1
|
Quirk ZJ, Smith SY, Paul Acosta R, Poulsen CJ. Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant-based paleoclimatic reconstructions. AMERICAN JOURNAL OF BOTANY 2024:e16426. [PMID: 39449637 DOI: 10.1002/ajb2.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/26/2024]
Abstract
PREMISE The ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture. METHODS We tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models. RESULTS Despite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals. CONCLUSIONS Because of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic-based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.
Collapse
Affiliation(s)
- Zack J Quirk
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- U.S. Department of Energy, Forrestal Building, Washington, 20585, D.C, USA
| | - Selena Y Smith
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
| | - R Paul Acosta
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, 4400 University Dr., Fairfax, 22030, VA, USA
| | - Christopher J Poulsen
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Earth Sciences, University of Oregon, Eugene, 97403, OR, USA
| |
Collapse
|
2
|
Upchurch P, Chiarenza AA. A brief review of non-avian dinosaur biogeography: state-of-the-art and prospectus. Biol Lett 2024; 20:20240429. [PMID: 39471833 PMCID: PMC11529633 DOI: 10.1098/rsbl.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 11/01/2024] Open
Abstract
Dinosaurs potentially originated in the mid-palaeolatitudes of Gondwana 245-235 million years ago (Ma) and may have been restricted to cooler, humid areas by low-latitude arid zones until climatic amelioration made northern dispersals feasible ca 215 Ma. However, this scenario is challenged by new Carnian Laurasian fossils and evidence that even the earliest dinosaurs had adaptations for arid conditions. After becoming globally distributed in the Early-Middle Jurassic (200-160 Ma), dinosaurs experienced vicariance driven by Pangaean fragmentation. Regional extinctions and trans-oceanic dispersals also played a role, and the formation of ephemeral land connections meant that older vicariance patterns were repeatedly overprinted by younger ones, creating a reticulate biogeographic history. Palaeoclimates shaped dispersal barriers and corridors, including filters that had differential effects on different types of dinosaurs. Dinosaurian biogeographic research faces many challenges, not the least of which is the patchiness of the fossil record. However, new fossils, extensive databasing and improved analytical methods help distinguish signal from noise and generate fresh perspectives. In the future, developing techniques for quantifying and ameliorating sampling biases and modelling the dispersal capacities of dinosaurs are likely to be two of the key components in our modern research programme.
Collapse
Affiliation(s)
- Paul Upchurch
- Department of Earth Sciences, University College London, Gower Street, LondonWC1E 6BT, UK
| | | |
Collapse
|
3
|
Hofmann S, Rödder D, Andermann T, Matschiner M, Riedel J, Baniya CB, Flecks M, Yang J, Jiang K, Jianping J, Litvinchuk SN, Martin S, Masroor R, Nothnagel M, Vershinin V, Zheng Y, Jablonski D, Schmidt J, Podsiadlowski L. Exploring Paleogene Tibet's warm temperate environments through target enrichment and phylogenetic niche modelling of Himalayan spiny frogs (Paini, Dicroglossidae). Mol Ecol 2024; 33:e17446. [PMID: 38946613 DOI: 10.1111/mec.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The Cenozoic topographic development of the Himalaya-Tibet orogen (HTO) substantially affected the paleoenvironment and biodiversity patterns of High Asia. However, concepts on the evolution and paleoenvironmental history of the HTO differ massively in timing, elevational increase and sequence of surface uplift of the different elements of the orogen. Using target enrichment of a large set of transcriptome-derived markers, ancestral range estimation and paleoclimatic niche modelling, we assess a recently proposed concept of a warm temperate paleo-Tibet in Asian spiny frogs of the tribe Paini and reconstruct their historical biogeography. That concept was previously developed in invertebrates. Because of their early evolutionary origin, low dispersal capacity, high degree of local endemism, and strict dependence on temperature and humidity, the cladogenesis of spiny frogs may echo the evolution of the HTO paleoenvironment. We show that diversification of main lineages occurred during the early to Mid-Miocene, while the evolution of alpine taxa started during the late Miocene/early Pliocene. Our distribution and niche modelling results indicate range shifts and niche stability that may explain the modern disjunct distributions of spiny frogs. They probably maintained their (sub)tropical or (warm)temperate preferences and moved out of the ancestral paleo-Tibetan area into the Himalaya as the climate shifted, as opposed to adapting in situ. Based on ancestral range estimation, we assume the existence of low-elevation, climatically suitable corridors across paleo-Tibet during the Miocene along the Kunlun, Qiangtang and/or Gangdese Shan. Our results contribute to a deeper understanding of the mechanisms and processes of faunal evolution in the HTO.
Collapse
Affiliation(s)
- Sylvia Hofmann
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Dennis Rödder
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Tobias Andermann
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Jendrian Riedel
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Chitra B Baniya
- Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
| | - Morris Flecks
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Jianhuan Yang
- Kadoorie Conservation China, Kadoorie Farm and Botanic Garden, Hong Kong, China
| | - Ke Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jiang Jianping
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | | | - Michael Nothnagel
- Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Vladimir Vershinin
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Eltsyn Ural Federal University, Yekaterinburg, Russia
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Joachim Schmidt
- General and Systematic Zoology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Lars Podsiadlowski
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
4
|
Chiarenza AA, Cantalapiedra JL, Jones LA, Gamboa S, Galván S, Farnsworth AJ, Valdes PJ, Sotelo G, Varela S. Early Jurassic origin of avian endothermy and thermophysiological diversity in dinosaurs. Curr Biol 2024; 34:2517-2527.e4. [PMID: 38754424 DOI: 10.1016/j.cub.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
A fundamental question in dinosaur evolution is how they adapted to long-term climatic shifts during the Mesozoic and when they developed environmentally independent, avian-style acclimatization, becoming endothermic.1,2 The ability of warm-blooded dinosaurs to flourish in harsher environments, including cold, high-latitude regions,3,4 raises intriguing questions about the origins of key innovations shared with modern birds,5,6 indicating that the development of homeothermy (keeping constant body temperature) and endothermy (generating body heat) played a crucial role in their ecological diversification.7 Despite substantial evidence across scientific disciplines (anatomy,8 reproduction,9 energetics,10 biomechanics,10 osteohistology,11 palaeobiogeography,12 geochemistry,13,14 and soft tissues15,16,17), a consensus on dinosaur thermophysiology remains elusive.1,12,15,17,18,19 Differential thermophysiological strategies among terrestrial tetrapods allow endotherms (birds and mammals) to expand their latitudinal range (from the tropics to polar regions), owing to their reduced reliance on environmental temperature.20 By contrast, most reptilian lineages (squamates, turtles, and crocodilians) and amphibians are predominantly constrained by temperature in regions closer to the tropics.21 Determining when this macroecological pattern emerged in the avian lineage relies heavily on identifying the origin of these key physiological traits. Combining fossils with macroevolutionary and palaeoclimatic models, we unveil distinct evolutionary pathways in the main dinosaur lineages: ornithischians and theropods diversified across broader climatic landscapes, trending toward cooler niches. An Early Jurassic shift to colder climates in Theropoda suggests an early adoption of endothermy. Conversely, sauropodomorphs exhibited prolonged climatic conservatism associated with higher thermal conditions, emphasizing temperature, rather than plant productivity, as the primary driver of this pattern, suggesting poikilothermy with a stronger dependence on higher temperatures in sauropods.
Collapse
Affiliation(s)
- Alfio Alessandro Chiarenza
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; Department of Earth Sciences, University College London, Gower Place, London WC1E 6BS, UK.
| | - Juan L Cantalapiedra
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain; GloCEE Global Change Ecology and Evolution Research Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28801 Alcalá de Henares, Spain; Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invdralidenstraße 43, 10115 Berlin, Germany
| | - Lewis A Jones
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sara Gamboa
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; Universidad Complutense de Madrid, Av. Séneca 2, 28040 Madrid, Spain
| | - Sofía Galván
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Alexander J Farnsworth
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Graciela Sotelo
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sara Varela
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
5
|
Groh SS, Upchurch P, Day JJ, Barrett PM. The biogeographic history of neosuchian crocodiles and the impact of saltwater tolerance variability. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230725. [PMID: 37800151 PMCID: PMC10548099 DOI: 10.1098/rsos.230725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Extant neosuchian crocodiles are represented by only 24 taxa that are confined to the tropics and subtropics. However, at other intervals during their 200 Myr evolutionary history the clade reached considerably higher levels of species-richness, matched by more widespread distributions. Neosuchians have occupied numerous habitats and niches, ranging from dwarf riverine forms to large marine predators. Despite numerous previous studies, several unsolved questions remain with respect to their biogeographic history, including the geographical origins of major groups, e.g. Eusuchia and Neosuchia itself. We carried out the most comprehensive biogeographic analysis of Neosuchia to date, based on a multivariate K-means clustering approach followed by the application of two ancestral area estimation methods (BioGeoBEARS and Bayesian ancestral location estimation) applied to two recently published phylogenies. Our results place the origin of Neosuchia in northwestern Pangaea, with subsequent radiations into Gondwana. Eusuchia probably emerged in the European archipelago during the Late Jurassic/Early Cretaceous, followed by dispersals to the North American and Asian landmasses. We show that putative transoceanic dispersal events are statistically significantly less likely to happen in alligatoroids. This finding is consistent with the saltwater intolerant physiology of extant alligatoroids, bolstering inferences of such intolerance in their ancestral lineages.
Collapse
Affiliation(s)
- Sebastian S. Groh
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
- Quality Enhancement Directorate, Cardiff Metropolitan University, Llandaff Campus, Cardiff CF5 2YB, UK
| | - Paul Upchurch
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Julia J. Day
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul M. Barrett
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
- Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
6
|
Dillon EM, Dunne EM, Womack TM, Kouvari M, Larina E, Claytor JR, Ivkić A, Juhn M, Carmona PSM, Robson SV, Saha A, Villafaña JA, Zill ME. Challenges and directions in analytical paleobiology. PALEOBIOLOGY 2023; 49:377-393. [PMID: 37809321 PMCID: PMC7615171 DOI: 10.1017/pab.2023.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Over the last 50 years, access to new data and analytical tools has expanded the study of analytical paleobiology, contributing to innovative analyses of biodiversity dynamics over Earth's history. Despite-or even spurred by-this growing availability of resources, analytical paleobiology faces deep-rooted obstacles that stem from the need for more equitable access to data and best practices to guide analyses of the fossil record. Recent progress has been accelerated by a collective push toward more collaborative, interdisciplinary, and open science, especially by early-career researchers. Here, we survey four challenges facing analytical paleobiology from an early-career perspective: (1) accounting for biases when interpreting the fossil record; (2) integrating fossil and modern biodiversity data; (3) building data science skills; and (4) increasing data accessibility and equity. We discuss recent efforts to address each challenge, highlight persisting barriers, and identify tools that have advanced analytical work. Given the inherent linkages between these challenges, we encourage discourse across disciplines to find common solutions. We also affirm the need for systemic changes that reevaluate how we conduct and share paleobiological research.
Collapse
Affiliation(s)
- Erin M. Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, U.S.A.; Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Emma M. Dunne
- GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Tom M. Womack
- School of Geography, Environment and Earth Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Miranta Kouvari
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom; Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Ekaterina Larina
- Jackson School of Geosciences, University of Texas, Austin, Texas 78712, U.S.A
| | - Jordan Ray Claytor
- Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A; Burke Museum of Natural History and Culture, Seattle, Washington 98195, U.S.A
| | - Angelina Ivkić
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2,1090 Vienna, Austria
| | - Mark Juhn
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California 90095, U.S.A
| | - Pablo S. Milla Carmona
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Buenos Aires C1428EGA, Argentina; Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN, UBA-CONICET), Buenos Aires C1428EGA, Argentina
| | - Selina Viktor Robson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Anwesha Saha
- Institute of Palaeobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland; Laboratory of Paleogenetics and Conservation Genetics, Centre of New Technologies (CeNT), University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Jaime A. Villafaña
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O ‘Higgins, Santiago 8370993, Chile
| | - Michelle E. Zill
- Department of Earth and Planetary Sciences, University of California Riverside, Riverside, California 92521, U.S.A
| |
Collapse
|
7
|
Alarcón-Muñoz J, Vargas AO, Püschel HP, Soto-Acuña S, Manríquez L, Leppe M, Kaluza J, Milla V, Gutstein CS, Palma-Liberona J, Stinnesbeck W, Frey E, Pino JP, Bajor D, Núñez E, Ortiz H, Rubilar-Rogers D, Cruzado-Caballero P. Relict duck-billed dinosaurs survived into the last age of the dinosaurs in subantarctic Chile. SCIENCE ADVANCES 2023; 9:eadg2456. [PMID: 37327335 PMCID: PMC10275600 DOI: 10.1126/sciadv.adg2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
In the dusk of the Mesozoic, advanced duck-billed dinosaurs (Hadrosauridae) were so successful that they likely outcompeted other herbivores, contributing to declines in dinosaur diversity. From Laurasia, hadrosaurids dispersed widely, colonizing Africa, South America, and, allegedly, Antarctica. Here, we present the first species of a duck-billed dinosaur from a subantarctic region, Gonkoken nanoi, of early Maastrichtian age in Magallanes, Chile. Unlike duckbills further north in Patagonia, Gonkoken descends from North American forms diverging shortly before the origin of Hadrosauridae. However, at the time, non-hadrosaurids in North America had become replaced by hadrosaurids. We propose that the ancestors of Gonkoken arrived earlier in South America and reached further south, into regions where hadrosaurids never arrived: All alleged subantarctic and Antarctic remains of hadrosaurids could belong to non-hadrosaurid duckbills like Gonkoken. Dinosaur faunas of the world underwent qualitatively different changes before the Cretaceous-Paleogene asteroid impact, which should be considered when discussing their possible vulnerability.
Collapse
Affiliation(s)
- Jhonatan Alarcón-Muñoz
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Área Paleontología, Museo Nacional de Historia Natural de Chile, Santiago, Chile
| | - Alexander O. Vargas
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Hans P. Püschel
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Sergio Soto-Acuña
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- KayTreng Consultores SpA, Ñuñoa, Santiago, Chile
- Escuela de Geología, Facultad de Ciencias, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile
| | | | - Marcelo Leppe
- Laboratorio de Paleobiología, Instituto Nacional Antártico Chileno, Punta Arenas, Chile
| | - Jonatan Kaluza
- Fundación Félix de Azara, Argentina, CONICET, Buenos Aires, Argentina
| | - Verónica Milla
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Universidad de Concepción, Concepción, Chile
| | - Carolina S. Gutstein
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Paleo Consultores, Pedro de Valdivia 273, Providencia 1602, Chile
| | - José Palma-Liberona
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Wolfgang Stinnesbeck
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 234-236, Heidelberg 69120, Germany
| | - Eberhard Frey
- Staatliches Museum für Naturkunde Karlsruhe (SMNK), Erbprinzenstraße 13, Karlsruhe 76133, Germany
| | - Juan Pablo Pino
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dániel Bajor
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elaine Núñez
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Héctor Ortiz
- Red Paleontológica U-Chile, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Universidad de Magallanes, Punta Arenas, Chile
| | - David Rubilar-Rogers
- Área Paleontología, Museo Nacional de Historia Natural de Chile, Santiago, Chile
| | - Penélope Cruzado-Caballero
- Área de Paleontología, Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Spain
- Grupo Aragosaurus-IUCA, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Kammerer CF, Viglietti PA, Butler E, Botha J. Rapid turnover of top predators in African terrestrial faunas around the Permian-Triassic mass extinction. Curr Biol 2023:S0960-9822(23)00455-4. [PMID: 37220743 DOI: 10.1016/j.cub.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 05/25/2023]
Abstract
Catastrophic ecosystem disruption in the late Permian period resulted in the greatest loss of biodiversity in Earth's history, the Permian-Triassic mass extinction (PTME).1 The dominant terrestrial vertebrates of the Permian (synapsids) suffered major losses at this time, leading to their replacement by reptiles in the Triassic.2 The dominant late Permian predatory synapsids, gorgonopsians, were completely extirpated by the PTME. The largest African gorgonopsians, the Rubidgeinae, have traditionally been assumed to go extinct at the Permo-Triassic boundary (PTB).3,4,5 However, this apparent persistence through the sustained extinction interval characterizing the continental PTME6 is at odds with ecological theory indicating that top predators have high extinction risk.7 Here, we report the youngest known large-bodied gorgonopsians, gigantic specimens from the PTB site of Nooitgedacht 68 in South Africa. These specimens are not rubidgeine, and instead are referable to Inostrancevia, a taxon previously thought to be a Russian endemic.8 Based on comprehensive review of the South African gorgonopsian record, we show that rubidgeines were early victims of ecosystem disruption preceding the PTME and were replaced as top predators by Laurasian immigrant inostranceviines. The reign of this latter group was short-lived, however; by the PTB, gorgonopsians were extinct, and a different group (therocephalians) became the largest synapsid predators, before themselves going extinct. The extinction and replacement of top predators in rapid succession at the clade level underlines the extreme degree of ecosystem instability in the latest Permian and earliest Triassic, a phenomenon that was likely global in extent.
Collapse
Affiliation(s)
- Christian F Kammerer
- North Carolina Museum of Natural Sciences, 11 West Jones Street, Raleigh, NC 27601, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Pia A Viglietti
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - Elize Butler
- National Museum, 36 Aliwal Street, Bloemfontein 9301, South Africa
| | - Jennifer Botha
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; GENUS: DSI-NRF Centre of Excellence in Palaeosciences, Johannesburg 2050, South Africa
| |
Collapse
|
9
|
Yu Y, Zhang C, Xu X. Complex macroevolution of pterosaurs. Curr Biol 2023; 33:770-779.e4. [PMID: 36787747 DOI: 10.1016/j.cub.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/13/2022] [Accepted: 01/05/2023] [Indexed: 02/16/2023]
Abstract
Pterosaurs, the earliest flying tetrapods, are the subject of some recent quantitative macroevolutionary analyses from different perspectives.1-2 Here, we use an integrative approach involving newly assembled phylogenetic and body size datasets, net diversification rates, morphological rates, and morphological disparity to gain a holistic understanding of the pterosaur macroevolution. The first two parameters are important in quantitative analyses of macroevolution, but they have been rarely used in previous pterosaur studies.1,3,4,2,5,6,7,8,9,10,11,12 Our study reveals an ∼115-Ma period-from Early Triassic to Early Cretaceous-of multi-wave increasing net diversification rates and disparity, as well as high morphological rates, followed by an ∼65-Ma period-from Early Cretaceous to the end of the Cretaceous-of mostly negative net diversification rates, decreasing disparity, and relatively low morphological rates in pterosaur evolution. Our study demonstrates the following: (1) body size plays an important role in pterosaur lineage diversification during nearly their whole evolutionary history, and the evolution of locomotion, trophic, and ornamental structures also plays a role in different periods; (2) birds, the other major flying tetrapod group at the time, might have affected pterosaur macroevolution for ∼100 Ma; and (3) different mass extinction events might have affected pterosaur evolution differently. Particularly, the revealed decline in pterosaur biodiversity during the Middle and Late Cretaceous periods provides further support for the possible presence of a biodiversity decline of large-sized terrestrial amniotes starting in the mid-Cretaceous,13,14 which may have been caused by multiple factors including a global land area decrease during these periods.
Collapse
Affiliation(s)
- Yilun Yu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.
| | - Xing Xu
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, China; Shenyang Normal University, Paleontological Museum of Liaoning, Shenyang, China.
| |
Collapse
|
10
|
100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Curr Biol 2023; 33:109-121.e3. [PMID: 36549298 DOI: 10.1016/j.cub.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5-23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.
Collapse
|
11
|
García-Girón J, Chiarenza AA, Alahuhta J, DeMar DG, Heino J, Mannion PD, Williamson TE, Wilson Mantilla GP, Brusatte SL. Shifts in food webs and niche stability shaped survivorship and extinction at the end-Cretaceous. SCIENCE ADVANCES 2022; 8:eadd5040. [PMID: 36475805 PMCID: PMC9728968 DOI: 10.1126/sciadv.add5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
It has long been debated why groups such as non-avian dinosaurs became extinct whereas mammals and other lineages survived the Cretaceous/Paleogene mass extinction 66 million years ago. We used Markov networks, ecological niche partitioning, and Earth System models to reconstruct North American food webs and simulate ecospace occupancy before and after the extinction event. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of megaherbivores, but dinosaur niches were otherwise stable and static, potentially contributing to their demise. Smaller vertebrates, including mammals, followed a consistent trajectory of increasing trophic impact and relaxation of niche limits beginning in the latest Cretaceous and continuing after the mass extinction. Mammals did not simply proliferate after the extinction event; rather, their earlier ecological diversification might have helped them survive.
Collapse
Affiliation(s)
- Jorge García-Girón
- Geography Research Unit, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
- Department of Biodiversity and Environmental Management, University of León, Campus de Vegazana, 24007 León, Spain
| | - Alfio Alessandro Chiarenza
- Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecología Animal, Centro de Investigacion Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Janne Alahuhta
- Geography Research Unit, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - David G. DeMar
- Department of Biology, University of Washington and the Burke Museum of Natural History and Culture, Seattle, WA 98105, USA
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Jani Heino
- Geography Research Unit, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, Gower Street, WC1E 6BT London, UK
| | | | - Gregory P. Wilson Mantilla
- Department of Biology, University of Washington and the Burke Museum of Natural History and Culture, Seattle, WA 98105, USA
| | - Stephen L. Brusatte
- School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, EH9 3FE Edinburgh, UK
| |
Collapse
|
12
|
Han F, Wang Q, Wang H, Zhu X, Zhou X, Wang Z, Fang K, Stidham TA, Wang W, Wang X, Li X, Qin H, Fan L, Wen C, Luo J, Pan Y, Deng C. Low dinosaur biodiversity in central China 2 million years prior to the end-Cretaceous mass extinction. Proc Natl Acad Sci U S A 2022; 119:e2211234119. [PMID: 36122246 PMCID: PMC9522366 DOI: 10.1073/pnas.2211234119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Whether or not nonavian dinosaur biodiversity declined prior to the end-Cretaceous mass extinction remains controversial as the result of sampling biases in the fossil record, differences in the analytical approaches used, and the rarity of high-precision geochronological dating of dinosaur fossils. Using magnetostratigraphy, cyclostratigraphy, and biostratigraphy, we establish a high-resolution geochronological framework for the fossil-rich Late Cretaceous sedimentary sequence in the Shanyang Basin of central China. We have found only three dinosaurian eggshell taxa (Macroolithus yaotunensis, Elongatoolithus elongatus, and Stromatoolithus pinglingensis) representing two clades (Oviraptoridae and Hadrosauridae) in sediments deposited between ∼68.2 and ∼66.4 million y ago, indicating sustained low dinosaur biodiversity, and that assessment is consistent with the known skeletal remains in the Shanyang and surrounding basins of central China. Along with the dinosaur eggshell records from eastern and southern China, we find a decline in dinosaur biodiversity from the Campanian to the Maastrichtian. Our results support a long-term decline in global dinosaur biodiversity prior to 66 million y ago, which likely set the stage for the end-Cretaceous nonavian dinosaur mass extinction.
Collapse
Affiliation(s)
- Fei Han
- Paleomagnetism and Planetary Magnetism Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Qiang Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Huapei Wang
- Paleomagnetism and Planetary Magnetism Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Xufeng Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Zhixiang Wang
- Department of Applied Geophysics, School of Geophysics and Geomatics, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Kaiyong Fang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Thomas A. Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wei Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaolin Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaoqiang Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Huafeng Qin
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Longgang Fan
- Chinese Academy of Sciences Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Chen Wen
- Paleomagnetism and Planetary Magnetism Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jianhong Luo
- Paleomagnetism and Planetary Magnetism Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Yongxin Pan
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Chenglong Deng
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
13
|
Gates TA, Cai H, Hu Y, Han X, Griffith E, Burgener L, Hyland E, Zanno LE. Estimating ancient biogeographic patterns with statistical model discrimination. Anat Rec (Hoboken) 2022. [PMID: 36151605 DOI: 10.1002/ar.25067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022]
Abstract
The geographic ranges in which species live is a function of many factors underlying ecological and evolutionary contingencies. Observing the geographic range of an individual species provides valuable information about these historical contingencies for a lineage, determining the distribution of many distantly related species in tandem provides information about large-scale constraints on evolutionary and ecological processes generally. We present a linear regression method that allows for the discrimination of various hypothetical biogeographical models for determining which landscape distributional pattern best matches data from the fossil record. The linear regression models used in the discrimination rely on geodesic distances between sampling sites (typically geologic formations) as the independent variable and three possible dependent variables: Dice/Sorensen similarity; Euclidean distance; and phylogenetic community dissimilarity. Both the similarity and distance measures are useful for full-community analyses without evolutionary information, whereas the phylogenetic community dissimilarity requires phylogenetic data. Importantly, the discrimination method uses linear regression residual error to provide relative measures of support for each biogeographical model tested, not absolute answers or p-values. When applied to a recently published dataset of Campanian pollen, we find evidence that supports two plant communities separated by a transitional zone of unknown size. A similar case study of ceratopsid dinosaurs using phylogenetic community dissimilarity provided no evidence of a biogeographical pattern, but this case study suffers from a lack of data to accurately discriminate and/or too much temporal mixing. Future research aiming to reconstruct the distribution of organisms across a landscape has a statistical-based method for determining what biogeographic distributional model best matches the available data.
Collapse
Affiliation(s)
- Terry A Gates
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| | - Hengrui Cai
- Department of Statistics, University of California Irvine, Irvine, California, USA
| | - Yifei Hu
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Xu Han
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Emily Griffith
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Ethan Hyland
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lindsay E Zanno
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| |
Collapse
|
14
|
Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nat Commun 2022; 13:3120. [PMID: 35701413 PMCID: PMC9198051 DOI: 10.1038/s41467-022-30793-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Today, warm-water coral reefs are limited to tropical-to-subtropical latitudes. These diverse ecosystems extended further poleward in the geological past, but the mechanisms driving these past distributions remain uncertain. Here, we test the role of climate and palaeogeography in shaping the distribution of coral reefs over geological timescales. To do so, we combine habitat suitability modelling, Earth System modelling and the ~247-million-year geological record of scleractinian coral reefs. A broader latitudinal distribution of climatically suitable habitat persisted throughout much of the Mesozoic-early Paleogene due to an expanded tropical belt and more equable distribution of shallow marine substrate. The earliest Cretaceous might be an exception, with reduced shallow marine substrate during a 'cold-snap' interval. Climatically suitable habitat area became increasingly skewed towards the tropics from the late Paleogene, likely steepening the latitudinal biodiversity gradient of reef-associated taxa. This was driven by global cooling and increases in tropical shallow marine substrate resulting from the tectonic evolution of the Indo-Australian Archipelago. Although our results suggest global warming might permit long-term poleward range expansions, coral reef ecosystems are unlikely to keep pace with the rapid rate of anthropogenic climate change.
Collapse
|
15
|
MacLaren JA, Bennion RF, Bardet N, Fischer V. Global ecomorphological restructuring of dominant marine reptiles prior to the Cretaceous-Palaeogene mass extinction. Proc Biol Sci 2022; 289:20220585. [PMID: 35611532 PMCID: PMC9130788 DOI: 10.1098/rspb.2022.0585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mosasaurid squamates were the dominant amniote predators in marine ecosystems during most of the Late Cretaceous. Here, we use a suite of biomechanically rooted, functionally descriptive ratios in a framework adapted from population ecology to investigate how the morphofunctional disparity of mosasaurids evolved prior to the Cretaceous-Palaeogene (K/Pg) mass extinction. Our results suggest that taxonomic turnover in mosasaurid community composition from Campanian to Maastrichtian is reflected by a notable global increase in morphofunctional disparity, especially driving the North American record. Ecomorphospace occupation becomes polarized during the Late Maastrichtian, with morphofunctional disparity plateauing in the Southern Hemisphere and decreasing in the Northern Hemisphere. We show that these changes are not strongly associated with mosasaurid size, but rather with the functional capacities of their skulls. Our novel approach indicates that mosasaurid morphofunctional disparity was in decline in multiple provincial communities before the K/Pg mass extinction, highlighting region-specific patterns of disparity evolution and the importance of assessing vertebrate extinctions both globally and locally. Ecomorphological differentiation in mosasaurid communities, coupled with declines in other formerly abundant marine reptile groups, indicates widespread restructuring of higher trophic levels in marine food webs was well underway when the K/Pg mass extinction took place.
Collapse
Affiliation(s)
- Jamie A. MacLaren
- Evolution and Diversity Dynamics Lab, UR Geology, Université de Liège, 14 Allée du 6 Août, Liège 4000, Belgium,Functional Morphology Lab, Department of Biology, Universiteit Antwerpen, Gebouw D, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, Antwerpen 2610, Belgium
| | - Rebecca F. Bennion
- Evolution and Diversity Dynamics Lab, UR Geology, Université de Liège, 14 Allée du 6 Août, Liège 4000, Belgium,O.D Terre et Histoire de la Vie, Institut Royal des Sciences Naturelles de Belgique, Rue Vautier 29, Brussels 1000, Belgium
| | - Nathalie Bardet
- CR2P – Centre de Recherche en Paléontologie de Paris, UMR 7207 CNRS-MNHN-SU, Muséum National d'Histoire Naturelle, 57 Rue Cuvier, CP38, Paris 75005, France
| | - Valentin Fischer
- Evolution and Diversity Dynamics Lab, UR Geology, Université de Liège, 14 Allée du 6 Août, Liège 4000, Belgium
| |
Collapse
|
16
|
Chiarenza AA, Mannion PD, Farnsworth A, Carrano MT, Varela S. Climatic constraints on the biogeographic history of Mesozoic dinosaurs. Curr Biol 2021; 32:570-585.e3. [PMID: 34921764 DOI: 10.1016/j.cub.2021.11.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Dinosaurs dominated Mesozoic terrestrial ecosystems globally. However, whereas a pole-to-pole geographic distribution characterized ornithischians and theropods, sauropods were restricted to lower latitudes. Here, we evaluate the role of climate in shaping these biogeographic patterns through the Jurassic-Cretaceous (201-66 mya), combining dinosaur fossil occurrences, past climate data from Earth System models, and habitat suitability modeling. Results show that, uniquely among dinosaurs, sauropods occupied climatic niches characterized by high temperatures and strongly bounded by minimum cold temperatures. This constrained the distribution and dispersal pathways of sauropods to tropical areas, excluding them from latitudinal extremes, especially in the Northern Hemisphere. The greater availability of suitable habitat in the southern continents, particularly in the Late Cretaceous, might be key to explaining the high diversity of sauropods there, relative to northern landmasses. Given that ornithischians and theropods show a flattened or bimodal latitudinal biodiversity gradient, with peaks at higher latitudes, the closer correspondence of sauropods to a subtropical concentration could hint at fundamental thermophysiological differences to the other two clades.
Collapse
Affiliation(s)
- Alfio Alessandro Chiarenza
- Grupo de Ecología Animal, Centro de Investigacion Mariña, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain; Department of Earth Science and Engineering, Imperial College London, Prince Consort Road, London SW7 2BP, UK; Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK.
| | - Philip D Mannion
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK.
| | - Alex Farnsworth
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1RL, UK; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Matthew T Carrano
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20013-7012, USA.
| | - Sara Varela
- Grupo de Ecología Animal, Centro de Investigacion Mariña, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo 36310, Spain
| |
Collapse
|
17
|
Souza AV, Miranda EA, Passos JF, Araujo EL, Alvarenga CD, Silva JG. Predicting the Invasion Risk by Anastrepha sororcula (Diptera: Tephritidae) in Distinct Geographic Regions. NEOTROPICAL ENTOMOLOGY 2021; 50:989-998. [PMID: 34410677 DOI: 10.1007/s13744-021-00907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The movement of endemic fruit flies to new habitats represents a major biological and economic threat. Anastrepha sororcula Zucchi, 1979 is widely distributed in Brazil and also in Colombia, Ecuador, and Paraguay. Here, we present the potential distribution of A. sororcula in endemic areas and project this model into other regions such as part of sub-Saharan Africa, Central America, and Asia to show areas around the world that this species can potentially establish. We combined geographic coordinates with climate data. The models were built using the maximum entropy (MaxEnt) algorithm. Many mango- and guava-producing countries exhibited climatic suitability for A. sororcula in the regions studied including the nine largest world producers: India, Brazil, Malawi, Kenya, Haiti, Cuba, Colombia, Madagascar, and the Democratic Republic of the Congo. Many of these countries showed ideal host plant availability and climatic conditions for the entry and establishment of A. sororcula. This study is a pioneer in the identification of representative areas in the world with climatic suitability for A. sororcula, which shows the importance of predicting areas at risk of invasion to monitor the movement and establishment of fruit fly species in new regions, which is fundamental to area-wide integrated pest management programs.
Collapse
Affiliation(s)
- Adriane Vieira Souza
- Programa de Pós-Graduação em Genética e Biologia Molecular, Depto de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.
| | - Elder Assis Miranda
- Programa de Pós-Graduação em Genética e Biologia Molecular, Depto de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- Instituto Federal do Tocantins - IFTO - Porto Nacional, Tocantins, Brazil
| | - Joseane Fernanda Passos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Depto de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Elton Lucio Araujo
- Depto de Ciências Agronômicas e Florestais, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | | | - Janisete Gomes Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Depto de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
18
|
Past, present, and future climate space of the only endemic vertebrate genus of the Italian peninsula. Sci Rep 2021; 11:22139. [PMID: 34772984 PMCID: PMC8590061 DOI: 10.1038/s41598-021-01492-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
The two extant Salamandrina species represent a unique case of morphology, ecology, and ethology among urodeles. The range of this genus is currently limited to Italy, where it represents the only endemic vertebrate genus, but its past range extended over a much broader area of Europe, including the Iberian and Balkan peninsulas. ENM analyses using modern occurrences of Salamandrina demonstrate that the current climate of the majority of Europe, and especially areas where fossils of this genus were found, is currently not suitable for this genus, neither was it suitable during the last 3.3 million years. This result allows possible assumptions about the climatic influence on the former extirpation of this salamander from several areas of Europe. Furthermore, it shows that, during Pliocene–Pleistocene climatic oscillations, Mediterranean peninsulas, despite being generally considered together because of similar latitude, had different potential to effectively become glacial refugia for this salamander, and possibly for other species as well. Future projections using different CO2 emission scenarios predict that climatic suitability will be even more drastically reduced during the next 50 years, underlining once more the importance of conservation strategies and emission-reducing policies.
Collapse
|
19
|
Sillero N, Arenas-Castro S, Enriquez‐Urzelai U, Vale CG, Sousa-Guedes D, Martínez-Freiría F, Real R, Barbosa A. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109671] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Sakamoto M, Benton MJ, Venditti C. Strong support for a heterogeneous speciation decline model in Dinosauria: a response to claims made by Bonsor et al. (2020). ROYAL SOCIETY OPEN SCIENCE 2021; 8:202143. [PMID: 34457325 PMCID: PMC8385376 DOI: 10.1098/rsos.202143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/16/2021] [Indexed: 05/19/2023]
Abstract
Through phylogenetic modelling, we previously presented strong support for diversification decline in the three major subclades of dinosaurs (Sakamoto et al. 2016 Proc. Natl Acad. Sci. USA 113, 5036-5040. (doi:10.1073/pnas.1521478113)). Recently, our support for this model has been criticized (Bonsor et al. 2020 R. Soc. Open Sci. 7, 201195. (doi:10.1098/rsos.201195)). Here, we highlight that these criticisms seem to largely stem from a misunderstanding of our study: contrary to Bonsor et al.'s claims, our model accounts for heterogeneity in diversification dynamics, was selected based on deviance information criterion (DIC) scores (not parameter significance), and intercepts were estimated to account for uncertainties in the root age of the phylogenetic tree. We also demonstrate that their new analyses are not comparable to our models: they fit simple, Dinosauria-wide models as a direct comparison to our group-wise models, and their additional trees are subclades that are limited in taxonomic coverage and temporal span, i.e. severely affected by incomplete sampling. We further present results of new analyses on larger, better-sampled trees (N = 961) of dinosaurs, showing support for the time-quadratic model. Disagreements in how we interpret modelled diversification dynamics are to be expected, but criticisms should be based on sound logic and understanding of the model under discussion.
Collapse
Affiliation(s)
| | | | - Chris Venditti
- School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
21
|
Cashmore DD, Butler RJ, Maidment SCR. Taxonomic identification bias does not drive patterns of abundance and diversity in theropod dinosaurs. Biol Lett 2021; 17:20210168. [PMID: 34256583 PMCID: PMC8278044 DOI: 10.1098/rsbl.2021.0168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The ability of palaeontologists to correctly diagnose and classify new fossil species from incomplete morphological data is fundamental to our understanding of evolution. Different parts of the vertebrate skeleton have different likelihoods of fossil preservation and varying amounts of taxonomic information, which could bias our interpretations of fossil material. Substantial previous research has focused on the diversity and macroevolution of non-avian theropod dinosaurs. Theropods provide a rich dataset for analysis of the interactions between taxonomic diagnosability and fossil preservation. We use specimen data and formal taxonomic diagnoses to create a new metric, the Likelihood of Diagnosis, which quantifies the diagnostic likelihood of fossil species in relation to bone preservation potential. We use this to assess whether a taxonomic identification bias impacts the non-avian theropod fossil record. We find that the patterns of differential species abundance and clade diversity are not a consequence of their relative diagnosability. Although there are other factors that bias the theropod fossil record that are not investigated here, our results suggest that patterns of relative abundance and diversity for theropods might be more representative of Mesozoic ecology than often considered.
Collapse
Affiliation(s)
- Daniel D Cashmore
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susannah C R Maidment
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.,Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
22
|
Condamine FL, Guinot G, Benton MJ, Currie PJ. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat Commun 2021; 12:3833. [PMID: 34188028 PMCID: PMC8242047 DOI: 10.1038/s41467-021-23754-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
The question why non-avian dinosaurs went extinct 66 million years ago (Ma) remains unresolved because of the coarseness of the fossil record. A sudden extinction caused by an asteroid is the most accepted hypothesis but it is debated whether dinosaurs were in decline or not before the impact. We analyse the speciation-extinction dynamics for six key dinosaur families, and find a decline across dinosaurs, where diversification shifted to a declining-diversity pattern ~76 Ma. We investigate the influence of ecological and physical factors, and find that the decline of dinosaurs was likely driven by global climate cooling and herbivorous diversity drop. The latter is likely due to hadrosaurs outcompeting other herbivores. We also estimate that extinction risk is related to species age during the decline, suggesting a lack of evolutionary novelty or adaptation to changing environments. These results support an environmentally driven decline of non-avian dinosaurs well before the asteroid impact.
Collapse
Affiliation(s)
- Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS|IRD|EPHE), Montpellier, France.
| | - Guillaume Guinot
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS|IRD|EPHE), Montpellier, France
| | - Michael J Benton
- Department of Earth Sciences, University of Bristol, Bristol, UK
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Maidment SCR, Dean CD, Mansergh RI, Butler RJ. Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America. Proc Biol Sci 2021; 288:20210692. [PMID: 34157868 PMCID: PMC8220268 DOI: 10.1098/rspb.2021.0692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order for palaeontological data to be informative to ecologists seeking to understand the causes of today's diversity patterns, palaeontologists must demonstrate that actual biodiversity patterns are preserved in our reconstructions of past ecosystems. During the Late Cretaceous, North America was divided into two landmasses, Laramidia and Appalachia. Previous work has suggested strong faunal provinciality on Laramidia at this time, but these arguments are almost entirely qualitative. We quantitatively investigated faunal provinciality in ceratopsid and hadrosaurid dinosaurs using a biogeographic network approach and investigated sampling biases by examining correlations between dinosaur occurrences and collections. We carried out a model-fitting approach using generalized least-squares regression to investigate the sources of sampling bias we identified. We find that while the raw data strongly support faunal provinciality, this result is driven by sampling bias. The data quality of ceratopsids and hadrosaurids is currently too poor to enable fair tests of provincialism, even in this intensively sampled region, which probably represents the best-known Late Cretaceous terrestrial ecosystem on Earth. To accurately reconstruct biodiversity patterns in deep time, future work should focus on smaller scale, higher resolution case studies in which the effects of sampling bias can be better controlled.
Collapse
Affiliation(s)
- Susannah C R Maidment
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher D Dean
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Robert I Mansergh
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.,Department of Earth Sciences, 5 Gower Place, London WC1E 6BS, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Mannion PD, Tschopp E, Whitlock JA. Anatomy and systematics of the diplodocoid Amphicoelias altus supports high sauropod dinosaur diversity in the Upper Jurassic Morrison Formation of the USA. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210377. [PMID: 34150318 PMCID: PMC8206699 DOI: 10.1098/rsos.210377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 05/11/2023]
Abstract
Sauropod dinosaurs were an abundant and diverse component of the Upper Jurassic Morrison Formation of the USA, with 24 currently recognized species. However, some authors consider this high diversity to have been ecologically unviable and the validity of some species has been questioned, with suggestions that they represent growth series (ontogimorphs) of other species. Under this scenario, high sauropod diversity in the Late Jurassic of North America is greatly overestimated. One putative ontogimorph is the enigmatic diplodocoid Amphicoelias altus, which has been suggested to be synonymous with Diplodocus. Given that Amphicoelias was named first, it has priority and thus Diplodocus would become its junior synonym. Here, we provide a detailed re-description of A. altus in which we restrict it to the holotype individual and support its validity, based on three autapomorphies. Constraint analyses demonstrate that its phylogenetic position within Diplodocoidea is labile, but it seems unlikely that Amphicoelias is synonymous with Diplodocus. As such, our re-evaluation also leads us to retain Diplodocus as a distinct genus. There is no evidence to support the view that any of the currently recognized Morrison sauropod species are ontogimorphs. Available data indicate that sauropod anatomy did not dramatically alter once individuals approached maturity. Furthermore, subadult sauropod individuals are not prone to stemward slippage in phylogenetic analyses, casting doubt on the possibility that their taxonomic affinities are substantially misinterpreted. An anatomical feature can have both an ontogenetic and phylogenetic signature, but the former does not outweigh the latter when other characters overwhelmingly support the affinities of a taxon. Many Morrison Formation sauropods were spatio-temporally and/or ecologically separated from one another. Combined with the biases that cloud our reading of the fossil record, we contend that the number of sauropod dinosaur species in the Morrison Formation is currently likely to be underestimated, not overestimated.
Collapse
Affiliation(s)
- Philip D. Mannion
- Department of Earth Sciences, University College London, London WC1E 6BT, UK
| | - Emanuel Tschopp
- Centrum für Naturkunde, Universität Hamburg, 20146 Hamburg, Germany
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
| | - John A. Whitlock
- Department of Science and Mathematics, Mount Aloysius College, Cresson, PA 16630-1999, USA
- Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, PA 15213-4007, USA
| |
Collapse
|
25
|
Černý D, Madzia D, Slater GJ. Empirical and Methodological Challenges to the Model-Based Inference of Diversification Rates in Extinct Clades. Syst Biol 2021; 71:153-171. [PMID: 34110409 DOI: 10.1093/sysbio/syab045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023] Open
Abstract
Changes in speciation and extinction rates are key to the dynamics of clade diversification, but attempts to infer them from phylogenies of extant species face challenges. Methods capable of synthesizing information from extant and fossil species have yielded novel insights into diversification rate variation through time, but little is known about their behavior when analyzing entirely extinct clades. Here, we use empirical and simulated data to assess how two popular methods, PyRate and Fossil BAMM, perform in this setting. We inferred the first tip-dated trees for ornithischian dinosaurs, and combined them with fossil occurrence data to test whether the clade underwent an end-Cretaceous decline. We then simulated phylogenies and fossil records under empirical constraints to determine whether macroevolutionary and preservation rates can be teased apart under paleobiologically realistic conditions. We obtained discordant inferences about ornithischian macroevolution including a long-term speciation rate decline (BAMM), mostly flat rates with a steep diversification drop (PyRate) or without one (BAMM), and episodes of implausibly accelerated speciation and extinction (PyRate). Simulations revealed little to no conflation between speciation and preservation, but yielded spuriously correlated speciation and extinction estimates while time-smearing tree-wide shifts (BAMM) or overestimating their number (PyRate). Our results indicate that the small phylogenetic datasets available to vertebrate paleontologists and the assumptions made by current model-based methods combine to yield potentially unreliable inferences about the diversification of extinct clades. We provide guidelines for interpreting the results of the existing approaches in light of their limitations, and suggest how the latter may be mitigated.
Collapse
Affiliation(s)
- David Černý
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA
| | - Daniel Madzia
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA
| |
Collapse
|
26
|
Marshall CR, Latorre DV, Wilson CJ, Frank TM, Magoulick KM, Zimmt JB, Poust AW. Absolute abundance and preservation rate of Tyrannosaurus rex. Science 2021; 372:284-287. [PMID: 33859033 DOI: 10.1126/science.abc8300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Although much can be deduced from fossils alone, estimating abundance and preservation rates of extinct species requires data from living species. Here, we use the relationship between population density and body mass among living species combined with our substantial knowledge of Tyrannosaurus rex to calculate population variables and preservation rates for postjuvenile T. rex We estimate that its abundance at any one time was ~20,000 individuals, that it persisted for ~127,000 generations, and that the total number of T. rex that ever lived was ~2.5 billion individuals, with a fossil recovery rate of 1 per ~80 million individuals or 1 per 16,000 individuals where its fossils are most abundant. The uncertainties in these values span more than two orders of magnitude, largely because of the variance in the density-body mass relationship rather than variance in the paleobiological input variables.
Collapse
Affiliation(s)
- Charles R Marshall
- Department of Integrative Biology, University of California, Berkeley, CA, USA. .,University of California Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Daniel V Latorre
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,University of California Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Connor J Wilson
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,University of California Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Tanner M Frank
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,University of California Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Katherine M Magoulick
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,University of California Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Joshua B Zimmt
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,University of California Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Ashley W Poust
- Department of Integrative Biology, University of California, Berkeley, CA, USA.,University of California Museum of Paleontology, University of California, Berkeley, CA, USA.,San Diego Natural History Museum, San Diego, CA, USA
| |
Collapse
|
27
|
The Tetrapod Fossil Record from the Uppermost Maastrichtian of the Ibero-Armorican Island: An Integrative Review Based on the Outcrops of the Western Tremp Syncline (Aragón, Huesca Province, NE Spain). GEOSCIENCES 2021. [DOI: 10.3390/geosciences11040162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The South-Pyrenean Basin (northeastern Spain) has yielded a rich and diverse record of Upper Cretaceous (uppermost Campanian−uppermost Maastrichtian) vertebrate fossils, including the remains of some of the last European dinosaurs prior to the Cretaceous-Paleogene (K-Pg) extinction event. In this work, we update and characterize the vertebrate fossil record of the Arén Sandstone and Tremp formations in the Western Tremp Syncline, which is located in the Aragonese area of the Southern Pyrenees. The transitional and continental successions of these sedimentary units are dated to the late Maastrichtian, and exploration of their outcrops has led to the discovery of numerous fossil remains (bones, eggshells, and tracks) of dinosaurs, including hadrosauroids, sauropods, and theropods, along with other tetrapods such as crocodylomorphs, testudines, pterosaurs, squamates, and amphibians. In particular, this fossil record contains some of the youngest lambeosaurine hadrosaurids (Arenysaurus and Blasisaurus) and Mesozoic crocodylomorphs (Arenysuchus and Agaresuchus subjuniperus) in Europe, complementing the lower Maastrichtian fossil sites of the Eastern Tremp Syncline. In addition, faunal comparison with the fossil record of Hațeg island reveals the great change in the dinosaur assemblages resulting from the arrival of lambeosaurine hadrosaurids on the Ibero-Armorican island, whereas those on Haţeg remained stable. In the light of its paleontological richness, its stratigraphic continuity, and its calibration within the last few hundred thousand years of the Cretaceous, the Western Tremp Syncline is one of the best places in Europe to study the latest vertebrate assemblages of the European Archipelago before the end-Cretaceous mass extinction.
Collapse
|
28
|
Miranda EA, Lima IDN, Oi CA, López-Uribe MM, Del Lama MA, Freitas BM, Silva CI. Overlap of Ecological Niche Breadth of Euglossa cordata and Eulaema nigrita (Hymenoptera, Apidae, Euglossini) Accessed by Pollen Loads and Species Distribution Modeling. NEOTROPICAL ENTOMOLOGY 2021; 50:197-207. [PMID: 33683559 DOI: 10.1007/s13744-020-00847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Urban areas can serve as biodiversity refuges for pollinators because of the high diversity of available floral and nesting resources. However, it remains unclear what plant species commonly used for urban landscaping provide floral resources that pollinators actively use. Here, we integrate data from the pollen and species distribution models of two abundant euglossine bees-the large-bodied Eulaema nigrita (Lepeletier, 1841) and the small-bodied Euglossa cordata (Linnaeus, 1758)-in urban areas to investigate their overlap in diet breadth and distribution. We hypothesized that because bees with larger body sizes tend to have larger foraging areas, large-bodied bees would have a wider diet breath than small-bodied bees. Contrary to our hypothesis, we found that Eg. cordata has a wider diet breadth than El. nigrita with the former species showing higher diversity of pollen types collected (per pollen load and on average across pollen loads). Pollen grains from Solanum paniculatum and Tradescantia zebrina represented 63% of the diet of Eg. cordata, whereas pollen from S. paniculatum and Psidium guajava represented 87% of the diet of El. nigrita. After overlaying the distribution of both bee species and the three most important pollen resources, the distribution models revealed that these three plant species can co-occur with both euglossine bees throughout a large portion of eastern Brazil near the coast. Thus, we conclude S. paniculatum, T. zebrina, and P. guajava should be considered key plants for the maintenance of these two urban euglossine bee species. The results of this study provide important information for urban landscaping programs that aim to protect and preserve pollinators.
Collapse
Affiliation(s)
- Elder Assis Miranda
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.
- Núcleo de Pesquisa da Conservação e Biodiversidade do Semiárido - CONBIOS, Observatório UniFG do Semiárido Nordestino, Centro Universitário UNIFG, Guanambi, Bahia, Brazil.
| | | | - Cíntia A Oi
- Department of Biology, University of Leuven, KU Leuven, Leuven, Belgium
| | - Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, University Park, Pennsylvania, PA, USA
| | - Marco Antonio Del Lama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Breno Magalhães Freitas
- Setor de Abelhas, Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Cláudia Inês Silva
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Sellés AG, Vila B, Brusatte SL, Currie PJ, Galobart À. A fast-growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe. Sci Rep 2021; 11:4855. [PMID: 33649418 PMCID: PMC7921422 DOI: 10.1038/s41598-021-83745-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/04/2021] [Indexed: 11/10/2022] Open
Abstract
A characteristic fauna of dinosaurs and other vertebrates inhabited the end-Cretaceous European archipelago, some of which were dwarves or had other unusual features likely related to their insular habitats. Little is known, however, about the contemporary theropod dinosaurs, as they are represented mostly by teeth or other fragmentary fossils. A new isolated theropod metatarsal II, from the latest Maastrichtian of Spain (within 200,000 years of the mass extinction) may represent a jinfengopterygine troodontid, the first reported from Europe. Comparisons with other theropods and phylogenetic analyses reveal an autapomorphic foramen that distinguishes it from all other troodontids, supporting its identification as a new genus and species, Tamarro insperatus. Bone histology shows that it was an actively growing subadult when it died but may have had a growth pattern in which it grew rapidly in early ontogeny and attained a subadult size quickly. We hypothesize that it could have migrated from Asia to reach the Ibero-Armorican island no later than Cenomanian or during the Maastrichtian dispersal events.
Collapse
Affiliation(s)
- Albert G Sellés
- Institut Català de Paleontologia Miquel Crusafon, Edifici Z, C/ de les columnes s/n, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain. .,Museu de la Conca Dellà, 25650, Lleida, Isona, Spain.
| | - Bernat Vila
- Institut Català de Paleontologia Miquel Crusafon, Edifici Z, C/ de les columnes s/n, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.,Museu de la Conca Dellà, 25650, Lleida, Isona, Spain
| | | | - Philip J Currie
- University of Alberta, CW-405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Àngel Galobart
- Institut Català de Paleontologia Miquel Crusafon, Edifici Z, C/ de les columnes s/n, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.,Museu de la Conca Dellà, 25650, Lleida, Isona, Spain
| |
Collapse
|
30
|
Jones LA, Dean CD, Mannion PD, Farnsworth A, Allison PA. Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients. Proc Biol Sci 2021; 288:20202762. [PMID: 33622126 PMCID: PMC7934898 DOI: 10.1098/rspb.2020.2762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The latitudinal biodiversity gradient (LBG), in which species richness decreases from tropical to polar regions, is a pervasive pattern of the modern biosphere. Although the distribution of fossil occurrences suggests this pattern has varied through deep time, the recognition of palaeobiogeographic patterns is hampered by geological and anthropogenic biases. In particular, spatial sampling heterogeneity has the capacity to impact upon the reconstruction of deep time LBGs. Here we use a simulation framework to test the detectability of three different types of LBG (flat, unimodal and bimodal) over the last 300 Myr. We show that heterogeneity in spatial sampling significantly impacts upon the detectability of genuine LBGs, with known biodiversity patterns regularly obscured after applying the spatial sampling window of fossil collections. Sampling-standardization aids the reconstruction of relative biodiversity gradients, but cannot account for artefactual absences introduced by geological and anthropogenic biases. Therefore, we argue that some previous studies might have failed to recover the ‘true’ LBG type owing to incomplete and heterogeneous sampling, particularly between 200 and 20 Ma. Furthermore, these issues also have the potential to bias global estimates of past biodiversity, as well as inhibit the recognition of extinction and radiation events.
Collapse
Affiliation(s)
- Lewis A Jones
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Christopher D Dean
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, London WC1E 6BT, UK
| | | | - Peter A Allison
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
31
|
Namyatova AA. Climatic niche comparison between closely related trans-Palearctic species of the genus Orthocephalus (Insecta: Heteroptera: Miridae: Orthotylinae). PeerJ 2020; 8:e10517. [PMID: 33362973 PMCID: PMC7747689 DOI: 10.7717/peerj.10517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Previously climatic niche modelling had been studied for only a few trans-Palearctic species. It is unclear whether and to what extent those niches are different, and which climatic variables influence such a wide distribution. Here, environmental niche modelling is performed based on the Worldclim variables using Maxent for eight species of the genus Orthocephalus (Insecta: Heteroptera: Miridae: Orthotylinae). This group belongs to one of the largest insect families and it is distributed across Palearctic. Orthocephalus bivittatus, O. brevis, O. saltator and O. vittipennis are distributed across Europe and Asia; O. coriaceus, O. fulvipes, O. funestus, O. proserpinae have more limited distribution. Niche comparison using ENMTools was also undertaken to compare the niches of these species, and to test whether the niches of closely related species with trans-Palearctic distributions are more similar to each other, than to other congeners. It has been found that climatic niche models of all trans-Palearctic species under study are similar but are not identical to each other. This has been supported by niche geographic projections, climatic variables contributing to the models and variable ranges. Climatic niche models of all the trans-Palearctic Orthocephalus species are also very similar to two species having more restricted distribution (O. coriaceus, O. funestus). Results of this study suggest that trans-Palearctic distributions can have different geographic ranges and be shaped by different climatic factors.
Collapse
Affiliation(s)
- Anna A Namyatova
- Laboratory of Phytosanitary Diagnostics and Forecasts, All-Russian Institute of Plant Protection, St Petersburg, Russia.,Laboratory of Insect Taxonomy, Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
32
|
Bonsor JA, Barrett PM, Raven TJ, Cooper N. Dinosaur diversification rates were not in decline prior to the K-Pg boundary. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201195. [PMID: 33391800 PMCID: PMC7735361 DOI: 10.1098/rsos.201195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 05/29/2023]
Abstract
Determining the tempo and mode of non-avian dinosaur extinction is one of the most contentious issues in palaeobiology. Extensive disagreements remain over whether their extinction was catastrophic and geologically instantaneous or the culmination of long-term evolutionary trends. These conflicts have arisen due to numerous hierarchical sampling biases in the fossil record and differences in analytical methodology, with some studies identifying long-term declines in dinosaur richness prior to the Cretaceous-Palaeogene (K-Pg) boundary and others proposing continued diversification. Here, we use Bayesian phylogenetic generalized linear mixed models to assess the fit of 12 dinosaur phylogenies to three speciation models (null, slowdown to asymptote, downturn). We do not find strong support for the downturn model in our analyses, which suggests that dinosaur speciation rates were not in terminal decline prior to the K-Pg boundary and that the clade was still capable of generating new taxa. Nevertheless, we advocate caution in interpreting the results of such models, as they may not accurately reflect the complexities of the underlying data. Indeed, current phylogenetic methods may not provide the best test for hypotheses of dinosaur extinction; the collection of more dinosaur occurrence data will be essential to test these ideas further.
Collapse
Affiliation(s)
- Joseph A. Bonsor
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Paul M. Barrett
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Thomas J. Raven
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GA, UK
| | - Natalie Cooper
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
33
|
Funston GF, Chinzorig T, Tsogtbaatar K, Kobayashi Y, Sullivan C, Currie PJ. A new two-fingered dinosaur sheds light on the radiation of Oviraptorosauria. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201184. [PMID: 33204472 PMCID: PMC7657903 DOI: 10.1098/rsos.201184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Late Cretaceous trends in Asian dinosaur diversity are poorly understood, but recent discoveries have documented a radiation of oviraptorosaur theropods in China and Mongolia. However, little work has addressed the factors that facilitated this diversification. A new oviraptorid from the Late Cretaceous of Mongolia sheds light on the evolution of the forelimb, which appears to have played a role in the radiation of oviraptorosaurs. Surprisingly, the reduced arm has only two functional digits, highlighting a previously unrecognized occurrence of digit loss in theropods. Phylogenetic analysis shows that the onset of this reduction coincides with the radiation of heyuannine oviraptorids, following dispersal from southern China into the Gobi region. This suggests expansion into a new niche in the Gobi region, which relied less on the elongate, grasping forelimbs inherited by oviraptorosaurs. Variation in forelimb length and manus morphology provides another example of niche partitioning in oviraptorosaurs, which may have made possible their incredible diversity in the latest Cretaceous of Asia.
Collapse
Affiliation(s)
- Gregory F. Funston
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tsogtbaatar Chinzorig
- Hokkaido University Museum, Hokkaido University, Sapporo, Japan
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | | | | | - Corwin Sullivan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Philip J. Currie Dinosaur Museum, Wembley, Alberta, Canada
| | - Philip J. Currie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Abstract
We present a quantitative test of end-Cretaceous extinction scenarios and how these would have affected dinosaur habitats. Combining climate and ecological modeling tools, we demonstrate a substantial detrimental effect on dinosaur habitats caused by an impact winter scenario triggered by the Chicxulub asteroid. We were not able to obtain such an extinction state with several modeling scenarios of Deccan volcanism. We further show that the concomitant prolonged eruption of the Deccan traps might have acted as an ameliorating agent, buffering the negative effects on climate and global ecosystems that the asteroid impact produced at the Cretaceous–Paleogene boundary. The Cretaceous/Paleogene mass extinction, 66 Ma, included the demise of non-avian dinosaurs. Intense debate has focused on the relative roles of Deccan volcanism and the Chicxulub asteroid impact as kill mechanisms for this event. Here, we combine fossil-occurrence data with paleoclimate and habitat suitability models to evaluate dinosaur habitability in the wake of various asteroid impact and Deccan volcanism scenarios. Asteroid impact models generate a prolonged cold winter that suppresses potential global dinosaur habitats. Conversely, long-term forcing from Deccan volcanism (carbon dioxide [CO2]-induced warming) leads to increased habitat suitability. Short-term (aerosol cooling) volcanism still allows equatorial habitability. These results support the asteroid impact as the main driver of the non-avian dinosaur extinction. By contrast, induced warming from volcanism mitigated the most extreme effects of asteroid impact, potentially reducing the extinction severity.
Collapse
|
35
|
Crouch NMA. Extinction rates of non-avian dinosaur species are uncorrelated with the rate of evolution of phylogenetically informative characters. Biol Lett 2020; 16:20200231. [PMID: 32574533 PMCID: PMC7336841 DOI: 10.1098/rsbl.2020.0231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023] Open
Abstract
Determining the factors that shape temporal variation in species diversity is an ongoing challenge. One theory is that species exhibiting lower rates of phenotypic evolution should be more likely to go extinct as they are more susceptible to changing environmental conditions. However, little work has been done to assess whether this process shapes comparatively few lineages, or is a common mechanism shaping changes in species diversity. Here, I analyse the correlation between rates of morphological evolution and extinction at the species level using six published morphological matrices of non-avian dinosaurs. I find no correlation between the two rates at different taxonomic scales, suggesting that extinction in these groups is better described by other factors. As there is a strong prior expectation of correlated rates, I suggest that traditional morphological matrices are inappropriate for addressing this question and that the characters governing lineage persistence are independent of those with high phylogenetic signal. This may be comprehensively determined with continued development of phenomic matrices.
Collapse
Affiliation(s)
- Nicholas M. A. Crouch
- Department of the Geophysical Sciences, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Cui YM, Wang W, Ferguson DK, Yang J, Wang YF. Fossil evidence reveals how plants responded to cooling during the Cretaceous-Paleogene transition. BMC PLANT BIOLOGY 2019; 19:402. [PMID: 31519148 PMCID: PMC6743113 DOI: 10.1186/s12870-019-1980-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Around the Cretaceous-Paleogene (K-Pg) boundary, an obvious global cooling occurred, which resulted in dramatic changes in terrestrial ecosystems and the evolutionary trends of numerous organisms. However, how plant lineages responded to the cooling has remained unknown until now. Between ca. 70-60 Ma Mesocyparis McIver & Basinger (Cupressaceae), an extinct conifer genus, was distributed from eastern Asia to western North America and provides an excellent opportunity to solve this riddle. RESULTS Here we report a new species, Mesocyparis sinica from the early Paleocene of Jiayin, Heilongjiang, northeastern China. By integrating lines of evidence from phylogeny and comparative morphology of Mesocyparis, we found that during ca.70-60 Ma, the size of seed cone of Mesocyparis more than doubled, probably driven by the cooling during the K-Pg transition, which might be an effective adaptation for seed dispersal by animals. More importantly, we discovered that the northern limit of this genus, as well as those of two other arboreal taxa Metasequoia Miki ex Hu et Cheng (gymnosperm) and Nordenskioldia Heer (angiosperm), migrated ca.4-5° southward in paleolatitude during this time interval. CONCLUSIONS Our results suggest that the cooling during the K-Pg transition may have been responsible for the increase in size of the seed cone of Mesocyparis and have driven the migration of plants southwards.
Collapse
Affiliation(s)
- Yi-Ming Cui
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - David K. Ferguson
- Department of Palaeontology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Jian Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu-Fei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
37
|
Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proc Natl Acad Sci U S A 2019; 116:12895-12900. [PMID: 31182570 DOI: 10.1073/pnas.1903866116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many higher level avian clades are restricted to Earth's lower latitudes, leading to historical biogeographic reconstructions favoring a Gondwanan origin of crown birds and numerous deep subclades. However, several such "tropical-restricted" clades (TRCs) are represented by stem-lineage fossils well outside the ranges of their closest living relatives, often on northern continents. To assess the drivers of these geographic disjunctions, we combined ecological niche modeling, paleoclimate models, and the early Cenozoic fossil record to examine the influence of climatic change on avian geographic distributions over the last ∼56 million years. By modeling the distribution of suitable habitable area through time, we illustrate that most Paleogene fossil-bearing localities would have been suitable for occupancy by extant TRC representatives when their stem-lineage fossils were deposited. Potentially suitable habitat for these TRCs is inferred to have become progressively restricted toward the tropics throughout the Cenozoic, culminating in relatively narrow circumtropical distributions in the present day. Our results are consistent with coarse-scale niche conservatism at the clade level and support a scenario whereby climate change over geological timescales has largely dictated the geographic distributions of many major avian clades. The distinctive modern bias toward high avian diversity at tropical latitudes for most hierarchical taxonomic levels may therefore represent a relatively recent phenomenon, overprinting a complex biogeographic history of dramatic geographic range shifts driven by Earth's changing climate, variable persistence, and intercontinental dispersal. Earth's current climatic trajectory portends a return to a megathermal state, which may dramatically influence the geographic distributions of many range-restricted extant clades.
Collapse
|
38
|
Jones LA, Mannion PD, Farnsworth A, Valdes PJ, Kelland SJ, Allison PA. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182111. [PMID: 31183138 PMCID: PMC6502368 DOI: 10.1098/rsos.182111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
Reef corals are currently undergoing climatically driven poleward range expansions, with some evidence for equatorial range retractions. Predicting their response to future climate scenarios is critical to their conservation, but ecological models are based only on short-term observations. The fossil record provides the only empirical evidence for the long-term response of organisms under perturbed climate states. The palaeontological record from the Last Interglacial (LIG; 125 000 years ago), a time of global warming, suggests that reef corals experienced poleward range shifts and an equatorial decline relative to their modern distribution. However, this record is spatio-temporally biased, and existing methods cannot account for data absence. Here, we use ecological niche modelling to estimate reef corals' realized niche and LIG distribution, based on modern and fossil occurrences. We then make inferences about modelled habitability under two future climate change scenarios (RCP4.5 and RCP8.5). Reef coral ranges during the LIG were comparable to the present, with no prominent equatorial decrease in habitability. Reef corals are likely to experience poleward range expansion and large equatorial declines under RCP4.5 and RCP8.5. However, this range expansion is probably optimistic in the face of anthropogenic climate change. Incorporation of fossil data in niche models improves forecasts of biodiversity responses under global climatic change.
Collapse
Affiliation(s)
- Lewis A. Jones
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Paul J. Valdes
- School of Geographical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | | | - Peter A. Allison
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|