1
|
Yan L, Deng H, Chen J, Liu Y, Duan S, Wang Z, Du L, Liang S, Xu L, Zhong D, Gao W, Zhang L. Ureaplasma in neonatal gastric fluid contributing to bronchopulmonary dysplasia. BMC Pulm Med 2025; 25:127. [PMID: 40108529 PMCID: PMC11921625 DOI: 10.1186/s12890-025-03579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The association between the presence of common pathogens in the maternal cervicovaginal tract as well as neonatal gastric fluid and adverse outcomes in preterm newborns remains uncertain. METHODS Cervicovaginal swabs were collected from 98 mothers, and gastric fluid specimens were obtained from 121 premature infants with gestational ages of ≤ 32 weeks within 24 h of birth. Thirteen pathogens were tested using suspension microarray. Neonatal outcomes were monitored until either death or discharge. RESULTS UREAPLASMA: was the predominant species identified in both maternal cervicovaginal swabs and neonatal gastric fluid. Preterm newborns with Ureaplasma in gastric fluid at birth exhibited a smaller gestational age (P < 0.001), a lower 1-min Apgar score (P = 0.01), an increased requirement for pulmonary surfactant (P = 0.029), and a higher incidence of bronchopulmonary dysplasia (BPD) (P = 0.02) compared to those who tested negative for Ureaplasma. Similarly, pregnant women with Ureaplasma colonization in the genital tract were more likely to deliver babies with a smaller gestational age (P = 0.002), a higher rate of tracheal intubation after birth (P = 0.013), a lower proportion of small for gestational age (SGA) infants (P = 0.018), and an increased occurrence of BPD (P = 0.048) than mothers without the agent. Furthermore, the presence of Ureaplasma in the gastric fluid of premature infants was identified as a risk factor for BPD, with an odds ratio (OR) of up to 6, alongside gestational age and SGA as independent predictors of BPD. CONCLUSIONS These findings suggest that antenatal exposure to Ureaplasma is correlated with the occurrence of BPD in premature infants, which has potential clinical implications.
Collapse
Affiliation(s)
- Longli Yan
- Neonatology Department, Guangdong Women and Children Hospital & Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511400, China
| | - Hua Deng
- Maternal and Child Health Research Institute, Translational Medicine Center, Guangdong Women and Children Hospital, 521 Xing Nan Road, Guangzhou, 511400, China
| | - Jia Chen
- Neonatology Department, Guangdong Women and Children Hospital & Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511400, China
| | - Ying Liu
- Neonatology Department, Guangdong Women and Children Hospital & Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511400, China
| | - Shunyan Duan
- Neonatology Department, Guangdong Women and Children Hospital & Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511400, China
| | - Zhu Wang
- Neonatology Department, Guangdong Women and Children Hospital & Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511400, China
| | - Lanlan Du
- Neonatology Department, Guangdong Women and Children Hospital & Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511400, China
| | - Shu Liang
- Neonatology Department, Guangdong Women and Children Hospital & Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511400, China
| | - Linli Xu
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Di Zhong
- Neonatology Department, Guangdong Women and Children Hospital & Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511400, China
| | - Weiwei Gao
- Neonatology Department, Guangdong Women and Children Hospital & Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511400, China.
| | - Liang Zhang
- Maternal and Child Health Research Institute, Translational Medicine Center, Guangdong Women and Children Hospital, 521 Xing Nan Road, Guangzhou, 511400, China.
| |
Collapse
|
2
|
Liu W, Yang T, Kong Y, Xie X, Ruan Z. Ureaplasma infections: update on epidemiology, antimicrobial resistance, and pathogenesis. Crit Rev Microbiol 2025; 51:317-347. [PMID: 38794781 DOI: 10.1080/1040841x.2024.2349556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Human Ureaplasma species are being increasingly recognized as opportunistic pathogens in human genitourinary tract infections, infertility, adverse pregnancy, neonatal morbidities, and other adult invasive infections. Although some general reviews have focused on the detection and clinical manifestations of Ureaplasma spp., the molecular epidemiology, antimicrobial resistance, and pathogenesis of Ureaplasma spp. have not been adequately explained. The purpose of this review is to offer valuable insights into the current understanding and future research perspectives of the molecular epidemiology, antimicrobial resistance, and pathogenesis of human Ureaplasma infections. This review summarizes the conventional culture and detection methods and the latest molecular identification technologies for Ureaplasma spp. We also reviewed the global prevalence and mechanisms of antibiotic resistance for Ureaplasma spp. Aside from regular antibiotics, novel antibiotics with outstanding in vitro antimicrobial activity against Ureaplasma spp. are described. Furthermore, we discussed the pathogenic mechanisms of Ureaplasma spp., including adhesion, proinflammatory effects, cytotoxicity, and immune escape effects, from the perspectives of pathology, related molecules, and genetics.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Ting Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yingying Kong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Zhang Y, Chen R, Zhou Z, Qing W, Qi C, Ou J, Zhou H, Chen M. Ureaplasma parvum serovar 6 may be a novel element in the progression of HPV infection to CIN: A cross-sectional study of 7058 women. J Infect 2025; 90:106397. [PMID: 39732293 DOI: 10.1016/j.jinf.2024.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 10/10/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Ureaplasma parvum (U. parvum) is generally regarded as innocuous, and studies focusing on variations in pathogenicity among U. parvum serovars are inadequate. We elucidated the variations in the pathogenicity of U. parvum serovars in promoting human papillomavirus (HPV) infection and cervical intraepithelial neoplasia (CIN). METHODS This cross-sectional study used baseline data from a Chinese multicenter prospective cohort of women of childbearing age undergoing routine cervical cancer screening. We employed multivariate logistic regression analysis to estimate the pathogenic effects of specific U. parvum serovars on HPV infection and CIN. Causal mediation analysis was performed to ascertain the direct effects of specific U. parvum serovars on CIN and their indirect implications via HPV infection. FINDINGS The final data analysis encompassed 7058 participants. Upon adjusting for confounding factors, a positive association was observed between U. parvum serovars 1, 3, and 6 and HPV infection (OR 1.53, 95%CI 1.15-2.03; OR 1.31, 95%CI 1.06-1.64; OR 2.34, 95%CI 1.90-2.87); however, only participants with U. parvum serovar 6 showed an increased risk of CIN (OR 1.90, 95%CI 1.19-3.02). No substantial correlation was observed between U. parvum serovar 14 and HPV or CIN incidence. HPV infection potentially mediates the influence of U. parvum serovar 6 on CIN, with a mediation proportion of 76.66%. INTERPRETATIONS Our findings suggest that different U. parvum serovars vary in pathogenicity regarding HPV and CIN. Early detection of specific U. parvum serovars, such as U. parvum serovar 6, in HPV-infected individuals may enable early intervention therapies and reduce the risk of CIN development.
Collapse
Affiliation(s)
- Yingxuan Zhang
- Microbiome Medicine Centre, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongdan Chen
- Microbiome Medicine Centre, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zuyi Zhou
- Microbiome Medicine Centre, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Qing
- Microbiome Medicine Centre, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cancan Qi
- Microbiome Medicine Centre, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinxia Ou
- Microbiome Medicine Centre, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Centre, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Muxuan Chen
- Microbiome Medicine Centre, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Boyle AK, Tetorou K, Suff N, Beecroft L, Mazzaschi M, Karda R, Hristova M, Waddington SN, Peebles D. Ascending Vaginal Infection in Mice Induces Preterm Birth and Neonatal Morbidity. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00040-9. [PMID: 39892780 DOI: 10.1016/j.ajpath.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/06/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Preterm birth (PTB; delivery before 37 weeks), the main cause of neonatal death worldwide, can lead to adverse neurodevelopmental outcomes, as well as lung and gut pathology. PTB can be associated with ascending vaginal infection. Previously, it was shown that ascending Escherichia coli infection in pregnant mice induces PTB and reduces pup survival. Here, it is demonstrated that this model recapitulates the pathology observed in human preterm neonates (namely, neuroinflammation, lung injury, and gut inflammation). In neonatal brains, there is widespread cell death, microglial activation, astrogliosis, and reduced neuronal density. The utility of this model is also validated by assessing the efficacy of maternal cervical gene therapy with an adeno-associated viral vector containing human β defensin 3; this improves pup survival and reduces Tnfa mRNA expression in perinatal pup brains exposed to E. coli. This model provides a unique opportunity to evaluate the therapeutic benefit of preterm labor interventions on perinatal pathology.
Collapse
Affiliation(s)
- Ashley K Boyle
- EGA Institute for Women's Health, University College London, London, United Kingdom.
| | - Konstantina Tetorou
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Natalie Suff
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Laura Beecroft
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Margherita Mazzaschi
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Rajvinder Karda
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Mariya Hristova
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Simon N Waddington
- EGA Institute for Women's Health, University College London, London, United Kingdom; Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, Johannesburg, South Africa
| | - Donald Peebles
- EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
5
|
Han H, Ying X, Chen Q, Fang J, Xu D, Lyu X, Zheng J, Zou L, Luo Q, Hu N. Monitoring of inflammatory preterm responses via myometrial cell based multimodal electrophysiological and optical biosensing platform. Biosens Bioelectron 2025; 274:117197. [PMID: 39874921 DOI: 10.1016/j.bios.2025.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Preterm birth (PTB) remains a leading cause of neonatal morbidity and mortality, with inflammation-induced PTB posing a significant challenge due to its complex pathophysiology. To address this, we developed an in vitro platform utilizing hTERT-immortalized human myometrial (hTERT-HM) cells integrated with a multielectrode array (MEA) biosensing system and optical calcium imaging. Compared to primary uterine myometrial cells, hTERT-HM cells exhibit superior reproducibility, high scalability, and convenient manipulation, facilitating the consistent and large-scale investigations. This advanced system facilitates simultaneous real-time monitoring of electrophysiological activity and intracellular calcium transient, providing detailed insights into uterine cell behavior during inflammatory PTB. Our study revealed that oxytocin (OT) induces regular contractions in hTERT-HM cells, and the synergistic effect of OT and lipopolysaccharide (LPS) disrupts electrophysiological patterns and calcium signaling, closely mimicking the pathophysiology of inflammation-induced PTB. Meanwhile, magnesium sulfate is validated to effectively suppress OT-induced calcium release and mitigate LPS-triggered irregular electrophysiological signals. By integrating advanced biosensing technologies and advantages of hTERT-HM cells, this platform offers a reliable, reproducible model to investigate the mechanisms of inflammation-driven PTB and further develop targeted therapeutic interventions.
Collapse
Affiliation(s)
- Haote Han
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xia Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiaoqiao Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiaru Fang
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; Department of Neurology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Dongxin Xu
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Xuelian Lyu
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jilin Zheng
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ling Zou
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Qiong Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Ning Hu
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| |
Collapse
|
6
|
Meng L, Meng M, Zhang R, Wubulikasimu A, Peng H, Zhang L, Chang X, Ai G, Zou G, He Q, Wang K, Liu M, Duan T. Microbiome-producing SCFAs are associated with preterm birth via trophoblast function modulation. mBio 2024; 15:e0270224. [PMID: 39526775 PMCID: PMC11633107 DOI: 10.1128/mbio.02702-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Although preterm birth (PTB) is one of the major causes of perinatal mortality and neonatal morbidity, little is known about its complex etiology. An abnormal cervicovaginal microbiome during pregnancy is associated with an increased risk of PTB. The cervicovaginal microbiota and its active metabolites, such as short-chain fatty acids (SCFAs), might be effectively used to predict and diagnose PTB. However, the roles of these proteins and the underlying mechanisms involved remain elusive. We conducted 16S rRNA gene sequencing and used a targeted metabolomics approach to study cervicovaginal swabs obtained from 51 singleton pregnancies and 52 twin pregnancies in the second trimester. Next, functional in vitro experiments were performed to investigate the roles and mechanisms of SCFAs in placental trophoblast cells (HTR8/SVneo cells). Significant cervicovaginal microbiome dysbiosis, characterized by a substantial reduction in the abundance of lactobacilli and overgrowth of anaerobes, was revealed in the second trimester and was strongly associated with subsequent PTB (P = 0.036). Among the paired samples (n = 103), acetic acid was significantly greater in the preterm group than in the term group (P = 0.047). Data obtained from integrated gas chromatography‒mass spectrometry and 16S RNA studies revealed metabolites that were distinctly associated with particular microbial communities. Gardnerella vaginalis was the species most positively associated with acetic acid content. In addition, we identified a marker set consisting of the pregnancy type, acetic acid concentration, and community state type to accurately diagnose PTB. Acetate was associated with increased interleukin (IL)-8 and IL-6 levels and extravillous trophoblast cell migration and invasion through the activation of the extracellular signal-regulated kinase 1/2 signaling pathway in HTR8/SVneo cells. Cervicovaginal microbiota dysbiosis is an important etiological factor of PTB. The cervicovaginal microbiota and its active metabolites can be efficiently used to predict and diagnose PTB. Our findings enrich the microbiota-placenta axis theory and contribute to the development of microecological products for pregnancy. IMPORTANCE Preterm birth (PTB) is a leading cause of infant mortality and long-term health issues, affecting millions of families worldwide. Despite its prevalence, the exact causes of PTB remain unclear. Our study reveals that certain bacteria and their metabolic byproducts in the cervicovaginal environment, specifically short-chain fatty acids (SCFAs), are linked to the risk of preterm birth. By analyzing samples from pregnant women, we found that an imbalance in the vaginal microbiota and increased levels of SCFAs are associated with changes in cells that can lead to early labor. This research provides new insights into how the microbiome influences pregnancy outcomes and highlights potential biomarkers for predicting preterm birth. Understanding these microbial influences could lead to innovative strategies for early diagnosis and prevention, ultimately improving maternal and infant health.
Collapse
Affiliation(s)
- Lulu Meng
- Department of Obstetrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Meng
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruonan Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ayinisa Wubulikasimu
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Peng
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinwen Chang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guihai Ai
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Zou
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Liu
- Department of Obstetrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Duan
- Department of Obstetrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Zhang J, Fan C, Xu C, Zhang Y, Liu J, Zhou C, Feng S, Fan Y. Serum calcium level at 32 weeks of gestation could be applied as a predictor of preterm delivery: a retrospective study. Eur J Med Res 2024; 29:400. [PMID: 39090755 PMCID: PMC11293211 DOI: 10.1186/s40001-024-01984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Preterm delivery (PTD) is associated with severe adverse maternal and neonatal outcomes and higher medical costs. Therefore, PTD warrants more attention. However, predicting PTD remains a challenge for researchers. This study aimed to investigate potential prenatal predictors of PTD. We retrospectively recruited pregnant women who experienced either PTD or term delivery (TD) and underwent laboratory examinations at 32 weeks of gestation. We compared the test results between the two groups and performed logistic regression analysis and receiver operating characteristic (ROC) curve analysis to identify risk factors and predictive factors for PTD. Our investigation revealed that the PTD cohort exhibited statistically significant elevations in lymphocyte count, mean corpuscular hemoglobin concentration, calcium, uric acid, alkaline phosphatase, triglycerides, and total bile acids. Conversely, the PTD group demonstrated statistically significant reductions in mean corpuscular volume, homocysteine, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), neutrophils to (white blood cells-neutrophils) ratio (dNLR), and (neutrophils × monocytes) to lymphocyte ratio (SIRI). The ROC curve analysis revealed that calcium had an area under the curve (AUC) of 0.705, with a cut-off value of 2.215. Logistic regression analysis showed that premature rupture of membranes was an independent risk factor for PTD. Our study demonstrated that serum calcium levels, NLR, dNLR, and other laboratory tests conducted at 32 weeks of gestation can serve as predictors for PTD. Furthermore, we identified premature rupture of membranes as a risk factor for PTD.
Collapse
Affiliation(s)
- Jingjing Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Chong Fan
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Chenyang Xu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Yuhan Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Jingyan Liu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China
| | - Chunxiu Zhou
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China.
| | - Shanwu Feng
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China.
| | - Yuru Fan
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
8
|
Han B, Shang Y, Wang H, Shen Y, Li R, Wang M, Zhuang Z, Wang Z, Fang M, Jing T. Prevalence of synthetic phenolic antioxidants in food contact materials from China and their implications for human dietary exposure through take-away food. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134599. [PMID: 38788569 DOI: 10.1016/j.jhazmat.2024.134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The application of disposable tableware has increased substantially in recent times due to the rapidly growing food delivery business in China. Synthetic phenolic antioxidants (SPAs) are widely used in food contact materials (FCMs) to delay the process of oxidation; however, their compositions, concentrations, and potential health hazards remain unclear. Therefore, FCMs comprised of five materials obtained from 19 categories (n = 118) in China were analyzed for SPAs concentrations. FCMs have been found to contain a variety of SPAs, with ∑SPAs concentrations ranging from 44.18 to 69,485.12 μg/kg (median: 2615.63 μg/kg). The predominant congeners identified in the sample include 2,4-di-tert-butylphenol (2,4-DTBP), 2,6-di-tert-butylphenol (2,6-DTBP), and 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) with a median concentration of 885.75, 555.45 and of 217.44 μg/kg, respectively. Milky tea paper cups, instant noodle buckets, milky teacups, and disposable cups showed high levels of SPAs. 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (AO 2246) was predominantly detected in polyethylene and polyethylene terephthalate-based products. The migration test identified disposable plastic cups and bowls as the predominant FCMs and 2,4-DTBP as the dominant SPA. The exposure risk of SPAs decreased with age. In children, the estimated daily intake of ∑SPAs from FCMs was determined to be 17.56 ng/kg body weight/day, which was 8.3 times higher than that of phthalic acid esters. The current findings indicate the potential ingestion risk of SPAs during the daily life application of multiple FCM categories.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yinzhu Shang
- Technology Center of Wuhan Customs, #15 Jinyinhu Road, Dongxihu District, Wuhan, Hubei 430050, China
| | - Hui Wang
- Technology Center of Wuhan Customs, #15 Jinyinhu Road, Dongxihu District, Wuhan, Hubei 430050, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Min Fang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
9
|
Lee YG, Lee D, Cha H, Ahn J, Koo HS, Hwang SY, Lee G, Kang YJ. The therapeutic effects of vitamin D3 administration on the embryo implantation. Biomed Pharmacother 2024; 176:116853. [PMID: 38850663 DOI: 10.1016/j.biopha.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
Various adjuvants have been tested clinically for patients with problems with embryo implantation during in vitro fertilization (IVF)-embryo transfer (ET). Vitamin D3, an essential modulator of various physiological processes, has received attention as an important adjuvant for successful pregnancy, as many studies have shown a strong association between vitamin D deficiency and implantation failure and fetal growth restriction. However, vitamin D has been widely utilized in different protocols, resulting in non-reproducible and debatable outcomes. In the present study, we demonstrated that cyclic intrauterine administration of vitamin D3 increased endometrial receptivity and angiogenesis, which could be attributed to increased recruitment of uterus-resident natural killer cells. In particular, cyclic treatment of vitamin D3 promoted stable attachment of the embryo onto endometrial cells in vitro, suggesting its merit during the early stage of embryo implantation to support the initial maternal-fetal interactions. Our findings suggest that women with repeated implantation failure may benefit from the use of vitamin D3 as a risk-free adjuvant prior to IVF-ET procedures to improve the uterine environment, and make it favorable for embryo implantation.
Collapse
Affiliation(s)
- Yu-Gyeong Lee
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Danbi Lee
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Hwijae Cha
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea; Department of Medicine, Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, South Korea
| | - Jungho Ahn
- Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea; Department of Microbiology, Research Institute for Basic Medical Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Hwa Seon Koo
- CHA Fertility Center Bundang, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, South Korea; Best of ME Fertility Clinic, 390 Gangnam-daero, Gangnam-gu, Seoul-si 06232, South Korea
| | - Sun-Young Hwang
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Gaeun Lee
- Department of Biomedical Science, School of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea
| | - Youn-Jung Kang
- Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13448, South Korea.
| |
Collapse
|
10
|
Izadifar Z, Cotton J, Chen S, Horvath V, Stejskalova A, Gulati A, LoGrande NT, Budnik B, Shahriar S, Doherty ER, Xie Y, To T, Gilpin SE, Sesay AM, Goyal G, Lebrilla CB, Ingber DE. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human cervix chips. Nat Commun 2024; 15:4578. [PMID: 38811586 PMCID: PMC11137093 DOI: 10.1038/s41467-024-48910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/22/2024] [Indexed: 05/31/2024] Open
Abstract
Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Urology Department, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Cotton
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Siyu Chen
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Viktor Horvath
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sanjid Shahriar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Erin R Doherty
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Tania To
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA.
- Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02134, USA.
| |
Collapse
|
11
|
Xuan Y, Zhao J, Hong X, Yan T, Zhang Y, Zhou X, Zhang J, Wang B. Transition of the genital mollicutes from the second to the third trimester of pregnancy and its association with adverse pregnancy outcomes in GDM women: a prospective, single-center cohort study from China. BMC Pregnancy Childbirth 2024; 24:233. [PMID: 38570745 PMCID: PMC10993520 DOI: 10.1186/s12884-024-06418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The association of genital Mollicutes infection transition with adverse pregnancy outcomes was insignificant among general pregnant women, but there remains a paucity of evidence linking this relationship in gestational diabetes mellitus (GDM) women. The aim was to investigate the association between genital Mollicutes infection and transition and adverse pregnancy outcomes in GDM women, and to explore whether this association still exist when Mollicutes load varied. METHODS We involved pregnant women who attended antenatal care in Chongqing, China. After inclusion and exclusion criteria, we conducted a single-center cohort study of 432 GDM women with pregnancy outcomes from January 1, 2018 to December 31, 2021. The main outcome was adverse pregnancy outcomes, including premature rupture of membrane (PROM), fetal distress, macrosomia and others. The exposure was Mollicutes infection, including Ureaplasma urealyticum (Uu) and Mycoplasma hominis (Mh) collected in both the second and the third trimesters, and testing with polymerase chain reaction method. The logistic regression models were used to estimate the relationship between Mollicutes infection and adverse pregnancy outcomes. RESULTS Among 432 GDM women, 241 (55.79%) were infected with genital Mollicutes in either the second or third trimester of pregnancy. At the end of the pregnancy follow-up, 158 (36.57%) participants had adverse pregnancy outcomes, in which PROM, fetal distress and macrosomia were the most commonly observed adverse outcomes. Compared with the uninfected group, the Mollicutes (+/-) group showed no statistical significant increase in PROM (OR = 1.05, 95% CI:0.51 ∼ 2.08) and fetal distress (OR = 1.21, 95% CI: 0.31 ∼ 3.91). Among the 77 participants who were both Uu positive in the second and third trimesters, 38 participants presented a declined Uu load and 39 presented an increased Uu load. The Uu increased group had a 2.95 odds ratio (95% CI: 1.10~8.44) for adverse pregnancy outcomes. CONCLUSION Mollicutes infection and transition during trimesters were not statistically associated with adverse pregnancy outcomes in GDM women. However, among those consistent infections, women with increasing Uu loads showed increased risks of adverse pregnancy outcomes. For GDM women with certain Mollicutes infection and colonization status, quantitative screening for vaginal infection at different weeks of pregnancy was recommended to provide personalized fertility treatment.
Collapse
Affiliation(s)
- Yan Xuan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, China
| | - Jun Zhao
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, China
| | - Tao Yan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, China
| | - Yue Zhang
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Xu Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, China
| | - Junhui Zhang
- Health Management Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Ueda Y, Mogami H, Chigusa Y, Kawamura Y, Inohaya A, Takakura M, Yasuda E, Matsuzaka Y, Shimada M, Ito S, Morita S, Mandai M, Kondoh E. Hyposecretion of cervical MUC5B is related to preterm birth in pregnant women after cervical excisional surgery. Am J Reprod Immunol 2024; 91:e13832. [PMID: 38462543 DOI: 10.1111/aji.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
PROBLEM Excisional surgery for cervical intraepithelial neoplasia is a risk factor for preterm birth in subsequent pregnancies. However, the underlying mechanisms of this association remain unclear. We previously showed that cervical MUC5B, a mucin protein, may be a barrier to ascending pathogens during pregnancy. We thus hypothesized that hyposecretion of cervical MUC5B is associated with preterm birth after cervical excisional surgery. METHOD OF STUDY This prospective nested case-control study (Study 1) included pregnant women who had previously undergone cervical excisional surgery across 11 hospitals. We used proteomics to compare cervicovaginal fluid at 18-22 weeks of gestation between the preterm and term birth groups. In another case-control analysis (Study 2), we compared MUC5B expression in nonpregnant uterine tissues between 15 women with a history of cervical excisional surgery and 26 women without a history of cervical surgery. RESULTS The abundance of MUC5B in cervicovaginal fluid was significantly decreased in the preterm birth group (fold change = 0.41, p = .035). Among the 480 quantified proteins, MUC5B had the second highest positive correlation with gestational age at delivery in the combined preterm and term groups. The cervicovaginal microbiome composition was not significantly different between the two groups. Cervical length was not correlated with gestational age at delivery (r = 0.18, p = .079). Histologically, the MUC5B-positive area in the nonpregnant cervix was significantly decreased in women with a history of cervical excisional surgery (0.85-fold, p = .048). The distribution of MUC5B-positive areas in the cervical tissues of 26 women without a history of cervical excisional surgery differed across individuals. CONCLUSIONS This study suggests that the primary mechanism by which cervical excisional surgery causes preterm birth is the hyposecretion of MUC5B due to loss of the cervical glands.
Collapse
Affiliation(s)
- Yusuke Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Kawamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asako Inohaya
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahito Takakura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eriko Yasuda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Matsuzaka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Ansari A, You YA, Lee G, Kim SM, Park SW, Hur YM, Kim YJ. Dysbiotic Vaginal Microbiota Induces Preterm Birth Cascade via Pathogenic Molecules in the Vagina. Metabolites 2024; 14:45. [PMID: 38248848 PMCID: PMC10821287 DOI: 10.3390/metabo14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Dysbiotic vaginal microbiota (DVM) disturb the vaginal environment, including pH, metabolite, protein, and cytokine profiles. This study investigated the impact of DVM on the vaginal environment in 40 Korean pregnant women and identified predictable biomarkers of birth outcomes. Cervicovaginal fluid (CVF) samples were collected in the third trimester using vaginal swabs, examined for pH, and stored at -80 °C for further analysis. The samples were grouped as full-term (FTB, n = 20) and preterm (PTB, n = 20) births. The microbiota was profiled in the V1-V9 regions. The levels of targeted metabolites, TLR-4, and cytokines were determined. The pH of CVF from PTB (>4.5) was significantly higher than that of the CVF from FTB (>3.5) (p < 0.05). Neonatal gestational age at delivery, birth weight, and Apgar score differed significantly between groups. The relative abundances of beneficial Lactobacillus spp., such as Lactobacillus gasseri, Lactobacillus jensenii, and Bifidobacterium, were higher in FTB, whereas those of pathogenic Enterococcus faecalis, Staphylococcus, Prevotella, Ureaplasma parvum, and Corynebacterium spp. were higher in PTB. Acetate, methanol, TLR-4, and TNF-α levels were negatively correlated with gestational age at delivery and birth weight. Moreover, ethanol, methanol, TLR-4, IL-6, IL-1β, and TNF-α levels were positively correlated with succinate, acetate, acetoacetate, formate, and ammonia. Overall, DVM induces preterm birth via pathogenic molecules in the vagina.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
| | - Gain Lee
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Sun Wha Park
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
| | - Young Min Hur
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| |
Collapse
|
14
|
Tantengco OAG, Menon R. Effects of Ureaplasma parvum infection in the exosome biogenesis-related proteins in ectocervical epithelial cells. Am J Reprod Immunol 2024; 91:e13803. [PMID: 38282606 PMCID: PMC10827354 DOI: 10.1111/aji.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 01/30/2024] Open
Abstract
Ureaplasma parvum is a mycoplasma commonly associated with female reproductive pathologies, such as preterm birth and infertility. It can survive intracellularly and utilize exosomes to propagate infection and its virulence factors. This study explored the differential protein composition of exosomes derived from normal and U. parvum-infected cells. We also investigated the impact of U. parvum on exosome biogenesis in ectocervical epithelial cells. Ectocervical epithelial (ECTO) cells were infected with U. parvum, and immunocytochemical staining was performed using U. parvum-specific marker multiple banded antigen (mba) and exosome marker CD9. NanoLC-MS/MS analysis was conducted to identify differentially expressed proteins in exosomes. Ingenuity Pathway Analysis (IPA) was performed to identify affected canonical pathways and biological functions associated with the protein cargo of exosomes. Western blot analysis of ECTO cells validated the proteomic findings in ECTO cells. U. parvum exhibited colonization of ECTO cells and colocalization with CD9-positive intraluminal vesicles. Proteomic analysis revealed decreased protein abundance and distinct protein profiles in exosomes derived from U. parvum-infected ECTO cells. Differentially expressed proteins were associated with clathrin-mediated endocytosis and various signaling pathways indicative of infection, inflammation, and cell death processes. Additionally, U. parvum infection altered proteins involved in exosome biogenesis. In ECTO cells, U. parvum infection significantly decreased clathrin, ALIX, CD9, and CD63 and significantly increased TSG101, Rab5, Rab35, and UGCG. These findings contribute to our understanding of the infection mechanism and shed light on the importance of exosome-mediated communication in the pathophysiology of diseases affecting the cervix, such as cervicitis and preterm birth.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
15
|
Galaz J, Romero R, Greenberg JM, Theis KR, Arenas-Hernandez M, Xu Y, Farias-Jofre M, Miller D, Kanninen T, Garcia-Flores V, Gomez-Lopez N. Host-microbiome interactions in distinct subsets of preterm labor and birth. iScience 2023; 26:108341. [PMID: 38047079 PMCID: PMC10692673 DOI: 10.1016/j.isci.2023.108341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Preterm birth, the leading cause of perinatal morbidity, often follows premature labor, a syndrome whose prevention remains a challenge. To better understand the relationship between premature labor and host-microbiome interactions, we conducted a mechanistic investigation using three preterm birth models. We report that intra-amniotic delivery of LPS triggers inflammatory responses in the amniotic cavity and cervico-vaginal microenvironment, causing vaginal microbiome changes and signs of active labor. Intra-amniotic IL-1α delivery causes a moderate inflammatory response in the amniotic cavity but increasing inflammation in the cervico-vaginal space, leading to vaginal microbiome disruption and signs of active labor. Conversely, progesterone action blockade by RU-486 triggers local immune responses accompanying signs of active labor without altering the vaginal microbiome. Preterm labor facilitates ascension of cervico-vaginal bacteria into the amniotic cavity, regardless of stimulus. This study provides compelling mechanistic insights into the dynamic host-microbiome interactions within the cervico-vaginal microenvironment that accompany premature labor and birth.
Collapse
Affiliation(s)
- Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan M. Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kevin R. Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Rittenschober-Boehm J, Fuiko R, Farr A, Willinger B, Berger A, Goeral K. Intrauterine Detection of Ureaplasma Species after Vaginal Colonization in Pregnancy and Neonatal Outcome. Neonatology 2023; 121:187-194. [PMID: 38052191 PMCID: PMC10994598 DOI: 10.1159/000534779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Intrauterine infection with Ureaplasma species (U.spp.) is mostly a result of vaginal colonization with subsequent ascending infection and is associated with adverse pregnancy outcome. Little is known about rates and risk factors for ascending infection. Aim of the current study was to analyse the frequency of ascending U.spp. infection in vaginally colonized pregnant women delivering preterm and subsequent short- and long-term outcome of infants. METHODS Women delivering ≤32 weeks of gestation with available data on vaginal U.spp. colonization in early pregnancy as well as amniotic and placental colonization screening during caesarean section were included. Neonatal short- and long-term outcome was analysed depending on vaginal and intrauterine colonization. RESULTS Seventy-two women giving birth to 104 preterm infants were included. Intrauterine microbial invasion was found in 23/72 (31.9%) pregnancies. The most commonly detected organisms were U.spp. (52.2%), followed by E. coli (21.7%) and Enterococcus faecalis (17.4%). Intrauterine growth of U.spp. occurred exclusively after previous vaginal colonization in early pregnancy (42/72; 58.3%) and was found in 12/42 (28.6%) cases. Ascending U.spp. infection mainly occurred in pregnancies delivering <28 weeks after preterm rupture of membranes or preterm labour (9/17, 52.3%). Intrauterine detection of U.spp., but not vaginal colonization, was associated with a significantly higher rate of severe intraventricular haemorrhage, retinopathy of prematurity, bronchopulmonary dysplasia, and unfavourable psychomotor outcome. CONCLUSION Ascending U.spp. infection after previous vaginal colonization occurred in almost one-third of pregnancies delivering ≤32 weeks, with particularly high rates in those <28 weeks, and was associated with adverse outcome of preterm infants.
Collapse
Affiliation(s)
- Judith Rittenschober-Boehm
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Renate Fuiko
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Alex Farr
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Birgit Willinger
- Division for Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katharina Goeral
- Division of Neonatology, Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Wang Z, Xia M, Chen Y, Yang Z, Yi J, Kong L, Zhang H, Luo G, Li R, Dou Y. Prevalence of Ureaplasma species among patients at a tertiary hospital in China: a 10-year retrospective study from 2013 to 2022. Eur J Clin Microbiol Infect Dis 2023; 42:1425-1437. [PMID: 37843646 DOI: 10.1007/s10096-023-04678-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Ureaplasma species are common pathogens of the urogenital tract and can cause a range of diseases. Unfortunately, there is still a scarcity of large-scale and cross-sectional studies on the prevalence of Ureaplasma species in China to clarify their epidemic patterns. METHODS This study retrospectively analyzed the data of 18667 patients who visited Peking Union Medical College Hospital for showing various symptoms of (suspected) Ureaplasma species infection during the period 2013-2022. The overall prevalence of Ureaplasma species was calculated, and subgroup analyses were conducted in view of gender, age, specimen types, and diagnosis in every year within the period studied. Furthermore, previous literature that reported on the prevalence of Ureaplasma species in various regions of China was searched and summarized. RESULTS The overall positive rate of Ureaplasma species in this study reached 42.1% (7861/18667). Specifically, the prevalence of Ureaplasma species was significantly higher in female patients, while the highest detection rate was found in the 21-50 age group. From 2013 to 2022, there were no significant differences in positive rates of Ureaplasma species among years. However, the detection rate of Ureaplasma species was decreased in COVID-19 period (2020-2022) compared to pre-COVID-19 period (2017-2019). In view of the distribution of patients, outpatients predominated, but the detection rate was lower than inpatients. Urine was the most common specimen type, while cervical swabs had the highest detection rate of Ureaplasma species. When grouped by diagnosis, the highest positive rate of Ureaplasma species was seen in patients with adverse pregnancy outcomes and the lowest rate in patients with prostate disease. The previous literature, although heterogeneous, collectively suggested a high prevalence of Ureaplasma species in China. CONCLUSIONS Our study has shown that Ureaplasma species have reached a significant prevalence in China and demands adequate attention.
Collapse
Affiliation(s)
- Ziran Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mingqi Xia
- Department of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhuo Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lingjun Kong
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Han Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guoju Luo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Rui Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yaling Dou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
18
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Kolli P, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ɛ restricts Zika virus infection in the female reproductive tract. PNAS NEXUS 2023; 2:pgad350. [PMID: 37954158 PMCID: PMC10639110 DOI: 10.1093/pnasnexus/pgad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Interferon ɛ (IFNɛ) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections. Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNɛ contributes to protection against ZIKV infection in vivo is unknown. In this study, we show that IFNɛ plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNɛ was expressed not only by epithelial cells in the FRT but also by immune and stromal cells at baseline or after exposure to viruses or specific Toll-like receptor (TLR) agonists. IFNɛ-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal but not subcutaneous ZIKV infection. IFNɛ deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNɛ protected Ifnɛ-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNɛ was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNɛ in mediating protection against the transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Priyanka Kolli
- Graduate School of Biological Sciences, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mirella Salvatore
- Departmentof Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ε restricts Zika virus infection in the female reproductive tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535968. [PMID: 37066223 PMCID: PMC10104157 DOI: 10.1101/2023.04.06.535968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Interferon ε (IFNε) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections (STIs). Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNε contributes to protection against ZIKV infection in vivo is unknown. Here, we show that IFNε plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNε was expressed not only by epithelial cells in the FRT, but also by certain immune and other cells at baseline or after exposure to viruses or specific TLR agonists. IFNε-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal, but not subcutaneous ZIKV infection. IFNε-deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNε protected Ifnε-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNε was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNε in mediating protection against transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q. Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY10461
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L. Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
20
|
Juma KM, Inoue E, Asada K, Fukuda W, Morimoto K, Yamagata M, Takita T, Kojima K, Suzuki K, Nakura Y, Yanagihara I, Fujiwara S, Yasukawa K. Recombinase polymerase amplification using novel thermostable strand-displacing DNA polymerases from Aeribacillus pallidus and Geobacillus zalihae. J Biosci Bioeng 2023; 135:282-290. [PMID: 36806411 DOI: 10.1016/j.jbiosc.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Recombinase polymerase amplification (RPA) is an isothermal DNA amplification reaction at around 41 °C using recombinase (Rec), single-stranded DNA-binding protein (SSB), and strand-displacing DNA polymerase (Pol). Component instability and the need to store commercial kits in a deep freezer until use are some limitations of RPA. In a previous study, Bacillus stearothermophilus Pol (Bst-Pol) was used as a thermostable strand-displacing DNA polymerase in RPA. Here, we attempted to optimize the lyophilization conditions for RPA with newly isolated thermostable DNA polymerases for storage at room temperature. We isolated novel two thermostable strand-displacing DNA polymerases, one from a thermophilic bacterium Aeribacillus pallidus (H1) and the other from Geobacillus zalihae (C1), and evaluated their performances in RPA reaction. Urease subunit β (UreB) DNA from Ureaplasma parvum serovar 3 was used as a model target for evaluation. The RPA reaction with H1-Pol or C1-Pol was performed at 41 °C with the in vitro synthesized standard UreB DNA. The minimal initial copy numbers of standard DNA from which the amplified products were observed were 600, 600, and 6000 copies for RPA with H1-Pol, C1-Pol, and Bst-Pol, respectively. Optimization was carried out using RPA components, showing that the lyophilized RPA reagents containing H1-Pol exhibited the same performance as the corresponding liquid RPA reagents. In addition, lyophilized RPA reagents with H1-Pol showed almost the same activity after two weeks of storage at room temperature as the freshly prepared liquid RPA reagents. These results suggest that lyophilized RPA reagents with H1-Pol are preferable to liquid RPA reagents for onsite use.
Collapse
Affiliation(s)
- Kevin Maafu Juma
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eisuke Inoue
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kengo Asada
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Wakao Fukuda
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kenta Morimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaya Yamagata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Kojima
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo 670-8524, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi-shi, Osaka 594-1101, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi-shi, Osaka 594-1101, Japan
| | - Shinsuke Fujiwara
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
21
|
Cooley A, Madhukaran S, Stroebele E, Colon Caraballo M, Wang L, Akgul Y, Hon GC, Mahendroo M. Dynamic states of cervical epithelia during pregnancy and epithelial barrier disruption. iScience 2023; 26:105953. [PMID: 36718364 PMCID: PMC9883190 DOI: 10.1016/j.isci.2023.105953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The cervical epithelium undergoes changes in proliferation, differentiation, and function that are critical to ensure fertility and maintain pregnancy. Here, we identify cervical epithelial subtypes in non-pregnant, pregnant, and in labor mice using single-cell transcriptome and spatial analysis. We identify heterogeneous subpopulations of epithelia displaying spatial and temporal specificity. Notably in pregnancy, two goblet cell subtypes are present in the most luminal layers with one goblet population expanding earlier in pregnancy than the other goblet population. The goblet populations express novel protective factors and distinct mucosal networks. Single-cell analysis in a model of cervical epithelial barrier disruption indicates untimely basal cell proliferation precedes the expansion of goblet cells with diminished mucosal integrity. These data demonstrate how the cervical epithelium undergoes continuous remodeling to maintain dynamic states of homeostasis in pregnancy and labor, and provide a framework to understand perturbations in epithelial health that increase the risk of premature birth.
Collapse
Affiliation(s)
- Anne Cooley
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - ShanmugaPriyaa Madhukaran
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Stroebele
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mariano Colon Caraballo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yucel Akgul
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary C. Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mala Mahendroo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Miller FA, Sacco A, David AL, Boyle AK. Interventions for Infection and Inflammation-Induced Preterm Birth: a Preclinical Systematic Review. Reprod Sci 2023; 30:361-379. [PMID: 35426035 PMCID: PMC9988807 DOI: 10.1007/s43032-022-00934-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/02/2022] [Indexed: 12/09/2022]
Abstract
Spontaneous preterm births (< 37 weeks gestation) are frequently associated with infection. Current treatment options are limited but new therapeutic interventions are being developed in animal models. In this PROSPERO-registered preclinical systematic review, we aimed to summarise promising interventions for infection/inflammation-induced preterm birth. Following PRISMA guidance, we searched PubMed, EMBASE, and Web of Science using the themes: "animal models", "preterm birth", "inflammation", and "therapeutics". We included original quantitative, peer-reviewed, and controlled studies applying prenatal interventions to prevent infection/inflammation-induced preterm birth in animal models. We employed two risk of bias tools. Of 4020 identified studies, 23 studies (24 interventions) met our inclusion criteria. All studies used mouse models. Preterm birth was most commonly induced by lipopolysaccharide (18 studies) or Escherichia coli (4 studies). Models varied according to infectious agent serotype, dose, and route of delivery. Gestational length was significantly prolonged in 20/24 interventions (83%) and markers of maternal inflammation were reduced in 20/23 interventions (87%). Interventions targeting interleukin-1, interleukin-6, and toll-like receptors show particular therapeutic potential. However, due to the heterogeneity of the methodology of the included studies, meta-analysis was impossible. All studies were assigned an unclear risk of bias using the SYRCLE risk of bias tool. Interventions targeting inflammation demonstrate therapeutic potential for the prevention of preterm birth. However, better standardisation of preterm birth models, including the dose, serotype, timing of administration and pathogenicity of infectious agent, and outcome reporting is urgently required to improve the reproducibility of preclinical studies, allow meaningful comparison of intervention efficacy, and aid clinical translation.
Collapse
Affiliation(s)
- Faith A Miller
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Adalina Sacco
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Ashley K Boyle
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
23
|
Amabebe E, Richardson LS, Bento GFC, Radnaa E, Kechichian T, Menon R, Anumba DOC. Ureaplasma parvum infection induces inflammatory changes in vaginal epithelial cells independent of sialidase. Mol Biol Rep 2023; 50:3035-3043. [PMID: 36662453 DOI: 10.1007/s11033-022-08183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Ureaplasma, a genus of the order Mycoplasmatales and commonly grouped with Mycoplasma as genital mycoplasma is one of the most common microbes isolated from women with infection/inflammation-associated preterm labor (PTL). Mycoplasma spp. produce sialidase that cleaves sialic acid from glycans of vaginal mucous membranes and facilitates adherence and invasion of the epithelium by pathobionts, and dysregulated immune response. However, whether Ureaplasma species can induce the production of sialidase is yet to be demonstrated. We examined U. parvum-infected vaginal epithelial cells (VECs) for the production of sialidase and pro-inflammatory cytokines. METHODS Immortalized VECs were cultured in appropriate media and treated with U. parvum in a concentration of 1 × 105 DNA copies/ml. After 24 h of treatment, cells and media were harvested. To confirm infection and cell uptake, immunocytochemistry for multi-banded antigen (MBA) was performed. Pro-inflammatory cytokine production and protein analysis for sialidase confirmed pro-labor pathways. RESULTS Infection of VECs was confirmed by the presence of intracellular MBA. Western blot analysis showed no significant increase in sialidase expression from U. parvum-treated VECs compared to uninfected cells. However, U. parvum infection induced 2-3-fold increased production of GM-CSF (p = 0.03), IL-6 (p = 0.01), and IL-8 (p = 0.01) in VECs compared to controls. CONCLUSION U. parvum infection of VECs induced inflammatory imbalance associated with vaginal dysbiosis but did not alter sialidase expression at the cellular level. These data suggest that U. parvum's pathogenic effect could be propagated by locally produced pro-inflammatory cytokines and, unlike other genital mycoplasmas, may be independent of sialidase.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Lauren S Richardson
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Giovana Fernanda Cosi Bento
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Pathology, Universidade Estadual Paulista, Botucatu Medical School, Botucatu, Brazil
| | - Enkhtuya Radnaa
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Talar Kechichian
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, 77555-1062, Galveston, TX, USA.
| | - Dilly O C Anumba
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK. .,Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The University of Sheffield, 4th Floor, Jessop Wing, Tree Root Walk, S10 2SF, Sheffield, UK.
| |
Collapse
|
24
|
Ueda Y, Mogami H, Kawamura Y, Takakura M, Inohaya A, Yasuda E, Matsuzaka Y, Chigusa Y, Ito S, Mandai M, Kondoh E. Cervical MUC5B and MUC5AC are Barriers to Ascending Pathogens During Pregnancy. J Clin Endocrinol Metab 2022; 107:3010-3021. [PMID: 36112402 DOI: 10.1210/clinem/dgac545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 12/15/2022]
Abstract
CONTEXT Cervical excision is a risk factor for preterm birth. This suggests that the cervix plays an essential role in the maintenance of pregnancy. OBJECTIVE We investigated the role of the cervix through proteomic analysis of cervicovaginal fluid (CVF) from pregnant women after trachelectomy surgery, the natural model of a lack of cervix. METHODS The proteome compositions of CVF in pregnant women after trachelectomy were compared with those in control pregnant women by liquid chromatography-tandem mass spectrometry and label-free relative quantification. MUC5B/AC expression in the human and murine cervices was analyzed by immunohistochemistry. Regulation of MUC5B/AC expression by sex steroids was assessed in primary human cervical epithelial cells. In a pregnant mouse model of ascending infection, Escherichia coli or phosphate-buffered saline was inoculated into the vagina at 16.5 dpc, and the cervices were collected at 17.5 dpc. RESULTS The expression of MUC5B/5AC in cervicovaginal fluid was decreased in pregnant women after trachelectomy concomitant with the anatomical loss of cervical glands. Post-trachelectomy women delivered at term when MUC5B/AC abundance was greater than the mean normalized abundance of the control. MUC5B levels in the cervix were increased during pregnancy in both humans and mice. MUC5B mRNA was increased by addition of estradiol in human cervical epithelial cells, whereas MUC5AC was not. In a pregnant mouse model of ascending infection, E. coli was trapped in the MUC5B/AC-expressing mucin of the cervix, and neutrophils were colocalized there. CONCLUSION Endocervical MUC5B and MUC5AC may be barriers to ascending pathogens during pregnancy.
Collapse
Affiliation(s)
- Yusuke Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yosuke Kawamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahito Takakura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Asako Inohaya
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eriko Yasuda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yu Matsuzaka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
25
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
26
|
Tripathy S, Nallasamy S, Mahendroo M. Progesterone and its receptor signaling in cervical remodeling: Mechanisms of physiological actions and therapeutic implications. J Steroid Biochem Mol Biol 2022; 223:106137. [PMID: 35690241 PMCID: PMC9509468 DOI: 10.1016/j.jsbmb.2022.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The remodeling of the cervix from a closed rigid structure to one that can open sufficiently for passage of a term infant is achieved by a complex series of molecular events that in large part are regulated by the steroid hormones progesterone and estrogen. Among hormonal influences, progesterone exerts a dominant role for most of pregnancy to initiate a loss of tissue strength yet maintain competence in a phase termed softening. Equally important are the molecular events that abrogate progesterone function in late pregnancy to allow a loss of tissue competence and strength during cervical ripening and dilation. In this review, we focus on current understanding by which progesterone receptor signaling for the majority of pregnancy followed by a loss/shift in progesterone receptor action at the end of pregnancy, collectively ensure cervical remodeling as necessary for successful parturition.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanmugasundaram Nallasamy
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mala Mahendroo
- Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Tantengco OAG, Richardson LS, Radnaa E, Kammala AK, Kim S, Medina PMB, Han A, Menon R. Modeling ascending Ureaplasma parvum infection through the female reproductive tract using vagina-cervix-decidua-organ-on-a-chip and feto-maternal interface-organ-on-a-chip. FASEB J 2022; 36:e22551. [PMID: 36106554 PMCID: PMC9500016 DOI: 10.1096/fj.202200872r] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 09/02/2023]
Abstract
Genital mycoplasmas can break the cervical barrier and cause intraamniotic infection and preterm birth. This study developed a six-chamber vagina-cervix-decidua-organ-on-a-chip (VCD-OOC) that recapitulates the female reproductive tract during pregnancy with culture chambers populated by vaginal epithelial cells, cervical epithelial and stromal cells, and decidual cells. Cells cultured in VCD-OOC were characterized by morphology and immunostaining for cell-specific markers. We transferred the media from the decidual cell chamber of the VCD-OOC to decidual cell chamber in feto-maternal interface organ-on-a-chip (FMi-OOC), which contains the fetal membrane layers. An ascending Ureaplasma parvum infection was created in VCD-OOC. U. parvum was monitored for 48 h post-infection with their cytotoxicity (LDH assay) and inflammatory effects (multiplex cytokine assay) in the cells tested. An ascending U. parvum infection model of PTB was developed using CD-1 mice. The cell morphology and expression of cell-specific markers in the VCD-OOC mimicked those seen in lower genital tract tissues. U. parvum reached the cervical epithelial cells and decidua within 48 h and did not cause cell death in VCD-OOC or FMi-OOC cells. U. parvum infection promoted minimal inflammation, while the combination of U. parvum and LPS promoted massive inflammation in the VCD-OOC and FMi-OOC cells. In the animal model, U. parvum vaginal inoculation of low-dose U. parvum did not result in PTB, and even a high dose had only some effects on PTB (20%). However, intra-amniotic injection of U. parvum resulted in 67% PTB. We report the colonization of U. parvum in various cell types; however, inconsistent, and low-grade inflammation across multiple cell types suggests poor immunogenicity induced by U. parvum.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
28
|
Pavlidis I, Stock SJ. Preterm Birth Therapies to Target Inflammation. J Clin Pharmacol 2022; 62 Suppl 1:S79-S93. [PMID: 36106783 PMCID: PMC9545799 DOI: 10.1002/jcph.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022]
Abstract
Preterm birth (PTB; defined as delivery before 37 weeks of pregnancy) is the leading cause of morbidity and mortality in infants and children aged <5 years, conferring potentially devastating short- and long-term complications. Despite extensive research in the field, there is currently a paucity of medications available for PTB prevention and treatment. Over the past few decades, inflammation in gestational tissues has emerged at the forefront of PTB pathophysiology. Even in the absence of infection, inflammation alone can prematurely activate the main components of parturition resulting in uterine contractions, cervical ripening and dilatation, membrane rupture, and subsequent PTB. Mechanistic studies have identified critical elements of the complex inflammatory molecular pathways involved in PTB. Here, we discuss therapeutic options that target such key mediators with an aim to prevent, postpone, or treat PTB. We provide an overview of more traditional therapies that are currently used or being tested in humans, and we highlight recent advances in preclinical studies introducing novel approaches with therapeutic potential. We conclude that urgent collaborative action is required to address the unmet need of developing effective strategies to tackle the challenge of PTB and its complications.
Collapse
Affiliation(s)
- Ioannis Pavlidis
- University of Warwick Biomedical Research Unit in Reproductive HealthCoventryUK
| | | |
Collapse
|
29
|
Tantengco OAG, Richardson LS, Radnaa E, Kammala AK, Kim S, Medina PMB, Han A, Menon R. Exosomes from Ureaplasma parvum-infected ectocervical epithelial cells promote feto-maternal interface inflammation but are insufficient to cause preterm delivery. Front Cell Dev Biol 2022; 10:931609. [PMID: 36046342 PMCID: PMC9420848 DOI: 10.3389/fcell.2022.931609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
This study determined if exosomes from ectocervical epithelial (ECTO) cells infected with Ureaplasma parvum (U. parvum) can carry bacterial antigens and cause inflammation at the feto-maternal interface using two organ-on-chip devices, one representing the vagina-cervix-decidua and another one mimicking the feto-maternal interface, and whether such inflammation can lead to preterm birth (PTB). Exosomes from U. parvum-infected ECTO cells were characterized using cryo-electron microscopy, nanoparticle tracking analysis, Western blot, and Exoview analysis. The antigenicity of the exosomes from U. parvum-infected ECTO cells was also tested using THP-1 cells and our newly developed vagina-cervix-decidua organ-on-a-chip (VCD-OOC) having six microchannel-interconnected cell culture chambers containing cells from the vagina, ectocervical, endocervical, transformation zone epithelia, cervical stroma, and decidua. The VCD-OOC was linked to the maternal side of our previously developed feto-maternal interface organ-on-a-chip (FMi-OOC). Cell culture media were collected after 48 h to determine the cytokine levels from each cell line via ELISA. For physiological validation of our in vitro data, high-dose exosomes from U. parvum-infected ECTO cells were delivered to the vagina of pregnant CD-1 mice on E15. Mice were monitored for preterm birth (PTB, < E18.5 days). Exosomes from ECTO cells infected with U. parvum (UP ECTO) showed significant downregulation of exosome markers CD9, CD63, and CD81, but contained multiple banded antigen (MBA), a U. parvum virulence factor. Monoculture experiments showed that exosomes from UP ECTO cells delivered MBA from the host cell to uninfected endocervical epithelial cells (ENDO). Moreover, exposure of THP-1 cells to exosomes from UP ECTO cells resulted in increased IL-8 and TNFα and reduced IL-10. The OOC experiments showed that low and high doses of exosomes from UP ECTO cells produced a cell type-specific inflammatory response in the VCD-OOC and FMi-OOC. Specifically, exosomes from UP ECTO cells increased pro-inflammatory cytokines such as GM-CSF, IL-6, and IL-8 in cervical, decidual, chorion trophoblast, and amnion mesenchymal cells. The results from our OOC models were validated in our in vivo mice model. The inflammatory response was insufficient to promote PTB. These results showed the potential use of the VCD-OOC and FMi-OOC in simulating the pathophysiological processes in vivo.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
30
|
Lacroix G, Gouyer V, Rocher M, Gottrand F, Desseyn JL. A porous cervical mucus plug leads to preterm birth induced by experimental vaginal infection in mice. iScience 2022; 25:104526. [PMID: 35754724 PMCID: PMC9218384 DOI: 10.1016/j.isci.2022.104526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
During gestation, the cervical mucus plug (CMP) acts to seal the cervical canal. Pilot studies in humans have suggested that a porous CMP may increase the risk of uterine infection and preterm birth. We examined the gel-forming content of the mouse vagina and the CMP. We experimentally infected pregnant mice by intravaginal administration of pathogens related to preterm birth in humans. We found that the epithelium in both the vagina and cervical canal of pregnant mice produced the two gel-forming mucins Muc5b and Muc5ac. The CMP was porous in Muc5b-deficient mice for which intravaginal administration of Escherichia coli O 55 led to the activation of an inflammatory response in the uterus and 100% preterm births. The pathogen was found in the mucus plug and uterus. This study shows that Muc5b is essential for the in vivo barrier function and the prevention of uterine infections during gestation. Muc5b and Muc5ac are the main gel-forming mucins of the mouse vagina and cervical canal During pregnancy, a cervical mucus plug (CMP) is formed and seals the cervical canal Muc5b-deficient CMP is highly porous Inflammation following vaginal infection causes preterm birth in Muc5b-deficient mice
Collapse
Affiliation(s)
- Guillaume Lacroix
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Valérie Gouyer
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Mylène Rocher
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Frédéric Gottrand
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Jean-Luc Desseyn
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| |
Collapse
|
31
|
Gomez-Lopez N, Galaz J, Miller D, Farias-Jofre M, Liu Z, Arenas-Hernandez M, Garcia-Flores V, Shaffer Z, Greenberg J, Theis KR, Romero R. The immunobiology of preterm labor and birth: intra-amniotic inflammation or breakdown of maternal-fetal homeostasis. Reproduction 2022; 164:R11-R45. [PMID: 35559791 PMCID: PMC9233101 DOI: 10.1530/rep-22-0046] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
In brief The syndrome of preterm labor comprises multiple established and novel etiologies. This review summarizes the distinct immune mechanisms implicated in preterm labor and birth and highlights potential strategies for its prevention. Abstract Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, results from preterm labor, a syndrome that includes multiple etiologies. In this review, we have summarized the immune mechanisms implicated in intra-amniotic inflammation, the best-characterized cause of preterm labor and birth, as well as novel etiologies non-associated with intra-amniotic inflammation (i.e. formally known as idiopathic). While the intra-amniotic inflammatory responses driven by microbes (infection) or alarmins (sterile) have some overlap in the participating cellular and molecular processes, the distinct natures of these two conditions necessitate the implementation of specific approaches to prevent adverse pregnancy and neonatal outcomes. Intra-amniotic infection can be treated with the correct antibiotics, whereas sterile intra-amniotic inflammation could potentially be treated by administering a combination of anti-inflammatory drugs (e.g. betamethasone, inflammasome inhibitors, etc.). Recent evidence also supports the role of fetal T-cell activation as a newly described trigger for preterm labor and birth in a subset of cases diagnosed as idiopathic. Moreover, herein we also provide evidence of two maternally-driven immune mechanisms responsible for preterm births formerly considered to be idiopathic. First, the impairment of maternal Tregs can lead to preterm birth, likely due to the loss of immunosuppressive activity resulting in unleashed effector T-cell responses. Secondly, homeostatic macrophages were shown to be essential for maintaining pregnancy and promoting fetal development, and the adoptive transfer of homeostatic M2-polarized macrophages shows great promise for preventing inflammation-induced preterm birth. Collectively, in this review, we discuss the established and novel immune mechanisms responsible for preterm birth and highlight the potential targets for novel strategies aimed at preventing the multi-etiological syndrome of preterm labor leading to preterm birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zhenjie Liu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zachary Shaffer
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Jonathan Greenberg
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201, USA
- Detroit Medical Center, Detroit, Michigan, 48201, USA
| |
Collapse
|
32
|
Park S, You YA, Kim YH, Kwon E, Ansari A, Kim SM, Lee G, Hur YM, Jung YJ, Kim K, Kim YJ. Ureaplasma and Prevotella colonization with Lactobacillus abundance during pregnancy facilitates term birth. Sci Rep 2022; 12:10148. [PMID: 35710793 PMCID: PMC9203766 DOI: 10.1038/s41598-022-13871-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Ureaplasma and Prevotella infections are well-known bacteria associated with preterm birth. However, with the development of metagenome sequencing techniques, it has been found that not all Ureaplasma and Prevotella colonizations cause preterm birth. The purpose of this study was to determine the association between Ureaplasma and Prevotella colonization with the induction of preterm birth even in the presence of Lactobacillus. In this matched case–control study, a total of 203 pregnant Korean women were selected and their cervicovaginal fluid samples were collected during mid-pregnancy. The microbiome profiles of the cervicovaginal fluid were analyzed using 16S rRNA gene amplification. Sequencing data were processed using QIIME1.9.1. Statistical analyses were performed using R software, and microbiome analysis was performed using the MicrobiomeAnalyst and Calypso software. A positive correlation between Ureaplasma and other genera was highly related to preterm birth, but interestingly, there was a negative correlation with Lactobacillus and term birth, with the same pattern observed with Prevotella. Ureaplasma and Prevotella colonization with Lactobacillus abundance during pregnancy facilitates term birth, although Ureaplasma and Prevotella are associated with preterm birth. Balanced colonization between Lactobacillus and Ureaplasma and Prevotella is important to prevent preterm birth.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | - Eunjin Kwon
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Gain Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea
| | - Yun Ji Jung
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul, Korea
| | | | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Korea.
| |
Collapse
|
33
|
Noda-Nicolau NM, Tantengco OAG, Polettini J, Silva MC, Bento GFC, Cursino GC, Marconi C, Lamont RF, Taylor BD, Silva MG, Jupiter D, Menon R. Genital Mycoplasmas and Biomarkers of Inflammation and Their Association With Spontaneous Preterm Birth and Preterm Prelabor Rupture of Membranes: A Systematic Review and Meta-Analysis. Front Microbiol 2022; 13:859732. [PMID: 35432251 PMCID: PMC9006060 DOI: 10.3389/fmicb.2022.859732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Genital mycoplasmas (GM), such as Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma parvum, and Ureaplasma urealyticum are commonly associated with spontaneous preterm labor (SPTL), spontaneous preterm birth (PTB), and preterm prelabor rupture of membranes (PPROM). This study determined the association between GM and such adverse pregnancy outcomes. We searched for studies published 1980–2019 in MEDLINE, EMBASE, and Web of Science. Studies were eligible when GM was detected during pregnancy. We included 93 and 51 studies in determining the prevalence and the inflammatory biomarkers associated with GM, respectively, using the “metafor” package within R. The protocol was registered with PROSPERO (registration no. CRD42016047297). Women with the studied adverse pregnancy outcomes had significantly higher odds of presence with GM compared to women who delivered at term. For PTB, the odds ratios were: M. hominis (OR: 2.25; CI: 1.35–3.75; I2: 44%), M. genitalium (OR: 2.04; CIL 1.18–3.53; I2: 20%), U. parvum (OR: 1.75; CI: 1.47–2.07; I2: 0%), U. urealyticum (OR: 1.50; CI: 1.08–2.07; I2: 58%). SPTL had significantly higher odds with M. hominis (OR: 1.96; CI: 1.19–3.23; I2: 1%) or U. urealyticum (OR: 2.37; CI: 1.20–4.70; I2: 76%) compared to women without SPTL. Women with PPROM had significantly higher odds with M. hominis (OR: 2.09; CI: 1.42–3.08; I2: 0%) than women without PPROM. However, our subgroup analysis based on the diagnostic test and the sample used for detecting GM showed a higher prevalence of GM in maternal samples than in fetal samples. GM presence of the cervix and vagina was associated with lower odds of PTB and preterm labor (PTL). In contrast, GM presence in the AF, fetal membrane, and placenta was associated with increased odds of PTB and PTL. However, genital mycoplasmas may not elicit the massive inflammation required to trigger PTB. In conclusion, GM presence in the fetal tissues was associated with significantly increased odds of PTB and PTL.
Collapse
Affiliation(s)
- Nathalia M Noda-Nicolau
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, Brazil
| | - Ourlad Alzeus G Tantengco
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Jossimara Polettini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Passo Fundo, Brazil
| | - Mariana C Silva
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, Brazil
| | - Giovana F C Bento
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, Brazil
| | - Geovanna C Cursino
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, Brazil
| | - Camila Marconi
- Department of Basic Pathology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ronald F Lamont
- Research Unit of Gynaecology and Obstetrics, Department of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Division of Surgery, Northwick Park Institute for Medical Research, University College London, London, United Kingdom
| | - Brandie D Taylor
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Márcia G Silva
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, Brazil
| | - Daniel Jupiter
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
34
|
Effect of Fibronectin on Cervical Excision and Lipopolysaccharide-Induced Inflammation-Related Preterm Delivery. Reprod Sci 2022; 29:2674-2684. [DOI: 10.1007/s43032-022-00936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
|
35
|
Dong Z, Fan C, Hou W, Rui C, Wang X, Fan Y, Zhao L, Wang Q, Wang Z, Zeng X, Feng S, Li P. Vaginal Exposure to Candida albicans During Early Gestation Results in Adverse Pregnancy Outcomes via Inhibiting Placental Development. Front Microbiol 2022; 12:816161. [PMID: 35281308 PMCID: PMC8908259 DOI: 10.3389/fmicb.2021.816161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is considered the second most common cause of vaginitis after bacterial vaginosis and the most common lower genital tract infection during pregnancy. Candida albicans (C. albicans), an opportunistic pathogen, is the major species causing VVC. Recently, increasing researches have shown that lower reproductive tract infection during pregnancy can lead to various adverse pregnancy outcomes. However, the underlying mechanisms are not fully understood. Hence, we successfully established a mouse model of vaginal C. albicans infection and characterized the adverse pregnancy outcomes. C. albicans infection strikingly increased abortion rate and decreased litter size. Further analysis of placental development demonstrated that placental structure was abnormal, including that the area of spongiotrophoblast (Spo) and labyrinth (Lab) was reduced, and the formation of placental vessel was decreased in Lab zone. Accordingly, the expression of marker genes during placental development was downregulated. Collectively, the above findings revealed that vaginal C. albicans infection during pregnancy can inhibit placental development and ultimately lead to adverse pregnancy outcomes. This study enhances our comprehension of the effect of VVC on pregnancy, and placental dysplasia as a feasible orientation to explore VVC during pregnancy.
Collapse
Affiliation(s)
- Zhiyong Dong
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chong Fan
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Hou
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Can Rui
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Wang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuru Fan
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhao
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Wang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhichong Wang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zeng
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Xin Zeng,
| | - Shanwu Feng
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- Shanwu Feng,
| | - Ping Li
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- Ping Li,
| |
Collapse
|
36
|
Tantengco OAG, Menon R. Breaking Down the Barrier: The Role of Cervical Infection and Inflammation in Preterm Birth. Front Glob Womens Health 2022; 2:777643. [PMID: 35118439 PMCID: PMC8803751 DOI: 10.3389/fgwh.2021.777643] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/27/2021] [Indexed: 01/06/2023] Open
Abstract
Approximately 40% of cases of spontaneous preterm birth (sPTB) are associated with ascending intrauterine infections. The cervix serves as a physical and immunological gatekeeper, preventing the ascent of microorganisms from the vagina to the amniotic cavity. The cervix undergoes remodeling during pregnancy. It remains firm and closed from the start until the late third trimester of pregnancy and then dilates and effaces to accommodate the passage of the fetus during delivery. Remodeling proceeds appropriately and timely to maintain the pregnancy until term delivery. However, risk factors, such as acute and chronic infection and local inflammation in the cervix, may compromise cervical integrity and result in premature remodeling, predisposing to sPTB. Previous clinical studies have established bacterial (i.e., chlamydia, gonorrhea, mycoplasma, etc.) and viral infections (i.e., herpesviruses and human papillomaviruses) as risk factors of PTB. However, the exact mechanism leading to PTB is still unknown. This review focuses on: (1) the epidemiology of cervical infections in pregnant patients; (2) cellular mechanisms that may explain the association of cervical infections to premature cervical ripening and PTB; (3) endogenous defense mechanisms of the cervix that protect the uterine cavity from infection and inflammation; and (4) potential inflammatory biomarkers associated with cervical infection that can serve as prognostic markers for premature cervical ripening and PTB. This review will provide mechanistic insights on cervical functions to assist in managing cervical infections during pregnancy.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Ramkumar Menon
| |
Collapse
|
37
|
Tantengco OAG, Kechichian T, Vincent KL, Pyles RB, Medina PMB, Menon R. Inflammatory response elicited by Ureaplasma parvum colonization in human cervical epithelial, stromal, and immune cells. Reproduction 2021; 163:1-10. [PMID: 34780348 PMCID: PMC8669769 DOI: 10.1530/rep-21-0308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Ureaplasma parvum is a commensal bacterium in the female reproductive tract but has been associated with pregnancy complications such as preterm prelabor rupture of membranes and preterm birth (PTB). However, the pathologic effects of U. parvum in the cervix, which prevents ascending infections during pregnancy, are still poorly understood. To determine the impact of U. parvum on the cervix, ectocervical (ecto) and endocervical (endo) epithelial and stromal cells were incubated with U. parvum. Macrophages were also tested as a proxy for cervical macrophages to determine the antigenicity of U. parvum. The effects of U. parvum, including influence on cell cycle and cell death, antimicrobial peptide (AMP) production, epithelial-to-mesenchymal transition (EMT), and inflammatory cytokine levels, were assessed. U. parvum colonized cervical epithelial and stromal cells 4 h post-infection. Like uninfected control, U. parvum neither inhibited cell cycle progression and nor caused cell death in cervical epithelial and stromal cells. U. parvum increased the production of the AMPs cathelicidin and human β-defensin 3 and exhibited weak signs of EMT evidenced by decreased cytokeratin 18 and increased vimentin expression in cervical epithelial cells. U. parvum induced a proinflammatory environment (cytokines) and increased MMP-9 in cervical epithelial cells but promoted pro- and anti-inflammatory response in cervical stromal cells and macrophages. U. parvum may colonize the cervical epithelial layer, but induction of AMPs and anti-inflammatory response may protect the cervix and may prevent ascending infections that can cause PTB. These findings suggest that U. parvum is a weak inducer of inflammation in the cervix.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Talar Kechichian
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Kathleen L. Vincent
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Richard B. Pyles
- Departments of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
38
|
Tantengco OAG, Radnaa E, Shahin H, Kechichian T, Menon R. Cross talk: Trafficking and functional impact of maternal exosomes at the Feto-maternal Interface under normal and pathologic states. Biol Reprod 2021; 105:1562-1576. [PMID: 34554204 DOI: 10.1093/biolre/ioab181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Fetal cell-derived exosomes promote inflammation in uterine and cervical cells to promote labor and delivery. However, the effect of maternal exosomes on fetal cells is still not known. We tested the hypothesis that cervical cells exposed to infectious and oxidative stress (OS) signals produce exosomes that can induce inflammation at the feto-maternal interface (FMi). Exosomes isolated from medium samples from human ectocervical epithelial cells (Ecto), endocervical epithelial cells (Endo), and cervical stromal cells (Stroma) in normal cell culture (control) or exposed to infection or OS conditions were characterized based on morphology, size, quantity, expression of tetraspanin markers, and cargo proteins. Human decidual, chorion trophoblast (CTC), chorion mesenchymal (CMC), amnion mesenchymal (AMC), and amnion epithelial cells (AEC) were treated with control, LPS-, or OS-treated cervical exosomes. ELISA for pro-inflammatory cytokines and progesterone was done to determine the recipient cells' inflammatory status. Ecto, endo, and stroma released ∼110 nm, cup-shaped exosomes. LPS and OS treatments did not affect exosome size; however, OS significantly increased the number of exosomes released by all cervical cells. Cervical exosomes were detected by fluorescence microscopy in each target cell after treatment. Exosomes from LPS- and CSE-treated cervical cells increased the inflammatory cytokine levels in the decidual cells, CMC, AMC, and AEC. LPS-treated stromal cell exosomes increased IL-6, IL-8, and progesterone in CTC. In conclusion, infection and OS can produce inflammatory cargo-enriched cervical exosomes that can destabilize FMi cells. However, the refractoriness of CTC to exosome treatments suggests a barrier function of the chorion at the FMi.
Collapse
Affiliation(s)
- Ourlad Alzeus G Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Hend Shahin
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
39
|
Huang Y, Pan H, Xu X, Lv P, Wang X, Zhao Z. Droplet digital PCR (ddPCR) for the detection and quantification of Ureaplasma spp. BMC Infect Dis 2021; 21:804. [PMID: 34380416 PMCID: PMC8359095 DOI: 10.1186/s12879-021-06355-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ureaplasma spp. are associated with various infectious diseases in females, but there is still limited evidence regarding whether they are related to nonspecific cervicitis. The aim of this study was to develop and evaluate a digital droplet PCR (ddPCR) assay for the detection and quantification of Ureaplasma spp. in cervical swabs. METHODS A total of 267 non-specific cervicitis (NSC) patients and 195 asymptomatic females were included in this study. We produced standard curves for Ureaplasma spp. to evaluate the analytical performance of the ddPCR assay. Then, we detected and quantified the bacterial load of Ureaplasma spp. in cervical swabs. RESULTS The prevalences of U. parvum were 37.8% (101/267) and 29.7% (58/195), U. urealyticum were 9.0% (24/267) and 8.7% (17/195) in the NSC group and control group, respectively. In addition, the median copy number of U. parvum was 2.5 × 104 copies/ml (n = 101) in the NSC group and 9.2 × 103 copies/ml (n = 58) in the control group. The U. parvum load in the NSC group was significantly higher than that in the asymptomatic individuals (P < 0.001). whereas the median load of U. urealyticum was 8.4 × 103 copies/ml (n = 24) and 1.4 × 103 (n = 17) copies/ml in the two groups, respectively, , the difference was not statistically significant (P = 0.450). CONCLUSIONS Our study is the first to develop a droplet digital PCR (ddPCR) method for the detection and quantification of Ureaplasma spp. in clinical samples, and the method has excellent analytical performance and a wide range of clinical application prospects.
Collapse
Affiliation(s)
- Yanfang Huang
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China
| | - Huifen Pan
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China
| | - Xiaoqin Xu
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China
| | - Panpan Lv
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China
| | - Xinxin Wang
- Department of Molecular Medicine, Biomed-Union Co. Ltd. Shanghai, Shanghai, China
| | - Zhen Zhao
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China.
| |
Collapse
|
40
|
Ureaplasma parvum alters the immune tolerogenic state in placental tissue and could cause miscarriage. Fertil Steril 2021; 116:1030-1039. [PMID: 34325918 DOI: 10.1016/j.fertnstert.2021.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To study the inflammatory profile and genes involved in the response to bacterial infections in women who developed spontaneous abortion in the presence of Ureaplasma parvum. DESIGN Cross-sectional study. SETTING A maternal and child referral center. PATIENT(S) Eighty-nine women with spontaneous abortion and 20 women with normal vaginal delivery (control group) were studied. INTERVENTION(S) Samples of biopsied placental tissue were collected for Mollicutes detection. MAIN OUTCOME MEASURE(S) The samples were subjected to histologic analysis, immunohistochemical evaluation for macrophages and lymphocytes, cytokine quantification, and quantitative polymerase chain reaction array to evaluate the expression of 84 genes related to the innate and adaptive immune responses. RESULT(S) The presence of U. parvum in the abortion group was positively associated with the influx of polymorphonuclear cells in the placental tissue and increased concentrations of interleukin-6 and interleukin-12p70. U. parvum caused downregulation of genes involved in the immune response, such as attraction of immune cells, activation of an inflammatory response, T-helper cell 17 response activation, and activation of the complement system at the beginning and end of pregnancy. CONCLUSION The direct action of U. parvum on placental tissue altered the gestational tolerogenic state, reducing the immune response against pathogens and activating the extrinsic apoptotic pathway, causing spontaneous abortion.
Collapse
|
41
|
Lee JH, Park CW, Moon KC, Park JS, Jun JK. The Inflammatory Milieu of Amniotic Fluid Increases with Chorio-Deciduitis Grade in Inflammation-Restricted to Choriodecidua, but Not Amnionitis, of Extra-Placental Membranes. J Clin Med 2021; 10:3041. [PMID: 34300208 PMCID: PMC8307834 DOI: 10.3390/jcm10143041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
No information exists about whether intra-amniotic inflammatory response increases with a chorio-deciduitis grade in the context of both inflammation-restricted to chorio-decidua and amnionitis of extra-placental membranes among spontaneous preterm births. The objective of current study is to examine this issue. A study population included 195 singleton pregnant women with chorio-deciduitis, and who spontaneously delivered at preterm (21.6~35.7 weeks) within 7 days of amniocentesis. We examined intra-amniotic inflammatory response according to the chorio-deciduitis grade in the context of inflammation restricted to chorio-decidua and amnionitis of extra-placental membranes. Intra-amniotic inflammatory response was measured by MMP-8 concentration (ng/mL) and WBC-count (cells/mm3) in amniotic-fluid (AF). Inflammation restricted to chorio-decidua and amnionitis were present in 47.7% (93/195) and 52.3% (102/195) of cases, respectively. Median AF MMP-8 concentration and WBC-count significantly increased with chorio-deciduitis grade in the context of inflammation restricted to chorio-decidua. However, there was no significant difference in median AF MMP-8 concentration and WBC-count between chorio-deciduitis grade-1 and grade-2 in the context of amnionitis. The inflammatory milieu of AF increases with chorio-deciduitis grade in inflammation-restricted to chorio-decidua, but not amnionitis, of extra-placental membranes. This finding suggests that a chorio-deciduitis grade may have little effect on the intensification of intra-amniotic inflammatory response in the context of amnionitis of extra-placental membranes.
Collapse
Affiliation(s)
- Joon Hyung Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.L.); (J.S.P.); (J.K.J.)
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.L.); (J.S.P.); (J.K.J.)
- Medical Research Center, Institute of Reproductive Medicine and Population, Seoul National University, Seoul 03080, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.L.); (J.S.P.); (J.K.J.)
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.H.L.); (J.S.P.); (J.K.J.)
- Medical Research Center, Institute of Reproductive Medicine and Population, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
42
|
Association between maternal cervicovaginal swab positivity for Ureaplasma spp. or other microorganisms and neonatal respiratory outcome and mortality. J Perinatol 2021; 41:1-11. [PMID: 32908191 DOI: 10.1038/s41372-020-00808-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We investigated the association between maternal cervicovaginal cultures, its antibiotic treatment, and neonatal outcome. STUDY DESIGN This retrospective cohort study enrolled 480 neonates born prior to 32 weeks' gestation. They were divided into groups according to maternal cervicovaginal culture results. Multivariate logistic regression analysis was used to predict neonatal outcome based on maternal culture results, adjusted for perinatal risk factors and neonatal morbidities. RESULT Maternal cervicovaginal Ureaplasma colonization was independently associated with bronchopulmonary dysplasia at 36 weeks (BPD) (OR 8.34; 95% CI 1.21-57.45). In neonates with and without maternal cervicovaginal Ureaplasma colonization BPD occurred in 12.3% and 3.8%, respectively. Maternal colonization with other microorganisms was associated with a higher neonatal mortality (p = 0.002), lower gestational age (p = 0.026), and birth weight (p = 0.036). CONCLUSIONS This study underscores the role of the maternal cervicovaginal microbiome as a predictor of neonatal outcome. Cervicovaginal Ureaplasma colonization seems not to be an innocent bystander in the multifactorial etiology of BPD.
Collapse
|
43
|
Tantengco OAG, Richardson LS, Vink J, Kechichian T, Medina PMB, Pyles RB, Menon R. Progesterone alters human cervical epithelial and stromal cell transition and migration: Implications in cervical remodeling during pregnancy and parturition. Mol Cell Endocrinol 2021; 529:111276. [PMID: 33823217 PMCID: PMC8491272 DOI: 10.1016/j.mce.2021.111276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
The cervix undergoes extensive remodeling throughout pregnancy and parturition. This process involves both ECM collagen degradation and cellular remodeling, which includes cell proliferation, transition and migration. Progesterone (P4) has been used clinically to delay cervical ripening and prevent preterm birth (PTB). However, the mechanisms by which progesterone affects cell transition and the migration of cervical epithelial and stromal cells are not yet fully known. In this study, we documented the role of a gestational level of P4 in the cellular transition (epithelial-mesenchymal transition [EMT] and mesenchymal-epithelial transition [MET]), cell migration, and inflammatory responses of endocervical epithelial cells (EEC) and cervical stromal cells (CSC). EEC and CSC were treated with LPS and P4 for 6 days. The epithelial:mesenchymal ratio (regular microscopy and cell shape index analysis), shift in intermediate filaments (immunofluorescence microscopy and western blot analyses for cytokeratin [CK]-18 and vimentin), adhesion molecules and transcription factors (western blot analyses for E-cadherin, N-cadherin and SNAIL), were used to determine growth characteristics and EMT and MET changes in EEC and CSC under the indicated conditions. To test cell remodeling, scratch assays followed by cellular analyses as mentioned above were performed. Inflammatory cytokines (interleukin-6 [IL-6], tumor necrosis factor α [TNFα]) and matrix metallopeptidase 9 (MMP9) were measured by ELISA. LPS promoted EMT (decreased cell shape index, decreased CK-18 and E-cadherin, increased vimentin, N-cadherin, and SNAIL), and increased IL-6 and MMP9 production by EEC. A gestational level of P4 prevented LPS-induced EMT in EEC and exhibited anti-inflammatory effect in both EEC and CSC. LPS slowed down wound healing in CSC but P4 treatment prevented the negative impact of LPS in CSC wound healing. These results may explain the cellular mechanisms by which P4 helps to stabilize the cervical epithelial barrier and preserve the mechanical and tensile strength of the cervical stromal layer, which are important in normal cervical remodeling processes during pregnancy.
Collapse
Affiliation(s)
- Ourlad Alzeus G Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA; Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Joy Vink
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Paul Mark B Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Richard B Pyles
- Departments of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
44
|
Gilbert NM, Foster LR, Cao B, Yin Y, Mysorekar IU, Lewis AL. Gardnerella vaginalis promotes group B Streptococcus vaginal colonization, enabling ascending uteroplacental infection in pregnant mice. Am J Obstet Gynecol 2021; 224:530.e1-530.e17. [PMID: 33248136 DOI: 10.1016/j.ajog.2020.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Group B Streptococcus is a common vaginal bacterium and the leading cause of invasive fetoplacental infections. Group B Streptococcus in the vagina can invade through the cervix to cause ascending uteroplacental infections or can be transmitted to the neonate during vaginal delivery. Some studies have found that women with a "dysbiotic" polymicrobial or Lactobacillus-depleted vaginal microbiota are more likely to harbor group B Streptococcus. Gardnerella vaginalis is often the most abundant bacteria in the vaginas of women with dysbiosis, while being detected at lower levels in most other women, and has been linked with several adverse pregnancy outcomes. Mouse models of group B Streptococcus and Gardnerella vaginalis colonization have been reported but, to the best of our knowledge, the two have not been studied together. The overarching idea driving this study is that certain members of the dysbiotic vaginal microbiota, such as Gardnerella vaginalis, may directly contribute to the increased rate of group B Streptococcus vaginal colonization observed in women with vaginal dysbiosis. OBJECTIVE We used a mouse model to test the hypothesis that vaginal exposure to Gardnerella vaginalis may facilitate colonization and/or invasive infection of the upper reproductive tract by group B Streptococcus during pregnancy. STUDY DESIGN Timed-pregnant mice were generated using an allogeneic mating strategy with BALB/c males and C57Bl/6 females. Dams were vaginally inoculated at gestational day 14 with group B Streptococcus alone (using a 10-fold lower dose than previously reported models) or coinoculated with group B Streptococcus and Gardnerella vaginalis. Bacterial titers were enumerated in vaginal, uterine horn, and placental tissues at gestational day 17. The presence (Fisher exact tests) and levels (Mann-Whitney U tests) of bacterial titers were compared between mono- and coinoculated dams in each compartment. Relative risks were calculated for outcomes that occurred in both groups. Tissue samples were also examined for evidence of pathophysiology. RESULTS Inoculation of pregnant mice with 107 group B Streptococcus alone did not result in vaginal colonization or ascending infection. In contrast, coinoculation of group B Streptococcus with Gardnerella vaginalis in pregnant mice resulted in a 10-fold higher risk of group B Streptococcus vaginal colonization (relative risk, 10.31; 95% confidence interval, 2.710-59.04; P=.0006 [Fisher exact test]). Ascending group B Streptococcus infection of the uterus and placenta occurred in approximately 40% of coinoculated animals, whereas none of those receiving group B Streptococcus alone developed uterine or placental infections. Immunofluorescence microscopy revealed group B Streptococcus in both the maternal and fetal sides of the placenta. Histologic inflammation and increased proinflammatory cytokines were evident in the setting of group B Streptococcus placental infection. Interestingly, placentas from dams exposed to group B Streptococcus and Gardnerella vaginalis, but without recoverable vaginal or placental bacteria, displayed distinct histopathologic features and cytokine signatures. CONCLUSION These data suggest that Gardnerella vaginalis vaginal exposure can promote group B Streptococcus vaginal colonization, resulting in a greater likelihood of invasive perinatal group B Streptococcus infections. These findings suggest that future clinical studies should examine whether the presence of Gardnerella vaginalis is a risk factor for group B Streptococcus vaginal colonization in women. Because Gardnerella vaginalis can also be present in women without bacterial vaginosis, these findings may be relevant both inside and outside of the context of vaginal dysbiosis.
Collapse
|
45
|
Rowlands RS, Kragh K, Sahu S, Maddocks SE, Bolhuis A, Spiller OB, Beeton ML. A requirement for flow to enable the development of Ureaplasma parvum biofilms in vitro. J Appl Microbiol 2021; 131:2579-2585. [PMID: 33899996 DOI: 10.1111/jam.15120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Indexed: 11/30/2022]
Abstract
AIMS To use a flow-based method to establish, quantify and visualize biofilms of Ureaplasma parvum. METHODS AND RESULTS Absorbance readings of a U. parvum HPA5 culture were taken at 550 nm every 3 h for 30 h in order to establish a growth curve, with viability determined by the number of colour changing units (CCUs). Biofilms were established using the DTU flow-cell with a flow rate of 0·01 ml min-1 and compared to the static control. Titres of bacteria were determined by CCU and biofilm biomass was quantified by Syto9 staining and COMSTAT analysis. High-resolution images were obtained by scanning electron microscopy (SEM). Flow resulted in significantly more biofilm and higher cell titre (0·599 µm3 /µm2 ± 0·152 and 4 × 108 CCU per ml, respectively) compared with static conditions (0·008 µm3 /µm2 ± 0·010 and no recoverable cells, respectively). SEM revealed pleomorphic cells, with signs of budding and possible membrane vesicle formation. CONCLUSIONS Flow is an essential requirement for the establishment of U. parvum biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first quantification of biofilm biomass formed by U. parvum. It is now possible to establish viable biofilms of U. parvum which will allow for future testing of antimicrobial agents and understanding of virulence-associated with adhesion.
Collapse
Affiliation(s)
- R S Rowlands
- Microbiology and Infection Research Group, Department of Biomedical Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - K Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Sahu
- Microbiology and Infection Research Group, Department of Biomedical Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France
| | - S E Maddocks
- Microbiology and Infection Research Group, Department of Biomedical Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - A Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - O B Spiller
- Division of Infection and Immunity, Department of Medical Microbiology, School of Medicine, Cardiff University, Cardiff, UK
| | - M L Beeton
- Microbiology and Infection Research Group, Department of Biomedical Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
46
|
von Chamier M, Reyes L, Hayward LF, Brown MB. Nicotine induces maternal and fetal inflammatory responses which predispose intrauterine infection risk in a rat model. Nicotine Tob Res 2021; 23:1763-1770. [PMID: 33894055 PMCID: PMC8403242 DOI: 10.1093/ntr/ntab080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Introduction Both smoking and infection adversely impact pregnancy. Previously, our group identified in a rodent model that 6 mg/kg/d nicotine increased the risk of fetal infection at gestation day (GD) 18. Here, we investigate lower nicotine doses. Methods Pregnant Sprague-Dawley rats received nicotine infusion at 0, 1, or 3 mg/kg/d (no, low-, and mid-dose nicotine, respectively) from GD 6, with intravenous inoculation with Mycoplasma pulmonis (MP) at 107 CFU (N = 20) or sterile broth (sham) (N = 11) on GD 14. Uterus and fetuses were retrieved on GD 18 for MP culture and histopathologic evaluation of maternal and fetal inflammatory responses (MIR and FIR). Results At 1 mg/kg/d nicotine, MP colonization rates were decreased, from 100% (9 of 9) to 40% (2 of 5) of MP-inoculated dams (p = .03), and 59% (66 of 111) to 39% (24 of 62) of fetuses (p = .01), versus no nicotine. Low-dose nicotine resulted in increased MIR and FIR in the sham-inoculated group; in the MP-inoculated group, this resulted in reduced relative risk (RR) for placental colonization (RR, 95% CI with high MIR = 0.14, 0.02 to 0.65; FIR = 0.38, 0.12 to 0.93). In contrast, 3 mg/kg/d nicotine treatment did not alter colonization rates; furthermore, FIR was completely suppressed, even in the face of placental or amniotic fluid colonization. Conclusion The 1 mg/kg/d nicotine dose decreased risk of intrauterine infection, with increased MIR and FIR. The 3 mg/kg/d nicotine dose inhibited FIR, and increased risk for intrauterine infection. Nicotine alterations of the intrauterine environment were markedly dose-dependent. Implications Nicotine exposure alters intrauterine infection and inflammation in a dose-dependent manner, potentially impacting fetal development and programming. Previous work in a rodent model showed that high-dose nicotine (6 mg/kg/d) exposure exacerbated intrauterine infection during pregnancy. The current study found that low-dose nicotine (1 mg/kg/d) exposure reduced colonization of placenta and amniotic fluid; this decrease was associated with increased intrauterine inflammation. Exposure to mid-dose nicotine (3 mg/kg/d) suppressed fetal inflammation. Elucidation of underlying mechanisms of these phenomena will inform public health and clinical care decisions, particularly in the context of risk assessment of nicotine replacement therapy during pregnancy for smoking cessation.
Collapse
Affiliation(s)
- Maria von Chamier
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI
| | - Linda F Hayward
- Department of Physiological Sciences, University of Florida, Gainesville, FL
| | - Mary B Brown
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
47
|
Koo HS, Yoon MJ, Hong SH, Ahn J, Cha H, Lee D, Ko JE, Kwon H, Choi DH, Lee KA, Ko JJ, Kang YJ. CXCL12 enhances pregnancy outcome via improvement of endometrial receptivity in mice. Sci Rep 2021; 11:7397. [PMID: 33795831 PMCID: PMC8016928 DOI: 10.1038/s41598-021-86956-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Successful pregnancy inevitably depends on the implantation of a competent embryo into a receptive endometrium. Although many substances have been suggested to improve the rate of embryo implantation targeting enhancement of endometrial receptivity, currently there rarely are effective evidence-based treatments to prevent or cure this condition. Here we strongly suggest minimally-invasive intra-uterine administration of embryo-secreted chemokine CXCL12 as an effective therapeutic intervention. Chemokine CXCL12 derived from pre- and peri-implanting embryos significantly enhances the rates of embryo attachment and promoted endothelial vessel formation and sprouting in vitro. Consistently, intra-uterine CXCL12 administration in C57BL/6 mice improved endometrial receptivity showing increased integrin β3 and its ligand osteopontin, and induced endometrial angiogenesis displaying increased numbers of vessel formation near the lining of endometrial epithelial layer with higher CD31 and CD34 expression. Furthermore, intra-uterine CXCL12 application dramatically promoted the rates of embryo implantation with no morphologically retarded embryos. Thus, our present study provides a novel evidence that improved uterine endometrial receptivity and enhanced angiogenesis induced by embryo-derived chemokine CXCL12 may aid to develop a minimally-invasive therapeutic strategy for clinical treatment or supplement for the patients with repeated implantation failure with less risk.
Collapse
Affiliation(s)
- Hwa Seon Koo
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Min-Ji Yoon
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Seon-Hwa Hong
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Jungho Ahn
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Hwijae Cha
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Danbi Lee
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Ji-Eun Ko
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Hwang Kwon
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Dong Hee Choi
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Jung-Jae Ko
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea
| | - Youn-Jung Kang
- CHA Fertility Center Bundang, CHA University, Seongnam-si, Gyunggi-do, South Korea. .,Department of Biomedical Science, School of Life Science, CHA University, Seongnam-si, Gyunggi-do, South Korea. .,Department of Biochemistry, School of Medicine, CHA University, Seongnam-si, Gyunggi-do, South Korea.
| |
Collapse
|
48
|
Tantengco OAG, Richardson LS, Medina PMB, Han A, Menon R. Organ-on-chip of the cervical epithelial layer: A platform to study normal and pathological cellular remodeling of the cervix. FASEB J 2021; 35:e21463. [PMID: 33689188 PMCID: PMC8193817 DOI: 10.1096/fj.202002590rrr] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/06/2023]
Abstract
Damage to the cervical epithelial layer due to infection and inflammation is associated with preterm birth. However, the individual and/or collective roles of cervical epithelial layers in maintaining cervical integrity remain unclear during infection/inflammation. To determine the intercellular interactions, we developed an organ-on-chip of the cervical epithelial layer (CE-OOC) composed of two co-culture chambers connected by microchannels, recapitulating the ectocervical and endocervical epithelial layers. Further, we tested the interactions between cells from each distinct region and their contributions in maintaining cervical integrity in response to LPS and TNFα stimulations. The co-culture of ectocervical and endocervical cells facilitated cellular migration of both epithelial cells inside the microchannels. Compared to untreated controls, both LPS and TNFα increased apoptosis, necrosis, and senescence as well as increased pro-inflammatory cytokine productions by cervical epithelial cells. In summary, the CE-OOC established an in vitro model that can recapitulate the ectocervical and the endocervical epithelial regions of the cervix. The established CE-OOC may become a powerful tool in obstetrics and gynecology research such as in studying cervical remodeling during pregnancy and parturition and the dynamics of cervical epithelial cells in benign and malignant pathology in the cervix.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S. Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Paul Mark B. Medina
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
49
|
Jia CY, Xiang W, Liu JB, Jiang GX, Sun F, Wu JJ, Yang XL, Xin R, Shi Y, Zhang DD, Li W, Zuberi Z, Zhang J, Lu GX, Wang HM, Wang PY, Yu F, Lv ZW, Ma YS, Fu D. MiR-9-1 Suppresses Cell Proliferation and Promotes Apoptosis by Targeting UHRF1 in Lung Cancer. Technol Cancer Res Treat 2021; 20:15330338211041191. [PMID: 34520284 PMCID: PMC8445543 DOI: 10.1177/15330338211041191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is listed as the most common reason for cancer-related death all over the world despite diagnostic improvements and the development of chemotherapy and targeted therapies. MicroRNAs control both physiological and pathological processes including development and cancer. A microRNA-9 to 1 (miR-9 to 1) overexpression model in lung cancer cell lines was established and miR-9 to 1 was found to significantly suppress the proliferation rate in lung cancer cell lines, colony formation in vitro, and tumorigenicity in nude mice of A549 cells. Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) was then identified to direct target of miR-9 to 1. The inhibition of UHRF1 by miR-9 to 1 causes G1 arrest and p15, p16, and p21 were re-expressed in miR-9 to 1 group in mRNA level and protein level. Silence of UHRF1 expression in A549 cells resulted in the similar re-expression of p15, p16, p21 which is similar with miR-9 to 1 infection. Therefore, we concluded that UHRF1 is a new target for miR-9 to 1 to suppress cell proliferation by re-expression of tumor suppressors p15, p16, and p21 mediated by UHRF1.
Collapse
Affiliation(s)
- Cheng-You Jia
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Xiang
- Shanghai Punan Hospital, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Geng-Xi Jiang
- Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Feng Sun
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, China
| | - Xiao-Li Yang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Xin
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan-Dan Zhang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Li
- Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zavuga Zuberi
- Dares Salaam Institute of Technology, Salaam, Tanzania
| | - Jie Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Gai-Xia Lu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Min Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei-Yao Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong-Wei Lv
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Shui Ma
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Da Fu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Sun T, Fu J. Analysis of the Clinical Features of Intrauterine Ureaplasma urealyticum Infection in Preterm Infants: A Case-Control Study. Front Pediatr 2021; 9:774150. [PMID: 34956983 PMCID: PMC8696116 DOI: 10.3389/fped.2021.774150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
Objective: To analyze the clinical characteristics of intrauterine Ureaplasma urealyticum (UU) infection in premature infants. Method: In this single-center retrospective case-control study, 291 preterm infants born in our hospital and hospitalized in our department and gestational age no more than 32 weeks, birth weight no more than 2000 g were included from January 2019 to January 2021. Lower respiratory tract secretion, gastric fluid and urine were collected for UU RNA detection within 48 h after birth. Intrauterine UU infection is defined by at least one positive UU-PCR test of secreta or excreta of preterm infants after birth. The UU infection group included 86 preterm infants and the non-UU infection group included 205 preterm infants. We compared their clinical features, hemogram changes and disease outcomes using statistical analyses. Results: The clinical characteristics of premature infants such as the duration of oxygen use and ventilator use in hospital were significantly prolonged in the UU infection group (P < 0.05). The levels of leukocytes, platelet and procalcitonin in the UU infection group were significantly higher than in the non-UU infection group (P < 0.05). In terms of preterm complications, only the incidences of bronchopulmonary dysplasia, retinopathy of prematurity and metabolic bone disease in premature infants in the UU infection group were significantly higher than those in the non-UU infection group (P < 0.05). The mode of delivery, maternal premature rupture of membranes, and postnatal leukocyte level were independent risk factors for UU infection, while gestational hypertension was a protective factor for UU infection. The level of leukocytes in postnatal hemogram of premature infants could be used as a diagnostic index of UU infection, but the diagnostic accuracy was poor. Conclusion: In our study, UU infection can increase the incidence of bronchopulmonary dysplasia, retinopathy of prematurity and metabolic bone disease in preterm infants, but have no effect on the incidence of necrotizing enterocolitis, intracranial hemorrhage, white matter damage and other diseases in preterm infants. For high-risk premature infants, UU should be detected as soon as possible after birth, early intervention and drug treatment necessarily can improve the prognosis as much as possible.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|