1
|
Zhao W, Chen K, Zhang J, Zhang M, Guo J, Xie D, Xu J, Tan M. Multi-step HPLC fractionation enabled in-depth and unbiased characterization of histone PTMs. J Chromatogr A 2024; 1736:465368. [PMID: 39298927 DOI: 10.1016/j.chroma.2024.465368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Histone post-translational modifications (PTMs) are critical epigenetic regulatory factors. Histone PTMs are highly dynamic and complicated, encompassing over 30 structurally diverse modifications across nearly 180 amino acid residues, which generated extensive information regarding histone marks. In proteomics-based characterization of histone PTMs, chemical derivatization and antibody-based affinity enrichment were frequently utilized to improve the identification depth. However, chemical derivatization suffered from the occurrence of side reactions, and antibody-based affinity enrichment focused on specific PTM types of interest. In this research, we developed a multi-step fractionation strategy for comprehensively unbiased detection of histone PTM sites. By combining protein-level fractionation with peptide-level alkaline and acid phase fractionation, we developed the Multidimensional Fractionation based Histone Mark Identification Technology (MudFIT) and increased PTM identification to a total of 264 histone PTM sites. To the best of our knowledge, this strategy achieved the most comprehensive characterization of histone PTM sites in a single proteomics study. Using the same starting amount of sample, MudFIT identified more Kac sites and Kac peptides than those in antibody-based acetylated peptide enrichment. Moreover, in addition to well-studied histone marks, we discovered 36 potential new histone PTM sites including H2BK116bu, H4R45me2, H1K63pr, and uncovered unknown histone PTM types like aminoadipic on lysine and nitrosylation on tyrosine. Our data provided a method and resource for in-depth characterization of histone PTM sites, facilitating further biological understanding of histone marks.
Collapse
Affiliation(s)
- Wensi Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital and Cancer Center, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jun Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jingli Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Junyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| |
Collapse
|
2
|
Noel M, Suttapitugsakul S, Wei M, Tilton C, Mehta AY, Matsumoto Y, Heimburg-Molinaro J, Mealer RG, Cummings RD. Unique Glycans in Synaptic Glycoproteins in Mouse Brain. ACS Chem Neurosci 2024; 15:4033-4045. [PMID: 39401784 DOI: 10.1021/acschemneuro.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The synapse is an essential connection between neuronal cells in which the membrane and secreted glycoproteins regulate neurotransmission. The post-translational modifications of glycoproteins with carbohydrates, although essential for their functions as well as their specific localization, are not well understood. Oddly, whereas galactose addition to glycoproteins is required for neuronal functions, galactosylation is severely restricted for Asn-linked on N-glycans in the brain, and genetic evidence highlights the important roles of galactose in brain functions and development. To explore this novel glycosylation, we exploited an orthogonal technology in which a biotinylated sialic acid derivative (CMP-biotin-Sia) is transferred to terminally galactosylated proteins by a recombinant sialyltransferase (rST6Gal1). This approach allowed us to identify the carrier proteins as well as their localization on brain sections. Immunohistochemical analysis of the biotinylated glycoproteins in brain sections demonstrates that they are largely positioned in the pre- and postsynaptic membranes. Consistent with this positioning, glycoproteomic analyses of the labeled glycoproteins identified a number of them that are involved in synaptic function, cell adhesion, and extracellular matrix interactions. The discovery of these galactosylated N-glycoproteins and their relative confinement to synapses provide novel insights into the unusual and specific nature of protein glycosylation in the brain.
Collapse
Affiliation(s)
- Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Suttipong Suttapitugsakul
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Catherine Tilton
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Robert G Mealer
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Ives CM, Singh O, D'Andrea S, Fogarty CA, Harbison AM, Satheesan A, Tropea B, Fadda E. Restoring protein glycosylation with GlycoShape. Nat Methods 2024; 21:2117-2127. [PMID: 39402214 DOI: 10.1038/s41592-024-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Despite ground-breaking innovations in experimental structural biology and protein structure prediction techniques, capturing the structure of the glycans that functionalize proteins remains a challenge. Here we introduce GlycoShape ( https://glycoshape.org ), an open-access glycan structure database and toolbox designed to restore glycoproteins to their native and functional form in seconds. The GlycoShape database counts over 500 unique glycans so far, covering the human glycome and augmented by elements from a wide range of organisms, obtained from 1 ms of cumulative sampling from molecular dynamics simulations. These structures can be linked to proteins with a robust algorithm named Re-Glyco, directly compatible with structural data in open-access repositories, such as the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and AlphaFold Protein Structure Database, or own. The quality, performance and broad applicability of GlycoShape is demonstrated by its ability to predict N-glycosylation occupancy, scoring a 93% agreement with experiment, based on screening all proteins in the PDB with a corresponding glycoproteomics profile, for a total of 4,259 N-glycosylation sequons.
Collapse
Affiliation(s)
- Callum M Ives
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Ojas Singh
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Silvia D'Andrea
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Carl A Fogarty
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | | | | | | | - Elisa Fadda
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
4
|
Zhou RZ, Duell F, Axenhus M, Jönsson L, Winblad B, Tjernberg LO, Schedin-Weiss S. A glycan biomarker predicts cognitive decline in amyloid- and tau-negative patients. Brain Commun 2024; 6:fcae371. [PMID: 39494362 PMCID: PMC11528473 DOI: 10.1093/braincomms/fcae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Early detection of Alzheimer's disease is vital for timely treatment. Existing biomarkers for Alzheimer's disease reflect amyloid- and tau-related pathology, but it is unknown whether the disease can be detected before cerebral amyloidosis is observed. N-glycosylation has been suggested as an upstream regulator of both amyloid and tau pathology, and levels of the N-glycan structure bisecting N-acetylglucosamine (GlcNAc) correlate with tau in blood and CSF already at pre-clinical stages of the disease. Therefore, we aimed to evaluate whether bisecting GlcNAc could predict future cognitive decline in patients from a memory clinic cohort, stratified by amyloid/tau status. We included 251 patients (mean age: 65.6 ± 10.6 years, 60.6% female) in the GEDOC cohort, from the Memory Clinic at Karolinska University Hospital, Stockholm, Sweden. Patients were classified as amyloid/tau positive or negative based on CSF biomarkers. Cognitive decline, measured by longitudinal Mini-Mental State Examination scores, was followed for an average of 10.7 ± 4.1 years and modelled using non-linear mixed effects models. Additionally, bisecting GlcNAc levels were measured in hippocampus and cortex with lectin-based immunohistochemistry in 10 Alzheimer's disease and control brains. We found that CSF bisecting GlcNAc levels were elevated in tau-positive individuals compared with tau-negative individuals, but not in amyloid-positive individuals compared with amyloid-negative individuals. In the whole sample, high levels of CSF bisecting GlcNAc predicted earlier cognitive decline. Strikingly, amyloid/tau stratification showed that high CSF bisecting GlcNAc levels predicted earlier cognitive decline in amyloid-negative patients (β = 2.53 ± 0.85 years, P = 0.003) and tau-negative patients (β = 2.43 ± 1.01 years, P = 0.017), but not in amyloid- or tau-positive patients. Finally, histochemical analysis of bisecting GlcNAc showed increased levels in neurons in hippocampus and cortex of Alzheimer's disease compared with control brain (fold change = 1.44-1.49, P < 0.001). In conclusion, high CSF levels of bisecting GlcNAc reflected neuronal pathology and predicted cognitive decline in amyloid- and tau-negative individuals, suggesting that abnormal glycosylation precedes cerebral amyloidosis and tau hyper-phosphorylation in Alzheimer's disease. Bisecting GlcNAc is a promising novel early biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Robin Ziyue Zhou
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Frida Duell
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Michael Axenhus
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Linus Jönsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge 141 57, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| |
Collapse
|
5
|
Veler H, Lun CM, Waheed AA, Freed EO. Guanylate-binding protein 5 antagonizes viral glycoproteins independently of furin processing. mBio 2024; 15:e0208624. [PMID: 39212413 PMCID: PMC11492990 DOI: 10.1128/mbio.02086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Guanylate-binding protein (GBP) 5 is an interferon-inducible cellular factor with broad anti-viral activity. Recently, GBP5 has been shown to antagonize the glycoproteins of a number of enveloped viruses, in part by disrupting the host enzyme furin. Here we show that GBP5 strongly impairs the infectivity of virus particles bearing not only viral glycoproteins that depend on furin cleavage for infectivity-the envelope (Env) glycoproteins of HIV-1 and murine leukemia virus and the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-but also viral glycoproteins that do not depend on furin cleavage: vesicular stomatitis virus glycoprotein and SARS-CoV S. We observe that GBP5 disrupts proper N-linked protein glycosylation and reduces the incorporation of viral glycoproteins into virus particles. The glycosylation of the cellular protein CD4 is also altered by GBP5 expression. Flow cytometry analysis shows that GBP5 expression reduces the cell-surface levels of HIV-1 Env and the S glycoproteins of SARS-CoV and SARS-CoV-2. Our data demonstrate that, under the experimental conditions used, inhibition of furin-mediated glycoprotein cleavage is not the primary anti-viral mechanism of action of GBP5. Rather, the antagonism appears to be related to impaired trafficking of glycoproteins to the plasma membrane. These results provide novel insights into the broad antagonism of viral glycoprotein function by the cellular host innate immune response. IMPORTANCE The surface of enveloped viruses contains viral envelope glycoproteins, an important structural component facilitating virus attachment and entry while also acting as targets for the host adaptive immune system. In this study, we show that expression of GBP5 in virus-producer cells alters the glycosylation, cell-surface expression, and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into the broad impact of the host cell anti-viral factor GBP5 on protein glycosylation and trafficking.
Collapse
Affiliation(s)
- Hana Veler
- Virus-Cell Interaction
Section, HIV Dynamics and Replication Program, Center for Cancer
Research, National Cancer Institute,
Frederick, Maryland,
USA
| | - Cheng Man Lun
- Virus-Cell Interaction
Section, HIV Dynamics and Replication Program, Center for Cancer
Research, National Cancer Institute,
Frederick, Maryland,
USA
| | - Abdul A. Waheed
- Virus-Cell Interaction
Section, HIV Dynamics and Replication Program, Center for Cancer
Research, National Cancer Institute,
Frederick, Maryland,
USA
| | - Eric O. Freed
- Virus-Cell Interaction
Section, HIV Dynamics and Replication Program, Center for Cancer
Research, National Cancer Institute,
Frederick, Maryland,
USA
| |
Collapse
|
6
|
James VK, van der Zon AAM, Escobar EE, Dunham SD, Gargano AFG, Brodbelt JS. Hydrophilic Interaction Chromatography Coupled to Ultraviolet Photodissociation Affords Identification, Localization, and Relative Quantitation of Glycans on Intact Glycoproteins. J Proteome Res 2024; 23:4684-4693. [PMID: 39312773 DOI: 10.1021/acs.jproteome.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein glycosylation is implicated in a wide array of diseases, yet glycoprotein analysis remains elusive owing to the extreme heterogeneity of glycans, including microheterogeneity of some of the glycosites (amino acid residues). Various mass spectrometry (MS) strategies have proven tremendously successful for localizing and identifying glycans, typically utilizing a bottom-up workflow in which glycoproteins are digested to create glycopeptides to facilitate analysis. An emerging alternative is top-down MS that aims to characterize intact glycoproteins to allow precise identification and localization of glycans. The most comprehensive characterization of intact glycoproteins requires integration of a suitable separation method and high performance tandem mass spectrometry to provide both protein sequence information and glycosite localization. Here, we couple ultraviolet photodissociation and hydrophilic interaction chromatography with high resolution mass spectrometry to advance the characterization of intact glycoproteins ranging from 15 to 34 kDa, offering site localization of glycans, providing sequence coverages up to 93%, and affording relative quantitation of individual glycoforms.
Collapse
Affiliation(s)
- Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Annika A M van der Zon
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrea F G Gargano
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Klein J, Carvalho L, Zaia J. Expanding N-glycopeptide identifications by modeling fragmentation, elution, and glycome connectivity. Nat Commun 2024; 15:6168. [PMID: 39039063 PMCID: PMC11263600 DOI: 10.1038/s41467-024-50338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Accurate glycopeptide identification in mass spectrometry-based glycoproteomics is a challenging problem at scale. Recent innovation has been made in increasing the scope and accuracy of glycopeptide identifications, with more precise uncertainty estimates for each part of the structure. We present a dynamically adapting relative retention time model for detecting and correcting ambiguous glycan assignments that are difficult to detect from fragmentation alone, a layered approach to glycopeptide fragmentation modeling that improves N-glycopeptide identification in samples without compromising identification quality, and a site-specific method to increase the depth of the glycoproteome confidently identifiable even further. We demonstrate our techniques on a set of previously published datasets, showing the performance gains at each stage of optimization. These techniques are provided in the open-source glycomics and glycoproteomics platform GlycReSoft available at https://github.com/mobiusklein/glycresoft .
Collapse
Affiliation(s)
- Joshua Klein
- Program for Bioinformatics, Boston University, Boston, MA, US.
| | - Luis Carvalho
- Program for Bioinformatics, Boston University, Boston, MA, US
- Department of Math and Statistics, Boston University, Boston, MA, US
| | - Joseph Zaia
- Program for Bioinformatics, Boston University, Boston, MA, US.
- Department of Biochemistry and Cell Biology, Boston University, Boston, MA, US.
| |
Collapse
|
8
|
Macauslane KL, Pegg CL, Nouwens AS, Kerr ED, Seitanidou J, Schulz BL. Electron-Activated Dissociation and Collision-Induced Dissociation Glycopeptide Fragmentation for Improved Glycoproteomics. Anal Chem 2024; 96:10986-10994. [PMID: 38935274 DOI: 10.1021/acs.analchem.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Tandem mass spectrometry coupled with liquid chromatography (LC-MS/MS) has proven a versatile tool for the identification and quantification of proteins and their post-translational modifications (PTMs). Protein glycosylation is a critical PTM for the stability and biological function of many proteins, but full characterization of site-specific glycosylation of proteins remains analytically challenging. Collision-induced dissociation (CID) is the most common fragmentation method used in LC-MS/MS workflows, but the loss of labile modifications renders CID inappropriate for detailed characterization of site-specific glycosylation. Electron-based dissociation methods provide alternatives that retain intact glycopeptide fragments for unambiguous site localization, but these methods often underperform CID due to increased reaction times and reduced efficiency. Electron-activated dissociation (EAD) is another strategy for glycopeptide fragmentation. Here, we use a ZenoTOF 7600 SCIEX instrument to compare the performance of various fragmentation techniques for the analysis of a complex mixture of mammalian O- and N-glycopeptides. We found CID fragmentation identified the most glycopeptides and generally produced higher quality spectra, but EAD provided improved confidence in glycosylation site localization. Supplementing EAD with CID fragmentation (EAciD) further increased the number and quality of glycopeptide identifications, while retaining localization confidence. These methods will be useful for glycoproteomics workflows for either optimal glycopeptide identification or characterization.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Amanda S Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Edward D Kerr
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joy Seitanidou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
DeBono NJ, Moh ESX, Packer NH. Experimentally Determined Diagnostic Ions for Identification of Peptide Glycotopes. J Proteome Res 2024; 23:2661-2673. [PMID: 38888225 DOI: 10.1021/acs.jproteome.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The analysis of the structures of glycans present on glycoproteins is an essential component for determining glycoprotein function; however, detailed glycan structural assignment on glycopeptides from proteomics mass spectrometric data remains challenging. Glycoproteomic analysis by mass spectrometry currently can provide significant, yet incomplete, information about the glycans present, including the glycan monosaccharide composition and in some circumstances the site(s) of glycosylation. Advancements in mass spectrometric resolution, using high-mass accuracy instrumentation and tailored MS/MS fragmentation parameters, coupled with a dedicated definition of diagnostic fragmentation ions have enabled the determination of some glycan structural features, or glycotopes, expressed on glycopeptides. Here we present a collation of diagnostic glycan fragments produced by traditional positive-ion-mode reversed-phase LC-ESI MS/MS proteomic workflows and describe the specific fragmentation energy settings required to identify specific glycotopes presented on N- or O-linked glycopeptides in a typical proteomics MS/MS experiment.
Collapse
Affiliation(s)
- Nicholas J DeBono
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
10
|
Hu X, Song J, Ye G, Zhu M, Lan J, Zeng L, Ke Z, Yuan J. Integrated serum proteomic and N-glycoproteomic characterization of dengue patients. J Med Virol 2024; 96:e29775. [PMID: 38949184 DOI: 10.1002/jmv.29775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Dengue fever is a mosquito-borne viral disease caused by the dengue virus (DENV). It poses a public health threat globally and, while most people with dengue have mild symptoms or are asymptomatic, approximately 5% of affected individuals develop severe disease and need hospital care. However, knowledge of the molecular mechanisms underlying dengue infection and the interaction between the virus and its host remains limited. In the present study, we performed a quantitative proteomic and N-glycoproteomic analysis of serum from 19 patients with dengue and 11 healthy people. The results revealed distinct proteomic and N-glycoproteomic landscapes between the two groups. Notably, we report for the first time the changes in the serum N glycosylation pattern following dengue infection and provide abundant information on glycoproteins, glycosylation sites, and intact N-glycopeptides using recently developed site-specific glycoproteomic approaches. Furthermore, a series of key functional pathways in proteomic and N-glycoproteomic were identified. Collectively, our findings significantly improve understanding of host and DENV interactions and the general pathogenesis and pathology of DENV, laying a foundation for functional studies of glycosylation and glycan structures in dengue infection.
Collapse
Affiliation(s)
- Xiao Hu
- Infectious Disease Department, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jiamin Song
- Infectious Disease Department, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Guoguo Ye
- Infectious Disease Department, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jianfeng Lan
- Infectious Disease Department, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Lijiao Zeng
- Infectious Disease Department, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zhiyi Ke
- Infectious Disease Department, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jing Yuan
- Infectious Disease Department, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Ives CM, Nguyen L, Fogarty CA, Harbison AM, Durocher Y, Klassen J, Fadda E. Role of N343 glycosylation on the SARS-CoV-2 S RBD structure and co-receptor binding across variants of concern. eLife 2024; 13:RP95708. [PMID: 38864493 PMCID: PMC11168744 DOI: 10.7554/elife.95708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work, we show through over 45 μs of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how this glycan's structural role changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2), and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha, and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.
Collapse
Affiliation(s)
- Callum M Ives
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | - Linh Nguyen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Carl A Fogarty
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | | | - Yves Durocher
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council CanadaQuébecCanada
- Département de Biochimie et Médecine Moléculaire, Université de MontréalQuébecCanada
| | - John Klassen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Elisa Fadda
- School of Biological Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
12
|
Cao W. Advancing mass spectrometry-based glycoproteomic software tools for comprehensive site-specific glycoproteome analysis. Curr Opin Chem Biol 2024; 80:102442. [PMID: 38460452 DOI: 10.1016/j.cbpa.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
Glycoproteome analysis at a site-specific level and proteome scale stands out as a highly promising approach for gaining insights into the intricate roles of glycans in biological systems. Recent years have witnessed an upsurge in the development of innovative methodologies tailored for precisely this purpose. Breakthroughs in mass spectrometry-based glycoproteomic techniques, enabling the identification, quantification, and systematic exploration of site-specific glycans, have significantly enhanced our capacity to comprehensively and thoroughly characterize glycoproteins. In this short review, we delve into novel tools in advancing site-specific glycoproteomic analysis and summarize pertinent studies published in the past two years. Lastly, we discuss the ongoing challenges and outline future prospects in the field, considering both the analytical strategies of mass spectrometry and the tools employed for data interpretation.
Collapse
Affiliation(s)
- Weiqian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Adolf-Bryfogle J, Labonte JW, Kraft JC, Shapovalov M, Raemisch S, Lütteke T, DiMaio F, Bahl CD, Pallesen J, King NP, Gray JJ, Kulp DW, Schief WR. Growing Glycans in Rosetta: Accurate de novo glycan modeling, density fitting, and rational sequon design. PLoS Comput Biol 2024; 20:e1011895. [PMID: 38913746 PMCID: PMC11288642 DOI: 10.1371/journal.pcbi.1011895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/30/2024] [Accepted: 02/06/2024] [Indexed: 06/26/2024] Open
Abstract
Carbohydrates and glycoproteins modulate key biological functions. However, experimental structure determination of sugar polymers is notoriously difficult. Computational approaches can aid in carbohydrate structure prediction, structure determination, and design. In this work, we developed a glycan-modeling algorithm, GlycanTreeModeler, that computationally builds glycans layer-by-layer, using adaptive kernel density estimates (KDE) of common glycan conformations derived from data in the Protein Data Bank (PDB) and from quantum mechanics (QM) calculations. GlycanTreeModeler was benchmarked on a test set of glycan structures of varying lengths, or "trees". Structures predicted by GlycanTreeModeler agreed with native structures at high accuracy for both de novo modeling and experimental density-guided building. We employed these tools to design de novo glycan trees into a protein nanoparticle vaccine to shield regions of the scaffold from antibody recognition, and experimentally verified shielding. This work will inform glycoprotein model prediction, glycan masking, and further aid computational methods in experimental structure determination and refinement.
Collapse
Affiliation(s)
- Jared Adolf-Bryfogle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
- Institute for Protein Innovation, Boston, Massachusetts, United States of America
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason W. Labonte
- Department of Chemistry & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John C. Kraft
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Maxim Shapovalov
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Sebastian Raemisch
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Christopher D. Bahl
- Institute for Protein Innovation, Boston, Massachusetts, United States of America
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jesper Pallesen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey J. Gray
- Department of Chemistry & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Daniel W. Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - William R. Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
14
|
Kellman BP, Mariethoz J, Zhang Y, Shaul S, Alteri M, Sandoval D, Jeffris M, Armingol E, Bao B, Lisacek F, Bojar D, Lewis NE. Decoding glycosylation potential from protein structure across human glycoproteins with a multi-view recurrent neural network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594334. [PMID: 38798633 PMCID: PMC11118808 DOI: 10.1101/2024.05.15.594334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Glycosylation is described as a non-templated biosynthesis. Yet, the template-free premise is antithetical to the observation that different N-glycans are consistently placed at specific sites. It has been proposed that glycosite-proximal protein structures could constrain glycosylation and explain the observed microheterogeneity. Using site-specific glycosylation data, we trained a hybrid neural network to parse glycosites (recurrent neural network) and match them to feasible N-glycosylation events (graph neural network). From glycosite-flanking sequences, the algorithm predicts most human N-glycosylation events documented in the GlyConnect database and proposed structures corresponding to observed monosaccharide composition of the glycans at these sites. The algorithm also recapitulated glycosylation in Enhanced Aromatic Sequons, SARS-CoV-2 spike, and IgG3 variants, thus demonstrating the ability of the algorithm to predict both glycan structure and abundance. Thus, protein structure constrains glycosylation, and the neural network enables predictive in silico glycosylation of uncharacterized or novel protein sequences and genetic variants.
Collapse
Affiliation(s)
- Benjamin P. Kellman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Augment Biologics, La Jolla, CA 92092
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Julien Mariethoz
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
| | - Yujie Zhang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sigal Shaul
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mia Alteri
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mia Jeffris
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Erick Armingol
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bokan Bao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Frederique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
- Computer Science Department & Section of Biology, University of Geneva, route de Drize 7, CH-1227, Geneva, Switzerland
| | - Daniel Bojar
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41390, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 41390, Sweden
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
15
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Banahene N, Peters-Clarke TM, Biegas KJ, Shishkova E, Hart EM, McKitterick AC, Kambitsis NH, Johnson UG, Bernhardt TG, Coon JJ, Swarts BM. Chemical Proteomics Strategies for Analyzing Protein Lipidation Reveal the Bacterial O-Mycoloylome. J Am Chem Soc 2024; 146:12138-12154. [PMID: 38635392 PMCID: PMC11066868 DOI: 10.1021/jacs.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Trenton M. Peters-Clarke
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Kyle J. Biegas
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Evgenia Shishkova
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Elizabeth M. Hart
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Amelia C. McKitterick
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Nikolas H. Kambitsis
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Ulysses G. Johnson
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Thomas G. Bernhardt
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53562, United States
| | - Benjamin M. Swarts
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| |
Collapse
|
17
|
Adams TM, Zhao P, Kong R, Wells L. ppmFixer: a mass error adjustment for pGlyco3.0 to correct near-isobaric mismatches. Glycobiology 2024; 34:cwae006. [PMID: 38263491 PMCID: PMC11005163 DOI: 10.1093/glycob/cwae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Modern glycoproteomics experiments require the use of search engines due to the generation of countless spectra. While these tools are valuable, manual validation of search engine results is often required for detailed analysis of glycopeptides as false-discovery rates are often not reliable for glycopeptide data. Near-isobaric mismatches are a common source of misidentifications for the popular glycopeptide-focused search engine pGlyco3.0, and in this technical note we share a strategy and script that improves the accuracy of the search utilizing two manually validated datasets of the glycoproteins CD16a and HIV-1 Env as proof-of-principle.
Collapse
Affiliation(s)
- Trevor M Adams
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens 30602, Georgia
| | - Peng Zhao
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens 30602, Georgia
| | - Rui Kong
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, 7 Frist Ave, Atlanta 30317, Georgia
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens 30602, Georgia
| |
Collapse
|
18
|
White MEH, Sinn LR, Jones DM, de Folter J, Aulakh SK, Wang Z, Flynn HR, Krüger L, Tober-Lau P, Demichev V, Kurth F, Mülleder M, Blanchard V, Messner CB, Ralser M. Oxonium ion scanning mass spectrometry for large-scale plasma glycoproteomics. Nat Biomed Eng 2024; 8:233-247. [PMID: 37474612 DOI: 10.1038/s41551-023-01067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.
Collapse
Affiliation(s)
- Matthew E H White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ludwig R Sinn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Marc Jones
- Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Joost de Folter
- Software Engineering and Artificial Intelligence Technology Platform, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Ziyue Wang
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lynn Krüger
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vadim Demichev
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High-throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Christoph B Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Precision Proteomic Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
19
|
Tsai YX, Chang NE, Reuter K, Chang HT, Yang TJ, von Bülow S, Sehrawat V, Zerrouki N, Tuffery M, Gecht M, Grothaus IL, Colombi Ciacchi L, Wang YS, Hsu MF, Khoo KH, Hummer G, Hsu STD, Hanus C, Sikora M. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. Cell 2024; 187:1296-1311.e26. [PMID: 38428397 DOI: 10.1016/j.cell.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.
Collapse
Affiliation(s)
- Yu-Xi Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Ning-En Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Klaus Reuter
- Max Planck Computing and Data Facility, 85748 Garching, Germany
| | - Hao-Ting Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Vidhi Sehrawat
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland
| | - Noémie Zerrouki
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Matthieu Tuffery
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France
| | - Michael Gecht
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany
| | - Isabell Louise Grothaus
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Yong-Sheng Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt, Germany
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Hiroshima 739-8526, Japan.
| | - Cyril Hanus
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266, Université Paris-Cité, 75014 Paris, France; GHU Psychiatrie et Neurosciences de Paris, 75014 Paris, France.
| | - Mateusz Sikora
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany; Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Kraków, Poland.
| |
Collapse
|
20
|
Pasala C, Sharma S, Roychowdhury T, Moroni E, Colombo G, Chiosis G. N-Glycosylation as a Modulator of Protein Conformation and Assembly in Disease. Biomolecules 2024; 14:282. [PMID: 38540703 PMCID: PMC10968129 DOI: 10.3390/biom14030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
Glycosylation, a prevalent post-translational modification, plays a pivotal role in regulating intricate cellular processes by covalently attaching glycans to macromolecules. Dysregulated glycosylation is linked to a spectrum of diseases, encompassing cancer, neurodegenerative disorders, congenital disorders, infections, and inflammation. This review delves into the intricate interplay between glycosylation and protein conformation, with a specific focus on the profound impact of N-glycans on the selection of distinct protein conformations characterized by distinct interactomes-namely, protein assemblies-under normal and pathological conditions across various diseases. We begin by examining the spike protein of the SARS virus, illustrating how N-glycans regulate the infectivity of pathogenic agents. Subsequently, we utilize the prion protein and the chaperone glucose-regulated protein 94 as examples, exploring instances where N-glycosylation transforms physiological protein structures into disease-associated forms. Unraveling these connections provides valuable insights into potential therapeutic avenues and a deeper comprehension of the molecular intricacies that underlie disease conditions. This exploration of glycosylation's influence on protein conformation effectively bridges the gap between the glycome and disease, offering a comprehensive perspective on the therapeutic implications of targeting conformational mutants and their pathologic assemblies in various diseases. The goal is to unravel the nuances of these post-translational modifications, shedding light on how they contribute to the intricate interplay between protein conformation, assembly, and disease.
Collapse
Affiliation(s)
- Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Elisabetta Moroni
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
| | - Giorgio Colombo
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
21
|
Hu Z, Gao W, Liu R, Yang J, Han R, Li J, Yu J, Ma D, Tang K. An efficient strategy with a synergistic effect of hydrophilic and electrostatic interactions for simultaneous enrichment of N- and O-glycopeptides. Analyst 2024; 149:1090-1101. [PMID: 38131340 DOI: 10.1039/d3an01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
N- and O-glycosylation modifications of proteins are closely linked to the onset and development of many diseases and have gained widespread attention as potential targets for therapy and diagnosis. However, the low abundance and low ionization efficiency of glycopeptides as well as the high heterogeneity make glycosylation analysis challenging. Here, an enrichment strategy, using Knoevenagel copolymers modified with polydopamine-adenosine (denoted as PDA-ADE@KCP), was firstly proposed for simultaneous enrichment of N- and O-glycopeptides through the synergistic effects of hydrophilic and electrostatic interactions. The adjustable charged surface and hydrophilic properties endow the material with the capability to achieve effective enrichment of intact N- and O-glycopeptides. The experimental results exhibited excellent selectivity (1 : 5000) and sensitivity (0.1 fmol μL-1) of the prepared material for N-glycopeptides from standard protein digest samples. Moreover, it was further applied to simultaneous capturing of N- and O-glycopeptides from mouse liver protein digests. Compared to the commercially available zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) material, the number of glycoproteins corresponding to all N- and O-glycopeptides enriched with PDA-ADE@KCP was much more than that with ZIC-HILIC. Furthermore, PDA-ADE@KCP captured more O-glycopeptides than ZIC-HILIC, revealing its superior performance in O-glycopeptide enrichment. All these results indicated that the strategy holds immense potential in characterizing N- and O-intact glycopeptides in the field of proteomics.
Collapse
Affiliation(s)
- Zhonghan Hu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Rong Liu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Jiaqian Yang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Renlu Han
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| | - Jiancheng Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Danhua Ma
- Department of Stomatology, Ningbo No.2 Hospital, Ningbo, 315010, PR China.
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
| |
Collapse
|
22
|
Bartholow T, Burroughs PW, Elledge SK, Byrnes JR, Kirkemo LL, Garda V, Leung KK, Wells JA. Photoproximity Labeling from Single Catalyst Sites Allows Calibration and Increased Resolution for Carbene Labeling of Protein Partners In Vitro and on Cells. ACS CENTRAL SCIENCE 2024; 10:199-208. [PMID: 38292613 PMCID: PMC10823516 DOI: 10.1021/acscentsci.3c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024]
Abstract
The cell surface proteome (surfaceome) plays a pivotal role in virtually all extracellular biology, and yet we are only beginning to understand the protein complexes formed in this crowded environment. Recently, a high-resolution approach (μMap) was described that utilizes multiple iridium-photocatalysts attached to a secondary antibody, directed to a primary antibody of a protein of interest, to identify proximal neighbors by light-activated conversion of a biotin-diazirine to a highly reactive carbene followed by LC/MS (Geri, J. B.; Oakley, J. V.; Reyes-Robles, T.; Wang, T.; McCarver, S. J.; White, C. H.; Rodriguez-Rivera, F. P.; Parker, D. L.; Hett, E. C.; Fadeyi, O. O.; Oslund, R. C.; MacMillan, D. W. C. Science2020, 367, 1091-1097). Here we calibrated the spatial resolution for carbene labeling using site-specific conjugation of a single photocatalyst to a primary antibody drug, trastuzumab (Traz), in complex with its structurally well-characterized oncogene target, HER2. We observed relatively uniform carbene labeling across all amino acids, and a maximum distance of ∼110 Å from the fixed photocatalyst. When targeting HER2 overexpression cells, we identified 20 highly enriched HER2 neighbors, compared to a nonspecific membrane tethered catalyst. These studies identify new HER2 interactors and calibrate the radius of carbene photoprobe labeling for the surfaceome.
Collapse
Affiliation(s)
- Thomas
G. Bartholow
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Paul W.W. Burroughs
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Susanna K. Elledge
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James R. Byrnes
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Lisa L. Kirkemo
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Virginia Garda
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kevin K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
23
|
Li R, Xia C, Wu S, Downs MJ, Tong H, Tursumamat N, Zaia J, Costello CE, Lin C, Wei J. Direct and Detailed Site-Specific Glycopeptide Characterization by Higher-Energy Electron-Activated Dissociation Tandem Mass Spectrometry. Anal Chem 2024; 96:1251-1258. [PMID: 38206681 PMCID: PMC10885852 DOI: 10.1021/acs.analchem.3c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.
Collapse
Affiliation(s)
- Ruiqing Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Shuye Wu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Margaret J Downs
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Haowei Tong
- School of Life Science, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai 200240, China
| | - Nafisa Tursumamat
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Juan Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
24
|
Guan B, Cao X, Yang M, Yue X, Liu D. Comparative Site-Specific O-Glycosylation Analysis of the Milk Fat Globule Membrane Proteome in Donkey Colostrum and Mature Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1405-1417. [PMID: 38181196 DOI: 10.1021/acs.jafc.3c07805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Donkey milk fat globule membrane (MFGM) proteins are a class of membrane-bound secreted proteins with broad-spectrum biofunctional activities; however, their site-specific O-glycosylation landscapes have not been systematically mapped. In this study, an in-depth MFGM O-glycoproteome profile of donkey milk during lactation was constructed based on an intact glycopeptide-centered, label-free glycoproteomics pipeline, with 2137 site-specific O-glycans from 1121 MFGM glycoproteins and 619 site-specific O-glycans from 217 MFGM glycoproteins identified in donkey colostrum and donkey mature milk, respectively. As lactation progressed, the number of site-specific O-glycans from three glycoproteins significantly increased, whereas that of 11 site-specific O-glycans from five glycoproteins significantly decreased. Furthermore, donkey MFGM O-glycoproteins with core-1 and core-2 core structures and Lewis and sialylated branch structures may be involved in regulating apoptosis. The findings of this study reveal the differences in the composition of donkey MFGM O-glycoproteins and their site-specific O-glycosylation modification dynamic change rules during lactation, providing a molecular basis for understanding the complexity and biological functions of donkey MFGM protein O-glycosylation.
Collapse
Affiliation(s)
- Boyuan Guan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| |
Collapse
|
25
|
Blake-Hedges J, Groff D, Foo W, Hanson J, Castillo E, Wen M, Cheung D, Masikat MR, Lu J, Park Y, Carlos NA, Usman H, Fong K, Yu A, Zhou S, Kwong J, Tran C, Li X, Yuan D, Hallam T, Yin G. Production of antibodies and antibody fragments containing non-natural amino acids in Escherichia coli. MAbs 2024; 16:2316872. [PMID: 38381460 PMCID: PMC10883104 DOI: 10.1080/19420862.2024.2316872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Therapeutic bioconjugates are emerging as an essential tool to combat human disease. Site-specific conjugation technologies are widely recognized as the optimal approach for producing homogeneous drug products. Non-natural amino acid (nnAA) incorporation allows the introduction of bioconjugation handles at genetically defined locations. Escherichia coli (E. coli) is a facile host for therapeutic nnAA protein synthesis because it can stably replicate plasmids encoding genes for product and nnAA incorporation. Here, we demonstrate that by engineering E. coli to incorporate high levels of nnAAs, it is feasible to produce nnAA-containing antibody fragments and full-length immunoglobulin Gs (IgGs) in the cytoplasm of E. coli. Using high-density fermentation, it was possible to produce both of these types of molecules with site-specifically incorporated nnAAs at titers > 1 g/L. We anticipate this strategy will help simplify the production and manufacture of promising antibody therapeutics.
Collapse
Affiliation(s)
| | - Dan Groff
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Wilson Foo
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Jeffrey Hanson
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Elenor Castillo
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Miao Wen
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Diana Cheung
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Mary Rose Masikat
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Jian Lu
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Young Park
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Nina Abi Carlos
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Hans Usman
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Kevin Fong
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Abigail Yu
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Sihong Zhou
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Joyce Kwong
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Cuong Tran
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Xiaofan Li
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Dawei Yuan
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Trevor Hallam
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Gang Yin
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| |
Collapse
|
26
|
De Marco Verissimo C, Cwiklinski K, Nilsson J, Mirgorodskaya E, Jin C, Karlsson NG, Dalton JP. Glycan Complexity and Heterogeneity of Glycoproteins in Somatic Extracts and Secretome of the Infective Stage of the Helminth Fasciola hepatica. Mol Cell Proteomics 2023; 22:100684. [PMID: 37993102 PMCID: PMC10755494 DOI: 10.1016/j.mcpro.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland.
| | - Krystyna Cwiklinski
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Ekaterina Mirgorodskaya
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Proteomics Core Facility, Sahlgrenska Academy of Science, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Life Science and Health, Faculty of Health Science, Oslo Metropolitan University, Oslo, Norway
| | - John P Dalton
- Molecular Parasitology Lab (MPL) - Centre for One Health and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Republic of Ireland
| |
Collapse
|
27
|
Suttapitugsakul S, Matsumoto Y, Aryal RP, Cummings RD. Large-Scale and Site-Specific Mapping of the Murine Brain O-Glycoproteome with IMPa. Anal Chem 2023; 95:13423-13430. [PMID: 37624755 PMCID: PMC10501376 DOI: 10.1021/acs.analchem.3c00408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/16/2023] [Indexed: 08/27/2023]
Abstract
Altered protein glycosylation is typically associated with cognitive defects and other phenotypes, but there is a lack of knowledge about the brain glycoproteome. Here, we used the newly available O-glycoprotease IMPa from Pseudomonas aeruginosa for comprehensive O-glycoproteomic analyses of the mouse brain. In this approach, total tryptic glycopeptides were prepared, extracted, purified, and conjugated to a solid support before an enzymatic cleavage by IMPa. O-glycopeptides were analyzed by electron-transfer/higher-energy collision dissociation (EThcD), which permits site-specific and global analysis of all types of O-glycans. We developed two complementary approaches for the analysis of the total O-glycoproteome using HEK293 cells and derivatives. The results demonstrated that IMPa and EThcD facilitate the confident localization of O-glycans on glycopeptides. We then applied these approaches to characterize the O-glycoproteome of the mouse brain, which revealed the high frequency of various sialylated O-glycans along with the unusual presence of the Tn antigen. Unexpectedly, the results demonstrated that glycoproteins in the brain O-glycoproteome only partly overlap with those reported for the brain N-glycoproteome. These approaches will aid in identifying the novel O-glycoproteomes of different cells and tissues and foster clinical and translational insights into the functions of protein O-glycosylation in the brain and other organs.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts 02215, United States
| | | | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts 02215, United States
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical
School, Boston, Massachusetts 02215, United States
| |
Collapse
|
28
|
Liu Y, Han Y, Zhu W, Luo Q, Yuan J, Liu X. Characterization of N-glycome profile in mouse brain tissue regions by MALDI-TOF/MS. Anal Bioanal Chem 2023; 415:5575-5588. [PMID: 37452841 DOI: 10.1007/s00216-023-04848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Glycosylation is one of the most common types of post-translational modifications in mammals. It is well known that N-glycans play a key role in cell adhesion, differentiation, synapsis, and myelination during the development of the mammalian central nervous system (CNS). Neuropathological symptoms (such as epilepsy and Alzheimer's disease) are usually accompanied by N-glycosylation changes. In this study, we extracted N-glycan chains from eight regions of the mouse brain, and combined high-throughput, high-resolution matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with the Fmoc N-hydroxysuccinimide ester (Fmoc-OSU) derivatization method to improve the sensitivity of glycan detection to characterize the total N-glycans in the mouse brain. A total of 96 N-glycan moieties were detected. An exhaustive examination of the relative abundance of N-glycans, coupled with a comparative analysis of differences, has uncovered discernible variations of statistical significance, including high mannose, fucosylated, sialylated, and galactosylated N-glycans. According to our investigations, a thorough and regionally specific cartography of glycans within the brain can facilitate the investigation of glycan-mediated mechanisms related to both the developmental trajectory and functional output of the brain. Additionally, this approach may serve as a basis for identifying potential biomarkers that are relevant to various brain-associated pathologies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yutong Han
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenjie Zhu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
29
|
Costa J, Hayes C, Lisacek F. Protein glycosylation and glycoinformatics for novel biomarker discovery in neurodegenerative diseases. Ageing Res Rev 2023; 89:101991. [PMID: 37348818 DOI: 10.1016/j.arr.2023.101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.
Collapse
Affiliation(s)
- Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Catherine Hayes
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland; Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
30
|
Bartholow TG, Burroughs P, Elledge SK, Byrnes JR, Kirkemo LL, Garda V, Leung KK, Wells JA. Site-specific proximity labeling at single residue resolution for identification of protein partners in vitro and on cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550738. [PMID: 37546992 PMCID: PMC10402114 DOI: 10.1101/2023.07.27.550738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The cell surface proteome, or surfaceome, is encoded by more than 4000 genes, but we are only beginning to understand the complexes they form. Rapid proximity labeling around specific membrane targets allows for capturing weak and transient interactions expected in the crowded and dynamic environment of the surfaceome. Recently, a high-resolution approach called μMap has been described (Geri, J. B., Oakley, J. V., Reyes-Robles, T., Wang, T., McCarver, S. J., White, C. H., Rodriguez-Rivera, F. P., Parker, D. L., Hett, E. C., Fadeyi, O. O., Oslund, R. C., and MacMillan, D. W. C. (2020) Science 367 , 1091-1097) in which an iridium (Ir)-based photocatalyst is attached to a specific antibody to target labeling of neighbors utilizing light-activated generation of carbenes from diazirine compounds via Dexter Energy Transfer (DET). Here we studied and optimized the spatial resolution for the method using an oncoprotein complex between the antibody drug, trastuzumab (Traz), and its target HER2. A set of eight single site-specific Ir-catalytic centers were engineered into Traz to study intra- and inter-molecular labeling in vitro and on cells by mass spectrometry. From this structurally well-characterized complex we observed a maximum distance of ∼110 Å for labeling. Labeling occurred almost uniformly over the full range of amino acids, unlike the residue specific labeling of other techniques. To examine on cell labeling that is specific to HER2 as opposed to simply being on the membrane, we compared the labeling patterns for the eight Traz-catalyst species to random labeling of membrane proteins using a metabolically integrated fatty acid catalyst. Our results identified 20 high confidence HER2 neighbors, many novel, that were more than 6-fold enriched compared to the non-specific membrane tethered catalyst. These studies define distance labeling parameters from single-site catalysts placed directly on the membrane target of interest, and more accurately compare to non-specific labeling to identify membrane complexes with higher confidence.
Collapse
|
31
|
Geiszler DJ, Polasky DA, Yu F, Nesvizhskii AI. Detecting diagnostic features in MS/MS spectra of post-translationally modified peptides. Nat Commun 2023; 14:4132. [PMID: 37438360 DOI: 10.1038/s41467-023-39828-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Post-translational modifications are an area of great interest in mass spectrometry-based proteomics, with a surge in methods to detect them in recent years. However, post-translational modifications can introduce complexity into proteomics searches by fragmenting in unexpected ways, ultimately hindering the detection of modified peptides. To address these deficiencies, we present a fully automated method to find diagnostic spectral features for any modification. The features can be incorporated into proteomics search engines to improve modified peptide recovery and localization. We show the utility of this approach by interrogating fragmentation patterns for a cysteine-reactive chemoproteomic probe, RNA-crosslinked peptides, sialic acid-containing glycopeptides, and ADP-ribosylated peptides. We also analyze the interactions between a diagnostic ion's intensity and its statistical properties. This method has been incorporated into the open-search annotation tool PTM-Shepherd and the FragPipe computational platform.
Collapse
Affiliation(s)
- Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Lai YH, Leung W, Chang PH, Zhou WX, Wang YS. Structural identification of carbohydrate isomers using ambient infrared-assisted dissociation. Anal Chim Acta 2023; 1264:341307. [PMID: 37230717 DOI: 10.1016/j.aca.2023.341307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Informative dissociation of carbohydrates using an infrared (IR) irradiation system is demonstrated under ambient conditions without the instrumentation of a mass spectrometer. Structural identification of carbohydrates and associated conjugates is essential for understanding their biological functions, but identification remains challenging. Herein, an easy and rugged method is reported for the structural identification of model carbohydrates, including Globo-H, three trisaccharide isomers (nigerotriose/laminaritriose/cellotriose), and two hexasaccharide isomers (laminarihexaose/isomaltohexaose). For Globo-H, the numbers of cross-ring cleavages increased by factors of 4.4 and 3.4 upon ambient IR exposure, compared to an untreated control and a collision-induced dissociation (CID) sample. Moreover, 25-82% enhancement in the numbers of glycosidic bond cleavages upon ambient IR exposure was also obtained compared to untreated and CID samples. Unique features of first-generation fragments produced by ambient IR facilitated the differentiation of three trisaccharide isomers. Semi-quantitative analysis was achieved (coefficient of determination (R2) of 0.982) in a mixture of two hexasaccharide isomers via unique features generated upon ambient IR. Photothermal and radical migration effects induced by ambient IR were postulated as responsible for promoting carbohydrate fragmentation. This easy and rugged method could be a universally applicable protocol and complementary to other techniques for detailed structural characterization of carbohydrates.
Collapse
Affiliation(s)
- Yin-Hung Lai
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC; Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC.
| | - Will Leung
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC; Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan, ROC
| | - Pei-Hung Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC; Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan, ROC
| | - Wei-Xiang Zhou
- Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan, ROC
| | - Yi-Sheng Wang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC.
| |
Collapse
|
33
|
Liu S, Ryumin P, Albanese J, Zhang Z, Baba T. Analysis of Sialic Acid Linkage in N-Linked Glycopeptides Using Liquid Chromatography-Electron-Activated Dissociation Time-of-Flight Mass Spectrometry. Anal Chem 2023; 95:7458-7467. [PMID: 37146167 DOI: 10.1021/acs.analchem.2c04581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Herein, we report a novel liquid chromatography coupled with tandem mass spectrometry method to characterize N-acetylneuraminic acid (Neu5Ac, Sa) linkage in N-linked glycans in glycopeptides with no sialic acid derivatization. First, we established a separation in reversed-phase high-performance liquid chromatography (HPLC) using a higher formic acid concentration in the mobile phases, which separated the N-glycopeptides depending on the Sa linkage. We also demonstrated a novel characterization method of Sa linkages in N-glycopeptides using electron-activated dissociation. We found that hot electron capture dissociation using an electron beam energy higher than 5 eV cleaved glycosidic bonds in glycopeptides, resulting in each glycosidic bond in the antennas being broken on both sides of the oxygen atom. Such glycosidic bond cleavage at the reducing end (C-type ion) showed the difference in Sa linkages between Sa-Gal, Gal-GlcNAc, and GlcNAc-Man. We proposed a rule to characterize the Sa linkages using the Sa-Gal products. This method was applied to N-glycopeptides in tryptic fetuin digest separated by an optimized reversed-phase HPLC. We successfully identified a number of isomeric glycoforms in the glycopeptides with different Sa links, whose peptide backbones were also simultaneously sequenced by hot ECD.
Collapse
Affiliation(s)
- Suya Liu
- Sciex, 71 Four Valley Dr. Concord, Ontario L4K 4V8, Canada
| | - Pavel Ryumin
- Sciex, 71 Four Valley Dr. Concord, Ontario L4K 4V8, Canada
| | - Jenny Albanese
- Sciex, 1201 Radio Rd, Redwood City, California 94065, United States
| | - Zoe Zhang
- Sciex, 1201 Radio Rd, Redwood City, California 94065, United States
| | - Takashi Baba
- Sciex, 71 Four Valley Dr. Concord, Ontario L4K 4V8, Canada
| |
Collapse
|
34
|
Bradberry MM, Peters-Clarke TM, Shishkova E, Chapman ER, Coon JJ. N-glycoproteomics of brain synapses and synaptic vesicles. Cell Rep 2023; 42:112368. [PMID: 37036808 PMCID: PMC10560701 DOI: 10.1016/j.celrep.2023.112368] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
At mammalian neuronal synapses, synaptic vesicle (SV) glycoproteins are essential for robust neurotransmission. Asparagine (N)-linked glycosylation is required for delivery of the major SV glycoproteins synaptophysin and SV2A to SVs. Despite this key role for N-glycosylation, the molecular compositions of SV N-glycans are largely unknown. In this study, we combined organelle isolation techniques and high-resolution mass spectrometry to characterize N-glycosylation at synapses and SVs from mouse brain. Detecting over 2,500 unique glycopeptides, we found that SVs harbor a distinct population of oligomannose and highly fucosylated N-glycans. Using complementary fluorescence methods, we identify at least one highly fucosylated N-glycan enriched in SVs compared with synaptosomes. High fucosylation was characteristic of SV proteins, plasma membrane proteins, and cell adhesion molecules with key roles in synaptic function and development. Our results define the N-glycoproteome of a specialized neuronal organelle and inform timely questions in the glycobiology of synaptic pruning and neuroinflammation.
Collapse
Affiliation(s)
- Mazdak M Bradberry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Evgenia Shishkova
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
35
|
Čaval T, Alisson-Silva F, Schwarz F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics. Theranostics 2023; 13:2605-2615. [PMID: 37215580 PMCID: PMC10196828 DOI: 10.7150/thno.81760] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cell surface glycosylation has a variety of functions, and its dysregulation in cancer contributes to impaired signaling, metastasis and the evasion of the immune responses. Recently, a number of glycosyltransferases that lead to altered glycosylation have been linked to reduced anti-tumor immune responses: B3GNT3, which is implicated in PD-L1 glycosylation in triple negative breast cancer, FUT8, through fucosylation of B7H3, and B3GNT2, which confers cancer resistance to T cell cytotoxicity. Given the increased appreciation of the relevance of protein glycosylation, there is a critical need for the development of methods that allow for an unbiased interrogation of cell surface glycosylation status. Here we provide an overview of the broad changes in glycosylation at the surface of cancer cell and describe selected examples of receptors with aberrant glycosylation leading to functional changes, with emphasis on immune checkpoint inhibitors, growth-promoting and growth-arresting receptors. Finally, we posit that the field of glycoproteomics has matured to an extent where large-scale profiling of intact glycopeptides from the cell surface is feasible and is poised for discovery of new actionable targets against cancer.
Collapse
|
36
|
Guan B, Zhang Z, Liu X, Zhao S, Bai X, Luo X, Feng D, Yang L, Cao X, Yue X. Quantitative label-free site-specific glycoproteomic analysis of the milk fat globule membrane protein in human colostrum and mature milk. Carbohydr Polym 2023; 306:120588. [PMID: 36746580 DOI: 10.1016/j.carbpol.2023.120588] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Human milk fat globule membrane (MFGM) proteins, which are N-glycosylated, play essential roles in neonatal development and physiological health. However, the profiles and landscape changes in the site-specific N-glycosylation of human MFGM proteins during lactation remain unclear. Therefore, in this study, based on an intact glycopeptide-centred strategy, 2617 unique site-specific N-glycans of 221 MFGM glycoproteins in human colostrum and 986 unique site-specific N-glycans of 200 MFGM glycoproteins in mature milk were characterised and quantified using label-free glycoproteomics. With milk maturation, 33 site-specific N-glycans on 10 N-glycoproteins increased significantly, and 113 site-specific N-glycans on 25 N-glycoproteins decreased significantly. Moreover, human MFGM glycoproteins with core-α1,6-fucosylated structures and Lewis and sialylated branching structures play a role in the biological processes of antigen processing and presentation. This study reveals the dynamic changes in human MFGM protein N-glycosylation patterns during lactation. Meanwhile, the study deepens our understanding of site-specific N-glycosylation of human MFGM glycoproteins. The results of the study provide a background reference for the development of infant formulas.
Collapse
Affiliation(s)
- Boyuan Guan
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Zhenghan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang 110003, China
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Daguang Feng
- College of Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Liu Yang
- Foreign Language Teaching Department, Shenyang Agricultural University, Shenyang 11086, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| |
Collapse
|
37
|
Chau TH, Chernykh A, Kawahara R, Thaysen-Andersen M. Critical considerations in N-glycoproteomics. Curr Opin Chem Biol 2023; 73:102272. [PMID: 36758418 DOI: 10.1016/j.cbpa.2023.102272] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023]
Abstract
N-Glycoproteomics, the system-wide study of glycans asparagine-linked to protein carriers, holds a unique and still largely untapped potential to provide deep insights into the complexity and dynamics of the heterogeneous N-glycoproteome. Despite the advent of innovative analytical and informatics tools aiding the analysis, N-glycoproteomics remains challenging and consequently largely restricted to specialised laboratories. Aiming to stimulate discussions of method harmonisation, data standardisation and reporting guidelines to make N-glycoproteomics more reproducible and accessible to the community, we here discuss critical considerations related to the design and execution of N-glycoproteomics experiments and highlight good practices in N-glycopeptide data collection, analysis, interpretation and sharing. Giving the rapid maturation and, expectedly, a wide-spread implementation of N-glycoproteomics capabilities across the community in future years, this piece aims to point out common pitfalls, to encourage good data sharing and documentation practices, and to highlight practical solutions and strategies to enhance the insight into the N-glycoproteome.
Collapse
Affiliation(s)
- The Huong Chau
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anastasia Chernykh
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Rebeca Kawahara
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
38
|
Zhang Y, Krishnan S, Bao B, Chiang AWT, Sorrentino JT, Schinn SM, Kellman BP, Lewis NE. Preparing glycomics data for robust statistical analysis with GlyCompareCT. STAR Protoc 2023; 4:102162. [PMID: 36920914 PMCID: PMC10025275 DOI: 10.1016/j.xpro.2023.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
GlyCompareCT is a portable command-line tool to facilitate downstream glycomic data analyses, by addressing data inherent sparsity and non-independence. Inputting glycan abundances, users can run GlyCompareCT with one line of code to obtain the abundances of a minimal substructure set, named glycomotif, thereby quantifying hidden biosynthetic relationships between measured glycans. Optional parameters tuning and annotation are supported for personal preference. For complete details on the use and execution of this protocol, please refer to Bao et al. (2021).1.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA
| | - Sridevi Krishnan
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA
| | - Bokan Bao
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA
| | - James T Sorrentino
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA
| | - Song-Min Schinn
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA; Augment Biologics, 9450 SW Gemini Dr. #46664, Beaverton, OR 97008, USA.
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0760, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Park CS, Kang M, Kim A, Moon C, Kim M, Kim J, Yang S, Jang L, Jang JY, Kim HH. Fragmentation stability and retention time-shift obtained by LC-MS/MS to distinguish sialylated N-glycan linkage isomers in therapeutic glycoproteins. J Pharm Anal 2023; 13:305-314. [PMID: 37102108 PMCID: PMC10124117 DOI: 10.1016/j.jpha.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Sialylated N-glycan isomers with α2-3 or α2-6 linkage(s) have distinctive roles in glycoproteins, but are difficult to distinguish. Wild-type (WT) and glycoengineered (mutant) therapeutic glycoproteins, cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4-Ig), were produced in Chinese hamster ovary cell lines; however, their linkage isomers have not been reported. In this study, N-glycans of CTLA4-Igs were released, labeled with procainamide, and analyzed by liquid chromatography-tandem mass spectrometry (MS/MS) to identify and quantify sialylated N-glycan linkage isomers. The linkage isomers were distinguished by comparison of 1) intensity of the N-acetylglucosamine ion to the sialic acid ion (Ln/Nn) using different fragmentation stability in MS/MS spectra and 2) retention time-shift for a selective m/z value in the extracted ion chromatogram. Each isomer was distinctively identified, and each quantity (>0.1%) was obtained relative to the total N-glycans (100%) for all observed ionization states. Twenty sialylated N-glycan isomers with only α2-3 linkage(s) in WT were identified, and each isomer's sum of quantities was 50.4%. Furthermore, 39 sialylated N-glycan isomers (58.8%) in mono- (3 N-glycans; 0.9%), bi- (18; 48.3%), tri- (14; 8.9%), and tetra- (4; 0.7%) antennary structures of mutant were obtained, which comprised mono- (15 N-glycans; 25.4%), di- (15; 28.4%), tri- (8; 4.8%), and tetra- (1; 0.2%) sialylation, respectively, with only α2-3 (10 N-glycans; 4.8%), both α2-3 and α2-6 (14; 18.4%), and only α2-6 (15; 35.6%) linkage(s). These results are consistent with those for α2-3 neuraminidase-treated N-glycans. This study generated a novel plot of Ln/Nn versus retention time to distinguish sialylated N-glycan linkage isomers in glycoprotein.
Collapse
Affiliation(s)
- Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minju Kang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ahyeon Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Mirae Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Subin Yang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
40
|
Sun F, Suttapitugsakul S, Wu R. Systematic characterization of extracellular glycoproteins using mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:519-545. [PMID: 34047389 PMCID: PMC8627532 DOI: 10.1002/mas.21708] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 05/13/2023]
Abstract
Surface and secreted glycoproteins are essential to cells and regulate many extracellular events. Because of the diversity of glycans, the low abundance of many glycoproteins, and the complexity of biological samples, a system-wide investigation of extracellular glycoproteins is a daunting task. With the development of modern mass spectrometry (MS)-based proteomics, comprehensive analysis of different protein modifications including glycosylation has advanced dramatically. This review focuses on the investigation of extracellular glycoproteins using MS-based proteomics. We first discuss the methods for selectively enriching surface glycoproteins and investigating protein interactions on the cell surface, followed by the application of MS-based proteomics for surface glycoprotein dynamics analysis and biomarker discovery. We then summarize the methods to comprehensively study secreted glycoproteins by integrating various enrichment approaches with MS-based proteomics and their applications for global analysis of secreted glycoproteins in different biological samples. Collectively, MS significantly expands our knowledge of extracellular glycoproteins and enables us to identify extracellular glycoproteins as potential biomarkers for disease detection and drug targets for disease treatment.
Collapse
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
41
|
Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:887-917. [PMID: 35099083 PMCID: PMC9339036 DOI: 10.1002/mas.21771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 05/05/2023]
Abstract
Recent advances in analytical techniques provide the opportunity to quantify even low-abundance glycopeptides derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Herein, we discuss the sample preparation procedures and the mass spectrometry (MS) strategies that have facilitated glycopeptide quantification, as well as the standards used for glycopeptide quantification. For sample preparation, various glycopeptide enrichment methods are summarized including the columns used for glycopeptide separation in liquid chromatography separation. For MS analysis strategies, MS1 level-based quantification and MS2 level-based quantification are described, either with or without labeling, where we have covered isotope labeling, TMT/iTRAQ labeling, data dependent acquisition, data independent acquisition, multiple reaction monitoring, and parallel reaction monitoring. The strengths and weaknesses of these methods are compared, particularly those associated with the figures of merit that are important for clinical biomarker studies and the pathological and functional studies of glycoproteins in various diseases. Possible future developments for glycopeptide quantification are discussed.
Collapse
Affiliation(s)
- Haidi Yin
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| |
Collapse
|
42
|
Mukherjee S, Jankevics A, Busch F, Lubeck M, Zou Y, Kruppa G, Heck AJR, Scheltema RA, Reiding KR. Oxonium Ion-Guided Optimization of Ion Mobility-Assisted Glycoproteomics on the timsTOF Pro. Mol Cell Proteomics 2023; 22:100486. [PMID: 36549589 PMCID: PMC9853368 DOI: 10.1016/j.mcpro.2022.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Spatial separation of ions in the gas phase, providing information about their size as collisional cross-sections, can readily be achieved through ion mobility. The timsTOF Pro (Bruker Daltonics) series combines a trapped ion mobility device with a quadrupole, collision cell, and a time-of-flight analyzer to enable the analysis of ions at great speed. Here, we show that the timsTOF Pro is capable of physically separating N-glycopeptides from nonmodified peptides and producing high-quality fragmentation spectra, both beneficial for glycoproteomics analyses of complex samples. The glycan moieties enlarge the size of glycopeptides compared with nonmodified peptides, yielding a clear cluster in the mobilogram that, next to increased dynamic range from the physical separation of glycopeptides and nonmodified peptides, can be used to make an effective selection filter for directing the mass spectrometer to analytes of interest. We designed an approach where we (1) focused on a region of interest in the ion mobilogram and (2) applied stepped collision energies to obtain informative glycopeptide tandem mass spectra on the timsTOF Pro:glyco-polygon-stepped collision energy-parallel accumulation serial fragmentation. This method was applied to selected glycoproteins, human plasma- and neutrophil-derived glycopeptides. We show that the achieved physical separation in the region of interest allows for improved extraction of information from the samples, even at shorter liquid chromatography gradients of 15 min. We validated our approach on human neutrophil and plasma samples of known makeup, in which we captured the anticipated glycan heterogeneity (paucimannose, phosphomannose, high mannose, hybrid and complex glycans) from plasma and neutrophil samples at the expected abundances. As the method is compatible with off-the-shelve data acquisition routines and data analysis software, it can readily be applied by any laboratory with a timsTOF Pro and is reproducible as demonstrated by a comparison between two laboratories.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | | | - Yang Zou
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Gary Kruppa
- Bruker Daltonik GmbH & Co KG, Bremen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
43
|
Chen M, Assis DM, Benet M, McClung CM, Gordon EA, Ghose S, Dupard SJ, Willetts M, Taron CH, Samuelson JC. Comparative site-specific N-glycoproteome analysis reveals aberrant N-glycosylation and gives insights into mannose-6-phosphate pathway in cancer. Commun Biol 2023; 6:48. [PMID: 36639722 PMCID: PMC9839730 DOI: 10.1038/s42003-023-04439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
N-glycosylation is implicated in cancers and aberrant N-glycosylation is recognized as a hallmark of cancer. Here, we mapped and compared the site-specific N-glycoproteomes of colon cancer HCT116 cells and isogenic non-tumorigenic DNMT1/3b double knockout (DKO1) cells using Fbs1-GYR N-glycopeptide enrichment technology and trapped ion mobility spectrometry. Many significant changes in site-specific N-glycosylation were revealed, providing a molecular basis for further elucidation of the role of N-glycosylation in protein function. HCT116 cells display hypersialylation especially in cell surface membrane proteins. Both HCT116 and DKO1 show an abundance of paucimannose and 80% of paucimannose-rich proteins are annotated to reside in exosomes. The most striking N-glycosylation alteration was the degree of mannose-6-phosphate (M6P) modification. N-glycoproteomic analyses revealed that HCT116 displays hyper-M6P modification, which was orthogonally validated by M6P immunodetection. Significant observed differences in N-glycosylation patterns of the major M6P receptor, CI-MPR in HCT116 and DKO1 may contribute to the hyper-M6P phenotype of HCT116 cells. This comparative site-specific N-glycoproteome analysis provides a pool of potential N-glycosylation-related cancer biomarkers, but also gives insights into the M6P pathway in cancer.
Collapse
Affiliation(s)
- Minyong Chen
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Diego M. Assis
- grid.423270.00000 0004 0491 2576Bruker, 40 Manning Road, Billerica, MA 01821 USA
| | - Matthieu Benet
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Colleen M. McClung
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Elizabeth A. Gordon
- grid.423270.00000 0004 0491 2576Bruker, 40 Manning Road, Billerica, MA 01821 USA
| | - Shourjo Ghose
- grid.423270.00000 0004 0491 2576Bruker, 40 Manning Road, Billerica, MA 01821 USA
| | - Steven J. Dupard
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Matthew Willetts
- grid.423270.00000 0004 0491 2576Bruker, 40 Manning Road, Billerica, MA 01821 USA
| | - Christopher H. Taron
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - James C. Samuelson
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| |
Collapse
|
44
|
Impact of Hypermannosylation on the Structure and Functionality of the ER and the Golgi Complex. Biomedicines 2023; 11:biomedicines11010146. [PMID: 36672654 PMCID: PMC9856158 DOI: 10.3390/biomedicines11010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023] Open
Abstract
Proteins of the secretory pathway undergo glycosylation in the endoplasmic reticulum (ER) and the Golgi apparatus. Altered protein glycosylation can manifest in serious, sometimes fatal malfunctions. We recently showed that mutations in GDP-mannose pyrophosphorylase A (GMPPA) can cause a syndrome characterized by alacrima, achalasia, mental retardation, and myopathic alterations (AAMR syndrome). GMPPA acts as a feedback inhibitor of GDP-mannose pyrophosphorylase B (GMPPB), which provides GDP-mannose as a substrate for protein glycosylation. Loss of GMPPA thus enhances the incorporation of mannose into glycochains of various proteins, including α-dystroglycan (α-DG), a protein that links the extracellular matrix with the cytoskeleton. Here, we further characterized the consequences of loss of GMPPA for the secretory pathway. This includes a fragmentation of the Golgi apparatus, which comes along with a regulation of the abundance of several ER- and Golgi-resident proteins. We further show that the activity of the Golgi-associated endoprotease furin is reduced. Moreover, the fraction of α-DG, which is retained in the ER, is increased. Notably, WT cells cultured at a high mannose concentration display similar changes with increased retention of α-DG, altered structure of the Golgi apparatus, and a decrease in furin activity. In summary, our data underline the importance of a balanced mannose homeostasis for the secretory pathway.
Collapse
|
45
|
Delafield DG, Miles HN, Ricke WA, Li L. Higher Temperature Porous Graphitic Carbon Separations Differentially Impact Distinct Glycopeptide Classes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:64-74. [PMID: 36450095 PMCID: PMC9812930 DOI: 10.1021/jasms.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mass spectrometry-based discovery glycoproteomics is highly dependent on the use of chromatography paradigms amenable to analyte retention and separation. When compared against established stationary phases such as reversed-phase and hydrophilic interaction liquid chromatography, reports utilizing porous graphitic carbon have detailed its numerous advantages. Recent efforts have highlighted the utility in porous graphitic carbon in high-throughput glycoproteomics, principally through enhanced profiling depth and liquid-phase resolution at higher column temperatures. However, increasing column temperature has been shown to impart disparaging effects in glycopeptide identification. Herein we further elucidate this trend, describing qualitative and semiquantitative effects of increased column temperature on glycopeptide identification rates, signal intensity, resolution, and spectral count linear response. Through analysis of enriched bovine and human glycopeptides, species with high mannose and sialylated glycans were shown to most significantly benefit and suffer from high column temperatures, respectively. These results provide insight as to how porous graphitic carbon separations may be appropriately leveraged for glycopeptide identification while raising concerns over quantitative and semiquantitative label-free comparisons as the temperature changes. RAW MS glycoproteomic data are available via ProteomeXchange with identifier PXD034354.
Collapse
Affiliation(s)
- Daniel G. Delafield
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| | - William A. Ricke
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
- George M. O’Brien Urology Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075
| |
Collapse
|
46
|
Sun Z, Fu B, Wang G, Zhang L, Xu R, Zhang Y, Lu H. High-throughput site-specific N-glycoproteomics reveals glyco-signatures for liver disease diagnosis. Natl Sci Rev 2023; 10:nwac059. [PMID: 36879659 PMCID: PMC9985154 DOI: 10.1093/nsr/nwac059] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The glycoproteome has emerged as a prominent target for screening biomarkers, as altered glycosylation is a hallmark of cancer cells. In this work, we incorporated tandem mass tag labeling into quantitative glycoproteomics by developing a chemical labeling-assisted complementary dissociation method for the multiplexed analysis of intact N-glycopeptides. Benefiting from the complementary nature of two different mass spectrometry dissociation methods for identification and multiplex labeling for quantification of intact N-glycopeptides, we conducted the most comprehensive site-specific and subclass-specific N-glycosylation profiling of human serum immunoglobulin G (IgG) to date. By analysing the serum of 90 human patients with varying severities of liver diseases, as well as healthy controls, we identified that the combination of IgG1-H3N5F1 and IgG4-H4N3 can be used for distinguishing between different stages of liver diseases. Finally, we used targeted parallel reaction monitoring to successfully validate the expression changes of glycosylation in liver diseases in a different sample cohort that included 45 serum samples.
Collapse
Affiliation(s)
- Zhenyu Sun
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Fu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Guoli Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ruofan Xu
- Eleanor Roosevelt College, University of California San Diego, La Jolla, CA92093, USA
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Kong S, Gong P, Zeng WF, Jiang B, Hou X, Zhang Y, Zhao H, Liu M, Yan G, Zhou X, Qiao X, Wu M, Yang P, Liu C, Cao W. pGlycoQuant with a deep residual network for quantitative glycoproteomics at intact glycopeptide level. Nat Commun 2022; 13:7539. [PMID: 36477196 PMCID: PMC9729625 DOI: 10.1038/s41467-022-35172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Large-scale intact glycopeptide identification has been advanced by software tools. However, tools for quantitative analysis remain lagging behind, which hinders exploring the differential site-specific glycosylation. Here, we report pGlycoQuant, a generic tool for both primary and tandem mass spectrometry-based intact glycopeptide quantitation. pGlycoQuant advances in glycopeptide matching through applying a deep learning model that reduces missing values by 19-89% compared with Byologic, MSFragger-Glyco, Skyline, and Proteome Discoverer, as well as a Match In Run algorithm for more glycopeptide coverage, greatly expanding the quantitative function of several widely used search engines, including pGlyco 2.0, pGlyco3, Byonic and MSFragger-Glyco. Further application of pGlycoQuant to the N-glycoproteomic study in three different metastatic HCC cell lines quantifies 6435 intact N-glycopeptides and, together with in vitro molecular biology experiments, illustrates site 979-core fucosylation of L1CAM as a potential regulator of HCC metastasis. We expected further applications of the freely available pGlycoQuant in glycoproteomic studies.
Collapse
Affiliation(s)
- Siyuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengyun Gong
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen-Feng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Biyun Jiang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xinhang Hou
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yang Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huanhuan Zhao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mingqi Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guoquan Yan
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xinwen Zhou
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xihua Qiao
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Mengxi Wu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengyuan Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Chao Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China.
| | - Weiqian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Riley NM, Bertozzi CR. Deciphering O-glycoprotease substrate preferences with O-Pair Search. Mol Omics 2022; 18:908-922. [PMID: 36373229 PMCID: PMC10010678 DOI: 10.1039/d2mo00244b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
O-Glycoproteases are an emerging class of enzymes that selectively digest glycoproteins at positions decorated with specific O-linked glycans. O-Glycoprotease substrates range from any O-glycoprotein (albeit with specific O-glycan modifications) to only glycoproteins harboring specific O-glycosylated sequence motifs, such as those found in mucin domains. Their utility for multiple glycoproteomic applications is driving the search to both discover new O-glycoproteases and to understand how structural features of characterized O-glycoproteases influence their substrate specificities. One challenge of defining O-glycoprotease specificity restraints is the need to characterize O-glycopeptides with site-specific analysis of O-glycosites. Here, we demonstrate how O-Pair Search, a recently developed O-glycopeptide-centric identification platform that enables rapid searches and confident O-glycosite localization, can be used to determine substrate specificities of various O-glycoproteases de novo from LC-MS/MS data of O-glycopeptides. Using secreted protease of C1 esterase inhibitor (StcE) from enterohemorrhagic Escherichia coli and O-endoprotease OgpA from Akkermansia mucinophila, we explore numerous settings that effect O-glycopeptide identification and show how non-specific and semi-tryptic searches of O-glycopeptide data can produce candidate cleavage motifs. These putative motifs can be further used to define new protease cleavage settings that lower search times and improve O-glycopeptide identifications. We use this platform to generate a consensus motif for the recently characterized immunomodulating metalloprotease (IMPa) from Pseudomonas aeruginosa and show that IMPa is a favorable O-glycoprotease for characterizing densely O-glycosylated mucin-domain glycoproteins.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Sarafan ChEM-H, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Sarafan ChEM-H, Stanford University, Stanford, California, USA.
- Howard Hughes Medical Institute, Stanford, California, USA
| |
Collapse
|
49
|
Guan B, Chai Y, Amantai X, Chen X, Cao X, Yue X. A new sight to explore site-specific N-glycosylation in donkey colostrum milk fat globule membrane proteins with glycoproteomics analysis. Food Res Int 2022; 162:111938. [DOI: 10.1016/j.foodres.2022.111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022]
|
50
|
Chang D, Zaia J. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. MASS SPECTROMETRY REVIEWS 2022; 41:922-937. [PMID: 33764573 DOI: 10.1002/mas.21692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 05/18/2023]
Abstract
Advances in mass spectrometry instrumentation, methods development, and bioinformatics have greatly improved the ease and accuracy of site-specific, quantitative glycoproteomics analysis. Data-dependent acquisition is the most popular method for identification and quantification of glycopeptides; however, complete coverage of glycosylation site glycoforms remains elusive with this method. Targeted acquisition methods improve the precision and accuracy of quantification, but at the cost of throughput and discoverability. Data-independent acquisition (DIA) holds great promise for more complete and highly quantitative site-specific glycoproteomics analysis, while maintaining the ability to discover novel glycopeptides without prior knowledge. We review additional features that can be used to increase selectivity and coverage to the DIA workflow: retention time modeling, which would simplify the interpretation of complex tandem mass spectra, and ion mobility separation, which would maximize the sampling of all precursors at a giving chromatographic retention time. The instrumentation and bioinformatics to incorporate these features into glycoproteomics analysis exist. These improvements in quantitative, site-specific analysis will enable researchers to assess glycosylation similarity in related biological systems, answering new questions about the interplay between glycosylation state and biological function.
Collapse
Affiliation(s)
- Deborah Chang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|