support early prevention and treatment of atherosclerosis. DATA SYNTHESIS The protocol was registered with PROPSERO (CRD42023441845). We searched 14,985 records via EMBASE, PubMed, Web of Science, WanFang data, VIP data, and CNKI databases. The collected metabolites were for qualitative and quantitative meta-analysis. The I2 statistic estimated heterogeneity, with over 50 % considered to adopt the random-effects model. A total of 49 articles were included in the meta-analysis. We finally integrated 83 and 16 metabolites presented more than two times in inclusion studies, respectively in blood (plasma and serum) and urine. Among them, the level of citric acid (SMD = -10.35 [95%CI -15.03, -5.67], p < 0.001), lactic acid (SMD = 6.32 [95%CI 0.12, 12.52], p < 0.001) and TMAO (SMD = 1.40 [95%CI 0.27, 2.53], p < 0.001) had significant differences between atherosclerosis and controls. And we observed blood stasis syndrome of atherosclerosis patients present arterial ischemia and energy disorder obviously. CONCLUSIONS The study provides an in-depth understanding of the roles of metabolites on atherosclerosis progression and prediction primarily in Chinese population, which contributing to development of prevention and therapeutic potential in the future.
Collapse
Affiliation(s)
- Jinlin Tong
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanyuan Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuyao Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Meijie Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinghua Pan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lei Zhang
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Liu
- Fangta Hospital of Traditional Chinese Medicine, Shanghai, 201600, China.
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongyan Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Mansour A, Sajjadi-Jazi SM, Mirahmad M, Asili P, Sharafkhah M, Masoudi S, Poustchi H, Pourshams A, Hashemian M, Hekmatdoost A, Malekzadeh R. Dietary amino acids intake and all-cause and cause-specific mortality: results from the Golestan Cohort Study. Nutr J 2024; 23:141. [PMID: 39522023 PMCID: PMC11549823 DOI: 10.1186/s12937-024-01044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Less is known whether the amino acid composition of dietary protein sources effects on long-term health outcomes. We aimed to evaluate the association between dietary amino acid composition and all-cause and cause-specific mortality. METHODS This study used data from the Golestan Cohort Study, which was performed in the Golestan Province of Iran from January 2004 to June 2008. Mortality, which was the primary outcome, was ascertained through September 2022. The Cox proportional hazards regression models were used to determine the adjusted hazard ratios (HR) and 95% confidence intervals (CI) for mortality according to the quintiles of amino acid consumption, taking the third quintile as the reference. RESULTS A total of 47,337 participants (27,293 [57.7%] women) with a mean (standard deviation) age of 51.9 (8.9) years were included. During a median follow-up of 15 years, 9,231 deaths were documented. Regarding essential amino acid intakes, the HRs of all-cause mortality were 1.16 (95% CI, 1.07-1.26) in the first quintile, compared with the reference group (P for non-linear trend < 0.001). Similarly, non-linear associations were observed between risk of all-cause mortality and intake of branched-chain, aromatic, sulfur-containing, or non-essential amino acids (P for non-linear trend < 0.001 for all comparisons), with higher HRs for participants in the first quintiles. There was an age interaction for the associations between dietary amino acids and mortality (P for interaction ˂0.05). While high amino acid diets were detrimental in middle-aged adults (< 65 years), increased hazards of mortality were observed among older adults (≥ 65 years) with low amino acid intake. CONCLUSIONS This study showed the non-linear trend between amino acids intake and risk of mortality in the middle-aged and older Iranian population. Overall, our findings suggest that diets lower in amino acids were associated with increased hazards of mortality, particularly among older adults.
Collapse
Affiliation(s)
- Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharafkhah
- Liver and Pancreaticobiliary Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Kargar Shomali St, Tehran, 14117-13135, Iran
| | - Sahar Masoudi
- Liver and Pancreaticobiliary Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Kargar Shomali St, Tehran, 14117-13135, Iran
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Liver and Pancreaticobiliary Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Kargar Shomali St, Tehran, 14117-13135, Iran
| | - Maryam Hashemian
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 46, West Arghavan St., Farahzadi Blvd., Shahrak Gharb, Tehran, Iran.
| | - Reza Malekzadeh
- Liver and Pancreaticobiliary Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Kargar Shomali St, Tehran, 14117-13135, Iran.
| |
Collapse
|
4
|
Singh R, Chen JY, Hawks SR, Wagatsuma Y. A Prospective Study on Lifestyle Factors, Body Mass Index Changes, and Lipitension Risk in Japanese Young and Middle-Aged Women. J Womens Health (Larchmt) 2024; 33:1576-1586. [PMID: 39011601 DOI: 10.1089/jwh.2024.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Background: This study investigates how lifestyle factors and westernization contribute to obesity and examines the influence of body mass index (BMI) changes and lifestyle factors on "lipitension," a significant risk factor for heart disease and metabolic syndrome. Methods: This prospective study focused on women aged 20-64 without pre-existing hypertension and dyslipidemia who underwent regular medical checkups between April 2016 and March 2022. Anthropometric measurements and blood pressure, along with low-density lipoprotein, high-density lipoprotein, and triglycerides levels, were assessed. Results: Over an average 46.5-month follow-up, 11.5% of initially healthy young and middle-aged women developed lipitension. Categorizing participants based on BMI changes revealed stable (63.8%), decreased (12.5%), and increased (23.8%) groups within this 11.5%. Increased BMI is linked with a heightened hazard risk for lipitension. Women with increased BMI who refrained from snacking (aHR [95% confidence interval (CI)] = 2.750 [1.433-5.279]), avoided late-night eating (aHR [95% CI] = 1.346 [1.032-1.754]), and engaged in alcohol consumption (aHR [95% CI] = 2.037 [1.138-3.646]) showed an elevated risk. Conversely, within the decreased BMI group, behaviors like skipping breakfast (aHR [95% CI] = 0.190 [0.047-0.764]), eating quickly (aHR [95% CI] = 0.457 [0.215-0.972]), and not eating late (aHR [95% CI] = 0.665 [0.467-0.948]) were associated to a reduced lipitension. Subgroup analysis for women with BMI <23 revealed specific behaviors influencing lipitension risk in both BMI-increased and BMI-stable groups. Conclusion: Customized interventions, including for women with BMI <23, enhance heart health, mitigating global lifestyle diseases and obesity.
Collapse
Affiliation(s)
- Rupa Singh
- Department of Clinical Trials and Clinical Epidemiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jou-Yin Chen
- Department of Clinical Trials and Clinical Epidemiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Steven R Hawks
- Kinesiology and Health Science, Utah State University, Moab, Utah, USA
| | - Yukiko Wagatsuma
- Department of Clinical Trials and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Pandey S. Metabolomics Characterization of Disease Markers in Diabetes and Its Associated Pathologies. Metab Syndr Relat Disord 2024; 22:499-509. [PMID: 38778629 DOI: 10.1089/met.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
With the change in lifestyle of people, there has been a considerable increase in diabetes, which brings with it certain follow-up pathological conditions, which lead to a substantial medical burden. Identifying biomarkers that aid in screening, diagnosis, and prognosis of diabetes and its associated pathologies would help better patient management and facilitate a personalized treatment approach for prevention and treatment. With the advancement in techniques and technologies, metabolomics has emerged as an omics approach capable of large-scale high throughput data analysis and identifying and quantifying metabolites that provide an insight into the underlying mechanism of the disease and its progression. Diabetes and metabolomics keywords were searched in correspondence with the assigned keywords, including kidney, cardiovascular diseases and critical illness from PubMed and Scopus, from its inception to Dec 2023. The relevant studies from this search were extracted and included in the study. This review is focused on the biomarkers identified in diabetes, diabetic kidney disease, diabetes-related development of CVD, and its role in critical illness.
Collapse
Affiliation(s)
- Swarnima Pandey
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Strauss-Kruger M, Pieters M, van Zyl T, Kruger R, Jacobs A, Jansen van Vuren E, Louw R, Mels CCMC. Urinary metabolomics signature of animal and plant protein intake and its association with 24-h blood pressure: the African-PREDICT study. Hypertens Res 2024; 47:2456-2470. [PMID: 38965426 PMCID: PMC11374704 DOI: 10.1038/s41440-024-01767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
The contrasting relationships of plant and animal protein intake with blood pressure (BP) may be partially attributed to the differential non-protein (e.g., saturated fat and fibre) and amino acid (AA) compositions. This study determined whether animal and plant protein intake were related to differential metabolomic profiles associated with BP. This study included 1008 adults from the African-PREDICT study (aged 20-30 years). Protein intake was determined using 24-h dietary recalls. Twenty-four-hour ambulatory BP was measured. Amino acids and acylcarnitines were analysed in spot urine samples using liquid chromatography-tandem mass spectrometry-based metabolomics. Participants with a low plant, high animal protein intake had higher SBP (by 3 mmHg, p = 0.011) than those with high plant, low animal protein intake (low-risk group). We found that the relationships of plant and animal protein intake with 24-h SBP were partially mediated by BMI and saturated fat intake, which were independently associated with SBP. Protein intake was therefore not related to SBP in multiple regression analysis after adjusting for confounders. In the low-risk group, methionine (Std. β = -0.217; p = 0.034), glutamic acid (Std. β = -0.220; p = 0.031), glycine (Std. β = -0.234; p = 0.025), and proline (Std. β = -0.266; p = 0.010) were inversely related to SBP, and beta-alanine (Std. β = -0.277; p = 0.020) to DBP. Ultimately a diet high in animal and low in plant protein intake may contribute to higher BP by means of increased BMI and saturated fat intake. Conversely, higher levels of urinary AAs observed in adults consuming a plant rich diet may contribute to lower BP.
Collapse
Affiliation(s)
- Michél Strauss-Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Marlien Pieters
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, 2520, South Africa
| | - Tertia van Zyl
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, 2520, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Adriaan Jacobs
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Esmé Jansen van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, North-West University, Potchefstroom, 2520, North-West Province, South Africa
| | - Carina C M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, 2520, North-West Province, South Africa.
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
7
|
Wang N, Ockerman FP, Zhou LY, Grove ML, Alkis T, Barnard J, Bowler RP, Clish CB, Chung S, Drzymalla E, Evans AM, Franceschini N, Gerszten RE, Gillman MG, Hutton SR, Kelly RS, Kooperberg C, Larson MG, Lasky-Su J, Meyers DA, Woodruff PG, Reiner AP, Rich SS, Rotter JI, Silverman EK, Ramachandran VS, Weiss ST, Wong KE, Wood AC, Wu L, Yarden R, Blackwell TW, Smith AV, Chen H, Raffield LM, Yu B. Genetic Architecture and Analysis Practices of Circulating Metabolites in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604849. [PMID: 39211135 PMCID: PMC11361093 DOI: 10.1101/2024.07.23.604849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Circulating metabolite levels partly reflect the state of human health and diseases, and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single study analyses. Leveraging the rich metabolomics resources generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally-diverse samples. We provided recommendations for outlier and imputation handling to process metabolite data, as well as a general analytical framework. We further performed a pooled analysis following our practical recommendations and discovered 1,778 independent loci associated with 667 metabolites. Among 108 novel locus - metabolite pairs, we detected not only novel loci within previously implicated metabolite associated genes, but also novel genes (such as GAB3 and VSIG4 located in the X chromosome) that have putative roles in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, including well-known metabolic genes such as FADS2 , D2HGDH , SUGP1 , UTG2B17 , strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.
Collapse
|
8
|
Rahemi MH, Zhang Y, Li Z, Guan D, Li D, Fu H, Yu J, Lu J, Wang C, Feng R. The inverse associations of glycine and histidine in diet with hyperlipidemia and hypertension. Nutr J 2024; 23:98. [PMID: 39175065 PMCID: PMC11340119 DOI: 10.1186/s12937-024-01005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Amino acids are crucial for nutrition and metabolism, regulating metabolic pathways and activities vital to organismal health and stability. Glycine and histidine act as potent antioxidants and anti-inflammatory agents; however, limited knowledge exists regarding the associations between these amino acids and hyperlipidemia and hypertension. The purpose of this study is to investigate the relationship between dietary glycine and histidine, and hyperlipidemia and hypertension. METHODS This population-based cross-sectional study evaluated the influence of dietary glycine and histidine, as well as their combined effect, on hyperlipidemia and hypertension in Chinese adults participating in the Nutrition Health Atlas Project (NHAP). General characteristics were acquired using a verified Internet-based Dietary Questionnaire for the Chinese. Binary logistic regression, along with gender, age groups, and median energy intake subgroup analyses, was employed to investigate the associations between dietary glycine and histidine and hyperlipidemia and hypertension. A sensitivity analysis was conducted to assess the impact of excluding individuals who smoke and consume alcohol on the results. RESULTS Based on the study's findings, 418 out of 1091 cases had hyperlipidemia, whereas 673 had hypertension. A significant inverse relationship was found between dietary glycine, histidine, and glycine + histidine and hyperlipidemia and hypertension. Compared with the 1st and 2nd tertiles, the multivariable-adjusted odd ratios (ORs) (95% confidence intervals) (CIs) of the 3rd tertile of dietary glycine for hyperlipidemia and hypertension were 0.64 (0.49-0.84) (p < 0.01) and 0.70 (0.56-0.88) (p < 0.001); histidine was 0.63 (0.49-0.82) (p < 0.01) and 0.80 (0.64-0.99) (p < 0.01); and glycine + histidine was 0.64 (0.49-0.83) (p < 0.01) and 0.74 (0.59-0.92) (p < 0.001), respectively. High glycine and high histidine (HGHH) intake were negatively associated with hyperlipidemia and hypertension OR (95% CIs) were: 0.71 (0.58-0.88) (p < 0.01) and 0.73 (0.61-0.87) (p < 0.01), respectively. CONCLUSIONS Dietary glycine and histidine, as well as their HGHH group, revealed an inverse relationship with hyperlipidemia and hypertension. Further investigations are needed to validate these findings.
Collapse
Affiliation(s)
- Mohammad Haroon Rahemi
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Zican Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Dongwei Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Defang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Hongxin Fu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jiaying Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Junrong Lu
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Cheng Wang
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150081, Heilongjiang, China.
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
9
|
Brundage J, Barrios JP, Tison GH, Pirruccello JP. Genetics of Cardiac Aging Implicate Organ-Specific Variation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.02.24310874. [PMID: 39148824 PMCID: PMC11326326 DOI: 10.1101/2024.08.02.24310874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Heart structure and function change with age, and the notion that the heart may age faster for some individuals than for others has driven interest in estimating cardiac age acceleration. However, current approaches have limited feature richness (heart measurements; radiomics) or capture extraneous data and therefore lack cardiac specificity (deep learning [DL] on unmasked chest MRI). These technical limitations have been a barrier to efforts to understand genetic contributions to age acceleration. We hypothesized that a video-based DL model provided with heart-masked MRI data would capture a rich yet cardiac-specific representation of cardiac aging. In 61,691 UK Biobank participants, we excluded noncardiac pixels from cardiac MRI and trained a video-based DL model to predict age from one cardiac cycle in the 4-chamber view. We then computed cardiac age acceleration as the bias-corrected prediction of heart age minus the calendar age. Predicted heart age explained 71.1% of variance in calendar age, with a mean absolute error of 3.3 years. Cardiac age acceleration was linked to unfavorable cardiac geometry and systolic and diastolic dysfunction. We also observed links between cardiac age acceleration and diet, decreased physical activity, increased alcohol and tobacco use, and altered levels of 239 serum proteins, as well as adverse brain MRI characteristics. We found cardiac age acceleration to be heritable (h2g 26.6%); a genome-wide association study identified 8 loci related to linked to cardiomyopathy (near TTN, TNS1, LSM3, PALLD, DSP, PLEC, ANKRD1 and MYO18B) and an additional 16 loci (near MECOM, NPR3, KLHL3, HDGFL1, CDKN1A, ELN, SLC25A37, PI15, AP3M1, HMGA2, ADPRHL1, PGAP3, WNT9B, UHRF1 and DOK5). Of the discovered loci, 21 were not previously associated with cardiac age acceleration. Mendelian randomization revealed that lower genetically mediated levels of 6 circulating proteins (MSRA most strongly), as well as greater levels of 5 proteins (LXN most strongly) were associated with cardiac age acceleration, as were greater blood pressure and Lp(a). A polygenic score for cardiac age acceleration predicted earlier onset of arrhythmia, heart failure, myocardial infarction, and mortality. These findings provide a thematic understanding of cardiac age acceleration and suggest that heart- and vascular-specific factors are key to cardiac age acceleration, predominating over a more global aging program.
Collapse
Affiliation(s)
- James Brundage
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Joshua P. Barrios
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Geoffrey H. Tison
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Center for Biosignal Research, University of California San Francisco, San Francisco, CA, USA
| | - James P. Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Genetics Center, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Center for Biosignal Research, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Yazdani A, Mendez-Giraldez R, Yazdani A, Wang RS, Schaid DJ, Kong SW, Hadi MR, Samiei A, Samiei E, Wittenbecher C, Lasky-Su J, Clish CB, Muehlschlegel JD, Marotta F, Loscalzo J, Mora S, Chasman DI, Larson MG, Elsea SH. Broadcasters, receivers, functional groups of metabolites, and the link to heart failure by revealing metabolomic network connectivity. Metabolomics 2024; 20:71. [PMID: 38972029 DOI: 10.1007/s11306-024-02141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Blood-based small molecule metabolites offer easy accessibility and hold significant potential for insights into health processes, the impact of lifestyle, and genetic variation on disease, enabling precise risk prevention. In a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline. METHODS We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers, mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites. RESULTS We identified metabolites associated with higher and lower risk of HF incidence, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. These associations were not confounded by the other metabolites due to uncovering the connectivity among metabolites and adjusting each association for the confounding metabolites. Examples of our findings include the direct influence of asparagine on glycine, both of which were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids, which are not synthesized in the human body and are obtained directly from the diet. CONCLUSION Metabolites may play a critical role in linking genetic background and lifestyle factors to HF incidence. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates studying complex conditions like HF.
Collapse
Affiliation(s)
- Azam Yazdani
- Division of Preventive Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Data Science Initiative, The Broad Institute, Harvard Medical School, Boston, USA.
| | | | - Akram Yazdani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, USA
| | - Rui-Sheng Wang
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55902, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - M Reza Hadi
- School of Mathematics, University of Science and Technology of Iran, Tehran, Iran
| | - Ahmad Samiei
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, USA
| | | | - Clemens Wittenbecher
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jessica Lasky-Su
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jochen D Muehlschlegel
- Department of Anesthesia, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention and Vitality & Longevity Medical Science Commission, Femtec, Milano, Italy
| | - Joseph Loscalzo
- The Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samia Mora
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel I Chasman
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin G Larson
- Department of Biostatistics, Boston University, Boston, MA, 02118, USA
| | | |
Collapse
|
11
|
Dziedzic M, Józefczuk E, Guzik TJ, Siedlinski M. Interplay Between Plasma Glycine and Branched-Chain Amino Acids Contributes to the Development of Hypertension and Coronary Heart Disease. Hypertension 2024; 81:1320-1331. [PMID: 38587181 PMCID: PMC11095885 DOI: 10.1161/hypertensionaha.123.22649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Higher levels of plasma glycine are linked to a reduced risk, while increased levels of total branched-chain amino acids (tBCAAs) are associated with a higher risk of essential hypertension and coronary heart disease (CHD). As these metabolic components are interconnected, analyzing the tBCAAs/glycine ratio may help to understand their interplay in the pathogenesis of cardiovascular disease. METHODS The Cox regression approach was combined with the development of novel genetic tools for assessments of associations between plasma metabolomic data (glycine, tBCAAs, and tBCAAs/glycine ratio) from the UK Biobank and the development of hypertension and CHD. Genome-wide association study was performed on 186 523 White UK Biobank participants to identify new independent genetic instruments for the 2-sample Mendelian randomization analyses. P-gain statistic >10 identified instruments associated with tBCAAs/glycine ratio significantly stronger compared with individual amino acids. Outcomes of genome-wide association study on hypertension and CHD were derived from the UK Biobank (nonoverlapping sample), FinnGen, and CARDIoGRAMplusC4D. RESULTS The tBCAAs/glycine ratio was prospectively associated with a higher risk of developing hypertension and CHD (hazard ratio quintile Q5 versus Q1, 1.196 [95% CI, 1.109-1.289] and 1.226 [95% CI, 1.160-1.296], respectively). Mendelian randomization analysis demonstrated that tBCAAs/glycine ratio (P-gain >10) was a risk factor for hypertension (meta-analyzed inverse-variance weighted causal estimate 0.45 log odds ratio/SD (95% CI, 0.26-0.64) and CHD (0.48 [95% CI, 0.29-0.67]) with an absolute effect significantly larger compared with the effect of glycine (-0.06 [95% CI, -0.1 to -0.03] and -0.08 [95% CI, -0.11 to -0.05], respectively) or tBCAAs (0.22 [95% CI, 0.09-0.34] and 0.12 [95% CI, 0.01-0.24], respectively). CONCLUSIONS The total BCAAs/glycine ratio is a key element of the metabolic signature contributing to hypertension and CHD, which may reflect biological pathways shared by glycine and tBCAAs.
Collapse
Affiliation(s)
- Mateusz Dziedzic
- Department of Internal Medicine (M.D., E.J., T.J.G., M.S.), Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Ewelina Józefczuk
- Department of Internal Medicine (M.D., E.J., T.J.G., M.S.), Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
- Center for Medical Genomics OMICRON (T.J.G., M.S.), Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz J. Guzik
- Department of Internal Medicine (M.D., E.J., T.J.G., M.S.), Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (T.J.G., M.S.)
| | - Mateusz Siedlinski
- Department of Internal Medicine (M.D., E.J., T.J.G., M.S.), Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
- Center for Medical Genomics OMICRON (T.J.G., M.S.), Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, United Kingdom (T.J.G., M.S.)
| |
Collapse
|
12
|
Abar L, Zuber V, Otto GW, Tzoulaki I, Dehghan A. Unravelling genetic architecture of circulatory amino acid levels, and their effect on risk of complex disorders. NAR Genom Bioinform 2024; 6:lqae046. [PMID: 38711861 PMCID: PMC11071119 DOI: 10.1093/nargab/lqae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Variations in serum amino acid levels are linked to a multitude of complex disorders. We report the largest genome-wide association study (GWAS) on nine serum amino acids in the UK Biobank participants (117 944, European descent). We identified 34 genomic loci for circulatory levels of alanine, 48 loci for glutamine, 44 loci for glycine, 16 loci for histidine, 11 loci for isoleucine, 19 loci for leucine, 9 loci for phenylalanine, 32 loci for tyrosine and 20 loci for valine. Our gene-based analysis mapped 46-293 genes associated with serum amino acids, including MIP, GLS2, SLC gene family, GCKR, LMO1, CPS1 and COBLL1.The gene-property analysis across 30 tissues highlighted enriched expression of the identified genes in liver tissues for all studied amino acids, except for isoleucine and valine, in muscle tissues for serum alanine and glycine, in adrenal gland tissues for serum isoleucine and leucine, and in pancreatic tissues for serum phenylalanine. Mendelian randomization (MR) phenome-wide association study analysis and subsequent two-sample MR analysis provided evidence that every standard deviation increase in valine is associated with 35% higher risk of type 2 diabetes and elevated levels of serum alanine and branched-chain amino acids with higher levels of total cholesterol, triglyceride and low-density lipoprotein, and lower levels of high-density lipoprotein. In contrast to reports by observational studies, MR analysis did not support a causal association between studied amino acids and coronary artery disease, Alzheimer's disease, breast cancer or prostate cancer. In conclusion, we explored the genetic architecture of serum amino acids and provided evidence supporting a causal role of amino acids in cardiometabolic health.
Collapse
Affiliation(s)
- Leila Abar
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Verena Zuber
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Georg W Otto
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
- Centre for Systems Biology, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- BHF Centre of Excellence, School of Public Health, Imperial College London, London W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, UK
| | - Abbas Dehghan
- Department of Epidemiology & Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
- BHF Centre of Excellence, School of Public Health, Imperial College London, London W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
13
|
Miao G, Guo J, Zhang W, Lai P, Xu Y, Chen J, Zhang L, Zhou Z, Han Y, Chen G, Chen J, Tao Y, Zheng L, Zhang L, Huang W, Wang Y, Xian X. Remodeling Intestinal Microbiota Alleviates Severe Combined Hyperlipidemia-Induced Nonalcoholic Steatohepatitis and Atherosclerosis in LDLR -/- Hamsters. RESEARCH (WASHINGTON, D.C.) 2024; 7:0363. [PMID: 38694198 PMCID: PMC11062505 DOI: 10.34133/research.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
Combined hyperlipidemia (CHL) manifests as elevated cholesterol and triglycerides, associated with fatty liver and cardiovascular diseases. Emerging evidence underscores the crucial role of the intestinal microbiota in metabolic disorders. However, the potential therapeutic viability of remodeling the intestinal microbiota in CHL remains uncertain. In this study, CHL was induced in low-density lipoprotein receptor-deficient (LDLR-/-) hamsters through an 8-week high-fat and high-cholesterol (HFHC) diet or a 4-month high-cholesterol (HC) diet. Placebo or antibiotics were administered through separate or cohousing approaches. Analysis through 16S rDNA sequencing revealed that intermittent antibiotic treatment and the cohousing approach effectively modulated the gut microbiota community without impacting its overall abundance in LDLR-/- hamsters exhibiting severe CHL. Antibiotic treatment mitigated HFHC diet-induced obesity, hyperglycemia, and hyperlipidemia, enhancing thermogenesis and alleviating nonalcoholic steatohepatitis (NASH), concurrently reducing atherosclerotic lesions in LDLR-/- hamsters. Metabolomic analysis revealed a favorable liver lipid metabolism profile. Increased levels of microbiota-derived metabolites, notably butyrate and glycylglycine, also ameliorated NASH and atherosclerosis in HFHC diet-fed LDLR-/- hamsters. Notably, antibiotics, butyrate, and glycylglycine treatment exhibited protective effects in LDLR-/- hamsters on an HC diet, aligning with outcomes observed in the HFHC diet scenario. Our findings highlight the efficacy of remodeling gut microbiota through antibiotic treatment and cohousing in improving obesity, NASH, and atherosclerosis associated with refractory CHL. Increased levels of beneficial microbiota-derived metabolites suggest a potential avenue for microbiome-mediated therapies in addressing CHL-associated diseases.
Collapse
Affiliation(s)
- Guolin Miao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Wenxi Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yitong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jingxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Lianxin Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Zihao Zhou
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yufei Han
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Gonglie Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jinxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yijun Tao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research,
Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Ning L, He C, Lu C, Huang W, Zeng T, Su Q. Association between basal metabolic rate and cardio-metabolic risk factors: Evidence from a Mendelian Randomization study. Heliyon 2024; 10:e28154. [PMID: 38590845 PMCID: PMC10999873 DOI: 10.1016/j.heliyon.2024.e28154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Background Cardio-metabolic risk factors play a crucial role in the development of cardiovascular and metabolic diseases. Basal metabolic rate (BMR) is a fundamental physiological parameter that affects energy expenditure and might contribute to variations in these risk factors. However, the exact relationship between BMR and cardio-metabolic risk factors has remained unclear. Methods We employed Mendelian Randomization (MR) analysis to explore the association between BMR (N: 534,045) and various cardio-metabolic risk factors, including body mass index (BMI, N: 681,275), fasting glucose (N: 200,622), high-density lipoprotein (HDL) cholesterol (N = 403,943), low-density lipoprotein (LDL) cholesterol (N = 431,167), total cholesterol (N: 344,278), and triglycerides (N: 441,016), C-reactive protein (N: 436,939), waist circumference (N: 232,101), systolic blood pressure (N: 810,865), diastolic blood pressure (N: 810,865), glycated haemoglobin (N: 389,889), and N-terminal prohormone brain natriuretic peptide (N: 21,758). We leveraged genetic variants strongly associated with BMR as instrumental variables to investigate potential causal relationships, with the primary analysis using the Inverse Variance Weighted (IVW) method. Results Our MR analysis revealed compelling evidence of a causal link between BMR and specific cardio-metabolic risk factors. Specifically, genetically determined higher BMR was associated with an increased BMI (β = 0.7538, 95% confidence interval [CI]: 0.6418 to 0.8659, p < 0.001), lower levels of HDL cholesterol (β = -0.3293, 95% CI: 0.4474 to -0.2111, p < 0.001), higher levels of triglycerides (β = 0.1472, 95% CI: 0.0370 to 0.2574, p = 0.0088), waist circumference (β = 0.4416, 95% CI: 0.2949 to 0.5883, p < 0.001), and glycated haemoglobin (β = 0.1037, 95% CI: 0.0080 to 0.1995, p = 0.0377). However, we did not observe any significant association between BMR and fasting glucose, LDL cholesterol, total cholesterol, C-reactive protein, systolic blood pressure, diastolic blood pressure, or N-terminal prohormone brain natriuretic peptide (all p-values>0.05). Conclusion This MR study provides valuable insights into the relationship between BMR and cardio-metabolic risk factors. Understanding the causal links between BMR and these factors could have important implications for the development of targeted interventions and therapies.
Collapse
Affiliation(s)
- Limeng Ning
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No. 85 Hedi Road, Nanning, Guangxi, 530021, China
| | - Changjing He
- Pediatric surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise, China
- Health Management Service Center, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No.85 Hedi Road, Nanning, Guangxi, 530021, China
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, China
- Guangxi Key Laboratory for Preclinica1 and Translational Research on Bone and Joint Degenerative Diseases, China
- Guangxi Key Laboratory of Molecular Pathology in Hepatobiliary Diseases, China
- Guangxi Key Laboratory of Clinical Cohort Research on Bone and Joint Degenerative Disease, China
- Guangxi Key Laboratory of Medical Research Basic Guarantee for Immune-Related Disease Research, China
- Guangxi Key Laboratory for Biomedical Material Research, China
- Key Laboratory of Research on Prevention and Control of High Incidence Diseases in Western Guangxi, China
- Key Laboratory of Molecular Pathology in Tumors of Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, China
- Baise Key Laboratory of Mo1ecular Pathology in Tumors, China
- Baise Key Laboratory for Metabolic Diseases, China
- Baise Key Laboratory for Research and Deve1opment on Clinical Mo1ecular Diagnosis for High-Incidence Diseases, China
- Key Laboratory of the Bone and Joint Degenerative Diseases, China
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, China
- Life Science and C1inical Medicine Research Center, China
- Key Laboratory of Clinical Diagnosis and Treatment Research of High Incidence Diseases in Guangxi, China
| | - Chunliu Lu
- Health Management Service Center, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No.85 Hedi Road, Nanning, Guangxi, 530021, China
| | - Wanzhong Huang
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No. 85 Hedi Road, Nanning, Guangxi, 530021, China
| | - Ting Zeng
- Health Management Service Center, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No. 85 Hedi Road, Nanning, Guangxi, 530021, China
| | - Qiang Su
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No. 85 Hedi Road, Nanning, Guangxi, 530021, China
| |
Collapse
|
15
|
Perry AS, Piaggi P, Huang S, Nayor M, Freedman J, North K, Below J, Clish C, Murthy VL, Krakoff J, Shah RV. Human metabolic chambers reveal a coordinated metabolic-physiologic response to nutrition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.08.24305087. [PMID: 38645000 PMCID: PMC11030300 DOI: 10.1101/2024.04.08.24305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The emerging field of precision nutrition is based on the notion that inter-individual responses across diets of different calorie-macronutrient content may contribute to inter-individual differences in metabolism, adiposity, and weight gain. Free-living diet studies have been traditionally challenged by difficulties in controlling adherence to prescribed calories and macronutrient content and rarely allow a period of metabolic stability prior to metabolic measures (to minimize influences of weight changes). In this context, key physiologic measures central to precision nutrition responses may be most precisely quantified via whole room indirect calorimetry over 24-h, in which precise control of activity and nutrition can be achieved. In addition, these studies represent unique "N of 1" human crossover metabolic-physiologic experiments during which specific molecular pathways central to nutrient metabolism may be discerned. Here, we quantified 263 circulating metabolites during a ≈40-day inpatient admission in which up to 94 participants underwent seven monitored 24-h nutritional interventions of differing macronutrient composition in a whole-room indirect calorimeter to capture precision metabolic responses. Broadly, we observed heterogenous responses in metabolites across dietary chambers, with the exception of carnitines which tracked with 24-h respiratory quotient. We identified excursions in shared metabolic species (e.g., carnitines, glycerophospholipids, amino acids) that mapped onto gold-standard calorimetric measures of substrate oxidation preference and lipid availability. These findings support a coordinated metabolic-physiologic response to nutrition, highlighting the relevance of these controlled settings to uncover biological pathways of energy utilization during precision nutrition studies.
Collapse
|
16
|
Yazdani A. WITHDRAWN: Broadcasters, receivers, functional groups of metabolites and the link to heart failure using polygenic factors. RESEARCH SQUARE 2024:rs.3.rs-3272974. [PMID: 37674714 PMCID: PMC10479558 DOI: 10.21203/rs.3.rs-3272974/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The full text of this preprint has been withdrawn, as it was submitted in error. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
17
|
Karjalainen MK, Karthikeyan S, Oliver-Williams C, Sliz E, Allara E, Fung WT, Surendran P, Zhang W, Jousilahti P, Kristiansson K, Salomaa V, Goodwin M, Hughes DA, Boehnke M, Fernandes Silva L, Yin X, Mahajan A, Neville MJ, van Zuydam NR, de Mutsert R, Li-Gao R, Mook-Kanamori DO, Demirkan A, Liu J, Noordam R, Trompet S, Chen Z, Kartsonaki C, Li L, Lin K, Hagenbeek FA, Hottenga JJ, Pool R, Ikram MA, van Meurs J, Haller T, Milaneschi Y, Kähönen M, Mishra PP, Joshi PK, Macdonald-Dunlop E, Mangino M, Zierer J, Acar IE, Hoyng CB, Lechanteur YTE, Franke L, Kurilshikov A, Zhernakova A, Beekman M, van den Akker EB, Kolcic I, Polasek O, Rudan I, Gieger C, Waldenberger M, Asselbergs FW, Hayward C, Fu J, den Hollander AI, Menni C, Spector TD, Wilson JF, Lehtimäki T, Raitakari OT, Penninx BWJH, Esko T, Walters RG, Jukema JW, Sattar N, Ghanbari M, Willems van Dijk K, Karpe F, McCarthy MI, Laakso M, Järvelin MR, Timpson NJ, Perola M, Kooner JS, Chambers JC, van Duijn C, Slagboom PE, Boomsma DI, Danesh J, Ala-Korpela M, Butterworth AS, Kettunen J. Genome-wide characterization of circulating metabolic biomarkers. Nature 2024; 628:130-138. [PMID: 38448586 PMCID: PMC10990933 DOI: 10.1038/s41586-024-07148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.
Collapse
Affiliation(s)
- Minna K Karjalainen
- Systems Epidemiology, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Savita Karthikeyan
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Clare Oliver-Williams
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Public Health Specialty Training Programme, Cambridge, UK
| | - Eeva Sliz
- Systems Epidemiology, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Elias Allara
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Wing Tung Fung
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, UK
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kati Kristiansson
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Matt Goodwin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - David A Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Jiangsu, China
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Matt J Neville
- NIHR Oxford Biomedical Research Centre, OUHFT Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Natalie R van Zuydam
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Ayse Demirkan
- Surrey Institute for People-Centred AI, University of Surrey, Guildford, UK
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Christiana Kartsonaki
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Toomas Haller
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mika Kähönen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Pashupati P Mishra
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Peter K Joshi
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Erin Macdonald-Dunlop
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Jonas Zierer
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yara T E Lechanteur
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik B van den Akker
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Center for Computational Biology, Leiden University Medical Center, Leiden, The Netherlands
- The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ivana Kolcic
- Department of Public Health, School of Medicine, University of Split, Split, Croatia
| | - Ozren Polasek
- Department of Public Health, School of Medicine, University of Split, Split, Croatia
| | - Igor Rudan
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Folkert W Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Genomics Research Center, Abbvie, Cambridge, MA, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - James F Wilson
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Terho Lehtimäki
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tonu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Fredrik Karpe
- NIHR Oxford Biomedical Research Centre, OUHFT Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | - Marjo-Riitta Järvelin
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Perola
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Mika Ala-Korpela
- Systems Epidemiology, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Johannes Kettunen
- Systems Epidemiology, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
18
|
Anand SK, Governale TA, Zhang X, Razani B, Yurdagul A, Pattillo CB, Rom O. Amino Acid Metabolism and Atherosclerotic Cardiovascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:510-524. [PMID: 38171450 PMCID: PMC10988767 DOI: 10.1016/j.ajpath.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Despite significant advances in medical treatments and drug development, atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of death worldwide. Dysregulated lipid metabolism is a well-established driver of ASCVD. Unfortunately, even with potent lipid-lowering therapies, ASCVD-related deaths have continued to increase over the past decade, highlighting an incomplete understanding of the underlying risk factors and mechanisms of ASCVD. Accumulating evidence over the past decades indicates a correlation between amino acids and disease state. This review explores the emerging role of amino acid metabolism in ASCVD, uncovering novel potential biomarkers, causative factors, and therapeutic targets. Specifically, the significance of arginine and its related metabolites, homoarginine and polyamines, branched-chain amino acids, glycine, and aromatic amino acids, in ASCVD are discussed. These amino acids and their metabolites have been implicated in various processes characteristic of ASCVD, including impaired lipid metabolism, endothelial dysfunction, increased inflammatory response, and necrotic core development. Understanding the complex interplay between dysregulated amino acid metabolism and ASCVD provides new insights that may lead to the development of novel diagnostic and therapeutic approaches. Although further research is needed to uncover the precise mechanisms involved, it is evident that amino acid metabolism plays a role in ASCVD.
Collapse
Affiliation(s)
- Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Theresea-Anne Governale
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Xiangyu Zhang
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| |
Collapse
|
19
|
Yazdani A. WITHDRAWN: Broadcasters, receivers, functional groups of metabolites and the link to heart failure using polygenic factors. RESEARCH SQUARE 2024:rs.3.rs-3272974. [PMID: 37674714 PMCID: PMC10479558 DOI: 10.21203/rs.3.rs-3272974/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The full text of this preprint has been withdrawn, as it was submitted in error. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
20
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
21
|
Yu J, Zhu Z, Wang T, Wei Y, Huang L, Zhang Q, Zhang Y, Wang Y, Liu G, Shu X, Feng R. Genetic Insights into Glycine's Protective Role Against CAD - European and East Asia, 2015 and 2020. China CDC Wkly 2024; 6:168-172. [PMID: 38495593 PMCID: PMC10937183 DOI: 10.46234/ccdcw2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction The purpose of this study is to examine the potential causal relationship between levels of circulating glycine and coronary artery disease (CAD) using a two-step Mendelian randomization (MR) analysis. Methods We analyzed data from genome-wide association studies (GWAS) conducted on European and East Asian populations. To assess the causal effects of circulating glycine levels on the risk of CAD. We used the inverse-variance weighting (IVW), weighted median (WM), MR-Egger, and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) methods. Furthermore, we conducted mediation analysis to investigate the contribution of blood pressure and other cardiovascular disease-related traits. Results The two-step Mendelian randomization analysis revealed that higher levels of glycine in the blood were associated with a reduced risk of CAD in Europeans [odds ratio ( OR)=0.84, 95% confidence interval ( CI): 0.72, -0.98; P=0.029] and East Asians: ( OR=0.76, 95% CI: 0.66, -0.89; P=3.57×10 -4). Sensitivity analysis confirmed the robustness of these findings. Additionally, our results suggest that about 6.06% of the observed causal effect is mediated through genetically predicted systolic blood pressure (SBP) in the European population. Discussion Our results contribute to the current knowledge regarding the involvement of glycine in the progression of CAD, and provide valuable methodological insights for the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Jiaying Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Zhuolin Zhu
- Songyang County Center for Disease Prevention and Control, Songyang City, Zhejiang Province China
| | - Ting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Yuanhao Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Lianjie Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Qianru Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Yiran Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Guiyou Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiang Shu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin City, Heilongjiang Province, China
| |
Collapse
|
22
|
Markin SS, Ponomarenko EA, Romashova YA, Pleshakova TO, Ivanov SV, Bedretdinov FN, Konstantinov SL, Nizov AA, Koledinskii AG, Girivenko AI, Shestakova KM, Markin PA, Moskaleva NE, Kozhevnikova MV, Chefranova ZY, Appolonova SA. A novel preliminary metabolomic panel for IHD diagnostics and pathogenesis. Sci Rep 2024; 14:2651. [PMID: 38302683 PMCID: PMC10834974 DOI: 10.1038/s41598-024-53215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Cardiovascular disease (CVD) represents one of the main causes of mortality worldwide and nearly a half of it is related to ischemic heart disease (IHD). The article represents a comprehensive study on the diagnostics of IHD through the targeted metabolomic profiling and machine learning techniques. A total of 112 subjects were enrolled in the study, consisting of 76 IHD patients and 36 non-CVD subjects. Metabolomic profiling was conducted, involving the quantitative analysis of 87 endogenous metabolites in plasma. A novel regression method of age-adjustment correction of metabolomics data was developed. We identified 36 significantly changed metabolites which included increased cystathionine and dimethylglycine and the decreased ADMA and arginine. Tryptophan catabolism pathways showed significant alterations with increased levels of serotonin, intermediates of the kynurenine pathway and decreased intermediates of indole pathway. Amino acid profiles indicated elevated branched-chain amino acids and increased amino acid ratios. Short-chain acylcarnitines were reduced, while long-chain acylcarnitines were elevated. Based on these metabolites data, machine learning algorithms: logistic regression, support vector machine, decision trees, random forest, and gradient boosting, were used for IHD diagnostic models. Random forest demonstrated the highest accuracy with an AUC of 0.98. The metabolites Norepinephrine; Xanthurenic acid; Anthranilic acid; Serotonin; C6-DC; C14-OH; C16; C16-OH; GSG; Phenylalanine and Methionine were found to be significant and may serve as a novel preliminary panel for IHD diagnostics. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- S S Markin
- Institute of Biomedical Chemistry, Moscow, Russia, 119121.
| | | | - Yu A Romashova
- Institute of Biomedical Chemistry, Moscow, Russia, 119121
| | - T O Pleshakova
- Institute of Biomedical Chemistry, Moscow, Russia, 119121
| | - S V Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia, 119121
| | | | - S L Konstantinov
- Belgorod Regional Clinical Hospital of St. Joseph, Belgorod, Russia, 308007
| | - A A Nizov
- I.P. Pavlov Ryazan State Medical University, Ryazan, Russia, 390026
| | - A G Koledinskii
- Peoples' Friendship University of Russia, Moscow, Russia, 117198
| | - A I Girivenko
- I.P. Pavlov Ryazan State Medical University, Ryazan, Russia, 390026
| | - K M Shestakova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow, Russia, 119435
| | - P A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow, Russia, 119435
| | - N E Moskaleva
- World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119435
| | - M V Kozhevnikova
- Hospital Therapy No1, Department of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow, Russia, 119435
| | - Zh Yu Chefranova
- Belgorod Regional Clinical Hospital of St. Joseph, Belgorod, Russia, 308007
| | - S A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University (Sechenov University), Moscow, Russia, 119435
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119435
| |
Collapse
|
23
|
Wang X, Yue M, Cheung JPY, Cheung PWH, Fan Y, Wu M, Wang X, Zhao S, Khanshour AM, Rios JJ, Chen Z, Wang X, Tu W, Chan D, Yuan Q, Qin D, Qiu G, Wu Z, Zhang TJ, Ikegawa S, Wu N, Wise CA, Hu Y, Luk KDK, Song YQ, Gao B. Impaired glycine neurotransmission causes adolescent idiopathic scoliosis. J Clin Invest 2024; 134:e168783. [PMID: 37962965 PMCID: PMC10786698 DOI: 10.1172/jci168783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for "idiopathic" scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ming Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics and Traumatology, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yanhui Fan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Meicheng Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaojun Wang
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sen Zhao
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Anas M. Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children (SRC), Dallas, Texas, USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children (SRC), Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, Departments of Orthopaedic Surgery and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zheyi Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Tai Po, Hong Kong, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Tai Po, Hong Kong, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Nan Wu
- Department of Orthopaedic Surgery, Department of Medical Research Center, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital (PUMCH) and Chinese Academy of Medical Sciences, Beijing, China
| | - Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children (SRC), Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, Departments of Orthopaedic Surgery and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Hu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics and Traumatology, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Medicine, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics and Traumatology, University of Hong Kong–Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, Tai Po, Hong Kong, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
24
|
Ghrayeb A, Finney AC, Agranovich B, Peled D, Anand SK, McKinney MP, Sarji M, Yang D, Weissman N, Drucker S, Fernandes SI, Fernández-García J, Mahan K, Abassi Z, Tan L, Lorenzi PL, Traylor J, Zhang J, Abramovich I, Chen YE, Rom O, Mor I, Gottlieb E. Serine synthesis via reversed SHMT2 activity drives glycine depletion and acetaminophen hepatotoxicity in MASLD. Cell Metab 2024; 36:116-129.e7. [PMID: 38171331 PMCID: PMC10777734 DOI: 10.1016/j.cmet.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.
Collapse
Affiliation(s)
- Alia Ghrayeb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Bella Agranovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Daniel Peled
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Mahasen Sarji
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natan Weissman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shani Drucker
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sara Isabel Fernandes
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Jonatan Fernández-García
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Kyle Mahan
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Zaid Abassi
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| | - Inbal Mor
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
25
|
Trichia E, Koulman A, Stewart ID, Brage S, Griffin SJ, Griffin JL, Khaw K, Langenberg C, Wareham NJ, Imamura F, Forouhi NG. Plasma Metabolites Related to the Consumption of Different Types of Dairy Products and Their Association with New-Onset Type 2 Diabetes: Analyses in the Fenland and EPIC-Norfolk Studies, United Kingdom. Mol Nutr Food Res 2024; 68:e2300154. [PMID: 38054622 PMCID: PMC10909549 DOI: 10.1002/mnfr.202300154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Indexed: 12/07/2023]
Abstract
SCOPE To identify metabolites associated with habitual dairy consumption and investigate their associations with type 2 diabetes (T2D) risk. METHODS AND RESULTS Metabolomics assays were conducted in the Fenland (n = 10,281) and EPIC-Norfolk (n = 1,440) studies. Using 82 metabolites assessed in both studies, we developed metabolite scores to classify self-reported consumption of milk, yogurt, cheese, butter, and total dairy (Fenland Study-discovery set; n = 6035). Internal and external validity of the scores was evaluated (Fenland-validation set, n = 4246; EPIC-Norfolk, n = 1440). The study assessed associations between each metabolite score and T2D incidence in EPIC-Norfolk (n = 641 cases; 16,350 person-years). The scores classified low and high consumers for all dairy types with internal validity, and milk, butter, and total dairy with external validity. The scores were further associated with lower incident T2D: hazard ratios (95% confidence interval) per standard deviation: milk 0.71 (0.65, 0.77); butter 0.62 (0.57, 0.68); total dairy 0.66 (0.60, 0.72). These associations persisted after adjustment for known dairy-fat biomarkers. CONCLUSION Metabolite scores identified habitual consumers of milk, butter, and total dairy products, and were associated with lower T2D risk. These findings hold promise for identifying objective indicators of the physiological response to dairy consumption.
Collapse
Affiliation(s)
- Eirini Trichia
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| | - Albert Koulman
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| | - Isobel D. Stewart
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| | - Soren Brage
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| | - Simon J. Griffin
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| | | | - Kay‐Tee Khaw
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| | - Claudia Langenberg
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| | - Nicholas J. Wareham
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| | - Fumiaki Imamura
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| | - Nita G. Forouhi
- MRC Epidemiology UnitInstitute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeCB2 0SLUK
| |
Collapse
|
26
|
Dai N, Deng Y, Wang B. Association between human blood metabolome and the risk of hypertension. BMC Genom Data 2023; 24:79. [PMID: 38102541 PMCID: PMC10724971 DOI: 10.1186/s12863-023-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Hypertension, commonly referred to as high blood pressure, is a chronic medical condition characterized by persistently elevated blood pressure levels. It is a prevalent global health issue, affecting a significant portion of the population worldwide. Hypertension is often asymptomatic, making it a silent but potentially dangerous condition if left untreated. Genetic instruments for 1,091 were from a recent comprehensive metabolome genome-wide association study (GWAS). Summary statistics of diastolic blood pressure (DBP) and systolic blood pressure (SBP) involving 757,601 sample size were analyzed. Two-sample Mendelian Randomization (MR) was conducted to assess causal effect of metabolites on DBP and SBP risk, and reverse MR analysis was performed to identify the DBP/SBP causal effect on blood metabolites. Twelve and twenty-two metabolites were identified to be associated with DBP and SBP, respectively. Sensitive analysis showed four metabolites had robustness association on BP. Reverse MR demonstrated DBP and SBP could decrease the tricosanoyl sphingomyelin (d18:1/23:0)* level and increase the 2-hydroxyhippurate (salicylurate) level in blood, respectively. Our findings reveal an association between blood metabolites and blood pressure (DBP and SBP), suggesting potential therapeutic targets for hypertension intervention.
Collapse
Affiliation(s)
- Nannan Dai
- The Eco-city Hospital of Tianjin Fifth Central Hospital, Tianjin, 300467, China.
| | - Yujuan Deng
- School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, 050010, China
- College of Future Information Technology, Shijiazhuang University, Shijiazhuang, 050035, China
| | - Baishi Wang
- The Eco-city Hospital of Tianjin Fifth Central Hospital, Tianjin, 300467, China.
| |
Collapse
|
27
|
Biswas S, Hilser JR, Woodward NC, Wang Z, Gukasyan J, Nemet I, Schwartzman WS, Huang P, Han Y, Fouladian Z, Charugundla S, Spencer NJ, Pan C, Tang WW, Lusis AJ, Hazen SL, Hartiala JA, Allayee H. Effect of Genetic and Dietary Perturbation of Glycine Metabolism on Atherosclerosis in Humans and Mice. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.08.23299748. [PMID: 38168321 PMCID: PMC10760269 DOI: 10.1101/2023.12.08.23299748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Objective Epidemiological and genetic studies have reported inverse associations between circulating glycine levels and risk of coronary artery disease (CAD). However, these findings have not been consistently observed in all studies. We sought to evaluate the causal relationship between circulating glycine levels and atherosclerosis using large-scale genetic analyses in humans and dietary supplementation experiments in mice. Methods Serum glycine levels were evaluated for association with prevalent and incident CAD in the UK Biobank. A multi-ancestry genome-wide association study (GWAS) meta-analysis was carried out to identify genetic determinants for circulating glycine levels, which were then used to evaluate the causal relationship between glycine and risk of CAD by Mendelian randomization (MR). A glycine feeding study was carried out with atherosclerosis-prone apolipoprotein E deficient (ApoE-/-) mice to determine the effects of increased circulating glycine levels on amino acid metabolism, metabolic traits, and aortic lesion formation. Results Among 105,718 subjects from the UK Biobank, elevated serum glycine levels were associated with significantly reduced risk of prevalent CAD (Quintile 5 vs. Quintile 1 OR=0.76, 95% CI 0.67-0.87; P<0.0001) and incident CAD (Quintile 5 vs. Quintile 1 HR=0.70, 95% CI 0.65-0.77; P<0.0001) in models adjusted for age, sex, ethnicity, anti-hypertensive and lipid-lowering medications, blood pressure, kidney function, and diabetes. A meta-analysis of 13 GWAS datasets (total n=230,947) identified 61 loci for circulating glycine levels, of which 26 were novel. MR analyses provided modest evidence that genetically elevated glycine levels were causally associated with reduced systolic blood pressure and risk of type 2 diabetes, but did provide evidence for an association with risk of CAD. Furthermore, glycine-supplementation in ApoE-/- mice did not alter cardiometabolic traits, inflammatory biomarkers, or development of atherosclerotic lesions. Conclusions Circulating glycine levels were inversely associated with risk of prevalent and incident CAD in a large population-based cohort. While substantially expanding the genetic architecture of circulating glycine levels, MR analyses and in vivo feeding studies in humans and mice, respectively, did not provide evidence that the clinical association of this amino acid with CAD represents a causal relationship, despite being associated with two correlated risk factors.
Collapse
Affiliation(s)
- Subarna Biswas
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Nicholas C. Woodward
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Janet Gukasyan
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
| | - William S. Schwartzman
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Pin Huang
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Yi Han
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Zachary Fouladian
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Sarada Charugundla
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Neal J. Spencer
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Calvin Pan
- Department of Human Genetics, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - W.H. Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Aldons J. Lusis
- Department of Medicine, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
- Department of Human Genetics, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jaana A. Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
28
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
29
|
Cai J, Chong CCY, Cheng CY, Lim CC, Sabanayagam C. Circulating Metabolites and Cardiovascular Disease in Asians with Chronic Kidney Disease. Cardiorenal Med 2023; 13:301-309. [PMID: 37669626 PMCID: PMC10664326 DOI: 10.1159/000533741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) is a growing public health problem, with significant burden of cardiovascular disease and mortality. The risk of cardiovascular disease in CKD is elevated beyond that predicted by traditional cardiovascular risk factors, suggesting that other factors may account for this increased risk. Through metabolic profiling, this study aimed to investigate the associations between serum metabolites and prevalent cardiovascular disease in Asian patients with CKD to provide insights into the complex interactions between metabolism, cardiovascular disease and CKD. METHODS This was a single-center cross-sectional study of 1,122 individuals from three ethnic cohorts in the population-based Singapore Epidemiology of Eye Disease (SEED) study (153 Chinese, 262 Indians, and 707 Malays) aged 40-80 years with CKD (estimated glomerular filtration rate <60 mL/min/1.73 m2). Nuclear magnetic resonance spectroscopy was used to quantify 228 metabolites from the participants' serum or plasma. Prevalent cardiovascular disease was defined as self-reported myocardial infarction, angina, or stroke. Multivariate logistic regression identified metabolites independently associated with cardiovascular disease in each ethnic cohort. Metabolites with the same direction of association with cardiovascular disease in all three cohorts were selected and subjected to meta-analysis. RESULTS Cardiovascular disease was present in 275 (24.5%). Participants with cardiovascular disease tend to be male; of older age; with hypertension, hyperlipidemia, and diabetes; with lower systolic and diastolic blood pressure (BP); lower high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol than those without cardiovascular disease. After adjusting for age, sex, systolic BP, diabetes, total cholesterol, and HDL cholesterol, 10 lipoprotein subclass ratios and 6 other metabolites were significantly associated with prevalent cardiovascular disease in at least one cohort. Meta-analysis with Bonferroni correction for multiple comparisons found that lower tyrosine, leucine, and valine concentrations and lower cholesteryl esters to total lipid ratio in intermediate-density lipoprotein (IDL) were associated with cardiovascular disease. CONCLUSION In Chinese, Indian, and Malay participants with CKD, prevalent cardiovascular disease was associated with tyrosine, leucine, valine, and cholesteryl esters to total lipid ratios in IDL. Increased cardiovascular risk in CKD patients may be contributed by altered amino acid and lipoprotein metabolism. The presence of CKD and ethnic differences may affect interactions between metabolites in health and disease, hence greater understanding will allow us to better risk stratify patients, and also individualize care with consideration of ethnic disparities.
Collapse
Affiliation(s)
- Jiashen Cai
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- Medicine Academic Clinical Programme, SingHealth Duke-NUS, Singapore, Singapore
| | | | - Ching Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, SingHealth Duke-NUS, Singapore, Singapore
| | - Cynthia Ciwei Lim
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, SingHealth Duke-NUS, Singapore, Singapore
| |
Collapse
|
30
|
Seeley EH, Liu Z, Yuan S, Stroope C, Cockerham E, Rashdan NA, Delgadillo L, Finney AC, Kumar D, Das S, Razani B, Liu W, Traylor J, Orr AW, Rom O, Pattillo CB, Yurdagul A. Spatially Resolved Metabolites in Stable and Unstable Human Atherosclerotic Plaques Identified by Mass Spectrometry Imaging. Arterioscler Thromb Vasc Biol 2023; 43:1626-1635. [PMID: 37381983 PMCID: PMC10527524 DOI: 10.1161/atvbaha.122.318684] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Impairments in carbohydrate, lipid, and amino acid metabolism drive features of plaque instability. However, where these impairments occur within the atheroma remains largely unknown. Therefore, we sought to characterize the spatial distribution of metabolites within stable and unstable atherosclerosis in both the fibrous cap and necrotic core. METHODS Atherosclerotic tissue specimens from 9 unmatched individuals were scored based on the Stary classification scale and subdivided into stable and unstable atheromas. After performing mass spectrometry imaging on these samples, we identified over 850 metabolite-related peaks. Using MetaboScape, METASPACE, and Human Metabolome Database, we confidently annotated 170 of these metabolites and found over 60 of these were different between stable and unstable atheromas. We then integrated these results with an RNA-sequencing data set comparing stable and unstable human atherosclerosis. RESULTS Upon integrating our mass spectrometry imaging results with the RNA-sequencing data set, we discovered that pathways related to lipid metabolism and long-chain fatty acids were enriched in stable plaques, whereas reactive oxygen species, aromatic amino acid, and tryptophan metabolism were increased in unstable plaques. In addition, acylcarnitines and acylglycines were increased in stable plaques whereas tryptophan metabolites were enriched in unstable plaques. Evaluating spatial differences in stable plaques revealed lactic acid in the necrotic core, whereas pyruvic acid was elevated in the fibrous cap. In unstable plaques, 5-hydroxyindoleacetic acid was enriched in the fibrous cap. CONCLUSIONS Our work here represents the first step to defining an atlas of metabolic pathways involved in plaque destabilization in human atherosclerosis. We anticipate this will be a valuable resource and open new avenues of research in cardiovascular disease.
Collapse
Affiliation(s)
- Erin H. Seeley
- Department of Chemistry, University of Texas at Austin, TX, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, IN, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA, USA
| | - Chad Stroope
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Elizabeth Cockerham
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Luisa Delgadillo
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, MI, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| |
Collapse
|
31
|
Yazdani A, Mendez-Giraldez R, Yazdani A, Schaid D, Won Kong S, Hadi M, Samiei A, Wittenbecher C, Lasky-Su J, Clish C, Marotta F, Kosorok M, Mora S, Muehlschlegel J, Chasman D, Larson M, Elsea S. Broadcasters, receivers, functional groups of metabolites and the link to heart failure progression using polygenic factors. RESEARCH SQUARE 2023:rs.3.rs-3246406. [PMID: 37645766 PMCID: PMC10462252 DOI: 10.21203/rs.3.rs-3246406/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline. We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers, mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites. We identified metabolites associated with higher or lower risk of HF incidence, the associations that were not confounded by the other metabolites, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. We revealed the underlying relationships of the findings. For example, asparagine directly influenced glycine, and both were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids which are not synthesized in the human body and come directly from the diet. Metabolites may play a critical role in linking genetic background and lifestyle factors to HF progression. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates a mechanistic understanding of HF progression.
Collapse
Affiliation(s)
| | | | - Akram Yazdani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, at The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Daniel Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902
| | | | - Mohamad Hadi
- School of Mathematics, University of science and technology of Iran, Tehran
| | - Ahmad Samiei
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA
| | | | | | | | | | | | - Samia Mora
- Brigham and Women's Hospital and Harvard Medical School
| | | | | | | | | |
Collapse
|
32
|
Shahisavandi M, Wang K, Ghanbari M, Ahmadizar F. Exploring Metabolomic Patterns in Type 2 Diabetes Mellitus and Response to Glucose-Lowering Medications-Review. Genes (Basel) 2023; 14:1464. [PMID: 37510368 PMCID: PMC10379356 DOI: 10.3390/genes14071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The spectrum of information related to precision medicine in diabetes generally includes clinical data, genetics, and omics-based biomarkers that can guide personalized decisions on diabetes care. Given the remarkable progress in patient risk characterization, there is particular interest in using molecular biomarkers to guide diabetes management. Metabolomics is an emerging molecular approach that helps better understand the etiology and promises the identification of novel biomarkers for complex diseases. Both targeted or untargeted metabolites extracted from cells, biofluids, or tissues can be investigated by established high-throughput platforms, like nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques. Metabolomics is proposed as a valuable tool in precision diabetes medicine to discover biomarkers for diagnosis, prognosis, and management of the progress of diabetes through personalized phenotyping and individualized drug-response monitoring. This review offers an overview of metabolomics knowledge as potential biomarkers in type 2 diabetes mellitus (T2D) diagnosis and the response to glucose-lowering medications.
Collapse
Affiliation(s)
- Mina Shahisavandi
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Kan Wang
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Fariba Ahmadizar
- Department of Data Science & Biostatistics, Julius Global Health, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
33
|
Chang L, Zhou G, Xia J. mGWAS-Explorer 2.0: Causal Analysis and Interpretation of Metabolite-Phenotype Associations. Metabolites 2023; 13:826. [PMID: 37512533 PMCID: PMC10384390 DOI: 10.3390/metabo13070826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolomics-based genome-wide association studies (mGWAS) are key to understanding the genetic regulations of metabolites in complex phenotypes. We previously developed mGWAS-Explorer 1.0 to link single-nucleotide polymorphisms (SNPs), metabolites, genes and phenotypes for hypothesis generation. It has become clear that identifying potential causal relationships between metabolites and phenotypes, as well as providing deep functional insights, are crucial for further downstream applications. Here, we introduce mGWAS-Explorer 2.0 to support the causal analysis between >4000 metabolites and various phenotypes. The results can be interpreted within the context of semantic triples and molecular quantitative trait loci (QTL) data. The underlying R package is released for reproducible analysis. Using two case studies, we demonstrate that mGWAS-Explorer 2.0 is able to detect potential causal relationships between arachidonic acid and Crohn's disease, as well as between glycine and coronary heart disease.
Collapse
Affiliation(s)
- Le Chang
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada
| | - Jianguo Xia
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada
| |
Collapse
|
34
|
Lee YQ, Chia A, Whitton C, Cameron-Smith D, Sim X, van Dam RM, F-F Chong M. Isocaloric Substitution of Plant-Based Protein for Animal-Based Protein and Cardiometabolic Risk Factors in a Multiethnic Asian Population. J Nutr 2023; 153:1555-1566. [PMID: 36963499 PMCID: PMC10196602 DOI: 10.1016/j.tjnut.2023.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Evidence is accumulating that intake of animal-based and plant-based proteins has different effects on cardiometabolic health, but less is known about the health effect of isocaloric substitution of animal-based and plant-based proteins. Data from Asian populations are limited. OBJECTIVES This study aimed to evaluate the effects of isocaloric substitution of total plant-based proteins for total and various animal-based protein food groups and to evaluate the effects of substituting protein from legumes and pulses for various animal-based protein food groups on cardiovascular disease (CVD) risk factors and predicted 10-y CVD risk. METHODS We conducted a cross-sectional analysis using data collected from 9211 Singapore residents (aged 21-75 y) from the Singapore Multi-Ethnic Cohort. Data on sociodemographic and lifestyle factors were collected using questionnaires. Dietary intakes were assessed using a validated FFQ. BMI, waist circumference, and blood pressure were measured during a physical examination, and blood samples were collected to measure lipid profiles. Associations were assessed by substitution models using a multiple linear regression analysis. RESULTS Isocaloric substitution of total plant-based proteins for total and all specific animal-based protein food groups were associated with lower BMI (β: -0.30; 95% CI: -0.38, -0.22), waist circumference (β: -0.85; 95% CI: -1.04, -0.66), and LDL cholesterol concentrations (β: -0.06; 95% CI: -0.08, -0.05) (P < 0.0056). Replacement of processed meat and processed seafood proteins with total plant-based proteins was associated with improvement in most CVD risk factors and predicted 10-y CVD risk. Replacement of oily fish with legume proteins was associated with lower HDL cholesterol and higher TG concentrations. CONCLUSIONS The substitution of plant-based proteins for animal-based proteins, especially from processed meat and processed seafood, was inversely associated with the established CVD risk factors such as BMI, waist circumference, and lipid concentrations and predicted 10-y CVD risk. These findings warrant further investigation in independent studies in other Asian populations.
Collapse
Affiliation(s)
- Yu Qi Lee
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore.
| | - Airu Chia
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Clare Whitton
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - David Cameron-Smith
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, George Washington University, Washington DC, United States
| | - Mary F-F Chong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
35
|
Qu P, Rom O, Li K, Jia L, Gao X, Liu Z, Ding S, Zhao M, Wang H, Chen S, Xiong X, Zhao Y, Xue C, Zhao Y, Chu C, Wen B, Finney AC, Zheng Z, Cao W, Zhao J, Bai L, Zhao S, Sun D, Zeng R, Lin J, Liu W, Zheng L, Zhang J, Liu E, Chen YE. DT-109 ameliorates nonalcoholic steatohepatitis in nonhuman primates. Cell Metab 2023; 35:742-757.e10. [PMID: 37040763 DOI: 10.1016/j.cmet.2023.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH. Here, we report that the tripeptide DT-109 (Gly-Gly-Leu) dose-dependently attenuates steatohepatitis and fibrosis in mice. To enhance the probability of successful translation, we developed a nonhuman primate model that histologically and transcriptionally mimics human NASH. Applying a multiomics approach combining transcriptomics, proteomics, metabolomics, and metagenomics, we found that DT-109 reverses hepatic steatosis and prevents fibrosis progression in nonhuman primates, not only by stimulating fatty acid degradation and glutathione formation, as found in mice, but also by modulating microbial bile acid metabolism. Our studies describe a highly translatable NASH model and highlight the need for clinical evaluation of DT-109.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Ke Li
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China
| | - Linying Jia
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xiaojing Gao
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Shusi Ding
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Huiqing Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Shuangshuang Chen
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200031, China
| | - Xuelian Xiong
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200031, China
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Chao Xue
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Yang Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Chengshuang Chu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Zuowen Zheng
- Spring Biological Technology Development Co., Ltd, Fangchenggang, Guangxi 538000, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Jinpeng Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rong Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiandie Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Lemin Zheng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, Beijing 100050, China; The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China.
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Johnson AA, Cuellar TL. Glycine and aging: Evidence and mechanisms. Ageing Res Rev 2023; 87:101922. [PMID: 37004845 DOI: 10.1016/j.arr.2023.101922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The restriction of calories, branched-chain amino acids, and methionine have all been shown to extend lifespan in model organisms. Recently, glycine was shown to significantly boost longevity in genetically heterogenous mice. This simple amino acid similarly extends lifespan in rats and improves health in mammalian models of age-related disease. While compelling data indicate that glycine is a pro-longevity molecule, divergent mechanisms may underlie its effects on aging. Glycine is abundant in collagen, a building block for glutathione, a precursor to creatine, and an acceptor for the enzyme Glycine N-methyltransferase (GNMT). A review of the literature strongly implicates GNMT, which clears methionine from the body by taking a methyl group from S-adenosyl-L-methionine and methylating glycine to form sarcosine. In flies, Gnmt is required for reduced insulin/insulin-like growth factor 1 signaling and caloric restriction to fully extend lifespan. The geroprotector spermidine requires Gnmt to upregulate autophagy genes and boost longevity. Moreover, the overexpression of Gnmt is sufficient to extend lifespan and reduce methionine levels. Sarcosine, or methylglycine, declines with age in multiple species and is capable of inducing autophagy both in vitro and in vivo. Taken all together, existing evidence suggests that glycine prolongs life by mimicking methionine restriction and activating autophagy.
Collapse
|
37
|
Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat Commun 2023; 14:604. [PMID: 36737450 PMCID: PMC9898515 DOI: 10.1038/s41467-023-36231-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Blood lipids and metabolites are markers of current health and future disease risk. Here, we describe plasma nuclear magnetic resonance (NMR) biomarker data for 118,461 participants in the UK Biobank. The biomarkers cover 249 measures of lipoprotein lipids, fatty acids, and small molecules such as amino acids, ketones, and glycolysis metabolites. We provide an atlas of associations of these biomarkers to prevalence, incidence, and mortality of over 700 common diseases ( nightingalehealth.com/atlas ). The results reveal a plethora of biomarker associations, including susceptibility to infectious diseases and risk of various cancers, joint disorders, and mental health outcomes, indicating that abundant circulating lipids and metabolites are risk markers beyond cardiometabolic diseases. Clustering analyses indicate similar biomarker association patterns across different disease types, suggesting latent systemic connectivity in the susceptibility to a diverse set of diseases. This work highlights the value of NMR based metabolic biomarker profiling in large biobanks for public health research and translation.
Collapse
|
38
|
Zhao J, Stewart ID, Baird D, Mason D, Wright J, Zheng J, Gaunt TR, Evans DM, Freathy RM, Langenberg C, Warrington NM, Lawlor DA, Borges MC. Causal effects of maternal circulating amino acids on offspring birthweight: a Mendelian randomisation study. EBioMedicine 2023; 88:104441. [PMID: 36696816 PMCID: PMC9879767 DOI: 10.1016/j.ebiom.2023.104441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Amino acids are key to protein synthesis, energy metabolism, cell signaling and gene expression; however, the contribution of specific maternal amino acids to fetal growth is unclear. METHODS We explored the effect of maternal circulating amino acids on fetal growth, proxied by birthweight, using two-sample Mendelian randomisation (MR) and summary data from a genome-wide association study (GWAS) of serum amino acids levels (sample 1, n = 86,507) and a maternal GWAS of offspring birthweight in UK Biobank and Early Growth Genetics Consortium, adjusting for fetal genotype effects (sample 2, n = 406,063 with maternal and/or fetal genotype effect estimates). A total of 106 independent single nucleotide polymorphisms robustly associated with 19 amino acids (p < 4.9 × 10-10) were used as genetic instrumental variables (IV). Wald ratio and inverse variance weighted methods were used in MR main analysis. A series of sensitivity analyses were performed to explore IV assumption violations. FINDINGS Our results provide evidence that maternal circulating glutamine (59 g offspring birthweight increase per standard deviation increase in maternal amino acid level, 95% CI: 7, 110) and serine (27 g, 95% CI: 9, 46) raise, while leucine (-59 g, 95% CI: -106, -11) and phenylalanine (-25 g, 95% CI: -47, -4) lower offspring birthweight. These findings are supported by sensitivity analyses. INTERPRETATION Our findings strengthen evidence for key roles of maternal circulating amino acids during pregnancy in healthy fetal growth. FUNDING A full list of funding bodies that contributed to this study can be found under Acknowledgments.
Collapse
Affiliation(s)
- Jian Zhao
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Bristol NIHR Biomedical Research Centre, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; The Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| | | | - Denis Baird
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Bristol NIHR Biomedical Research Centre, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rachel M Freathy
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; Computational Medicine, Berlin Institute of Health (BIH), Charité University Medicine, Berlin, Germany
| | - Nicole M Warrington
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Bristol NIHR Biomedical Research Centre, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
39
|
Ghrayeb A, Agranovich B, Peled D, Finney AC, Abramovich I, Garcia JF, Traylor J, Drucker S, Fernandes SI, Weissman N, Chen YE, Rom O, Mor I, Gottlieb E. Fatty liver-mediated glycine restriction impairs glutathione synthesis and causes hypersensitization to acetaminophen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524043. [PMID: 36711913 PMCID: PMC9882121 DOI: 10.1101/2023.01.16.524043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects nearly one third of the population worldwide. Understanding metabolic pathways involved can provide insights into disease progression. Untargeted metabolomics of livers from mice with early-stage steatosis indicated a decrease in methylated metabolites suggesting altered one carbon metabolism. The levels of glycine, a central component of one carbon metabolism, were lower in steatotic mice, in line with clinical evidence. Isotope tracing studies demonstrated that increased synthesis of serine from glycine is the underlying cause for glycine limitation in fatty livers. Consequently, the low glycine availability in steatotic livers impaired glutathione (GSH) synthesis under oxidative stress induced by acetaminophen (APAP), enhancing hepatic toxicity. Glycine supplementation mitigated acute liver damage and overall toxicity caused by APAP in fatty livers by supporting de novo GSH synthesis. Thus, early metabolic changes in NAFLD that lead to glycine depletion sensitize mice to xenobiotic toxicity even at a reversible stage of NAFLD.
Collapse
|
40
|
Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A, Rom O. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1116861. [PMID: 37200978 PMCID: PMC10185914 DOI: 10.3389/fcvm.2023.1116861] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.
Collapse
Affiliation(s)
- Alexandra C. Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - M. Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| |
Collapse
|
41
|
Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 2022; 9:1007816. [PMID: 36386929 PMCID: PMC9664149 DOI: 10.3389/fnut.2022.1007816] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Many local and systemic diseases especially diseases that are leading causes of death globally like chronic obstructive pulmonary disease, atherosclerosis with ischemic heart disease and stroke, cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19 (COVID-19), involve both, (1) oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2) inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the most abundant water-soluble non-protein thiol in the cell (1-10 mM) is fundamental for life by (a) sustaining the adequate redox cell signaling needed to maintain physiologic levels of oxidative stress fundamental to control life processes, and (b) limiting excessive oxidative stress that causes cell and tissue damage. GSH activity is facilitated by activation of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 that regulates expression of genes controlling antioxidant, inflammatory and immune system responses. GSH exists in the thiol-reduced (>98% of total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell. GSH depletion may play a central role in inflammatory diseases and COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of inflammatory diseases and COVID-19 and increasing GSH levels may prevent and subdue these diseases. The life value of GSH makes for a paramount research field in biology and medicine and may be key against systemic inflammation and SARS-CoV-2 infection and COVID-19 disease. In this review, we emphasize on (1) GSH depletion as a fundamental risk factor for diseases like chronic obstructive pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2) importance of oxidative stress and antioxidants in SARS-CoV-2 infection and COVID-19 disease, (3) significance of GSH to counteract persistent damaging inflammation, inflammaging and early (premature) inflammaging associated with cell and tissue damage caused by excessive oxidative stress and lack of adequate antioxidant defenses in younger individuals, and (4) new therapies that include antioxidant defenses restoration.
Collapse
|
42
|
Surendran P, Stewart ID, Au Yeung VPW, Pietzner M, Raffler J, Wörheide MA, Li C, Smith RF, Wittemans LBL, Bomba L, Menni C, Zierer J, Rossi N, Sheridan PA, Watkins NA, Mangino M, Hysi PG, Di Angelantonio E, Falchi M, Spector TD, Soranzo N, Michelotti GA, Arlt W, Lotta LA, Denaxas S, Hemingway H, Gamazon ER, Howson JMM, Wood AM, Danesh J, Wareham NJ, Kastenmüller G, Fauman EB, Suhre K, Butterworth AS, Langenberg C. Rare and common genetic determinants of metabolic individuality and their effects on human health. Nat Med 2022; 28:2321-2332. [PMID: 36357675 PMCID: PMC9671801 DOI: 10.1038/s41591-022-02046-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Garrod's concept of 'chemical individuality' has contributed to comprehension of the molecular origins of human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot of human metabolism at scale. We studied the genetic architecture of the human plasma metabolome using 913 metabolites assayed in 19,994 individuals and identified 2,599 variant-metabolite associations (P < 1.25 × 10-11) within 330 genomic regions, with rare variants (minor allele frequency ≤ 1%) explaining 9.4% of associations. Jointly modeling metabolites in each region, we identified 423 regional, co-regulated, variant-metabolite clusters called genetically influenced metabotypes. We assigned causal genes for 62.4% of these genetically influenced metabotypes, providing new insights into fundamental metabolite physiology and clinical relevance, including metabolite-guided discovery of potential adverse drug effects (DPYD and SRD5A2). We show strong enrichment of inborn errors of metabolism-causing genes, with examples of metabolite associations and clinical phenotypes of non-pathogenic variant carriers matching characteristics of the inborn errors of metabolism. Systematic, phenotypic follow-up of metabolite-specific genetic scores revealed multiple potential etiological relationships.
Collapse
Affiliation(s)
- Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Digital Medicine, University Hospital of Augsburg, Augsburg, Germany
| | - Maria A Wörheide
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Chen Li
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Rebecca F Smith
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Laura B L Wittemans
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Big Data Institute, University of Oxford, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Lorenzo Bomba
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jonas Zierer
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Niccolò Rossi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | | | | | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Pirro G Hysi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Health Data Science Research Centre, Human Technopole, Milan, Italy
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- British Heart Foundation Data Science Centre, London, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
| | - Eric R Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall & MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Angela M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK.
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
43
|
Xu M, Zheng J, Hou T, Lin H, Wang T, Wang S, Lu J, Zhao Z, Li M, Xu Y, Ning G, Bi Y, Wang W. SGLT2 Inhibition, Choline Metabolites, and Cardiometabolic Diseases: A Mediation Mendelian Randomization Study. Diabetes Care 2022; 45:2718-2728. [PMID: 36161993 PMCID: PMC9862376 DOI: 10.2337/dc22-0323] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the causal role of choline metabolites mediating sodium-glucose cotransporter 2 (SGLT2) inhibition in coronary artery disease (CAD) and type 2 diabetes (T2D) using Mendelian randomization (MR). RESEARCH DESIGN AND METHODS A two-sample two-step MR was used to determine 1) causal effects of SGLT2 inhibition on CAD and T2D; 2) causal effects of three choline metabolites, total choline, phosphatidylcholine, and glycine, on CAD and T2D; and 3) mediation effects of these metabolites. Genetic proxies for SGLT2 inhibition were identified as variants in the SLC5A2 gene that were associated with both levels of gene expression and hemoglobin A1c. Summary statistics for metabolites were from UK Biobank, CAD from CARDIoGRAMplusC4D (Coronary ARtery DIsease Genome wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics) consortium, and T2D from DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) and the FinnGen study. RESULTS SGLT2 inhibition (per 1 SD, 6.75 mmol/mol [1.09%] lowering of HbA1c) was associated with lower risk of T2D and CAD (odds ratio [OR] 0.25 [95% CI 0.12, 0.54], and 0.51 [0.28, 0.94], respectively) and positively with total choline (β 0.39 [95% CI 0.06, 0.72]), phosphatidylcholine (0.40 [0.13, 0.67]), and glycine (0.34 [0.05, 0.63]). Total choline (OR 0.78 [95% CI 0.68, 0.89]) and phosphatidylcholine (OR 0.81 [0.72, 0.91]) were associated with T2D but not with CAD, while glycine was associated with CAD (0.94 [0.91, 0.98]) but not with T2D. Mediation analysis showed evidence of indirect effect of SGLT2 inhibition on T2D through total choline (0.91 [0.83, 0.99]) and phosphatidylcholine (0.93 [0.87, 0.99]) with a mediated proportion of 8% and 5% of the total effect, respectively, and on CAD through glycine (0.98 [0.96, 1.00]) with a mediated proportion of 2%. The results were well validated in at least one independent data set. CONCLUSIONS Our study identified the causal roles of SGLT2 inhibition in choline metabolites. SGLT2 inhibition may influence T2D and CAD through different choline metabolites.
Collapse
Affiliation(s)
- Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Lin C, Sun Z, Mei Z, Zeng H, Zhao M, Hu J, Xia M, Huang T, Wang C, Gao X, Zheng Y. The causal associations of circulating amino acids with blood pressure: a Mendelian randomization study. BMC Med 2022; 20:414. [PMID: 36307799 PMCID: PMC9615211 DOI: 10.1186/s12916-022-02612-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Circulating levels of amino acids were associated with blood pressure (BP) in observational studies. However, the causation of such associations has been hypothesized but is difficult to prove in human studies. Here, we aimed to use two-sample Mendelian randomization analyses to evaluate the potential causal associations of circulating levels of amino acids with BP and risk of hypertension. METHODS We generated genetic instruments for circulating levels of nine amino acids by conducting meta-analyses of genome-wide association study (GWAS) in UK Biobank participants with metabolomic data (n = 98,317) and another published metabolomics GWAS (n = 24,925). Data on the associations of the genetic variants with BP and hypertension were obtained in the UK Biobank participants without metabolomic data (n = 286,390). The causal effects were estimated using inverse-variance weighted method. RESULTS Significant evidence consistently supported the causal effects of increased branched-chain amino acids (BCAAs, i.e., leucine, isoleucine, and valine) levels on higher BP and risk of hypertension (all P < 0.006 after Bonferroni correction except for Pleucine-on-diastolicBP = 0.008). For example, per standard deviation higher of genetically predicted isoleucine levels were associated with 2.71 ± 0.78 mmHg higher systolic BP and 1.24 ± 0.34 mmHg higher diastolic BP, as well as with 7% higher risk of hypertension (odds ratio: 1.07, [95% CI: 1.04-1.10]). In addition, per standard deviation higher of genetically predicted glycine level was associated with lower systolic BP (- 0.70 ± 0.17 mmHg, P = 4.04 × 10-5) and a lower risk of hypertension (0.99 [0.98-0.99], P = 6.46 × 10-5). In the reverse direction, genetically predicted higher systolic BP was associated with lower circulating levels of glycine (- 0.025±0.008, P = 0.001). CONCLUSIONS This study provides evidence for causal impacts of genetically predicted circulating BCAAs and glycine levels on BP. Meanwhile, genetically predicted higher BP was associated with lower glycine levels. Further investigations are warranted to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Chenhao Lin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhonghan Sun
- State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433, China
| | - Zhendong Mei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Manying Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433, China
| | - Jianying Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute and School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200433, China. .,Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Metabolome-wide association study on ABCA7 indicates a role of ceramide metabolism in Alzheimer's disease. Proc Natl Acad Sci U S A 2022; 119:e2206083119. [PMID: 36269859 PMCID: PMC9618092 DOI: 10.1073/pnas.2206083119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.
Collapse
|
46
|
Li R, Deng M, Lin Y, Gao W, Liu B, Xia H. Genetically predicted circulating levels of glycine, glutamate, and serotonin in relation to the risks of three major neurodegenerative diseases: A Mendelian randomization analysis. Front Aging Neurosci 2022; 14:938408. [PMID: 36158554 PMCID: PMC9490425 DOI: 10.3389/fnagi.2022.938408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
It has been previously postulated that blood neurotransmitters might affect risks of neurodegenerative diseases. Here, a Mendelian Randomization (MR) study was conducted to explore whether genetically predicted concentrations of glycine, glutamate and serotonin were associated with risks of Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). From three genome-wide association studies of European ancestry, single nucleotide polymorphisms strongly associated with glycine, glutamate and serotonin were selected as genetic instrumental variables. Corresponding summary statistics were also obtained from the latest genome-wide association meta-analyses of AD, PD and ALS. The inverse-variance weighted MR and multiple sensitivity analyses were performed to evaluate causal effects of genetically predicted levels of neurotransmitters on risks of neurodegenerative diseases. The statistical significance threshold was set at P < 0.0056 using the Bonferroni-correction, while 0.0056 < P < 0.05 was considered suggestive evidence for a causal association. There was a causal association of elevated blood glutamate levels with higher AD risks. The odds ratio (OR) of AD was 1.311 [95% confidence interval (CI), 1.087-1.580; P = 0.004] per one standard deviation increase in genetically predicted glutamate concentrations. There was suggestive evidence in support of a protective effect of blood serotonin on AD (OR = 0.607; 95% CI, 0.396-0.932; P = 0.022). Genetically predicted glycine levels were not associated with the risk of AD (OR = 1.145; 95% CI, 0.939-1.396; P = 0.180). Besides, MR analyses indicated no causal roles of three blood neurotransmitters in PD or ALS. In conclusion, the MR study provided evidence supporting the association of elevated blood glutamate levels with higher AD risks and the association of increased blood serotonin levels with lower AD risks. Triangulating evidence across further study designs is still warranted to elucidate the role of blood neurotransmitters in risks of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Li
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| | - Mengjuan Deng
- Department of Anesthesiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuhong Lin
- Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Gao
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| | - Bohao Liu
- Xiangya School of Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huimin Xia
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| |
Collapse
|
47
|
Perea-Gil I, Seeger T, Bruyneel AAN, Termglinchan V, Monte E, Lim EW, Vadgama N, Furihata T, Gavidia AA, Arthur Ataam J, Bharucha N, Martinez-Amador N, Ameen M, Nair P, Serrano R, Kaur B, Feyen DAM, Diecke S, Snyder MP, Metallo CM, Mercola M, Karakikes I. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur Heart J 2022; 43:3477-3489. [PMID: 35728000 PMCID: PMC9794189 DOI: 10.1093/eurheartj/ehac305] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Timon Seeger
- Department of Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vittavat Termglinchan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Takaaki Furihata
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra A Gavidia
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nike Bharucha
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noel Martinez-Amador
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Mohamed Ameen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pooja Nair
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Balpreet Kaur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Dries A M Feyen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
48
|
Smith CJ, Sinnott-Armstrong N, Cichońska A, Julkunen H, Fauman EB, Würtz P, Pritchard JK. Integrative analysis of metabolite GWAS illuminates the molecular basis of pleiotropy and genetic correlation. eLife 2022; 11:e79348. [PMID: 36073519 PMCID: PMC9536840 DOI: 10.7554/elife.79348] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022] Open
Abstract
Pleiotropy and genetic correlation are widespread features in genome-wide association studies (GWAS), but they are often difficult to interpret at the molecular level. Here, we perform GWAS of 16 metabolites clustered at the intersection of amino acid catabolism, glycolysis, and ketone body metabolism in a subset of UK Biobank. We utilize the well-documented biochemistry jointly impacting these metabolites to analyze pleiotropic effects in the context of their pathways. Among the 213 lead GWAS hits, we find a strong enrichment for genes encoding pathway-relevant enzymes and transporters. We demonstrate that the effect directions of variants acting on biology between metabolite pairs often contrast with those of upstream or downstream variants as well as the polygenic background. Thus, we find that these outlier variants often reflect biology local to the traits. Finally, we explore the implications for interpreting disease GWAS, underscoring the potential of unifying biochemistry with dense metabolomics data to understand the molecular basis of pleiotropy in complex traits and diseases.
Collapse
Affiliation(s)
- Courtney J Smith
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
| | - Nasa Sinnott-Armstrong
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
- Herbold Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | | | | | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and MedicalCambridgeUnited States
| | | | - Jonathan K Pritchard
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
49
|
Lizzo G, Migliavacca E, Lamers D, Frézal A, Corthesy J, Vinyes-Parès G, Bosco N, Karagounis LG, Hövelmann U, Heise T, von Eynatten M, Gut P. A Randomized Controlled Clinical Trial in Healthy Older Adults to Determine Efficacy of Glycine and N-Acetylcysteine Supplementation on Glutathione Redox Status and Oxidative Damage. FRONTIERS IN AGING 2022; 3:852569. [PMID: 35821844 PMCID: PMC9261343 DOI: 10.3389/fragi.2022.852569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 01/23/2023]
Abstract
Glycine and cysteine are non-essential amino acids that are required to generate glutathione, an intracellular tripeptide that neutralizes reactive oxygen species and prevents tissue damage. During aging glutathione demand is thought to increase, but whether additional dietary intake of glycine and cysteine contributes towards the generation of glutathione in healthy older adults is not well understood. We investigated supplementation with glycine and n-acetylcysteine (GlyNAC) at three different daily doses for 2 weeks (low dose: 2.4 g, medium dose: 4.8 g, or high dose: 7.2 g/day, 1:1 ratio) in a randomized, controlled clinical trial in 114 healthy volunteers. Despite representing a cohort of healthy older adults (age mean = 65 years), we found significantly higher baseline levels of markers of oxidative stress, including that of malondialdehyde (MDA, 0.158 vs. 0.136 µmol/L, p < 0.0001), total cysteine (Cysteine-T, 314.8 vs. 276 µM, p < 0.0001), oxidized glutathione (GSSG, 174.5 vs. 132.3 µmol/L, p < 0.0001), and a lower ratio of reduced to oxidized glutathione (GSH-F:GSSG) (11.78 vs. 15.26, p = 0.0018) compared to a young reference group (age mean = 31.7 years, n = 20). GlyNAC supplementation was safe and well tolerated by the subjects, but did not increase levels of GSH-F:GSSG (end of study, placebo = 12.49 vs. 7.2 g = 12.65, p-value = 0.739) or that of total glutathione (GSH-T) (end of study, placebo = 903.5 vs. 7.2 g = 959.6 mg/L, p-value = 0.278), the primary endpoint of the study. Post-hoc analyses revealed that a subset of subjects characterized by high oxidative stress (above the median for MDA) and low baseline GSH-T status (below the median), who received the medium and high doses of GlyNAC, presented increased glutathione generation (end of study, placebo = 819.7 vs. 4.8g/7.2 g = 905.4 mg/L, p-value = 0.016). In summary GlyNAC supplementation is safe, well tolerated, and may increase glutathione levels in older adults with high glutathione demand. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT05041179, NCT05041179.
Collapse
Affiliation(s)
- Giulia Lizzo
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | | | - Adrien Frézal
- Nestlé Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | - John Corthesy
- Nestlé Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | | | - Nabil Bosco
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Leonidas G Karagounis
- Nestlé Health Science, Vevey, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | | | | | - Philipp Gut
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| |
Collapse
|
50
|
Wei W, Zi T, Yang R, Xu J, Chen Y, Jiang X, Chu X, Yang X, Jiang W. A Newly Developed Indicator of Overeating Saturated Fat Based on Serum Fatty Acids and Amino Acids and Its Association With Incidence of Type 2 Diabetes: Evidence From Two Randomized Controlled Feeding Trials and a Prospective Study. Front Nutr 2022; 9:897375. [PMID: 35774548 PMCID: PMC9237542 DOI: 10.3389/fnut.2022.897375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Hyper-caloric intake of saturated fatty acids (SFAs) is common in modern societies, probably contributing to the epidemic of type 2 diabetes mellitus (T2DM). This study conducted two randomized controlled trials (RCTs) for developing a new indicator that can assess the nutritional status and examined its association with incidence of T2DM. Methods In RCT 1, healthy participants were randomly assigned into three groups, namely, control group (n = 40), overfeeding group 1 (100 g butter per day, n = 37), and overfeeding group 2 (120 g butter per day, n = 37). In RCT 2, healthy subjects were randomly assigned into two groups, namely, control group (n = 52) and high-fat group (300-extra kcal/day from diet that was designed by high-fat diet, n = 58). In the prospective cohort, 4,057 participants aged 20–74 years were enrolled and followed up over 5.3 years. Serum profiles of fatty acids and amino acids were measured. Results In RCT 1, serum fatty acids, including C14:0 and C18:0, increased, whereas C18:2, C20:4, C22:5, and C22:6 decreased; serum amino acids, including tyrosine, alanine, and aminobutyric acid, increased, whereas histidine and glycine decreased (p < 0.05). Among these serum fatty acids and amino acids, changes in C14:0, C20:4, tyrosine, histidine, and glycine were also observed in RCT 2. An indicator was developed based on the five fatty acids and amino acids, namely, C14:0 × tyrosine × 1,000/[C20:4 × (glycine + histidine)], and it significantly identified participants in the intervention group with area under the curve (AUC) (95% CI) being 0.85 (0.77–0.92). The indicator was significantly associated with incidence of T2DM in the prospective cohort with HRs (95% CIs) from bottom quartile to top quartile being 1,1.21 (0.82–1.77), 1.60 (1.12–2.30), 2.04 (1.42–2.94). Conclusion The newly developed indicator in RCTs can be used in assessing the nutritional status of hypercaloric intake of SFA and predicting the development of T2DM.
Collapse
Affiliation(s)
- Wei Wei
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Research, Department of Pharmacology, College of Pharmacy, Ministry of Education, Harbin Medical University, Harbin, China
| | - Tianqi Zi
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ruiming Yang
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiaxu Xu
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yunyan Chen
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - XiTao Jiang
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT, Australia
| | - Xia Chu
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xue Yang
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
- *Correspondence: Xue Yang,
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Wenbo Jiang,
| |
Collapse
|