1
|
Simpson HL, Smits E, Moerkens R, Wijmenga C, Mooiweer J, Jonkers IH, Withoff S. Human organoids and organ-on-chips in coeliac disease research. Trends Mol Med 2024:S1471-4914(24)00270-3. [PMID: 39448329 DOI: 10.1016/j.molmed.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Coeliac disease (CeD) is an immune-mediated disorder characterised by gluten-triggered inflammation and damage in the small intestine, with lifelong gluten-free diet (GFD) as the only treatment. It is a multifactorial disease, involving genetic and environmental susceptibility factors, and its complexity and lack of comprehensive human model systems have hindered understanding of its pathogenesis and development of new treatments. Therefore, it is crucial to establish systems that recapitulate patient genetic background and the interactions between the small intestinal epithelial barrier, immune cells, and environment that contribute to CeD. In this review, we discuss disease complexity, recent advances in stem cell biology, organoids, tissue co-cultures, and organ-on-chip (OoC) systems that facilitate the development of comprehensive human model systems, and model applications in preclinical studies of potential treatments.
Collapse
Affiliation(s)
- Hanna L Simpson
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Eline Smits
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Renée Moerkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Joram Mooiweer
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
2
|
Yilmaz B, Macpherson AJ. Delving the depths of 'terra incognita' in the human intestine - the small intestinal microbiota. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01000-4. [PMID: 39443711 DOI: 10.1038/s41575-024-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The small intestinal microbiota has a crucial role in gastrointestinal health, affecting digestion, immune function, bile acid homeostasis and nutrient metabolism. The challenges of accessibility at this site mean that our knowledge of the small intestinal microbiota is less developed than of the colonic or faecal microbiota. Here, we summarize the features and fluctuations of the microbiota along the small intestinal tract, focusing on humans, and discuss physicochemical factors and assessment methods, including the technical challenges of investigating the low microbial biomass of the proximal small bowel. We highlight the essential protective mechanisms of the small intestine, including motility, the paracellular barrier and mucus, and secretory immunity, to show their roles in limiting excessive exposure of host tissues to microbial metabolites. We address current knowledge gaps, particularly the variability among individuals, the effects of dysbiosis of the small intestinal microbiota on health and how different taxa in small intestinal microbiota could compensate for each other functionally.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| | - Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Guignard S, Saifeddine M, Mihara K, Motahhary M, Savignac M, Guiraud L, Sagnat D, Sebbag M, Khou S, Rolland C, Edir A, Bournet B, Buscail L, Buscail E, Alric L, Camare C, Ambli M, Vergnolle N, Hollenberg MD, Deraison C, Bonnart C. Chymotrypsin activity signals to intestinal epithelium by protease-activated receptor-dependent mechanisms. Br J Pharmacol 2024; 181:2725-2749. [PMID: 38637276 DOI: 10.1111/bph.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.
Collapse
Affiliation(s)
- Simon Guignard
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mahmoud Saifeddine
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Koichiro Mihara
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Majid Motahhary
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-Centre National de la Recherche Scientifique UMR5051, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Laura Guiraud
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - David Sagnat
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mireille Sebbag
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Sokchea Khou
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Corinne Rolland
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Anissa Edir
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Barbara Bournet
- Department of Gastroenterology, Toulouse University Hospital, Toulouse, France
| | - Louis Buscail
- Department of Gastroenterology, Toulouse University Hospital, Toulouse, France
| | - Etienne Buscail
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Digestive Surgery, Toulouse University Hospital, Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, Rangueil, Toulouse III University Hospital, University of Toulouse, Toulouse, France
| | - Caroline Camare
- Department of Clinical Biochemistry, Toulouse University Hospital, Toulouse, France
- University of Toulouse, UMR1297, INSERM/Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mouna Ambli
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Nathalie Vergnolle
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Céline Deraison
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
4
|
Matera M, Guandalini S. How the Microbiota May Affect Celiac Disease and What We Can Do. Nutrients 2024; 16:1882. [PMID: 38931237 PMCID: PMC11206804 DOI: 10.3390/nu16121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Celiac disease (CeD) is an autoimmune disease with a strong association with human leukocyte antigen (HLA), characterized by the production of specific autoantibodies and immune-mediated enterocyte killing. CeD is a unique autoimmune condition, as it is the only one in which the environmental trigger is known: gluten, a storage protein present in wheat, barley, and rye. How and when the loss of tolerance of the intestinal mucosa to gluten occurs is still unknown. This event, through the activation of adaptive immune responses, enhances epithelial cell death, increases the permeability of the epithelial barrier, and induces secretion of pro-inflammatory cytokines, resulting in the transition from genetic predisposition to the actual onset of the disease. While the role of gastrointestinal infections as a possible trigger has been considered on the basis of a possible mechanism of antigen mimicry, a more likely alternative mechanism appears to involve a complex disruption of the gastrointestinal microbiota ecosystem triggered by infections, rather than the specific effect of a single pathogen on intestinal mucosal homeostasis. Several lines of evidence show the existence of intestinal dysbiosis that precedes the onset of CeD in genetically at-risk subjects, characterized by the loss of protective bacterial elements that both epigenetically and functionally can influence the response of the intestinal epithelium leading to the loss of gluten tolerance. We have conducted a literature review in order to summarize the current knowledge about the complex and in part still unraveled dysbiosis that precedes and accompanies CeD and present some exciting new data on how this dysbiosis might be prevented and/or counteracted. The literature search was conducted on PubMed.gov in the time frame 2010 to March 2024 utilizing the terms "celiac disease and microbiota", "celiac disease and microbiome", and "celiac disease and probiotics" and restricting the search to the following article types: Clinical Trials, Meta-Analysis, Review, and Systematic Review. A total of 364 papers were identified and reviewed. The main conclusions of this review can be outlined as follows: (1) quantitative and qualitative changes in gut microbiota have been clearly documented in CeD patients; (2) intestinal microbiota's extensive and variable interactions with enterocytes, viral and bacterial pathogens and even gluten combine to impact the inflammatory immune response to gluten and the loss of gluten tolerance, ultimately affecting the pathogenesis, progression, and clinical expression of CeD; (3) gluten-free diet fails to restore the eubiosis of the digestive tract in CeD patients, and also negatively affects microbial homeostasis; (4) new tools allowing targeted microbiota therapy, such as the use of probiotics (a good example being precision probiotics like the novel strain of B. vulgatus (20220303-A2) begin to show exciting potential applications.
Collapse
Affiliation(s)
- Mariarosaria Matera
- Pediatric Clinical Microbiomics Service, Misericordia Hospital, Via Senese 161, 58100 Grosseto, Italy;
| | - Stefano Guandalini
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Celiac Disease Center, University of Chicago Medicine, 5841 S. Maryland Ave. MC 4065, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Galipeau HJ, Hinterleitner R, Leonard MM, Caminero A. Non-Host Factors Influencing Onset and Severity of Celiac Disease. Gastroenterology 2024; 167:34-50. [PMID: 38286392 DOI: 10.1053/j.gastro.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts; Center for Celiac Research and Treatment, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
McKay DM, Defaye M, Rajeev S, MacNaughton WK, Nasser Y, Sharkey KA. Neuroimmunophysiology of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2024; 326:G712-G725. [PMID: 38626403 PMCID: PMC11376980 DOI: 10.1152/ajpgi.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.
Collapse
Affiliation(s)
- Derek M McKay
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Reches G, Piran R. Par2-mediated responses in inflammation and regeneration: choosing between repair and damage. Inflamm Regen 2024; 44:26. [PMID: 38816842 PMCID: PMC11138036 DOI: 10.1186/s41232-024-00338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The protease activated receptor 2 (Par2) plays a pivotal role in various damage models, influencing injury, proliferation, inflammation, and regeneration. Despite extensive studies, its binary roles- EITHER aggravating injury or promoting recovery-make a conclusive translational decision on its modulation strategy elusive. Analyzing two liver regeneration models, autoimmune hepatitis and direct hepatic damage, we discovered Par2's outcome depends on the injury's nature. In immune-mediated injury, Par2 exacerbates damage, while in direct tissue injury, it promotes regeneration. Subsequently, we evaluated the clinical significance of this finding by investigating Par2's expression in the context of autoimmune diabetes. We found that the absence of Par2 in all lymphocytes provided full protection against the autoimmune destruction of insulin-producing β-cells in mice, whereas the introduction of a β-cell-specific Par2 null mutation accelerated the onset of autoimmune diabetes. This pattern led us to hypothesize whether these observations are universal. A comprehensive review of recent Par2 publications across tissues and systems confirms the claim drafted above: Par2's initial activation in the immune system aggravates inflammation, hindering recovery, whereas its primary activation in the damaged tissue fosters regeneration. As a membrane-anchored receptor, Par2 emerges as an attractive drug target. Our findings highlight a crucial translational modulation strategy in regenerative medicine based on injury type.
Collapse
Affiliation(s)
- Gal Reches
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel.
| |
Collapse
|
8
|
Annunziato A, Vacca M, Cristofori F, Dargenio VN, Celano G, Francavilla R, De Angelis M. Celiac Disease: The Importance of Studying the Duodenal Mucosa-Associated Microbiota. Nutrients 2024; 16:1649. [PMID: 38892582 PMCID: PMC11174386 DOI: 10.3390/nu16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
There is increasing evidence indicating that changes in both the composition and functionality of the intestinal microbiome are closely associated with the development of several chronic inflammatory diseases, with celiac disease (CeD) being particularly noteworthy. Thanks to the advent of culture-independent methodologies, the ability to identify and quantify the diverse microbial communities residing within the human body has been significantly improved. However, in the context of CeD, a notable challenge lies in characterizing the specific microbiota present on the mucosal surfaces of the intestine, rather than relying solely on fecal samples, which may not fully represent the relevant microbial populations. Currently, our comprehension of the composition and functional importance of mucosa-associated microbiota (MAM) in CeD remains an ongoing field of research because the limited number of available studies have reported few and sometimes contradictory results. MAM plays a crucial role in the development and progression of CeD, potentially acting as both a trigger and modulator of the immune response within the intestinal mucosa, given its proximity to the epithelial cells and direct interaction. According to this background, this review aims to consolidate the existing literature specifically focused on MAM in CeD. By elucidating the complex interplay between the host immune system and the gut microbiota, we aim to pave the way for new interventions based on novel therapeutic targets and diagnostic biomarkers for MAM in CeD.
Collapse
Affiliation(s)
- Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| |
Collapse
|
9
|
Vergnolle N. Thrombin stories in the gut. Biochimie 2024:S0300-9084(24)00065-8. [PMID: 38521125 DOI: 10.1016/j.biochi.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Many studies have demonstrated the involvement of proteases in gut physiology and pathophysiology over the recent years. Among them, thrombin has appeared for a long time as an old player only involved in blood clotting upon tissue injury. The fact that thrombin receptors (Protease-Activated Receptors-1 and -4) are expressed and functional in almost all cell types of the gut, contributing to barrier, immune or motility functions, suggested that thrombin could actually be at the crossroad of intestinal physiology. Recent work has unraveled the constitutive release of active thrombin by intestinal epithelial cells, opening new research avenues on the role of thrombin in the gut. These roles are considered in the present review, as well as the regulation of thrombin in the gut. The potential of thrombin as a target for treatments of intestinal pathologies is also discussed here.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), CS60039, Toulouse, Cedex 03, 31024, France; Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Ab T2N 4N1, Canada.
| |
Collapse
|
10
|
Hou JJ, Ding L, Yang T, Yang YF, Jin YP, Zhang XP, Ma AH, Qin YH. The proteolytic activity in inflammatory bowel disease: insight from gut microbiota. Microb Pathog 2024; 188:106560. [PMID: 38272327 DOI: 10.1016/j.micpath.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease caused by the destruction of the intestinal mucosal epithelium that affects a growing number of people worldwide. Although the etiology of IBD is complex and still elucidated, the role of dysbiosis and dysregulated proteolysis is well recognized. Various studies observed altered composition and diversity of gut microbiota, as well as increased proteolytic activity (PA) in serum, plasma, colonic mucosa, and fecal supernatant of IBD compared to healthy individuals. The imbalance of intestinal microecology and intestinal protein hydrolysis were gradually considered to be closely related to IBD. Notably, the pivotal role of intestinal microbiota in maintaining proteolytic balance received increasing attention. In summary, we have speculated a mesmerizing story, regarding the hidden role of PA and microbiota-derived PA hidden in IBD. Most importantly, we provided the diagnosis and therapeutic targets for IBD as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Liang Ding
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Tao Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yan-Fei Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Ping Jin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Xiao-Ping Zhang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - A-Huo Ma
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China.
| |
Collapse
|
11
|
Roque A, Pereira SG. Bacteria: Potential Make-or-Break Determinants of Celiac Disease. Int J Mol Sci 2024; 25:2090. [PMID: 38396767 PMCID: PMC10889687 DOI: 10.3390/ijms25042090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 02/25/2024] Open
Abstract
Celiac disease is an autoimmune disease triggered by dietary gluten in genetically susceptible individuals that primarily affects the small intestinal mucosa. The sole treatment is a gluten-free diet that places a social and economic burden on patients and fails, in some, to lead to symptomatic or mucosal healing. Thus, an alternative treatment has long been sought after. Clinical studies on celiac disease have shown an association between the presence of certain microbes and disease outcomes. However, the mechanisms that underlie the effects of microbes in celiac disease remain unclear. Recent studies have employed disease models that have provided insights into disease mechanisms possibly mediated by bacteria in celiac disease. Here, we have reviewed the bacteria and related mechanisms identified so far that might protect from or incite the development of celiac disease. Evidence indicates bacteria play a role in celiac disease and it is worth continuing to explore this, particularly since few studies, to the best of our knowledge, have focused on establishing a mechanistic link between bacteria and celiac disease. Uncovering host-microbe interactions and their influence on host responses to gluten may enable the discovery of pathogenic targets and development of new therapeutic or preventive approaches.
Collapse
Affiliation(s)
| | - Sónia Gonçalves Pereira
- Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences, Polytechnic of Leiria, 2410-541 Leiria, Portugal;
| |
Collapse
|
12
|
Jiang Y, Lu L. New insight into the agonism of protease-activated receptors as an immunotherapeutic strategy. J Biol Chem 2024; 300:105614. [PMID: 38159863 PMCID: PMC10810747 DOI: 10.1016/j.jbc.2023.105614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
The activation and mobilization of immune cells play a crucial role in immunotherapy. Existing therapeutic interventions, such as cytokines administration, aim to enhance immune cell activity. However, these approaches usually result in modest effectiveness and toxic side effects, thereby restricting their clinical application. Protease-activated receptors (PARs), a subfamily of G protein-coupled receptors, actively participate in the immune system by directly activating immune cells. The activation of PARs by proteases or synthetic ligands can modulate immune cell behavior, signaling, and responses to treat immune-related diseases, suggesting the significance of PARs agonism in immunotherapy. However, the agonism of PARs in therapeutical applications remains rarely discussed, since it has been traditionally considered that PARs activation facilitates disease progressions. This review aims to comprehensively summarize the activation, rather than inhibition, of PARs in immune-related physiological responses and diseases. Additionally, we will discuss the emerging immunotherapeutic potential of PARs agonism, providing a new strategic direction for PARs-mediated immunotherapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
13
|
Lamas B, Martins Breyner N, Malaisé Y, Wulczynski M, Galipeau HJ, Gaultier E, Cartier C, Verdu EF, Houdeau E. Evaluating the Effects of Chronic Oral Exposure to the Food Additive Silicon Dioxide on Oral Tolerance Induction and Food Sensitivities in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27007. [PMID: 38380914 PMCID: PMC10880545 DOI: 10.1289/ehp12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The increasing prevalence of food sensitivities has been attributed to changes in gut microenvironment; however, ubiquitous environmental triggers such as inorganic nanoparticles (NPs) used as food additives have not been thoroughly investigated. OBJECTIVES We explored the impact of the NP-structured food-grade silicon dioxide (f g - SiO 2 ) on intestinal immune response involved in oral tolerance (OT) induction and evaluated the consequences of oral chronic exposure to this food-additive using a mouse model of OT to ovalbumin (OVA) and on gluten immunopathology in mice expressing the celiac disease risk gene, HLA-DQ8. METHODS Viability, proliferation, and cytokine production of mesenteric lymph node (MLN) cells were evaluated after exposure to f g - SiO 2 . C57BL/6J mice and a mouse model of OT to OVA were orally exposed to f g - SiO 2 or vehicle for 60 d. Fecal lipocalin-2 (Lcn-2), anti-OVA IgG, cytokine production, and immune cell populations were analyzed. Nonobese diabetic (NOD) mice expressing HLA-DQ8 (NOD/DQ8), exposed to f g - SiO 2 or vehicle, were immunized with gluten and immunopathology was investigated. RESULTS MLN cells exposed to f g - SiO 2 presented less proliferative T cells and lower secretion of interleukin 10 (IL-10) and transforming growth factor beta (TGF- β ) by T regulatory and CD 45 + CD 11 b + CD 103 + cells compared to control, two factors mediating OT. Mice given f g - SiO 2 exhibited intestinal Lcn-2 level and interferon gamma (IFN- γ ) secretion, showing inflammation and less production of IL-10 and TGF- β . These effects were also observed in OVA-tolerized mice exposed to f g - SiO 2 , in addition to a breakdown of OT and a lower intestinal frequency of T cells. In NOD/DQ8 mice immunized with gluten, the villus-to-crypt ratio was decreased while the CD 3 + intraepithelial lymphocyte counts and the Th1 inflammatory response were aggravated after f g - SiO 2 treatment. DISCUSSION Our results suggest that chronic oral exposure to f g - SiO 2 blocked oral tolerance induction to OVA, and worsened gluten-induced immunopathology in NOD/DQ8 mice. The results should prompt investigation on the link between SiO 2 exposure and food sensitivities in humans. https://doi.org/10.1289/EHP12758.
Collapse
Affiliation(s)
- Bruno Lamas
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Natalia Martins Breyner
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Yann Malaisé
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Mark Wulczynski
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather J. Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Eric Gaultier
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Christel Cartier
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| |
Collapse
|
14
|
Hujoel IA, Hujoel MLA. Investigating the role of iron status in the development of coeliac disease: a Mendelian randomisation study. BMJ Open Gastroenterol 2024; 11:e001236. [PMID: 38177066 PMCID: PMC10773400 DOI: 10.1136/bmjgast-2023-001236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
OBJECTIVE The environmental trigger behind the increasing prevalence of coeliac disease is not known. One suggested cause is iron deficiency, which is common in coeliac disease. We aimed to evaluate this possible association with Mendelian randomisation (MR), which under certain assumptions can suggest a causal relationship. DESIGN We conducted a two-sample MR study examining the relationship between single nucleotide polymorphisms (SNPs) associated with iron status and the presence of coeliac disease. The SNPs were drawn from a meta-analysis of three genome-wide association studies (GWAS). The association between these SNPs and coeliac disease was assessed using GWAS summary statistics from the UK Biobank. This consists of 336 638 white British individuals, 1855 with coeliac disease. We performed an MR Egger test for pleiotropy and assessed the plausibility of the assumptions of MR to evaluate for possible causality. RESULTS There were four SNPs strongly associated with systemic iron status. These were not associated with known risk factors for coeliac disease. All four SNPs were available in the UK Biobank coeliac disease summary statistics. Harmonising exposure and outcome associations, we found that higher iron status was negatively associated with risk of coeliac disease (OR per 1 SD increase in serum iron: 0.65, 95% CI 0.47 to 0.91). Leave-one-out analyses had consistent results, and no single SNP drove the association. All three assumptions of MR appeared plausible. CONCLUSION We found that genetically lower iron levels were associated with an increased risk of coeliac disease. Our findings highlight a potential opportunity for coeliac disease prevention.
Collapse
Affiliation(s)
| | - Margaux Louise Anna Hujoel
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H, Vallance BA. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024; 166:44-58. [PMID: 37734419 DOI: 10.1053/j.gastro.2023.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The gut microbiota plays a significant role in the pathogenesis of both forms of inflammatory bowel disease (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC). Although evidence suggests dysbiosis and loss of beneficial microbial species can exacerbate IBD, many new studies have identified microbes with pathogenic qualities, termed "pathobionts," within the intestines of patients with IBD. The concept of pathobionts initiating or driving the chronicity of IBD has largely focused on the putative aggravating role that adherent invasive Escherichia coli may play in CD. However, recent studies have identified additional bacterial and fungal pathobionts in patients with CD and UC. This review will highlight the characteristics of these pathobionts and their implications for IBD treatment. Beyond exploring the origins of pathobionts, we discuss those associated with specific clinical features and the potential mechanisms involved, such as creeping fat (Clostridium innocuum) and impaired wound healing (Debaryomyces hansenii) in patients with CD as well as the increased fecal proteolytic activity (Bacteroides vulgatus) seen as a biomarker for UC severity. Finally, we examine the potential impact of pathobionts on current IBD therapies, and several new approaches to target pathobionts currently in the early stages of development. Despite recognizing that pathobionts likely contribute to the pathogenesis of IBD, more work is needed to define their modes of action. Determining whether causal relationships exist between pathobionts and specific disease characteristics could pave the way for improved care for patients, particularly for those not responding to current IBD therapies.
Collapse
Affiliation(s)
- Ashley Gilliland
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn J Chan
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis J De Wolfe
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Rondeau LE, Da Luz BB, Santiago A, Bermudez-Brito M, Hann A, De Palma G, Jury J, Wang X, Verdu EF, Galipeau HJ, Rolland C, Deraison C, Ruf W, Bercik P, Vergnolle N, Caminero A. Proteolytic bacteria expansion during colitis amplifies inflammation through cleavage of the external domain of PAR2. Gut Microbes 2024; 16:2387857. [PMID: 39171684 PMCID: PMC11346554 DOI: 10.1080/19490976.2024.2387857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Imbalances in proteolytic activity have been linked to the development of inflammatory bowel diseases (IBD) and experimental colitis. Proteases in the intestine play important roles in maintaining homeostasis, but exposure of mucosal tissues to excess proteolytic activity can promote pathology through protease-activated receptors (PARs). Previous research implicates microbial proteases in IBD, but the underlying pathways and specific interactions between microbes and PARs remain unclear. In this study, we investigated the role of microbial proteolytic activation of the external domain of PAR2 in intestinal injury using mice expressing PAR2 with a mutated N-terminal external domain that is resistant to canonical activation by proteolytic cleavage. Our findings demonstrate the key role of proteolytic cleavage of the PAR2 external domain in promoting intestinal permeability and inflammation during colitis. In wild-type mice expressing protease-sensitive PAR2, excessive inflammation leads to the expansion of bacterial taxa that cleave the external domain of PAR2, exacerbating colitis severity. In contrast, mice expressing mutated protease-resistant PAR2 exhibit attenuated colitis severity and do not experience the same proteolytic bacterial expansion. Colonization of wild-type mice with proteolytic PAR2-activating Enterococcus and Staphylococcus worsens colitis severity. Our study identifies a previously unknown interaction between proteolytic bacterial communities, which are shaped by inflammation, and the external domain of PAR2 in colitis. The findings should encourage new therapeutic developments for IBD by targeting excessive PAR2 cleavage by bacterial proteases.
Collapse
Affiliation(s)
- Liam Emile Rondeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Bruna Barbosa Da Luz
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Alba Santiago
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Miriam Bermudez-Brito
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Amber Hann
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Giada De Palma
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jennifer Jury
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Xuanyu Wang
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Elena Francisca Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Heather Jean Galipeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | - Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Rao S, Grover M. Intestinal proteases. Curr Opin Gastroenterol 2023; 39:472-478. [PMID: 37678185 PMCID: PMC10592107 DOI: 10.1097/mog.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW Proteases constitute a group of enzymes that hydrolyze peptide bonds. Intestinal proteases are an integral part of gut homeostasis and digestion. This review discusses the broader classification of proteases, regulation of proteolytic activity (PA) in the intestinal tract, and how dysregulation of intestinal proteases contributes to the pathophysiology of conditions such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and celiac disease. We also discuss recent advancements in therapeutic modulation that directly or indirectly target intestinal proteases and can be utilized to treat these illnesses. RECENT FINDINGS Host and microbiota derived proteases have been associated with symptoms in subsets of patients with IBS, IBD and celiac disease. Elevated PA mediates barrier dysfunction, visceral hypersensitivity as well as immune activation and inflammation. Recent mechanistic studies have revealed the nature of disease-associated proteases and mechanisms regulating their activity, particularly those driven by the microbiota. Advancements in activity-based probes have allowed novel ways of in vivo imaging of PA. Newer strategies targeting proteases include monoclonal antibodies, engineered microbiota as well as specific protease inhibitors. SUMMARY Significant progresses made in the detection as well as regulation of PA is likely to provide therapeutic advancements for gastrointestinal diseases.
Collapse
Affiliation(s)
- Sameer Rao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Sawai Man Singh Medical College, Jaipur, India
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Alhhazmi AA, Almutawif YA, Mumena WA, Alhazmi SM, Abujamel TS, Alhusayni RM, Aloufi R, Al-Hejaili RR, Alhujaily R, Alrehaili LM, Alsaedy RA, Khoja RH, Ahmed W, Abdelmohsen MF, Mohammed-Saeid W. Identification of Gut Microbiota Profile Associated with Colorectal Cancer in Saudi Population. Cancers (Basel) 2023; 15:5019. [PMID: 37894386 PMCID: PMC10605194 DOI: 10.3390/cancers15205019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is a significant global health concern. Microbial dysbiosis and associated metabolites have been associated with CRC occurrence and progression. This study aims to analyze the gut microbiota composition and the enriched metabolic pathways in patients with late-stage CRC. In this study, a cohort of 25 CRC patients diagnosed at late stage III and IV and 25 healthy participants were enrolled. The fecal bacterial composition was investigated using V3-V4 ribosomal RNA gene sequencing, followed by clustering and linear discriminant analysis (LDA) effect size (LEfSe) analyses. A cluster of ortholog genes' (COG) functional annotations and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to identify enrichment pathways between the two groups. The findings showed that the fecal microbiota between the two groups varied significantly in alpha and beta diversities. CRC patients' fecal samples had significantly enriched populations of Streptococcus salivarius, S. parasanguins, S. anginosus, Lactobacillus mucosae, L. gasseri, Peptostreptococcus, Eubacterium, Aerococcus, Family XIII_AD3001 Group, Erysipelatoclostridium, Escherichia-Shigella, Klebsiella, Enterobacter, Alistipes, Ralstonia, and Pseudomonas (Q < 0.05). The enriched pathways identified in the CRC group were amino acid transport, signaling and metabolism, membrane biogenesis, DNA replication and mismatch repair system, and protease activity (Q < 0.05). These results suggested that the imbalance between intestinal bacteria and the elevated level of the predicated functions and pathways may contribute to the development of advanced CRC tumors. Further research is warranted to elucidate the exact role of the gut microbiome in CRC and its potential implications for use in diagnostic, prevention, and treatment strategies.
Collapse
Affiliation(s)
- Areej A. Alhhazmi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (Y.A.A.); (R.A.); (R.A.)
| | - Yahya A. Almutawif
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (Y.A.A.); (R.A.); (R.A.)
| | - Walaa A. Mumena
- Clinical Nutrition Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| | - Shaima M. Alhazmi
- Botany and Microbiology Department, Science College, King Saud University, Riyadh 12372, Saudi Arabia;
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ruba M. Alhusayni
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Raghad Aloufi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (Y.A.A.); (R.A.); (R.A.)
| | - Razan R. Al-Hejaili
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Rahaf Alhujaily
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (Y.A.A.); (R.A.); (R.A.)
| | - Lama M. Alrehaili
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Ruya A. Alsaedy
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Rahaf H. Khoja
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Wassal Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| | - Mohamed F. Abdelmohsen
- Department of Clinical Oncology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Oncology Department, King Fahd Hospital, Ministry of Health, Al-Madinah Al-Munawarah 32253, Saudi Arabia
| | - Waleed Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (R.R.A.-H.); (L.M.A.); (R.A.A.); (R.H.K.); (W.A.); (W.M.-S.)
| |
Collapse
|
19
|
Medina Sanchez L, Siller M, Zeng Y, Brigleb PH, Sangani KA, Soto AS, Engl C, Laughlin CR, Rana M, Van Der Kraak L, Pandey SP, Bender MJ, Fitzgerald B, Hedden L, Fiske K, Taylor GM, Wright AP, Mehta ID, Rahman SA, Galipeau HJ, Mullett SJ, Gelhaus SL, Watkins SC, Bercik P, Nice TJ, Jabri B, Meisel M, Das J, Dermody TS, Verdú EF, Hinterleitner R. The gut protist Tritrichomonas arnold restrains virus-mediated loss of oral tolerance by modulating dietary antigen-presenting dendritic cells. Immunity 2023; 56:1862-1875.e9. [PMID: 37478853 PMCID: PMC10529081 DOI: 10.1016/j.immuni.2023.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Loss of oral tolerance (LOT) to gluten, driven by dendritic cell (DC) priming of gluten-specific T helper 1 (Th1) cell immune responses, is a hallmark of celiac disease (CeD) and can be triggered by enteric viral infections. Whether certain commensals can moderate virus-mediated LOT remains elusive. Here, using a mouse model of virus-mediated LOT, we discovered that the gut-colonizing protist Tritrichomonas (T.) arnold promotes oral tolerance and protects against reovirus- and murine norovirus-mediated LOT, independent of the microbiota. Protection was not attributable to antiviral host responses or T. arnold-mediated innate type 2 immunity. Mechanistically, T. arnold directly restrained the proinflammatory program in dietary antigen-presenting DCs, subsequently limiting Th1 and promoting regulatory T cell responses. Finally, analysis of fecal microbiomes showed that T. arnold-related Parabasalid strains are underrepresented in human CeD patients. Altogether, these findings will motivate further exploration of oral-tolerance-promoting protists in CeD and other immune-mediated food sensitivities.
Collapse
Affiliation(s)
- Luzmariel Medina Sanchez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Magdalena Siller
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanlin Zeng
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Pamela H Brigleb
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kishan A Sangani
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Ariadna S Soto
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Clarisse Engl
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colin R Laughlin
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohit Rana
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Van Der Kraak
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Surya P Pandey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mackenzie J Bender
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Britney Fitzgerald
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee Hedden
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kay Fiske
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gwen M Taylor
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Isha D Mehta
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Syed A Rahman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elena F Verdú
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Khan A, Li S, Han H, Jin WL, Ling Z, Ji J, Iram S, Liu P, Xiao S, Salama ES, Li X. A gluten degrading probiotic Bacillus subtilis LZU-GM relieve adverse effect of gluten additive food and balances gut microbiota in mice. Food Res Int 2023; 170:112960. [PMID: 37316006 DOI: 10.1016/j.foodres.2023.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Gluten accumulation damages the proximal small intestine and causes celiac disease (CeD) which has not been effectively treated except by using a gluten-free diet. In this study, strain Bacillus subtilis LZU-GM was isolated from Pakistani traditional fermented sourdough and could degrade 73.7% of gluten in 24 h in vitro. Strain LZU-GM was employed for practical application to investigate gluten degradation in mice models. The results showed that strain LZU-GM was colonized in mice and the survival rate was around 0.95 % (P < 0.0001). The gluten degradation was 3-fold higher in the small intestine of the strain LZU-GM treated mice group remaining 1511.96 ng/mL of gluten peptides than the untreated mice group (6500.38 ng/mL). Immunochemical analysis showed that gluten-treated mice established positive antigliadin antibodies (AGA) in serum (IgA, IgG, and anti-TG2 antibodies) as compared to the strain LZU-GM treatment group. Furthermore, the number of IFN-γ, TNF-α, IL-10, and COX-2 cells decrease in the lamina propria of the strain LZU-GM treatment group (P < 0.0001). Microbial community bar plot analysis showed that Lactobacillus, Dubosiella, and Enterococcus genera were restored and stabilized in the LZU-GM treatment group while Blautia and Ruminococcus were found lower. The oral gavage of probiotic strain LZU-GM might be useful for gluten metabolism in the intestine during digestion and would be a long-term dietary treatment for CeD management.
Collapse
Affiliation(s)
- Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Shazia Iram
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, PR China.
| |
Collapse
|
21
|
Rossi RE, Dispinzieri G, Elvevi A, Massironi S. Interaction between Gut Microbiota and Celiac Disease: From Pathogenesis to Treatment. Cells 2023; 12:cells12060823. [PMID: 36980164 PMCID: PMC10047417 DOI: 10.3390/cells12060823] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 03/09/2023] Open
Abstract
Celiac disease (CD) is a common systemic disorder that results from an abnormal response of human immunity to gluten intake, affecting the small intestine. In individuals who carry a genetic susceptibility, CD is triggered by environmental factors, including viral infections and dysbiosis of the gut microbiota. The gut microbiome is essential in controlling the immune system, and recent findings indicate that changes in the gut microbiome may contribute to various chronic immune disorders, such as CD through mechanisms that still require further exploration. Some bacteria exhibit epitopes that mimic gliadin and may enhance an immune response in the host. Other bacteria, including Pseudomonas aeruginosa, may work in conjunction with gluten to trigger and escalate intestinal inflammation. The microbiota may also directly influence antigen development through the production of immunogenic or tolerogenic gluten peptides or directly influence intestinal permeability through the release of zonulin. Finally, the gut microbiome can impact intestinal inflammation by generating proinflammatory or anti-inflammatory cytokines and metabolites. It is crucial to consider the impact of genetic factors (specifically, HLA-DQ haplotypes), perinatal elements such as birth mode, type of infant feeding, and antibiotic and infection exposure on the composition of the early intestinal microbiome. According to the available studies, the gut microbiome alterations associated with CD tend to exhibit a decreased presence of beneficial bacteria, including some anti-inflammatory Bifidobacterium species. However, some controversy remains as some reports have found no significant differences between the gut microbiomes of individuals with and without CD. A better understanding of the gut microbiome’s role in the development of CD would greatly benefit both prevention and treatment efforts, especially in complicated or treatment-resistant cases. Here, we have attempted to summarize the available evidence on the relationship between the gut microbiota and CD, with a particular focus on potential therapeutic targets.
Collapse
Affiliation(s)
- Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Giulia Dispinzieri
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Sara Massironi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-039-2332317; Fax: +39-039-2300129
| |
Collapse
|
22
|
Caminero A, Verdu EF, Galipeau HJ. Elucidating the role of microbes in celiac disease through gnotobiotic modeling. Methods Cell Biol 2023; 179:77-101. [PMID: 37625882 DOI: 10.1016/bs.mcb.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Celiac disease (CeD) is a common immune-mediated disease triggered by the ingestion of gluten in genetically predisposed individuals. CeD is unique in that the trigger (gluten), necessary genes (HLA-DQ2 and DQ8), and the autoantigen (tissue transglutaminase) have been identified, allowing additional environmental co-factors, like the intestinal microbiota, to be studied through relevant in vivo models. Murine models for CeD have come a long way in the past decade and there are now in vitro and in vivo tools available that mimic certain aspects of clinical disease. These models, many of which express the CeD risk genes, have recently been used to study the mechanisms through which the microbiota play a role in CeD pathogenesis through a gnotobiotic approach. Historically, the generation of gnotobiology technology in mid-20th century allowed for the study of immunity and physiology under a complete absence of microbes (axenic) or known colonized status (gnotobiotic). This enabled understanding of mechanisms by which certain bacteria contribute to health and disease. With this perspective, here, we will discuss the various murine models currently being used to study CeD. We will then describe how utilizing axenic and gnotobiotic CeD models has increased our understanding of how microbes influence relevant steps of CeD pathogenesis, and explain key methodology involved in axenic and gnotobiotic modeling.
Collapse
Affiliation(s)
- Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Elena F Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Heather J Galipeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
23
|
Perler BK, Friedman ES, Wu GD. The Role of the Gut Microbiota in the Relationship Between Diet and Human Health. Annu Rev Physiol 2023; 85:449-468. [PMID: 36375468 DOI: 10.1146/annurev-physiol-031522-092054] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The interplay between diet, the gut microbiome, and host health is complex. Diets associated with health have many similarities: high fiber, unsaturated fatty acids, and polyphenols while being low in saturated fats, sodium, and refined carbohydrates. Over the past several decades, dietary patterns have changed significantly in Westernized nations with the increased consumption of calorically dense ultraprocessed foods low in fiber and high in saturated fats, salt, and refined carbohydrates, leading to numerous negative health consequences including obesity, metabolic syndrome, and cardiovascular disease. The gut microbiota is an environmental factor that interacts with diet and may also have an impact on health outcomes, many of which involve metabolites produced by the microbiota from dietary components that can impact the host. This review focuses on our current understanding of the complex relationship between diet, the gut microbiota, and host health, with examples of how diet can support health, increase an individual's risk for disease, and be used as a therapy for specific diseases.
Collapse
Affiliation(s)
- Bryce K Perler
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Elliot S Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
24
|
Abstract
Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Rasmus Iversen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
25
|
Earley ZM, Lisicka W, Sifakis JJ, Aguirre-Gamboa R, Kowalczyk A, Barlow JT, Shaw DG, Discepolo V, Tan IL, Gona S, Ernest JD, Matzinger P, Barreiro LB, Morgun A, Bendelac A, Ismagilov RF, Shulzhenko N, Riesenfeld SJ, Jabri B. GATA4 controls regionalization of tissue immunity and commensal-driven immunopathology. Immunity 2023; 56:43-57.e10. [PMID: 36630917 PMCID: PMC10262782 DOI: 10.1016/j.immuni.2022.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023]
Abstract
There is growing recognition that regionalization of bacterial colonization and immunity along the intestinal tract has an important role in health and disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. This study found that regional epithelial expression of the transcription factor GATA4 controls bacterial colonization and inflammatory tissue immunity in the proximal small intestine by regulating retinol metabolism and luminal IgA. Furthermore, in mice without jejunal GATA4 expression, the commensal segmented filamentous bacteria promoted pathogenic inflammatory immune responses that disrupted barrier function and increased mortality upon Citrobacter rodentium infection. In celiac disease patients, low GATA4 expression was associated with metabolic alterations, mucosal Actinobacillus, and increased IL-17 immunity. Taken together, these results reveal broad impacts of GATA4-regulated intestinal regionalization on bacterial colonization and tissue immunity, highlighting an elaborate interdependence of intestinal metabolism, immunity, and microbiota in homeostasis and disease.
Collapse
Affiliation(s)
- Zachary M Earley
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Joseph J Sifakis
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | - Anita Kowalczyk
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jacob T Barlow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dustin G Shaw
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Valentina Discepolo
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food Induced Diseases, University of Federico II, Naples, Italy
| | - Ineke L Tan
- Department of Gastroenterology and Hepatology, University of Groningen and University of Medical Center Groningen, Groningen, the Netherlands
| | - Saideep Gona
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Jordan D Ernest
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Polly Matzinger
- Ghost Lab, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Rustem F Ismagilov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Samantha J Riesenfeld
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA; Department of Pediatrics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Deraison C, Bonnart C, Langella P, Roget K, Vergnolle N. Elafin and its precursor trappin-2: What is their therapeutic potential for intestinal diseases? Br J Pharmacol 2023; 180:144-160. [PMID: 36355635 PMCID: PMC10098471 DOI: 10.1111/bph.15985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Elafin and its precursor trappin-2 are known for their contribution to the physiological mucosal shield against luminal microbes. Such a contribution seems to be particularly relevant in the gut, where the exposure of host tissues to heavy loads of microbes is constant and contributes to mucosa-associated pathologies. The expression of trappin-2/elafin has been shown to be differentially regulated in diseases associated with gut inflammation. Accumulating evidence has demonstrated the protective effects of trappin-2/elafin in gut intestinal disorders associated with acute or chronic inflammation, or with gluten sensitization disorders. The protective effects of trappin-2/elafin in the gut are discussed in terms of their pleiotropic modes of action: acting as protease inhibitors, transglutaminase substrates, antimicrobial peptides or as a regulator of pro-inflammatory transcription factors. Further, the question of the therapeutic potential of trappin-2/elafin delivery at the intestinal mucosa surface is raised. Whether trappin-2/elafin mucosal delivery should be considered to ensure intestinal tissue repair is also discussed.
Collapse
Affiliation(s)
- Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Philippe Langella
- Université Paris-Saclay, AgroParisTech, Micalis Institute, INRAE, Jouy-en-Josas, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Abstract
Proteases are an evolutionarily conserved family of enzymes that degrade peptide bonds and have been implicated in several common gastrointestinal (GI) diseases. Although luminal proteolytic activity is important for maintenance of homeostasis and health, the current review describes recent advances in our understanding of how overactivity of luminal proteases contributes to the pathophysiology of celiac disease, irritable bowel syndrome, inflammatory bowel disease and GI infections. Luminal proteases, many of which are produced by the microbiota, can modulate the immunogenicity of dietary antigens, reduce mucosal barrier function and activate pro-inflammatory and pro-nociceptive host signaling. Increased proteolytic activity has been ascribed to both increases in protease production and decreases in inhibitors of luminal proteases. With the identification of strains of bacteria that are important sources of proteases and their inhibitors, the stage is set to develop drug or microbial therapies to restore protease balance and alleviate disease.
Collapse
Affiliation(s)
- Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Mabel Guzman
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen’s University, Kingston, Ontario, Canada
| | - Josie Libertucci
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alan E. Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen’s University, Kingston, Ontario, Canada,CONTACT Alan E. Lomax Gastrointestinal Diseases Research Unit, Kingston General Hospital, Kingston, ON, K7L 2V7, Canada
| |
Collapse
|
28
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
29
|
Chaykin A, Odintsova` E, Nedorubov A. Celiac Disease: Disease Models in Understanding Pathogenesis and Search for Therapy. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Celiac disease is a complex polygenic systemic disorder caused by dietary gluten exposure that selectively occurs in genetically susceptible people. The potential celiac disease is defined by the presence of celiac disease-specific antibodies and compatible human leukocyte antigen but without histological abnormalities in duodenal biopsies. At present, the only treatment is lifelong adherence to a gluten-free diet. Despite its effectiveness, the diet is difficult to maintain due to its cost, availability of gluten-free foods, and hidden gluten. The need to develop non-dietary treatment methods is widely recognized, but this is prevented by the absence of a pathophysiologically relevant preclinical model. Nonetheless, in vitro and in vivo models have made it possible to investigate the mechanisms of the disease and develop new treatment approaches: The use of foods with neutralized gluten, microbiota correction, cocktails of specific endoproteinase, polymer gluten binders, specific inhibitors of transglutaminases and inflammatory cytokines, and a vaccine based on allergen-specific therapy.
Collapse
|
30
|
Constante M, Libertucci J, Galipeau HJ, Szamosi JC, Rueda G, Miranda PM, Pinto-Sanchez MI, Southward CM, Rossi L, Fontes ME, Chirdo FG, Surette MG, Bercik P, Caminero A, Verdu EF. Biogeographic Variation and Functional Pathways of the Gut Microbiota in Celiac Disease. Gastroenterology 2022; 163:1351-1363.e15. [PMID: 35810781 DOI: 10.1053/j.gastro.2022.06.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Genes and gluten are necessary but insufficient to cause celiac disease (CeD). Altered gut microbiota has been implicated as an additional risk factor. Variability in sampling site may confound interpretation and mechanistic insight, as CeD primarily affects the small intestine. Thus, we characterized CeD microbiota along the duodenum and in feces and verified functional impact in gnotobiotic mice. METHODS We used 16S rRNA gene sequencing (Illumina) and predicted gene function (PICRUSt2) in duodenal biopsies (D1, D2 and D3), aspirates, and stool from patients with active CeD and controls. CeD alleles were determined in consented participants. A subset of duodenal samples stratified according to similar CeD risk genotypes (controls DQ2-/- or DQ2+/- and CeD DQ2+/-) were used for further analysis and to colonize germ-free mice for gluten metabolism studies. RESULTS Microbiota composition and predicted function in CeD was largely determined by intestinal location. In the duodenum, but not stool, there was higher abundance of Escherichia coli (D1), Prevotella salivae (D2), and Neisseria (D3) in CeD vs controls. Predicted bacterial protease and peptidase genes were altered in CeD and impaired gluten degradation was detected only in mice colonized with CeD microbiota. CONCLUSIONS Our results showed luminal and mucosal microbial niches along the gut in CeD. We identified novel microbial proteolytic pathways involved in gluten detoxification that are impaired in CeD but not in controls carrying DQ2, suggesting an association with active duodenal inflammation. Sampling site should be considered a confounding factor in microbiome studies in CeD.
Collapse
Affiliation(s)
- Marco Constante
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Josie Libertucci
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Heather J Galipeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jake C Szamosi
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Gaston Rueda
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Pedro M Miranda
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Maria Ines Pinto-Sanchez
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Carolyn M Southward
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Laura Rossi
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michelle E Fontes
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Fernando G Chirdo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos, Universidad Nacional de La Plata-National Scientific and Technical Research Council, La Plata, Argentina
| | - Michael G Surette
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| | - Elena F Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
31
|
Chang D, O’Shea D, Therrien A, Silvester JA. Review article: Becoming and being coeliac-special considerations for childhood, adolescence and beyond. Aliment Pharmacol Ther 2022; 56 Suppl 1:S73-S85. [PMID: 35815825 PMCID: PMC9441244 DOI: 10.1111/apt.16851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/09/2022]
Abstract
Classically considered a disease of early childhood characterised by malabsorption and failure to thrive, coeliac disease is now recognised to arise in genetically susceptible individuals at any age. Although permissive HLA genotypes are the strongest predictor of coeliac disease, they are not sufficient. Several prospective cohort studies enrolling genetically at-risk infants have investigated the role of potential triggers of coeliac disease autoimmunity, such as timing of gluten introduction, viral infections and dietary patterns. Much less is known about triggers of coeliac disease in adulthood. Better understanding of factors leading to coeliac disease may be helpful in the management of those with potential coeliac disease (elevated serum celiac antibodies without villous atrophy in the small intestine), many of whom initiate a gluten-free diet without demonstration of villous atrophy. There are a range of clinical presentations of celiac disease in childhood and patterns of coeliac serology, including fluctuation and spontaneous reversion on a gluten-containing diet, vary. There is a current debate over best strategies to manage adults and children with potential coeliac disease to avoid over-treatment and under-treatment. Childhood and adolescence carry unique issues pertaining to the diagnosis and management of coeliac disease, and include nutrition and growth, rescreening, repeat biopsy, dietary adherence concerns and transition to adult care. In conclusion, while coeliac disease has similar pathogenesis and general clinical manifestations in paediatric and adult populations, diagnostic and management approaches need to adapt to the developmental stages.
Collapse
Affiliation(s)
- Denis Chang
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Delia O’Shea
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Amelie Therrien
- 2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| | - Jocelyn A Silvester
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
32
|
McCarville JL, Ayres JS. Virulence triggered allergies: Pseudomonas gets the Las laugh. Immunity 2022; 55:824-826. [PMID: 35545032 DOI: 10.1016/j.immuni.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The mechanisms of how infectious diseases contribute to allergy remain unanswered. In this issue of Immunity, Agaronyan et al. (2022) show that Pseudomonas aeruginosa drives immune deviation through induction of type 2 immune responses, resulting in niche remodeling that incites allergic responses to innocuous antigens.
Collapse
Affiliation(s)
- Justin L McCarville
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biology Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S Ayres
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biology Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Edwinson AL, Yang L, Peters S, Hanning N, Jeraldo P, Jagtap P, Simpson JB, Yang TY, Kumar P, Mehta S, Nair A, Breen-Lyles M, Chikkamenahalli L, Graham RP, De Winter B, Patel R, Dasari S, Kashyap P, Griffin T, Chen J, Farrugia G, Redinbo MR, Grover M. Gut microbial β-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nat Microbiol 2022; 7:680-694. [PMID: 35484230 PMCID: PMC9081267 DOI: 10.1038/s41564-022-01103-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Intestinal proteases mediate digestion and immune signaling, while increased gut proteolytic activity disrupts the intestinal barrier and generates visceral hypersensitivity, which in common in irritable bowel syndrome (IBS). However, the mechanisms controlling protease function are unclear. Here we show that members of the gut microbiota suppress intestinal proteolytic activity through production of unconjugated bilirubin. This occurs via microbial β-glucuronidase-mediated conversion of bilirubin conjugates. Metagenomic analysis of fecal samples from patients with post-infection IBS (n=52) revealed an altered gut microbiota composition, in particular a reduction in Alistipes taxa, and high gut proteolytic activity driven by specific host serine proteases compared to controls. Germ-free mice showed 10-fold higher proteolytic activity compared with conventional mice. Colonization with microbiota from high proteolytic activity IBS patients failed to suppress proteolytic activity in germ-free mice, but suppression of proteolytic activity was achieved with colonization using microbiota from healthy donors. High proteolytic activity mice had higher intestinal permeability, a higher relative abundance of Bacteroides and a reduction in Alistipes taxa compared with low proteolytic activity mice. High proteolytic activity IBS patients had lower fecal β-glucuronidase activity and end-products of bilirubin deconjugation. Mice treated with unconjugated bilirubin and β-glucuronidase overexpressing E. coli, which significantly reduced proteolytic activity, while inhibitors of microbial β-glucuronidases increased proteolytic activity. Together, these data define a disease-relevant mechanism of host-microbial interaction that maintains protease homeostasis in the gut.
Collapse
Affiliation(s)
- Adam L Edwinson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lu Yang
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Stephanie Peters
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Nikita Hanning
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Laboratory of Experimental Medicine and Pediatrics and Infla-Med, research center of excellence, University of Antwerp, Antwerp, Belgium
| | | | - Pratik Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Yi Yang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Praveen Kumar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Asha Nair
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med, research center of excellence, University of Antwerp, Antwerp, Belgium.,Division of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Purna Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Timothy Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jun Chen
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.,Departments of Biochemistry and Biophysics, and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
34
|
Latorre R, Hegron A, Peach CJ, Teng S, Tonello R, Retamal JS, Klein-Cloud R, Bok D, Jensen DD, Gottesman-Katz L, Rientjes J, Veldhuis NA, Poole DP, Schmidt BL, Pothoulakis CH, Rankin C, Xie Y, Koon HW, Bunnett NW. Mice expressing fluorescent PAR 2 reveal that endocytosis mediates colonic inflammation and pain. Proc Natl Acad Sci U S A 2022; 119:e2112059119. [PMID: 35110404 PMCID: PMC8833192 DOI: 10.1073/pnas.2112059119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many pathophysiological processes and are major therapeutic targets. The impact of disease on the subcellular distribution and function of GPCRs is poorly understood. We investigated trafficking and signaling of protease-activated receptor 2 (PAR2) in colitis. To localize PAR2 and assess redistribution during disease, we generated knockin mice expressing PAR2 fused to monomeric ultrastable green fluorescent protein (muGFP). PAR2-muGFP signaled and trafficked normally. PAR2 messenger RNA was detected at similar levels in Par2-mugfp and wild-type mice. Immunostaining with a GFP antibody and RNAScope in situ hybridization using F2rl1 (PAR2) and Gfp probes revealed that PAR2-muGFP was expressed in epithelial cells of the small and large intestine and in subsets of enteric and dorsal root ganglia neurons. In healthy mice, PAR2-muGFP was prominently localized to the basolateral membrane of colonocytes. In mice with colitis, PAR2-muGFP was depleted from the plasma membrane of colonocytes and redistributed to early endosomes, consistent with generation of proinflammatory proteases that activate PAR2 PAR2 agonists stimulated endocytosis of PAR2 and recruitment of Gαq, Gαi, and β-arrestin to early endosomes of T84 colon carcinoma cells. PAR2 agonists increased paracellular permeability of colonic epithelial cells, induced colonic inflammation and hyperalgesia in mice, and stimulated proinflammatory cytokine release from segments of human colon. Knockdown of dynamin-2 (Dnm2), the major colonocyte isoform, and Dnm inhibition attenuated PAR2 endocytosis, signaling complex assembly and colonic inflammation and hyperalgesia. Thus, PAR2 endocytosis sustains protease-evoked inflammation and nociception and PAR2 in endosomes is a potential therapeutic target for colitis.
Collapse
Affiliation(s)
- Rocco Latorre
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
| | - Alan Hegron
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
| | - Chloe J Peach
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
| | - Shavonne Teng
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
| | - Raquel Tonello
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
| | - Jeffri S Retamal
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Rafael Klein-Cloud
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
| | - Diana Bok
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Dane D Jensen
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Lena Gottesman-Katz
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
| | - Jeanette Rientjes
- Gene Modification Platform, Monash University, Clayton, VIC 3168, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Brian L Schmidt
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Charalabos H Pothoulakis
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Carl Rankin
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ying Xie
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Hon Wai Koon
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, NY 10010;
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10010
| |
Collapse
|
35
|
The double-edged sword of gut bacteria in celiac disease and implications for therapeutic potential. Mucosal Immunol 2022; 15:235-243. [PMID: 35031683 DOI: 10.1038/s41385-021-00479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023]
Abstract
Celiac disease (CeD) is an immune-mediated disease, triggered by gluten ingestion, in genetically susceptible individuals. The gluten-free diet (GFD) is the only current treatment for CeD, but is difficult to follow, has high non-adherence rates, and does not always lead to symptomatic or mucosal remission. Microbially-mediated mechanisms have been proposed to contribute to disease pathogenesis, and clinical studies support an association, but mechanistic insight has been difficult to obtain. Recent advances using translational approaches have provided clues to the mechanisms through which bacteria could contribute to CeD pathogenesis. In this review we discuss these bacterially mediated mechanisms, which include the modulation of pathogenic or protective pathways. Targeting these pathways through microbial therapeutics could provide adjuvant therapies to the GFD.
Collapse
|
36
|
Lyu Z, Yu T, Zhang L, Xu X, Zhang Y, Li J, Li Z, Zhang W, Hou S. Analysis of the relationship between bile duct and duodenal microbiota reveals that potential dysbacteriosis is the main cause of primary common bile duct stones. Synth Syst Biotechnol 2021; 6:414-428. [PMID: 34901480 PMCID: PMC8632725 DOI: 10.1016/j.synbio.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/21/2021] [Accepted: 11/07/2021] [Indexed: 01/30/2023] Open
Abstract
Bacteria play an important role in the formation of primary Common Bile Duct (CBD) stones. However, the composition and function of the microbiota of bile duct in patients with primary CBD stones remained to be explored. We utilized the 16S rRNA gene high-throughput sequencing technology to analyze the microbial diversity and community composition of biliary and duodenal microbiota in 15 patients with primary CBD stones and 4 patients without biliary tract diseases. Alpha diversity analysis showed that the microbiota richness was similar in bile and intestinal fluid; Beta diversity analysis showed that there were differences in the composition between biliary microbiota and the duodenal microbiota, but the abundance of the main groups showed similarities. The composition of the biliary microbiota from gallstone patients was more complex, as was the duodenal microbiota. Proteobacteria and Firmicutes were the dominant bacteria at phylum level, accounting for at least 75% of the total reads in each subgroup. Pseudomonas and Escherichia-Shigella were the major genus among subgroups, but Escherichia-Shigella had increased abundance in duodenal microbiota with primary choledocholithiasis, which may play an important role in stone formation. It is noteworthy that Clostridiumsensu_stricto, Lachnospiraceae _UCG-008, Butyrivibrio and Roseburia which could produce short chain fatty acids (SCFAs), were significantly decreased in biliary microbiota with primary CBD stones (p < 0.05). Our study provided new insights into the compositional of normal biliary microbiota. The micro-ecology of biliary and duodenal in patients with stones is complex and closely related, and there is a potential for dysbacteriosis. The decrease in abundance of certain major acid-producing bacteria affects the health of the biliary tract and thus leads to the formation of stones.
Collapse
Affiliation(s)
- Zhitang Lyu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, PR China.,Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, PR China.,Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Baoding, PR China
| | - Tingting Yu
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Lichao Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Xiaona Xu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, PR China.,Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, PR China
| | - Yijun Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, PR China.,Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, PR China
| | - Jihong Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Zhirong Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Wei Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Senlin Hou
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
37
|
Wu X, Qian L, Liu K, Wu J, Shan Z. Gastrointestinal microbiome and gluten in celiac disease. Ann Med 2021; 53:1797-1805. [PMID: 34647492 PMCID: PMC8519548 DOI: 10.1080/07853890.2021.1990392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/30/2021] [Indexed: 01/11/2023] Open
Abstract
Coeliac disease (CD), also known as gluten sensitive enteropathy, is an autoimmune intestinal disease induced by gluten in genetically susceptible individuals. Gluten is a common ingredient in daily diet and is one of the main environmental factors to induce coeliac disease. Adhering to gluten free diet (GFD) is an effective method for treating CD. Microbiota plays an extremely important role in maintaining human health, and diet is the main factor to regulate the composition and function of gut microbiota. Recent studies have shown that gluten metabolism is closely related to gastrointestinal tract (GIT) microbiota. With the increasing prevalence of coeliac disease, there is a need for alternative treatments to GFD. In this review, biological medication of gluten, relationship between gluten and gut microflora, effect of GFD on GIT microflora, and effect of probiotics on CD were reviewed. By analysing the research progress on relationship between gluten and gastrointestinal microbiome in coeliac disease, this review tried to explore the prospective and potential mechanism of microecological agents in treating coeliac disease.
Collapse
Affiliation(s)
- Xingxing Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Qian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kexin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wu
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing University, Drum Tower Clinical Medicine College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaowei Shan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
38
|
Pinto-Sanchez MI, Silvester JA, Lebwohl B, Leffler DA, Anderson RP, Therrien A, Kelly CP, Verdu EF. Society for the Study of Celiac Disease position statement on gaps and opportunities in coeliac disease. Nat Rev Gastroenterol Hepatol 2021; 18:875-884. [PMID: 34526700 PMCID: PMC8441249 DOI: 10.1038/s41575-021-00511-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Progress has been made in understanding coeliac disease, a relatively frequent and underappreciated immune-mediated condition that occurs in genetically predisposed individuals. However, several gaps remain in knowledge related to diagnosis and management. The gluten-free diet, currently the only available management, is not curative or universally effective (some adherent patients have ongoing duodenal injury). Unprecedented numbers of emerging therapies, including some with novel tolerogenic mechanisms, are currently being investigated in clinical trials. In March 2020, the Celiac Disease Foundation and the Society for the Study of Celiac Disease convened a consensus workshop to identify high-yield areas of research that should be prioritized. Workshop participants included leading experts in clinical practice, academia, government and pharmaceutical development, as well as representatives from patient support groups in North America. This Roadmap summarizes key advances in the field of coeliac disease and provides information on important discussions from the consensus approach to address gaps and opportunities related to the pathogenesis, diagnosis and management of coeliac disease. The morbidity of coeliac disease is often underestimated, which has led to an unmet need to improve the management of these patients. Expanded research funding is needed as coeliac disease is a potentially curable disease.
Collapse
Affiliation(s)
- M Ines Pinto-Sanchez
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
- McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Jocelyn A Silvester
- Harvard Medical School Celiac Research Program, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
- Celiac Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Daniel A Leffler
- Harvard Medical School Celiac Research Program, Boston, MA, USA
- Celiac Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Takeda Pharmaceuticals, Cambridge Massachusetts, Cambridge, MA, USA
| | - Robert P Anderson
- Wesley Medical Research, The Wesley Hospital, Auchenflower, Queensland, Australia
| | - Amelie Therrien
- Harvard Medical School Celiac Research Program, Boston, MA, USA
- Celiac Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ciaran P Kelly
- Harvard Medical School Celiac Research Program, Boston, MA, USA
- Celiac Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada.
- McMaster University Medical Center, Hamilton, Ontario, Canada.
| |
Collapse
|
39
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
40
|
Galipeau HJ, Caminero A, Verdu EF. Increased Bacterial Proteolytic Activity Detected Before Diagnosis of Ulcerative Colitis. Inflamm Bowel Dis 2021; 27:e144. [PMID: 34125210 DOI: 10.1093/ibd/izab144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Heather J Galipeau
- From the Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Alberto Caminero
- From the Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Elena F Verdu
- From the Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
41
|
Verdu EF, Schuppan D. Co-factors, Microbes, and Immunogenetics in Celiac Disease to Guide Novel Approaches for Diagnosis and Treatment. Gastroenterology 2021; 161:1395-1411.e4. [PMID: 34416277 DOI: 10.1053/j.gastro.2021.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Celiac disease (CeD) is a frequent immune-mediated disease that affects not only the small intestine but also many extraintestinal sites. The role of gluten proteins as dietary triggers, HLA-DQ2 or -DQ8 as major necessary genetic predisposition, and tissue transglutaminase (TG2) as mechanistically involved autoantigen, are unique features of CeD. Recent research implicates many cofactors working in synergism with these key triggers, including the intestinal microbiota and their metabolites, nongluten dietary triggers, intestinal barrier defects, novel immune cell phenotypes, and mediators and cytokines. In addition, apart from HLA-DQ2 and -DQ8, multiple and complex predisposing genetic factors and interactions have been defined, most of which overlap with predispositions in other, usually autoimmune, diseases that are linked to CeD. The resultant better understanding of CeD pathogenesis, and its manifold manifestations has already paved the way for novel therapeutic approaches beyond the lifelong strict gluten-free diet, which poses a burden to patients and often does not lead to complete mucosal healing. Thus, supported by improved mouse models for CeD and in vitro organoid cultures, several targeted therapies are in phase 2-3 clinical studies, such as highly effective gluten-degrading oral enzymes, inhibition of TG2, cytokine therapies, induction of tolerance to gluten ingestion, along with adjunctive and preventive approaches using beneficial probiotics and micronutrients. These developments are supported by novel noninvasive markers of CeD severity and activity that may be used as companion diagnostics, allow easy-to perform and reliable monitoring of patients, and finally support personalized therapy for CeD.
Collapse
Affiliation(s)
- Elena F Verdu
- Division of Gastroenterology, Department of Internal Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Detlef Schuppan
- Institute of Translational Immunology,Research Center for Immune Therapy and Celiac Center, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
42
|
Dunaevsky YE, Tereshchenkova VF, Belozersky MA, Filippova IY, Oppert B, Elpidina EN. Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceutics 2021; 13:1603. [PMID: 34683896 PMCID: PMC8541236 DOI: 10.3390/pharmaceutics13101603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
To date, there is no effective treatment for celiac disease (CD, gluten enteropathy), an autoimmune disease caused by gluten-containing food. Celiac patients are supported by a strict gluten-free diet (GFD). However, in some cases GFD does not negate gluten-induced symptoms. Many patients with CD, despite following such a diet, retain symptoms of active disease due to high sensitivity even to traces of gluten. In addition, strict adherence to GFD reduces the quality of life of patients, as often it is difficult to maintain in a professional or social environment. Various pharmacological treatments are being developed to complement GFD. One promising treatment is enzyme therapy, involving the intake of peptidases with food to digest immunogenic gluten peptides that are resistant to hydrolysis due to a high prevalence of proline and glutamine amino acids. This narrative review considers the features of the main proline/glutamine-rich proteins of cereals and the conditions that cause the symptoms of CD. In addition, we evaluate information about peptidases from various sources that can effectively break down these proteins and their immunogenic peptides, and analyze data on their activity and preliminary clinical trials. Thus far, the data suggest that enzyme therapy alone is not sufficient for the treatment of CD but can be used as a pharmacological supplement to GFD.
Collapse
Affiliation(s)
- Yakov E. Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| | | | - Mikhail A. Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| | - Irina Y. Filippova
- Chemical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.F.T.); (I.Y.F.)
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| |
Collapse
|
43
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Ren Z, Pan L, Huang Y, Chen H, Liu Y, Liu H, Tu X, Liu Y, Li B, Dong X, Pan X, Li H, Fu YV, Agerberth B, Diana J, Sun J. Gut microbiota-CRAMP axis shapes intestinal barrier function and immune responses in dietary gluten-induced enteropathy. EMBO Mol Med 2021; 13:e14059. [PMID: 34125490 PMCID: PMC8350901 DOI: 10.15252/emmm.202114059] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
In the gut, cathelicidin-related antimicrobial peptide (CRAMP) has been largely described for its anti-infective activities. With an increasing recognition of its immune regulatory effects in extra-intestinal diseases, the role of CRAMP in gluten-induced small intestinal enteropathy celiac disease remains unknown. This study aimed to investigate the unexplored role of CRAMP in celiac disease. By applying a mouse model of gluten-induced enteropathy (GIE) recapitulating small intestinal enteropathy of celiac disease, we observed defective CRAMP production in duodenal epithelium during GIE. CRAMP-deficient mice were susceptible to the development of GIE. Exogenous CRAMP corrected gliadin-triggered epithelial dysfunction and promoted regulatory immune responses at the intestinal mucosa. Additionally, GIE-associated gut dysbiosis with enriched Pseudomonas aeruginosa and production of the protease LasB contributed to defective intestinal CRAMP production. These results highlight microbiota-CRAMP axis in the modulation of barrier function and immune responses in GIE. Hence, modulating CRAMP may represent a therapeutic strategy for celiac disease.
Collapse
Affiliation(s)
- Zhengnan Ren
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Li‐Long Pan
- Wuxi Medical SchoolJiangnan UniversityWuxiChina
| | - Yiwen Huang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Hongbing Chen
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Yu Liu
- Department of Endocrinology and MetabolismSir Run Run Shaw HospitalNanjing Medical UniversityNanjingChina
| | - He Liu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Xing Tu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yanyan Liu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Binbin Li
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Xiaoliang Dong
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Xiaohua Pan
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Hanfei Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of ScienceBeijingChina
| | - Yu V Fu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of ScienceBeijingChina
| | - Birgitta Agerberth
- Department of Laboratory MedicineDivision of Clinical MicrobiologyKarolinska InstitutetKarolinska University Hospital HuddingeStockholmSweden
| | - Julien Diana
- Institut Necker Enfants Malades (INEM)Institut National de la Santé et de la Recherche Médicale (INSERM)ParisFrance
| | - Jia Sun
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
45
|
Lamas B, Hernandez-Galan L, Galipeau HJ, Constante M, Clarizio A, Jury J, Breyner NM, Caminero A, Rueda G, Hayes CL, McCarville JL, Bermudez Brito M, Planchais J, Rolhion N, Murray JA, Langella P, Loonen LMP, Wells JM, Bercik P, Sokol H, Verdu EF. Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Sci Transl Med 2021; 12:12/566/eaba0624. [PMID: 33087499 DOI: 10.1126/scitranslmed.aba0624] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/24/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
Metabolism of tryptophan by the gut microbiota into derivatives that activate the aryl hydrocarbon receptor (AhR) contributes to intestinal homeostasis. Many chronic inflammatory conditions, including celiac disease involving a loss of tolerance to dietary gluten, are influenced by cues from the gut microbiota. We investigated whether AhR ligand production by the gut microbiota could influence gluten immunopathology in nonobese diabetic (NOD) mice expressing DQ8, a celiac disease susceptibility gene. NOD/DQ8 mice, exposed or not exposed to gluten, were subjected to three interventions directed at enhancing AhR pathway activation. These included a high-tryptophan diet, gavage with Lactobacillus reuteri that produces AhR ligands or treatment with an AhR agonist. We investigated intestinal permeability, gut microbiota composition determined by 16S rRNA gene sequencing, AhR pathway activation in intestinal contents, and small intestinal pathology and inflammatory markers. In NOD/DQ8 mice, a high-tryptophan diet modulated gut microbiota composition and enhanced AhR ligand production. AhR pathway activation by an enriched tryptophan diet, treatment with the AhR ligand producer L. reuteri, or pharmacological stimulation using 6-formylindolo (3,2-b) carbazole (Ficz) decreased immunopathology in NOD/DQ8 mice exposed to gluten. We then determined AhR ligand production by the fecal microbiota and AhR activation in patients with active celiac disease compared to nonceliac control individuals. Patients with active celiac disease demonstrated reduced AhR ligand production and lower intestinal AhR pathway activation. These results highlight gut microbiota-dependent modulation of the AhR pathway in celiac disease and suggest a new therapeutic strategy for treating this disorder.
Collapse
Affiliation(s)
- Bruno Lamas
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Leticia Hernandez-Galan
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Marco Constante
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alexandra Clarizio
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Jury
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalia M Breyner
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gaston Rueda
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christina L Hayes
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Justin L McCarville
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Miriam Bermudez Brito
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Julien Planchais
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Nathalie Rolhion
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, F-75012 Paris, France
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Linda M P Loonen
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University, Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University, Wageningen, Netherlands
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France. .,Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, F-75012 Paris, France
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
46
|
Torun A, Hupalowska A, Trzonkowski P, Kierkus J, Pyrzynska B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front Immunol 2021; 12:642166. [PMID: 34163468 PMCID: PMC8215716 DOI: 10.3389/fimmu.2021.642166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and prevalence rate of chronic inflammatory disorders is on the rise in the pediatric population. Recent research indicates the crucial role of interactions between the altered intestinal microbiome and the immune system in the pathogenesis of several chronic inflammatory disorders in children, such as inflammatory bowel disease (IBD) and autoimmune diseases, such as type 1 diabetes mellitus (T1DM) and celiac disease (CeD). Here, we review recent knowledge concerning the pathogenic mechanisms underlying these disorders, and summarize the facts suggesting that the initiation and progression of IBD, T1DM, and CeD can be partially attributed to disturbances in the patterns of composition and abundance of the gut microbiota. The standard available therapies for chronic inflammatory disorders in children largely aim to treat symptoms. Although constant efforts are being made to maximize the quality of life for children in the long-term, sustained improvements are still difficult to achieve. Additional challenges are the changing physiology associated with growth and development of children, a population that is particularly susceptible to medication-related adverse effects. In this review, we explore new promising therapeutic approaches aimed at modulation of either gut microbiota or the activity of the immune system to induce a long-lasting remission of chronic inflammatory disorders. Recent preclinical studies and clinical trials have evaluated new approaches, for instance the adoptive transfer of immune cells, with genetically engineered regulatory T cells expressing antigen-specific chimeric antigen receptors. These approaches have revolutionized cancer treatments and have the potential for the protection of high-risk children from developing autoimmune diseases and effective management of inflammatory disorders. The review also focuses on the findings of studies that indicate that the responses to a variety of immunotherapies can be enhanced by strategic manipulation of gut microbiota, thus emphasizing on the importance of proper interaction between the gut microbiota and immune system for sustained health benefits and improvement of the quality of life of pediatric patients.
Collapse
Affiliation(s)
- Anna Torun
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Hupalowska
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Beata Pyrzynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
47
|
Voisine J, Abadie V. Interplay Between Gluten, HLA, Innate and Adaptive Immunity Orchestrates the Development of Coeliac Disease. Front Immunol 2021; 12:674313. [PMID: 34149709 PMCID: PMC8206552 DOI: 10.3389/fimmu.2021.674313] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Several environmental, genetic, and immune factors create a "perfect storm" for the development of coeliac disease: the antigen gluten, the strong association of coeliac disease with HLA, the deamidation of gluten peptides by the enzyme transglutaminase 2 (TG2) generating peptides that bind strongly to the predisposing HLA-DQ2 or HLA-DQ8 molecules, and the ensuing unrestrained T cell response. T cell immunity is at the center of the disease contributing to the inflammatory process through the loss of tolerance to gluten and the differentiation of HLA-DQ2 or HLA-DQ8-restricted anti-gluten inflammatory CD4+ T cells secreting pro-inflammatory cytokines and to the killing of intestinal epithelial cells by cytotoxic intraepithelial CD8+ lymphocytes. However, recent studies emphasize that the individual contribution of each of these cell subsets is not sufficient and that interactions between these different populations of T cells and the simultaneous activation of innate and adaptive immune pathways in distinct gut compartments are required to promote disease immunopathology. In this review, we will discuss how tissue destruction in the context of coeliac disease results from the complex interactions between gluten, HLA molecules, TG2, and multiple innate and adaptive immune components.
Collapse
Affiliation(s)
- Jordan Voisine
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Valérie Abadie
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Section of Gastroenterology, Nutrition and Hepatology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
48
|
Ghadimi D, Nielsen A, Hassan MFY, Fölster-Holst R, Ebsen M, Frahm SO, Röcken C, de Vrese M, Heller KJ. Modulation of Proinflammatory Bacteria- and Lipid-Coupled Intracellular Signaling Pathways in a Transwell Triple Co-Culture Model by Commensal Bifidobacterium Animalis R101-8. Antiinflamm Antiallergy Agents Med Chem 2021; 20:161-181. [PMID: 33135616 DOI: 10.2174/1871523019999201029115618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Following a fat-rich diet, alterations in gut microbiota contribute to enhanced gut permeability, metabolic endotoxemia, and low grade inflammation-associated metabolic disorders. To better understand whether commensal bifidobacteria influence the expression of key metaflammation-related biomarkers (chemerin, MCP-1, PEDF) and modulate the pro-inflammatory bacteria- and lipid-coupled intracellular signaling pathways, we aimed at i) investigating the influence of the establishment of microbial signaling molecules-based cell-cell contacts on the involved intercellular communication between enterocytes, immune cells, and adipocytes, and ii) assessing their inflammatory mediators' expression profiles within an inflamed adipose tissue model. MATERIAL AND METHODS Bifidobacterium animalis R101-8 and Escherichia coli TG1, respectively, were added to the apical side of a triple co-culture model consisting of intestinal epithelial HT-29/B6 cell line, human monocyte-derived macrophage cells, and adipose-derived stem cell line in the absence or presence of LPS or palmitic acid. mRNA expression levels of key lipid metabolism genes HILPDA, MCP-1/CCL2, RARRES2, SCD, SFRP2 and TLR4 were determined using TaqMan qRT-PCR. Protein expression levels of cytokines (IL-1β, IL-6, and TNF-α), key metaflammation-related biomarkers including adipokines (chemerin and PEDF), chemokine (MCP- 1) as well as cellular triglycerides were assessed by cell-based ELISA, while those of p-ERK, p-JNK, p-p38, NF-κB, p-IκBα, pc-Fos, pc-Jun, and TLR4 were assessed by Western blotting. RESULTS B. animalis R101-8 inhibited LPS- and palmitic acid-induced protein expression of inflammatory cytokines IL-1β, IL-6, TNF-α concomitant with decreases in chemerin, MCP-1, PEDF, and cellular triglycerides, and blocked NF-kB and AP-1 activation pathway through inhibition of p- IκBα, pc-Jun, and pc-Fos phosphorylation. B. animalis R101-8 downregulated mRNA and protein levels of HILPDA, MCP-1/CCL2, RARRES2, SCD and SFRP2 and TLR4 following exposure to LPS and palmitic acid. CONCLUSION B. animalis R101-8 improves biomarkers of metaflammation through at least two molecular/signaling mechanisms triggered by pro-inflammatory bacteria/lipids. First, B. animalis R101-8 modulates the coupled intracellular signaling pathways via metabolizing saturated fatty acids and reducing available bioactive palmitic acid. Second, it inhibits NF-kB's and AP-1's transcriptional activities, resulting in the reduction of pro-inflammatory markers. Thus, the molecular basis may be formed by which commensal bifidobacteria improve intrinsic cellular tolerance against excess pro-inflammatory lipids and participate in homeostatic regulation of metabolic processes in vivo.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | - Annegret Nielsen
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | | | - Regina Fölster-Holst
- Clinic of Dermatology, University Hospital Schleswig-Holstein, Schittenhelmstr. 7, D-24105 Kiel, Germany
| | - Michael Ebsen
- Department of Pathology, Städtisches MVZ Kiel GmbH (Kiel City Hospital), Chemnitzstr.33, 24116 Kiel, Germany
| | - Sven Olaf Frahm
- Medizinisches Versorgungszentrum (MVZ), Pathology and Laboratory Medicine Dr. Rabenhorst, Prüner Gang 7, 24103 Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, D-24105 Kiel, Germany
| | - Michael de Vrese
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany
| |
Collapse
|
49
|
Llorente Pelayo S, Palacios Sánchez M, Docio Pérez P, Gutiérrez Buendía D, Peña Sainz-Pardo E, Vega Santa-Cruz B, García Calatayud S. Infections in early life as risk factor for coeliac disease. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.anpede.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
50
|
Sacchetti L, Nardelli C. Gut microbiome investigation in celiac disease: from methods to its pathogenetic role. Clin Chem Lab Med 2021; 58:340-349. [PMID: 31494628 DOI: 10.1515/cclm-2019-0657] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
Abstract
Our body is inhabited by a variety of microbes (microbiota), mainly bacteria, that outnumber our own cells. Until recently, most of what we knew about the human microbiota was based on culture methods, whereas a large part of the microbiota is uncultivable, and consequently previous information was limited. The advent of culture-independent methods and, particularly, of next-generation sequencing (NGS) methodology, marked a turning point in studies of the microbiota in terms of its composition and of the genes encoded by these microbes (microbiome). The microbiome is influenced predominantly by environmental factors that cause a large inter-individual variability (~20%) being its heritability only 1.9%. The gut microbiome plays a relevant role in human physiology, and its alteration ("dysbiosis") has been linked to a variety of inflammatory gut diseases, including celiac disease (CD). CD is a chronic, immune-mediated disorder that is triggered by both genetic (mainly HLA-DQ2/DQ8 haplotypes) and environmental factors (gluten), but, in recent years, a large body of experimental evidence suggested that the gut microbiome is an additional contributing factor to the pathogenesis of CD. In this review, we summarize the literature that has investigated the gut microbiome associated with CD, the methods and biological samples usually employed in CD microbiome investigations and the putative pathogenetic role of specific microbial alterations in CD. In conclusion, both gluten-microbe and host-microbe interactions drive the gluten-mediated immune response. However, it remains to be established whether the CD-associated dysbiosis is the consequence of the disease, a simple concomitant association or a concurring causative factor.
Collapse
Affiliation(s)
- Lucia Sacchetti
- CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Task Force on Microbiome Studies, Università degli Studi di Napoli Federico II and CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy
| | - Carmela Nardelli
- CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Task Force on Microbiome Studies, Università degli Studi di Napoli Federico II and CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|