1
|
Wang T, Wang X, Ren W, Sun Z, Zhang Y, Wu N, Diao H. Cardiomyocyte proliferation: Advances and insights in macrophage-targeted therapy for myocardial injury. Genes Dis 2025; 12:101332. [PMID: 39935606 PMCID: PMC11810708 DOI: 10.1016/j.gendis.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 02/13/2025] Open
Abstract
In the mammalian heart, cardiomyocytes undergo a transient window of proliferation that leads to regenerative impairment, limiting cardiomyocyte proliferation and myocardial repair capacity. Cardiac developmental patterns exacerbate the progression of heart disease characterized by myocardial cell loss, ultimately leading to cardiac dysfunction and heart failure. Myocardial infarction causes the death of partial cardiomyocytes, which triggers an immune response to remove debris and restore tissue integrity. Interestingly, when transient myocardial injury triggers irreversible loss of cardiomyocytes, the subsequent macrophages responsible for proliferation and regeneration have a unique immune phenotype that promotes the formation of pre-existing new cardiomyocytes. During mammalian regeneration, mononuclear-derived macrophages and self-renewing resident cardiac macrophages provide multiple cytokines and molecular signals that create a regenerative environment and cellular plasticity capacity in postnatal cardiomyocytes, a pivotal strategy for achieving myocardial repair. Consistent with other human tissues, cardiac macrophages originating from the embryonic endothelium produce a hierarchy of contributions to monocyte recruitment and fate specification. In this review, we discuss the novel functions of macrophages in triggering cardiac regeneration and repair after myocardial infarction and provide recent advances and prospective insights into the phenotypic transformation and heterogeneous features involving cardiac macrophages. In conclusion, macrophages contribute critically to regeneration, repair, and remodeling, and are challenging targets for cardiovascular therapeutic interventions.
Collapse
Affiliation(s)
- Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Weibin Ren
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Hongyan Diao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Lantz C, Becker A, DeBerge M, Filipp M, Glinton K, Ananthakrishnan A, Urbanczyk J, Cetlin M, Alzamroon A, Abdel-Latif A, Spite M, Ge ZD, Thorp EB. Early-age efferocytosis directs macrophage arachidonic acid metabolism for tissue regeneration. Immunity 2025; 58:344-361.e7. [PMID: 39938482 PMCID: PMC11839170 DOI: 10.1016/j.immuni.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2024] [Accepted: 11/21/2024] [Indexed: 02/14/2025]
Abstract
In response to organ injury in adults, macrophages often promote scarring, yet during early life, they are required for tissue regeneration. To elucidate the mechanisms underlying age-associated regeneration, we compared the macrophage injury response in newborn versus adult hearts. Single-cell analysis revealed an accumulation of tissue-resident macrophages in neonates that were selectively polarized for apoptotic cell recognition and uptake (efferocytosis). Ablation of the apoptotic cell recognition receptor Mertk in newborns prevented cardiac regeneration. These findings could be attributed to reprogramming of macrophage gene expression that was required for biosynthesis of the eicosanoid thromboxane A2, which unexpectedly activated parenchymal cell proliferation. Markers of thromboxane A2 production were suppressed in adult macrophages after efferocytosis. Moreover, macrophage-neighboring neonatal cardiomyocytes expressed the thromboxane A2 receptor, whose activation induced a metabolic shift that supported cellular proliferation. Our data reveal a fundamental age-defined macrophage response in which lipid mitogens produced during efferocytosis support receptor-mediated tissue regeneration.
Collapse
Affiliation(s)
- Connor Lantz
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA; Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Amanda Becker
- Department of Pediatrics, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mallory Filipp
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristofor Glinton
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Jessica Urbanczyk
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Madeline Cetlin
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhi-Dong Ge
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Chicago, IL 60611, USA; Heart Center, Stanley Manne Children's Research Institute, Ann & Robert Lurie Children's Hospital, Chicago, IL 60611, USA; Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Feng J, Wang F, Shao Y, Jin A, Lei L. Engineered protein-based materials for tissue repair: A review. Int J Biol Macromol 2025; 303:140674. [PMID: 39909268 DOI: 10.1016/j.ijbiomac.2025.140674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The human body may suffer multiple injuries and losses due to various external factors, such as tumors, diseases, traffic accidents, and war conflicts. Under such circumstances, engineered protein-based materials, as an innovative adjunctive material, can not only effectively promote the natural repair process of tissues, but also greatly circumvent the negative effects and complications that may be associated with conventional surgery. In this review, we first trace the definition and development of engineered protein-based materials and explain in detail their mechanism of action in promoting tissue repair. Subsequently, the advantages and disadvantages of various engineered protein-based materials in tissue repair are analyzed by comparison. In addition, the present review reveals in depth how material properties can be optimized by scientific means to meet different tissue repair needs. In addition, we present in detail specific application cases of engineered protein-based materials in the field of tissue repair. Finally, we summarize current challenges in engineered protein-based materials and provide an outlook for the future. This review not only provides theoretical support for the further exploration and development of engineered protein-based materials in the field of tissue repair, but also provides valuable references and inspiration for research in related fields.
Collapse
Affiliation(s)
- Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
4
|
Jiang Q, Du C, Qian L, Shan T, Bao Y, Gu L, Wang S, Yang T, Zhou L, Wang Z, He Y, Wang Q, Wang H, Wang R, Wang L. GPX3 Overexpression Ameliorates Cardiac Injury Post Myocardial Infarction Through Activating LSD1/Hif1α Axis. J Cell Mol Med 2025; 29:e70398. [PMID: 39900557 PMCID: PMC11790353 DOI: 10.1111/jcmm.70398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/21/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Myocardial infarction (MI) often results in significant loss of cardiomyocytes (CMs), contributing to adverse ventricular remodelling and heart failure. Therefore, promoting CM survival during the acute stage of MI is crucial. This study aimed to investigate the potential role of GPX3 in cardiac repair following MI. First, plasma GPX3 levels were measured in patients with acute MI (AMI), and myocardial GPX3 expression was assessed in a mouse MI model. Furthermore, the effects of GPX3 on MI were investigated through CM-specific overexpression or knockdown in vitro and in vivo models. RNA sequencing and subsequent experiments were performed to uncover the molecular mechanisms underlying GPX3-related effects. Multi-omics database analysis and experimental verification revealed a significant upregulation of GPX3 expression in ischemic myocardium following MI and in CMs exposed to oxygen-glucose deprivation (OGD). Immunofluorescence results further confirmed elevated cytoplasmic GPX3 expression in CMs under hypoxic conditions. In vitro, GPX3 overexpression mitigated reactive oxygen species (ROS) production and enhanced CM survival during hypoxia, while GPX3 knockdown inhibited these processes. In vivo, CM-specific GPX3 overexpression in the infarct border zone significantly attenuated CM apoptosis and alleviated myocardial injury, promoting cardiac repair and long-term functional recovery. Mechanistically, GPX3 overexpression upregulated LSD1 and Hif1α protein expression, and rescue experiments confirmed the involvement of the LSD1/Hif1α pathway in mediating the protective effects of GPX3. Overall, our findings suggest that GPX3 exerts a protective role in ischemic myocardium post-MI, at least partially through the LSD1/Hif1α axis, highlighting its potential as a therapeutic target for MI treatment.
Collapse
Affiliation(s)
- Qi‐Qi Jiang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chong Du
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ling‐Ling Qian
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Tian‐Kai Shan
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yu‐Lin Bao
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ling‐Feng Gu
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Si‐Bo Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tong‐Tong Yang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Liu‐Hua Zhou
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ze‐Mu Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ye He
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qi‐Ming Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hao Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ru‐Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Lian‐Sheng Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
5
|
Kai F, Leidal AM, Weaver VM. Tension-induced organelle stress: an emerging target in fibrosis. Trends Pharmacol Sci 2025; 46:117-131. [PMID: 39818520 PMCID: PMC11805623 DOI: 10.1016/j.tips.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma. This stiffening appropriates actomyosin-mediated mechanical tension within cells to ultimately affect cell fate decisions and function. Recent studies demonstrate that subcellular organelles are physically connected to the actin cytoskeleton and sensitive to mechanoperturbations. These insights highlight mechanisms that may contribute to the chronic organelle stress in many fibrotic diseases, including those of the lung and liver. In this review, we discuss the hypothesis that a stiffened fibrotic ECM corrupts intracellular mechanical tension to compromise organelle homeostasis. We summarize potential therapeutics that could intervene in this mechanical dialog and that may have clinical benefit for resolving pathological organelle stress in fibrosis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Andrew M Leidal
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Adhikari M, Bakadia BM, Wang L, Li Y, Shi Z, Yang G. Electricallymodified bacterial cellulose tailored with plant based green materials for infected wound healing applications. BIOMATERIALS ADVANCES 2025; 167:214087. [PMID: 39481142 DOI: 10.1016/j.bioadv.2024.214087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Effective treatment of infected wounds remains a challenge due to the rise of antibiotic-resistant microorganisms. The development of advanced materials with strong antimicrobial properties is necessary to address this issue. In this study, a unique composite of electrically modified bacterial cellulose (EBC) with allantoin (ABC) and zein was developed by dipping diffusion method. Morphological structural analysis revealed a uniform distribution of zein and aligned fibers, confirming the synthesis of the ABC-Zein composite. The formation of ABC-Zein was further confirmed by attenuated total reflection-Fourier transform infrared (ATR-FTIR), which displayed additional peaks corresponding to EBC, indicating the incorporation of zein into ABC. X-ray diffraction (XRD) analysis of ABC-Zein demonstrated a similar crystalline structure with EBC. The ABC-Zein showed mechanical integrity (tensile strength: 1.15 ± 0.21 MPa), thermal stability (degradation temperature: 290 °C), porous structure (porosity: 40.23 ± 0.21 %), and hydrophilic (water contact angle: 53.3 ± 5.3°) properties. Furthermore, the antimicrobial agent terpinen-4-ol (T4O), derived from tea tree oil, was incorporated into the ABC-Zein composite. Biological studies confirmed the antimicrobial efficacy (Staphylococcus aureus inhibition: 88.5 ± 7.19 %) and biocompatible (cell viability: 84.95 ± 5.6 %, hemolysis: 4.479 ± 0.39 %) nature of the T4O-ABC-Zein composite. The combined effects of the aligned fiber structure, zein protein, and antimicrobial T4O significantly enhanced infected wound healing by day 7, promoting inflammatory response, granular tissue formation, cell proliferation, and angiogenesis. By day 14, T4O-ABC-Zein facilitated complete wound healing, with reepithelization, collagen I deposition, and downregulation of CD 31, Ki67, and α-SMA. Overall, the innovative T4O-ABC-Zein composite, with an aligned fiber structure, improved biocompatibility, and antimicrobial properties, holds significant potential for the treatment of infected wounds.
Collapse
Affiliation(s)
- Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bianza Moise Bakadia
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences and The Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou 511436, China
| | - Li Wang
- Wuhan Branch of the National Science Library, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences and The Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou 511436, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
7
|
Bois A, Grandela C, Gallant J, Mummery C, Menasché P. Revitalizing the heart: strategies and tools for cardiomyocyte regeneration post-myocardial infarction. NPJ Regen Med 2025; 10:6. [PMID: 39843488 PMCID: PMC11754855 DOI: 10.1038/s41536-025-00394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Myocardial infarction (MI) causes the loss of millions of cardiomyocytes, and current treatments do not address this root issue. New therapies focus on stimulating cardiomyocyte division in the adult heart, inspired by the regenerative capacities of lower vertebrates and neonatal mice. This review explores strategies for heart regeneration, offers insights into cardiomyocyte proliferation, evaluates in vivo models, and discusses integrating in vitro human cardiac models to advance cardiac regeneration research.
Collapse
Affiliation(s)
- Axelle Bois
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Department of Cardiovascular Surgery, Université Paris Cité, INSERM U970, PARCC Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - James Gallant
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Université Paris Cité, INSERM U970, PARCC Hôpital Européen Georges Pompidou, 75015, Paris, France
| |
Collapse
|
8
|
Ge C, Ye Z, Hu W, Tang J, Li H, Liu F, Liao X, Chen J, Zhang S, Cao Z. Effects of pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117552. [PMID: 39705973 DOI: 10.1016/j.ecoenv.2024.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
With the widespread application of pesticides, water pollution problems are becoming more and more serious, which is very likely to cause harm to fish. Lower vertebrates, including fish, have the ability to repair damaged tissues. The spread of pesticides in the water may affect their regeneration process after injury, leading to their death, thereby affecting the survival rate of the population. Therefore, we used zebrafish as a model animal to evaluate the effect of the pesticide pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. We exposed zebrafish larvae to 0, 5, 15, and 25 mg/L pyrazosulfuron-ethyl at 3 days after caudal fin amputation. It was found that exposure to pyrazosulfuron-ethyl significantly inhibited caudal fin regeneration and affected the behavior of zebrafish larvae. After exposure to pyrazosulfuron-ethyl, proliferating cells decreased and apoptotic cells increased in the caudal fin of zebrafish larvae. Pyrazosulfuron-ethyl exposure resulted in the decreased number of neutrophils and macrophages, and the downregulation of immune related gene expression levels during caudal fin. Using LPS to activate inflammation can effectively rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. However, inhibiting the Notch signaling pathway and inhibiting reactive oxygen cannot rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. Our results indicate that pyrazosulfuron-ethyl can inhibit zebrafish caudal fin regeneration by reducing the number of innate immune cells and affecting the normal process of inflammation, thereby inhibiting caudal fin regeneration. This study expands our understanding of the potential effects of the pesticide pyrazosulfuron-ethyl on injured fish, highlights the link between the immune system and the regeneration process, and demonstrates the potential application of fin regeneration in risk assessments of environmental toxicology to assess drug toxicity.
Collapse
Affiliation(s)
- Chenkai Ge
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Zhijun Ye
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jingrong Tang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Huimin Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
9
|
Ren Q, Xing W, Jiang B, Feng H, Hu X, Suo J, Wang L, Zou W. Tenascin-C promotes bone regeneration via inflammatory macrophages. Cell Death Differ 2025:10.1038/s41418-024-01429-9. [PMID: 39794452 DOI: 10.1038/s41418-024-01429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025] Open
Abstract
During the early stage of tissue injury, macrophages play important roles in the activation of stem cells for further regeneration. However, the regulation of macrophages during bone regeneration remains unclear. Here, the extracellular matrix (ECM) tenascin-C (TNC) is found to express in the periosteum and recruit inflammatory macrophages. TNC-deficiency in the periosteum delays bone repair. Transplantation of macrophages derived from injured periosteum is able to rescue the decreased skeletal stem cells and impaired bone regeneration caused by TNC deficiency. The cell communication analysis identifies ITGA7 as a TNC receptor contributing to the recruitment of inflammatory macrophages. TNC expression declines in aged mice and the exogenous delivery of TNC significantly promotes bone regeneration after aging through the recruitment of macrophages. Taken together, this study reveals the regulation of macrophage recruitment and its function in the activation of skeletal stem cells after bone injury, providing a strategy to accelerate bone regeneration by TNC delivery.
Collapse
Affiliation(s)
- Qian Ren
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Hainan Medical University, Haikou, Hainan, China
| | - Bo Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuye Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lijun Wang
- Hainan Medical University, Haikou, Hainan, China.
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Hainan Medical University, Haikou, Hainan, China.
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
10
|
Ahn JH, da Silva Pedrosa M, Lopez LR, Tibbs TN, Jeyachandran JN, Vignieri EE, Rothemich A, Cumming I, Irmscher AD, Haswell CJ, Zamboni WC, Yu YRA, Ellermann M, Denson LA, Arthur JC. Intestinal E. coli-produced yersiniabactin promotes profibrotic macrophages in Crohn's disease. Cell Host Microbe 2025; 33:71-88.e9. [PMID: 39701098 DOI: 10.1016/j.chom.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Inflammatory bowel disease (IBD)-associated fibrosis causes significant morbidity. Mechanisms are poorly understood but implicate the microbiota, especially adherent-invasive Escherichia coli (AIEC). We previously demonstrated that AIEC producing the metallophore yersiniabactin (Ybt) promotes intestinal fibrosis in an IBD mouse model. Since macrophages interpret microbial signals and influence inflammation/tissue remodeling, we hypothesized that Ybt metal sequestration disrupts this process. Here, we show that macrophages are abundant in human IBD-fibrosis tissue and mouse fibrotic lesions, where they co-localize with AIEC. Ybt induces profibrotic gene expression in macrophages via stabilization and nuclear translocation of hypoxia-inducible factor 1-alpha (HIF-1α), a metal-dependent immune regulator. Importantly, Ybt-producing AIEC deplete macrophage intracellular zinc and stabilize HIF-1α through inhibition of zinc-dependent HIF-1α hydroxylation. HIF-1α+ macrophages localize to sites of disease activity in human IBD-fibrosis strictures and mouse fibrotic lesions, highlighting their physiological relevance. Our findings reveal microbiota-mediated metal sequestration as a profibrotic trigger targeting macrophages in the inflamed intestine.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marlus da Silva Pedrosa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lacey R Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Taylor N Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joanna N Jeyachandran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily E Vignieri
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Aaron Rothemich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Cumming
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA
| | - Alexander D Irmscher
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Corey J Haswell
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yen-Rei A Yu
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lee A Denson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Yang S, Penna V, Lavine KJ. Functional diversity of cardiac macrophages in health and disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01109-8. [PMID: 39743564 DOI: 10.1038/s41569-024-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
Macrophages make up a substantial portion of the stromal compartment of the heart in health and disease. In the past decade, the origins of these cardiac macrophages have been established as two broad populations derived from either embryonic or definitive haematopoiesis and that can be distinguished by the expression of CC-motif chemokine receptor 2 (CCR2). These cardiac macrophage populations are transcriptionally distinct and have differing cell surface markers and divergent roles in cardiac homeostasis and disease. Embryonic-derived CCR2- macrophages are a tissue-resident population that participates in tissue development, repair and maintenance, whereas CCR2+ macrophages are derived from definitive haematopoiesis and contribute to inflammation and tissue damage. Studies from the past 5 years have leveraged single-cell RNA sequencing technologies to expand our understanding of cardiac macrophage diversity, particularly of the monocyte-derived macrophage populations that reside in the injured and diseased heart. Emerging technologies in spatial transcriptomics have enabled the identification of distinct disease-associated cellular neighbourhoods consisting of macrophages, other immune cells and fibroblasts, highlighting the involvement of macrophages in cell-cell communication. Together, these discoveries lend new insights into the role of specific macrophage populations in the pathogenesis of cardiac disease, which can pave the way for the identification of new therapeutic targets and the development of diagnostic tools. In this Review, we discuss the developmental origin of cardiac macrophages and describe newly identified cell states and associated cellular neighbourhoods in the steady state and injury settings. We also discuss various contributions and effector functions of cardiac macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
12
|
Long RRB, Bullingham OMN, Baylis B, Shaftoe JB, Dutcher JR, Gillis TE. The influence of triiodothyronine on the immune response and extracellular matrix remodeling during zebrafish heart regeneration. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111769. [PMID: 39490638 DOI: 10.1016/j.cbpa.2024.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024]
Abstract
Damage to the human heart is an irreparable process that results in a permanent impairment in cardiac function. There are, however, a number of vertebrate species including zebrafish (Danio rerio) that can regenerate their hearts following significant injury. In contrast to these regenerative species, mammals are known to have high levels of thyroid hormones, which has been proposed to play a role in this difference in regenerative capacity. However, the mechanisms through which thyroid hormones effect heart regeneration are not fully understood. Here, zebrafish were exposed to exogenous triiodothyronine (T3) for two weeks and then their hearts were damaged through cryoinjury to investigate the effect of thyroid hormones on ECM remodeling and the components of the immune response during heart regeneration. Additionally, cardiac fibroblasts derived from trout, another species of fish known to display cardiac regenerative capacity, were exposed to T3in vitro to analyze any direct effects of T3 on collagen deposition. It was found that cryoinjury induction results in an increase in myocardial stiffness, but this response was muted in T3 exposed zebrafish. The measurement of relevant marker gene transcripts suggests that T3 exposure reduces the recruitment of macrophages to the damaged zebrafish heart immediately following injury but had no effect on the regulation of collagen deposition by cultured trout fibroblasts. These results suggest that T3 effects both the immune response and ECM remodeling in zebrafish following cardiac injury.
Collapse
Affiliation(s)
- Reece R B Long
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
13
|
Yao J, Zhang Y, Wang Z, Chen Y, Shi X. Maintenance of Cardiac Microenvironmental Homeostasis: A Joint Battle of Multiple Cells. J Cell Physiol 2025; 240:e31496. [PMID: 39632594 DOI: 10.1002/jcp.31496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Various cells such as cardiomyocytes, fibroblasts and endothelial cells constitute integral components of cardiac tissue. The health and stability of cardiac ecosystem are ensured by the action of a certain type of cell and the intricate interactions between multiple cell types. The dysfunctional cells exert a profound impact on the development of cardiovascular diseases by involving in the pathological process. In this paper, we introduce the dynamic activity, cell surface markers as well as biological function of the various cells in the heart. Besides, we discuss the multiple signaling pathways involved in the cardiac injury including Hippo/YAP, TGF-β/Smads, PI3K/Akt, and MAPK signaling. The complexity of different cell types poses a great challenge to the disease treatment. By characterizing the roles of various cell types in cardiovascular diseases, we sought to discuss the potential strategies for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Youtao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ziwen Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Wagner M, Nishikawa H, Koyasu S. Reinventing type 2 immunity in cancer. Nature 2025; 637:296-303. [PMID: 39780006 DOI: 10.1038/s41586-024-08194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025]
Abstract
Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis. Emerging evidence challenges this perspective, painting a more nuanced picture in which type 2 immunity might protect against or even actively suppress tumour growth and progression. In this Review, we explore discoveries that highlight the potential of type 2 immunity in reshaping the landscape of cancer immunotherapies.
Collapse
Affiliation(s)
- Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network-PORT Polish Center for Technology Development, Wrocław, Poland.
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| |
Collapse
|
15
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
16
|
Kim SE, Noda R, Liu YC, Nakajima Y, Kameoka S, Motooka D, Mizuno S, Takahashi S, Takaya K, Murase T, Ikematsu K, Tratsiakova K, Motoyama T, Nakashima M, Kishi K, Martin P, Seno S, Okuzaki D, Mori R. Novel integrated multiomics analysis reveals a key role for integrin beta-like 1 in wound scarring. EMBO Rep 2025; 26:122-152. [PMID: 39558136 PMCID: PMC11724056 DOI: 10.1038/s44319-024-00322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
Exacerbation of scarring can originate from a minority fibroblast population that has undergone inflammatory-mediated genetic changes within the wound microenvironment. The fundamental relationship between molecular and spatial organization of the repair process at the single-cell level remains unclear. We have developed a novel, high-resolution spatial multiomics method that integrates spatial transcriptomics with scRNA-Seq; we identified new characteristic features of cell-cell communication and signaling during the repair process. Data from PU.1-/- mice, which lack an inflammatory response, combined with scRNA-Seq and Visium transcriptomics, led to the identification of nine genes potentially involved in inflammation-related scarring, including integrin beta-like 1 (Itgbl1). Transgenic mouse experiments confirmed that Itgbl1-expressing fibroblasts are required for granulation tissue formation and drive fibrogenesis during skin repair. Additionally, we detected a minority population of Acta2high-expressing myofibroblasts with apparent involvement in scarring, in conjunction with Itgbl1 expression. IL1β signaling inhibited Itgbl1 expression in TGFβ1-treated primary fibroblasts from humans and mice. Our novel methodology reveal molecular mechanisms underlying fibroblast-inflammatory cell interactions that initiate wound scarring.
Collapse
Affiliation(s)
- Sang-Eun Kim
- Department of Pathology, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Ryota Noda
- Department of Pathology, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukari Nakajima
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shoichiro Kameoka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kento Takaya
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takehiko Murase
- Department of Forensic Pathology and Science, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kita, Kagawa, 761-0793, Japan
| | - Kazuya Ikematsu
- Department of Forensic Pathology and Science, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Katsiaryna Tratsiakova
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takahiro Motoyama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Paul Martin
- Department of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ryoichi Mori
- Department of Pathology, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of Tissue Repair and Regenerative Medical Science, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
17
|
Li C, Ma Z, Wei X, Wang Y, Wu J, Li X, Sun X, Ding Z, Yang C, Zou Y. Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10577-9. [PMID: 39733202 DOI: 10.1007/s12265-024-10577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis. The levels of pyroptotic proteins were increased in I/R-treated macrophages and inflammatory cytokines expressed more in I/R-induced mouse, which could be attenuated by bufalin. Bufalin also reduced H/R-treated macrophage pyroptosis in vitro. Autophagic flux blockage and ROS accumulation were reduced by bufalin in impaired macrophages. Overexpression of p62 abrogated the anti-proptosis and anti-oxidative effects of bufalin. The levels of apoptosis related proteins were changed and TUNEL-positive ratio was raised in cardiomyocytes that received conditioned medium treatment with H/R-treated macrophages, while bufalin pretreatment could reduce apoptosis. These findings indicate that bufalin may attenuate myocardial I/R injury by suppressing macrophage pyroptosis via P62 pathway.
Collapse
Affiliation(s)
- Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhen Ma
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
| | - Cheng Yang
- Department of Cardiac Surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, 138 Yixueyuan Road, Shanghai, 200438, China.
| |
Collapse
|
18
|
Chen Y, Zhang X, Huang S, Febbraio M. Hidden features: CD36/SR-B2, a master regulator of macrophage phenotype/function through metabolism. Front Immunol 2024; 15:1468957. [PMID: 39742252 PMCID: PMC11685046 DOI: 10.3389/fimmu.2024.1468957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Once thought to be in a terminally differentiated state, macrophages are now understood to be highly pliable, attuned and receptive to environmental cues that control and align responses. In development of purpose, the centrality of metabolic pathways has emerged. Thus, macrophage inflammatory or reparative phenotypes are tightly linked to catabolic and anabolic metabolism, with further fine tuning of specific gene expression patterns in specific settings. Single-cell transcriptome analyses have revealed a breadth of macrophage signatures, with some new influencers driving phenotype. CD36/Scavenger Receptor B2 has established roles in immunity and lipid metabolism. Macrophage CD36 is a key functional player in metabolic expression profiles that determine phenotype. Emerging data show that alterations in the microenvironment can recast metabolic pathways and modulate macrophage function, with the potential to be leveraged for therapeutic means. This review covers recent data on phenotypic characterization of homeostatic, atherosclerotic, lipid-, tumor- and metastatic-associated macrophages, with the integral role of CD36 highlighted.
Collapse
Affiliation(s)
- Yuge Chen
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xuejia Zhang
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Maria Febbraio
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
20
|
Yousefi F, Foster LA, Selim OA, Zhao C. Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability. Bioengineering (Basel) 2024; 11:1245. [PMID: 39768063 PMCID: PMC11673930 DOI: 10.3390/bioengineering11121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts. Transplantation further challenges MuSC viability, often resulting in fibrosis driven by dysregulated fibro-adipogenic progenitors (FAPs). Addressing these issues, scaffold designs integrated with pharmacotherapy emulate ECM environments, providing cues that enhance graft functionality and endurance. These scaffolds facilitate the synergy between mechanotransduction and intracellular signaling, optimizing MuSC proliferation and differentiation. Innovations utilizing human pluripotent stem cell-derived myogenic progenitors and exosome-mediated delivery exploit bioactive properties for targeted repair. Additionally, 3D-printed and electrospun scaffolds with adjustable biomechanical traits tackle scalability in treating volumetric muscle loss. Advanced techniques like single-cell RNA sequencing and high-resolution imaging unravel muscle repair mechanisms, offering precise mapping of cellular interactions. Collectively, this interdisciplinary approach fortifies tissue graft durability and MuSC maintenance, propelling therapeutic strategies for muscle injuries and degenerative diseases.
Collapse
Affiliation(s)
- Farbod Yousefi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Lauren Ann Foster
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
- Atlanta Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Omar A. Selim
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| |
Collapse
|
21
|
Cortada E, Yao J, Xia Y, Dündar F, Zumbo P, Yang B, Rubio-Navarro A, Perder B, Qiu M, Pettinato AM, Homan EA, Stoll L, Betel D, Cao J, Lo JC. Cross-species single-cell RNA-seq analysis reveals disparate and conserved cardiac and extracardiac inflammatory responses upon heart injury. Commun Biol 2024; 7:1611. [PMID: 39627536 PMCID: PMC11615278 DOI: 10.1038/s42003-024-07315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The immune system coordinates the response to cardiac injury and controls regenerative and fibrotic scar outcomes in the heart and subsequent chronic low-grade inflammation associated with heart failure. Adult mice and humans lack the ability to fully recover while adult zebrafish spontaneously regenerate after heart injury. Here we profile the inflammatory response to heart cryoinjury in zebrafish and coronary artery ligation in mouse using single cell transcriptomics. We interrogate the extracardiac reaction to cardiomyocyte necrosis to assess the specific peripheral tissue and immune cell reaction to chronic stress. Cardiac macrophages play a critical role in determining tissue homeostasis by healing versus scarring. We identify distinct transcriptional clusters of monocytes/macrophages (mono/Mϕ) in each species and find analogous pairs in zebrafish and mice. However, the reaction to myocardial injury is largely disparate between mice and zebrafish. The dichotomous response to heart damage between the murine and zebrafish mono/Mϕ and/or the presence of distinct zebrafish mono/Mϕ subtypes may underlie the impaired regenerative process in adult mammals and humans. Our study furnishes a direct cross-species comparison of immune responses between regenerative and profibrotic myocardial injury models, providing a useful resource to the fields of regenerative biology and cardiovascular research.
Collapse
Affiliation(s)
- Eric Cortada
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Boris Yang
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Anthony M Pettinato
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Edwin A Homan
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA.
- Institute for Computational Biomedicine, Division of Hematology and Medical, Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA.
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Suzuki Y, Emoto T, Sato S, Yoshida T, Shoda M, Endoh H, Nagao M, Hamana T, Inoue T, Hayashi T, Nitta E, Konishi H, Kiuchi K, Takami M, Imamura K, Taniguchi M, Inoue M, Nakamura T, Sonoda Y, Takahara H, Nakasone K, Yamamoto K, Tani K, Iwai H, Nakanishi Y, Yonehara S, Murakami A, Toh R, Ohkawa T, Furuyashiki T, Nitta R, Yamashita T, Hirata KI, Fukuzawa K. Left atrial single-cell transcriptomics reveals amphiregulin as a surrogate marker for atrial fibrillation. Commun Biol 2024; 7:1601. [PMID: 39622943 PMCID: PMC11612213 DOI: 10.1038/s42003-024-07308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Atrial fibrillation (AF) is strongly associated with strokes, heart failure, and increased mortality. This study aims to identify the monocyte-macrophage heterogeneity and interactions of these cells with non-immune cells, and to identify functional biomarkers in patients with AF. Therefore, we assess the single cell landscape of left atria (LA), using a combination of single cell and nucleus RNA-seq. Myeloid cells in LA tissue are categorized into five macrophage clusters, three monocyte clusters, and others. Cell-Chat analysis revealed that monocytes and IL1B+ macrophages send epidermal growth factor (EGF) signals to fibroblasts. Amphiregulin (AREG) is the most upregulated gene in monocytes and IL1B+ macrophages in the AF group, compared with healthy controls from other groups. Serum AREG levels are higher in patients with persistent AF. These data suggested that EGF signaling pathway could be a therapeutic target for AF and serum AREG levels provide an effective biomarker for predicting persistent AF.
Collapse
Affiliation(s)
- Yuya Suzuki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Shunsuke Sato
- Division of Cardiovascular Surgery, Department of Surgery, Yodogawa Christian Hospital, Osaka, Japan
| | - Takeshi Yoshida
- Department of Information and Intelligence Engineering, Kobe University, Kobe, Japan
| | - Mitsuhiko Shoda
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiromi Endoh
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyo Hamana
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taishi Inoue
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiro Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Konishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Yodogawa Christian Hospital, Osaka, Japan
| | - Kunihiko Kiuchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitsuru Takami
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kimitake Imamura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Section of Arrhythmia, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayuki Taniguchi
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masatoshi Inoue
- Department of Information and Intelligence Engineering, Kobe University, Kobe, Japan
| | - Toshihiro Nakamura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Sonoda
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Takahara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazutaka Nakasone
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyoko Yamamoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Tani
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidehiro Iwai
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Nakanishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shogo Yonehara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Murakami
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takenao Ohkawa
- Department of Information and Intelligence Engineering, Kobe University, Kobe, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Advanced Medical Science, Technology and Innovation, Kobe University Graduate School of Science, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Fukuzawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Section of Arrhythmia, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
23
|
Napoli M, Bauer J, Bonod C, Vadon-Le Goff S, Moali C. PCPE-2 (procollagen C-proteinase enhancer-2): The non-identical twin of PCPE-1. Matrix Biol 2024; 134:59-78. [PMID: 39251075 DOI: 10.1016/j.matbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
PCPE-2 was discovered at the beginning of this century, and was soon identified as a close homolog of PCPE-1 (procollagen C-proteinase enhancer 1). After the demonstration that it could also stimulate the proteolytic maturation of fibrillar procollagens by BMP-1/tolloid-like proteinases (BTPs), PCPE-2 did not attract much attention as it was thought to fulfill the same functions as PCPE-1 which was already well-described. However, the tissue distribution of PCPE-2 shows both common points and significant differences with PCPE-1, suggesting that their activities are not fully overlapping. Also, the recently established connections between PCPE-2 (gene name PCOLCE2) and several important diseases such as atherosclerosis, inflammatory diseases and cancer have highlighted the need for a thorough reappraisal of the in vivo roles of this regulatory protein. In this context, the recent finding that, while retaining the ability to bind fibrillar procollagens and to activate their C-terminal maturation, PCPE-2 can also bind BTPs and inhibit their activity has substantially extended its potential functions. In this review, we describe the current knowledge about PCPE-2 with a focus on collagen fibrillogenesis, lipid metabolism and inflammation, and discuss how we could further advance our understanding of PCPE-2-dependent biological processes.
Collapse
Affiliation(s)
- Manon Napoli
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Julien Bauer
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Christelle Bonod
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Catherine Moali
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France.
| |
Collapse
|
24
|
Huang X, Lin R, Liu H, Dai M, Guo J, Hui W, Liu W, Haerken M, Zheng R, Yushanjiang T, Gao F. Resatorvid (TAK-242) Ameliorates Ulcerative Colitis by Modulating Macrophage Polarization and T Helper Cell Balance via TLR4/JAK2/STAT3 Signaling Pathway. Inflammation 2024; 47:2108-2128. [PMID: 38760646 DOI: 10.1007/s10753-024-02028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Resatorvid (TAK-242), a specific inhibitor of Toll-like receptor-4 (TLR4), has attracted attention for its anti-inflammatory properties. Despite this, few studies have evaluated its effects on ulcerative colitis (UC). This study aimed to investigate the effects of TAK-242 on macrophage polarization and T helper cell balance and the mechanism by which it alleviates UC. Our findings indicated that TLR4 expression was elevated in patients with UC, a mouse model of UC, and HT29 cells undergoing an inflammatory response. TAK‑242 treatment reduced apoptosis in TNF-α and LPS-stimulated HT29 cells and alleviated symptoms of dextran sulfate sodium (DSS)‑induced colitis in vivo. TAK‑242 downregulated TLR4 expression and decreased the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β while enhancing IL-10 production. TAK-242 also reduced M1 macrophage polarization and diminished Th1 and Th17 cell infiltration while increasing Th2 cell infiltration and M2 macrophage polarization both in vitro and in vivo. Mechanistically, TAK-242 inhibited the JAK2/STAT3 signaling pathway, an important regulator of macrophage polarization and T helper cell balance. Furthermore, the in vivo and in vitro effects of TAK-242 were partially negated by the administration of the JAK2/STAT3 antagonist AG490, suggesting that TAK-242 inhibits the JAK2/STAT3 pathway to exert its biological activities. Taken together, this study underscores TAK-242 as a promising anti-UC agent, functioning by modulating macrophage polarization and T helper cell balance via the TLR4/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Huan Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Mengying Dai
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiejie Guo
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wenjia Hui
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Milamuguli Haerken
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ruixue Zheng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tangnuer Yushanjiang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Feng Gao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China.
- Department of Gastroenterology, Xinjiang Clinical Research Center for Digestive Diseases, 830001, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
25
|
Zhang Z, Du H, Gao W, Zhang D. Engineered macrophages: an "Intelligent Repair" cellular machine for heart injury. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:25. [PMID: 39592532 PMCID: PMC11599506 DOI: 10.1186/s13619-024-00209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Macrophages are crucial in the heart's development, function, and injury. As part of the innate immune system, they act as the first line of defense during cardiac injury and repair. After events such as myocardial infarction or myocarditis, numerous macrophages are recruited to the affected areas of the heart to clear dead cells and facilitate tissue repair. This review summarizes the roles of resident and recruited macrophages in developing cardiovascular diseases. We also describe how macrophage phenotypes dynamically change within the cardiovascular disease microenvironment, exhibiting distinct pro-inflammatory and anti-inflammatory functions. Recent studies reveal the values of targeting macrophages in cardiovascular diseases treatment and the novel bioengineering technologies facilitate engineered macrophages as a promising therapeutic strategy. Engineered macrophages have strong natural tropism and infiltration for cardiovascular diseases aiming to reduce inflammatory response, inhibit excessive fibrosis, restore heart function and promote heart regeneration. We also discuss recent studies highlighting therapeutic strategies and new approaches targeting engineered macrophages, which can aid in heart injury recovery.
Collapse
Affiliation(s)
- Zhuo Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hetian Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weijie Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
26
|
Psarras S. The Macrophage-Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024; 14:1403. [PMID: 39595580 PMCID: PMC11591949 DOI: 10.3390/biom14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Stromal and immune cells and their interactions have gained the attention of cardiology researchers and clinicians in recent years as their contribution in cardiac repair is increasingly recognized. The repair process in the heart is a particularly critical constellation of complex molecular and cellular events and interactions that characteristically fail to ensure adequate recovery following injury, insult, or exposure to stress conditions in this regeneration-hostile organ. The tremendous consequence of this pronounced inability to maintain homeostatic states is being translated in numerous ways promoting progress into heart failure, a deadly, irreversible condition requiring organ transplantation. Fibrosis is in fact a repair response eventually promoting cardiac dysfunction and cardiac fibroblasts are the major cellular players in this process, overproducing collagens and other extracellular matrix components when activated. On the other hand, macrophages may differentially affect fibroblasts and cardiac repair depending on their status and subsets. The opposite interaction is also probable. We discuss here the multifaceted aspects and crosstalk of this cell dipole and the opportunities it may offer for beneficial manipulation approaches that will hopefully lead to progress in heart disease interventions.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 115 27 Athens, Greece
| |
Collapse
|
27
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
28
|
Lothstein KE, Chen F, Mishra P, Smyth DJ, Wu W, Lemenze A, Kumamoto Y, Maizels RM, Gause WC. Helminth protein enhances wound healing by inhibiting fibrosis and promoting tissue regeneration. Life Sci Alliance 2024; 7:e202302249. [PMID: 39179288 PMCID: PMC11342954 DOI: 10.26508/lsa.202302249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Skin wound healing due to full thickness wounds typically results in fibrosis and scarring, where parenchyma tissue is replaced with connective tissue. A major advance in wound healing research would be to instead promote tissue regeneration. Helminth parasites express excretory/secretory (ES) molecules, which can modulate mammalian host responses. One recently discovered ES protein, TGF-β mimic (TGM), binds the TGF-β receptor, though likely has other activities. Here, we demonstrate that topical administration of TGM under a Tegaderm bandage enhanced wound healing and tissue regeneration in an in vivo wound biopsy model. Increased restoration of normal tissue structure in the wound beds of TGM-treated mice was observed during mid- to late-stage wound healing. Both accelerated re-epithelialization and hair follicle regeneration were observed. Further analysis showed differential expansion of myeloid populations at different wound healing stages, suggesting recruitment and reprogramming of specific macrophage subsets. This study indicates a role for TGM as a potential therapeutic option for enhanced wound healing.
Collapse
Affiliation(s)
- Katherine E Lothstein
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Fei Chen
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Pankaj Mishra
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Wenhui Wu
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - William C Gause
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
29
|
Li R, Hanna A, Huang S, Hernandez SC, Tuleta I, Kubota A, Humeres C, Chen B, Liu Y, Zheng D, Frangogiannis NG. Macrophages in the infarcted heart acquire a fibrogenic phenotype, expressing matricellular proteins, but do not undergo fibroblast conversion. J Mol Cell Cardiol 2024; 196:152-167. [PMID: 39089570 PMCID: PMC11534516 DOI: 10.1016/j.yjmcc.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Although some studies have suggested that macrophages may secrete structural collagens, and convert to fibroblast-like cells, macrophage to fibroblast transdifferentiation in infarcted and remodeling hearts remains controversial. Our study uses linage tracing approaches and single cell transcriptomics to examine whether macrophages undergo fibroblast conversion, and to characterize the extracellular matrix expression profile of myeloid cells in myocardial infarction. To examine whether infarct macrophages undergo fibroblast conversion, we identified macrophage-derived progeny using the inducible CX3CR1CreER mice crossed with the PDGFRαEGFP reporter line for reliable fibroblast identification. The abundant fibroblasts that infiltrated the infarcted myocardium after 7 and 28 days of coronary occlusion were not derived from CX3CR1+ macrophages. Infarct macrophages retained myeloid cell characteristics and did not undergo conversion to myofibroblasts, endothelial or vascular mural cells. Single cell RNA-seq of CSF1R+ myeloid cells harvested from control and infarcted hearts showed no significant expression of fibroblast identity genes by myeloid cell clusters. Moreover, infarct macrophages did not express significant levels of genes encoding structural collagens. However, infarct macrophage and monocyte clusters were the predominant source of the fibrogenic growth factors Tgfb1 and Pdgfb, and of the matricellular proteins Spp1/Osteopontin, Thbs1/Thrombospondin-1, Emilin2, and Fn1/fibronectin, while expressing significant amounts of several other matrix genes, including Vcan/versican, Ecm1 and Sparc. ScRNA-seq data suggested similar patterns of matrix gene expression in human myocardial infarction. In conclusion, infarct macrophages do not undergo fibroblast or myofibroblast conversion and do not exhibit upregulation of structural collagens but may contribute to fibrotic remodeling by producing several fibrogenic matricellular proteins.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
30
|
Zhang Y, Rao Y, Lu J, Wang J, Ker DFE, Zhou J, Wang DM. The influence of biophysical niche on tumor-associated macrophages in liver cancer. Hepatol Commun 2024; 8:e0569. [PMID: 39470328 PMCID: PMC11524744 DOI: 10.1097/hc9.0000000000000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 10/30/2024] Open
Abstract
HCC, the most common type of primary liver cancer, is a leading cause of cancer-related mortality worldwide. Although the advancement of immunotherapies by immune checkpoint inhibitors (ICIs) that target programmed cell death 1 or programmed cell death 1-ligand 1 has revolutionized the treatment for HCC, the majority is still not beneficial. Accumulating evidence has pointed out that the potent immunosuppressive tumor microenvironment in HCC poses a great challenge to ICI therapeutic efficacy. As a key component in tumor microenvironment, tumor-associated macrophages (TAMs) play vital roles in HCC development, progression, and ICI low responsiveness. Mechanistically, TAM can promote cancer invasion and metastasis, angiogenesis, epithelial-mesenchymal transition, maintenance of stemness, and most importantly, immunosuppression. Targeting TAMs, therefore, represents an opportunity to enhance the ICI therapeutic efficacy in patients with HCC. While previous research has primarily focused on biochemical cues influencing macrophages, emerging evidence highlights the critical role of biophysical signals, such as substrate stiffness, topography, and external forces. In this review, we summarize the influence of biophysical characteristics within the tumor microenvironment that regulate the phenotype and function of TAMs in HCC pathogenesis and progression. We also explore the possible mechanisms and discuss the potential of manipulating biophysical cues in regulating TAM for HCC therapy. By gaining a deeper understanding of how macrophages sense and respond to mechanical forces, we may potentially usher in a path toward a curative approach for combinatory cancer immunotherapies.
Collapse
Affiliation(s)
- Ying Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jiahuan Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jiyu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dai Fei Elmer Ker
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Jingying Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| |
Collapse
|
31
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
32
|
Chen X, Yang Y, Sun S, Liu Q, Yang Y, Jiang L. CX3C chemokine: Hallmarks of fibrosis and ageing. Pharmacol Res 2024; 208:107348. [PMID: 39134186 DOI: 10.1016/j.phrs.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/18/2024]
Abstract
Fibrosis refers to the progressive tissue lesion process characterized by excessive secretion and deposition of extracellular matrix (ECM). Abnormal fibrous tissue deposition distorts tissue architecture and leads to the progressive loss of organ function. Notably, fibrosis is one of the primary pathological appearances of many end stage illnesses, and is considered as a lethal threat to human health, especially in the elderly with ageing-related diseases. CX3C ligand 1 (CX3CL1) is the only member of chemokine CX3C and binds specifically to CX3C receptor 1 (CX3CR1). Different from other chemokines, CX3CL1 possesses both chemotactic and adhesive activity. CX3CL1/CX3CR1 axis involves in various physiological and pathological processes, and exerts a critical role in cells from the immune system, vascular system, and nervous system etc. Notably, increasing evidence has demonstrated that CX3CL1/CX3CR1 signaling pathway is closely related to the pathological process of fibrosis in multiple tissue and organs. We reviewed the crucial role of CX3CL1/CX3CR1 axis in fibrosis and ageing and systematically summarized the underlying mechanism, which offers prospective strategies of targeting CX3C for the therapy of fibrosis and ageing-related diseases.
Collapse
Affiliation(s)
- Xuanning Chen
- School of Medicine, Shanghai Jiao Tong University, 227 Chongqing South Road, Shanghai 200011, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
33
|
Zaraisky AG, Araslanova KR, Shitikov AD, Tereshina MB. Loss of the ability to regenerate body appendages in vertebrates: from side effects of evolutionary innovations to gene loss. Biol Rev Camb Philos Soc 2024; 99:1868-1888. [PMID: 38817123 DOI: 10.1111/brv.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The ability to regenerate large body appendages is an ancestral trait of vertebrates, which varies across different animal groups. While anamniotes (fish and amphibians) commonly possess this ability, it is notably restricted in amniotes (reptiles, birds, and mammals). In this review, we explore the factors contributing to the loss of regenerative capabilities in amniotes. First, we analyse the potential negative impacts on appendage regeneration caused by four evolutionary innovations: advanced immunity, skin keratinization, whole-body endothermy, and increased body size. These innovations emerged as amniotes transitioned to terrestrial habitats and were correlated with a decline in regeneration capability. Second, we examine the role played by the loss of regeneration-related enhancers and genes initiated by these innovations in the fixation of an inability to regenerate body appendages at the genomic level. We propose that following the cessation of regenerative capacity, the loss of highly specific regeneration enhancers could represent an evolutionarily neutral event. Consequently, the loss of such enhancers might promptly follow the suppression of regeneration as a side effect of evolutionary innovations. By contrast, the loss of regeneration-related genes, due to their pleiotropic functions, would only take place if such loss was accompanied by additional evolutionary innovations that compensated for the loss of pleiotropic functions unrelated to regeneration, which would remain even after participation of these genes in regeneration was lost. Through a review of the literature, we provide evidence that, in many cases, the loss in amniotes of genes associated with body appendage regeneration in anamniotes was significantly delayed relative to the time when regenerative capability was lost. We hypothesise that this delay may be attributed to the necessity for evolutionary restructuring of developmental mechanisms to create conditions where the loss of these genes was a beneficial innovation for the organism. Experimental investigation of the downregulation of genes involved in the regeneration of body appendages in anamniotes but absent in amniotes offers a promising avenue to uncover evolutionary innovations that emerged from the loss of these genes. We propose that the vast majority of regeneration-related genes lost in amniotes (about 150 in humans) may be involved in regulating the early stages of limb and tail regeneration in anamniotes. Disruption of this stage, rather than the late stage, may not interfere with the mechanisms of limb and tail bud development during embryogenesis, as these mechanisms share similarities with those operating in the late stage of regeneration. Consequently, the most promising approach to restoring regeneration in humans may involve creating analogs of embryonic limb buds using stem cell-based tissue-engineering methods, followed by their transfer to the amputation stump. Due to the loss of many genes required specifically during the early stage of regeneration, this approach may be more effective than attempting to induce both early and late stages of regeneration directly in the stump itself.
Collapse
Affiliation(s)
- Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Alexander D Shitikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| |
Collapse
|
34
|
Burchett A, Siri S, Li J, Lu X, Datta M. Novel 3-D Macrophage Spheroid Model Reveals Reciprocal Regulation of Immunomechanical Stress and Mechano-Immunological Response. Cell Mol Bioeng 2024; 17:329-344. [PMID: 39513012 PMCID: PMC11538219 DOI: 10.1007/s12195-024-00824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose In many diseases, an overabundance of macrophages contributes to adverse outcomes. While numerous studies have compared macrophage phenotype after mechanical stimulation or with varying local stiffness, it is unclear if and how macrophages directly contribute to mechanical forces in their microenvironment. Methods Raw 264.7 murine macrophages were embedded in a confining agarose gel, and proliferated to form spheroids over days/weeks. Gels were synthesized at various concentrations to tune stiffness and were shown to support cell viability and spheroid growth. These cell-agarose constructs were treated with media supplements to promote macrophage polarization. Spheroid geometries were used to computationally model the strain generated in the agarose by macrophage spheroid growth. Agarose-embedded macrophages were analyzed for viability, spheroid size, stress generation, and gene expression. Results Macrophages form spheroids and generate growth-induced mechanical forces (i.e., solid stress) within confining agarose gels, which can be maintained for at least 16 days in culture. Increasing agarose concentration increases gel stiffness, restricts spheroid expansion, limits gel deformation, and causes a decrease in Ki67 expression. Lipopolysaccharide (LPS) stimulation increases spheroid growth, though this effect is reversed with the addition of IFNγ. The mechanosensitive ion channels Piezo1 and TRPV4 have reduced expression with increased stiffness, externally applied compression, LPS stimulation, and M1-like polarization. Conclusions Macrophages alone both respond to and generate solid stress. Understanding how macrophage generation of growth-induced solid stress responds to different environmental conditions will help to inform treatment strategies for the plethora of diseases that involve macrophage accumulation and inflammation. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00824-z.
Collapse
Affiliation(s)
- Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN USA
| | - Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN USA
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN USA
| |
Collapse
|
35
|
Peng X, Li Y, Liu N, Xia S, Li X, Lai Y, He L, Sang C, Dong J, Ma C. Plasma Proteomic Insights for Identification of Novel Predictors and Potential Drug Targets in Atrial Fibrillation: A Prospective Cohort Study and Mendelian Randomization Analysis. Circ Arrhythm Electrophysiol 2024; 17:e013037. [PMID: 39355913 DOI: 10.1161/circep.124.013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Currently, there are no reliable methods for predicting and preventing atrial fibrillation (AF) in its early stages. This study aimed to identify plasma proteins associated with AF to discover biomarkers and potential drug targets. METHODS The UK Biobank Pharma Proteomics Project examined 2923 circulating proteins using the Olink platform, forming the basis of this prospective cohort study. The UK Biobank Pharma Proteomics Project included a randomly selected discovery cohort and the consortium-selected replication cohort. The study's end point was incident AF, identified using International Classification of Diseases, Tenth Revision codes. The association between plasma proteins and incident AF was evaluated using Cox proportional hazard models in both cohorts. Proteins present in both cohorts underwent Mendelian randomization analysis to delineate causal connections, utilizing cis-protein quantitative trait loci as genetic tools. The predictive efficacy of the identified proteins for AF was assessed using the area under the receiver operating characteristic curve, and their druggability was explored. RESULTS Data from 38 784 participants were included in this study. Incident AF cases were identified in the discovery cohort (1894; 5.5%) within a median follow-up of 14.5 years and in the replication cohort (451; 10.6%) within a median follow-up of 14.4 years. Twenty-one proteins linked to AF were identified in both cohorts. Specifically, COL4A1 (collagen IV α-1; odds ratio, 1.11 [95% CI, 1.04-1.19]; false discovery rate, 0.016) and RET (proto-oncogene tyrosine-protein kinase receptor Ret; odds ratio, 0.96 [95% CI, 0.94-0.98]; false discovery rate, 0.013) demonstrated a causal link with AF, and RET is druggable. COL4A1 improved the short- and long-term predictive performance of established AF models, as evidenced by significant enhancements in the area under the receiver operating characteristic, integrated discrimination improvement, and net reclassification index, all with P values below 0.05. CONCLUSIONS COL4A1 and RET are associated with the development of AF. RET is identified as a potential drug target for AF prevention, while COL4A1 serves as a biomarker for AF prediction. Future studies are needed to evaluate the effectiveness of targeting these proteins to reduce AF risk.
Collapse
Affiliation(s)
- Xiaodong Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Shijun Xia
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Xin Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Yiwei Lai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | | | - Caihua Sang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| |
Collapse
|
36
|
Zhao X, Williamson T, Gong Y, Epstein JA, Fan Y. Immunomodulatory Therapy for Ischemic Heart Disease. Circulation 2024; 150:1050-1058. [PMID: 39325497 PMCID: PMC11521113 DOI: 10.1161/circulationaha.124.070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 09/27/2024]
Abstract
Ischemic heart disease is a leading cause of death worldwide, manifested clinically as myocardial infarction (and ischemic cardiomyopathy. Presently, there exists a notable scarcity of efficient interventions to restore cardiac function after myocardial infarction. Cumulative evidence suggests that impaired tissue immunity within the ischemic microenvironment aggravates cardiac dysfunction, contributing to progressive heart failure. Recent research breakthroughs propose immunotherapy as a potential approach by leveraging immune and stroma cells to recalibrate the immune microenvironment, holding significant promise for the treatment of ischemic heart disease. In this Primer, we highlight three emerging strategies for immunomodulatory therapy in managing ischemic cardiomyopathy: targeting vascular endothelial cells to rewire tissue immunity, reprogramming myeloid cells to bolster their reparative function, and utilizing adoptive T cell therapy to ameliorate fibrosis. We anticipate that immunomodulatory therapy will offer exciting opportunities for ischemic heart disease treatment.
Collapse
Affiliation(s)
- Xinye Zhao
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Williamson
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A. Epstein
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Chen Y, Zhou L, Guan M, Jin S, Tan P, Fu X, Zhou Z. Multifunctionally disordered TiO 2 nanoneedles prevent periprosthetic infection and enhance osteointegration by killing bacteria and modulating the osteoimmune microenvironment. Theranostics 2024; 14:6016-6035. [PMID: 39346538 PMCID: PMC11426241 DOI: 10.7150/thno.98219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are effective interventions for end-stage osteoarthritis; however, periprosthetic infection is a devastating complication of arthroplasty. To safely prevent periprosthetic infection and enhance osteointegration, the surface modification strategy was utilized to kill bacteria, modulate the osteoimmune microenvironment, and improve new bone formation. Methods: We used the hydrothermal method to fabricate a bionic insect wing with the disordered titanium dioxide nanoneedle (TNN) coating. The mussel-inspired poly-dopamine (PDA) and antibacterial silver nanoparticles (AgNPs) were coated on TNN, named AgNPs-PDA@TNN, to improve the biocompatibility and long-lasting bactericidal capacity. The physicochemical properties of the engineered specimen were evaluated with SEM, AFM, XPS spectrum, and water contact assay. The biocompatibility, bactericidal ability, and the effects on macrophages and osteogenic differentiation were assessed with RT-qPCR, Western blotting, live/dead staining, immunofluorescent staining, etc. Results: The AgNPs-PDA@TNN were biocompatible with macrophages and exhibited immunomodulatory ability to promote M2 macrophage polarization. In addition, AgNPs-PDA@TNN ameliorated the cytotoxicity caused by AgNPs, promoted cell spreading, and increased osteogenesis and matrix deposition of BMSCs. Furthermore, AgNPs-PDA@TNN exhibited bactericidal ability against E. coli and S. aureus by the bionic nanostructure and coated AgNPs. Various imaging analyses indicated the enhanced bactericidal ability and improved new bone formation by AgNPs-PDA@TNN in vivo. H&E, Gram, and Masson staining, verified the improved bone formation, less inflammation, infection, and fibrosis encapsulation. The immunofluorescence staining confirmed the immunomodulatory ability of AgNPs-PDA@TNN in vivo. Conclusion: The bionic insect wing AgNPs-PDA@TNN coating exhibited bactericidal property, immunomodulatory ability, and enhanced osteointegration. Thus, this multidimensional bionic implant surface holds promise as a novel strategy to prevent periprosthetic infection.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liqiang Zhou
- MOE Frontiers Science Center for Precision Oncology Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Ming Guan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shue Jin
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peng Tan
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoxue Fu
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
38
|
Fu M, Jia S, Xu L, Li X, Lv Y, Zhong Y, Ai S. Single-cell multiomic analysis identifies macrophage subpopulations in promoting cardiac repair. J Clin Invest 2024; 134:e175297. [PMID: 39190625 PMCID: PMC11444165 DOI: 10.1172/jci175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cardiac mononuclear phagocytic cells (Cardiac MPCs) participate in maintaining homeostasis and orchestrating cardiac responses upon injury. However, the function of specific MPC subtypes and the related cell fate commitment mechanisms remain elusive in regenerative and nonregenerative hearts due to their cellular heterogeneities. Using spatiotemporal single-cell epigenomic analysis of cardiac MPCs in regenerative (P1) and nonregenerative (P10) mouse hearts after injury, we found that P1 hearts accumulate reparative Arg1+ macrophages, while proinflammatory S100a9+Ly6c+ monocytes are uniquely abundant during nonregenerative remodeling. Moreover, blocking chemokine CXCR2 to inhibit the specification of the S100a9+Ly6c+-biased inflammatory fate in P10 hearts resulted in elevated wound repair responses and marked improvements in cardiac function after injury. Single-cell RNA-Seq further confirmed an increased Arg1+ macrophage subpopulation after CXCR2 blockade, which was accomplished by increased expression of wound repair-related genes and reduced expression of proinflammatory genes. Collectively, our findings provide instructive insights into the molecular mechanisms underlying the function and fate specification of heterogeneous MPCs during cardiac repair and identify potential therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Mingzhu Fu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shengtao Jia
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Longhui Xu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufang Lv
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yulong Zhong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shanshan Ai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Seyed-Razavi Y, Lee SR, Fan J, Shen W, Cornish EE, Gillies MC. JR5558 mice are a reliable model to investigate subretinal fibrosis. Sci Rep 2024; 14:18752. [PMID: 39138242 PMCID: PMC11322289 DOI: 10.1038/s41598-024-66068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Subretinal fibrosis is a major untreatable cause of poor outcomes in neovascular age-related macular degeneration. Mouse models of subretinal fibrosis all possess a degree of invasiveness and tissue damage not typical of fibrosis progression. This project characterises JR5558 mice as a model to study subretinal fibrosis. Fundus and optical coherence tomography (OCT) imaging was used to non-invasively track lesions. Lesion number and area were quantified with ImageJ. Retinal sections, wholemounts and Western blots were used to characterise alterations. Subretinal lesions expand between 4 and 8 weeks and become established in size and location around 12 weeks. Subretinal lesions were confirmed to be fibrotic, including various cell populations involved in fibrosis development. Müller cell processes extended from superficial retina into subretinal lesions at 8 weeks. Western blotting revealed increases in fibronectin (4 wk and 8 wk, p < 0.001), CTGF (20 wks, p < 0.001), MMP2 (12 wks and 20 wks p < 0.05), αSMA (12 wks and 20 wks p < 0.05) and GFAP (8 wk and 12 wk, p ≤ 0.01), consistent with our immunofluorescence results. Intravitreal injection of Aflibercept reduced subretinal lesion growth. Our study provides evidence JR5558 mice have subretinal fibrotic lesions that grow between 4 and 8 weeks and confirms this line to be a good model to study subretinal fibrosis development and assess treatment options.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia.
- Centre for Vision Research, Westmead Institute for Medical Research, Faculty of Medicine and Health, Sydney University, Sydney, Westmead, NSW, 2145, Australia.
| | - So-Ra Lee
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Jiawen Fan
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Weiyong Shen
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Elisa E Cornish
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
40
|
Lim JJ, Vining KH, Mooney DJ, Blencowe BJ. Matrix stiffness-dependent regulation of immunomodulatory genes in human MSCs is associated with the lncRNA CYTOR. Proc Natl Acad Sci U S A 2024; 121:e2404146121. [PMID: 39074278 PMCID: PMC11317610 DOI: 10.1073/pnas.2404146121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.
Collapse
Affiliation(s)
- Justin J. Lim
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| | - Kyle H. Vining
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA19104
| | - David J. Mooney
- Department of Bioengineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Benjamin J. Blencowe
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| |
Collapse
|
41
|
Goo YH, Plakkal Ayyappan J, Cheeran FD, Bangru S, Saha PK, Baar P, Schulz S, Lydic TA, Spengler B, Wagner AH, Kalsotra A, Yechoor VK, Paul A. Lipid droplet-associated hydrolase mobilizes stores of liver X receptor sterol ligands and protects against atherosclerosis. Nat Commun 2024; 15:6540. [PMID: 39095402 PMCID: PMC11297204 DOI: 10.1038/s41467-024-50949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Foam cells in atheroma are engorged with lipid droplets (LDs) that contain esters of regulatory lipids whose metabolism remains poorly understood. LD-associated hydrolase (LDAH) has a lipase structure and high affinity for LDs of foam cells. Using knockout and transgenic mice of both sexes, here we show that LDAH inhibits atherosclerosis development and promotes stable lesion architectures. Broad and targeted lipidomic analyzes of primary macrophages and comparative lipid profiling of atheroma identified a broad impact of LDAH on esterified sterols, including natural liver X receptor (LXR) sterol ligands. Transcriptomic analyzes coupled with rescue experiments show that LDAH modulates the expression of prototypical LXR targets and leads macrophages to a less inflammatory phenotype with a profibrotic gene signature. These studies underscore the role of LDs as reservoirs and metabolic hubs of bioactive lipids, and suggest that LDAH favorably modulates macrophage activation and protects against atherosclerosis via lipolytic mobilization of regulatory sterols.
Collapse
Affiliation(s)
- Young-Hwa Goo
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | | | - Francis D Cheeran
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
- Cancer Center@Illinois, University of Illinois, Urbana-Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Pradip K Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Paula Baar
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
- TransMIT GmbH, Center for Mass Spectrometric Developments, Giessen, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
- Cancer Center@Illinois, University of Illinois, Urbana-Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Vijay K Yechoor
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Antoni Paul
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
42
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
43
|
He A, He L, Chen T, Li X, Cao C. Biomechanical Properties and Cellular Responses in Pulmonary Fibrosis. Bioengineering (Basel) 2024; 11:747. [PMID: 39199705 PMCID: PMC11351367 DOI: 10.3390/bioengineering11080747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Andong He
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Tianwei Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
| |
Collapse
|
44
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Mathisen AF, Larsen U, Kavli N, Unger L, Daian LM, Vacaru AM, Vacaru AM, Herrera PL, Ghila L, Chera S. Moderate beta-cell ablation triggers synergic compensatory mechanisms even in the absence of overt metabolic disruption. Commun Biol 2024; 7:833. [PMID: 38982170 PMCID: PMC11233560 DOI: 10.1038/s42003-024-06527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Regeneration, the ability to replace injured tissues and organs, is a phenomenon commonly associated with lower vertebrates but is also observed in mammals, in specific tissues. In this study, we investigated the regenerative potential of pancreatic islets following moderate beta-cell loss in mice. Using a rapid model of moderate ablation, we observed a compensatory response characterized by transient inflammation and proliferation signatures, ultimately leading to the recovery of beta-cell identity and function. Interestingly, this proliferative response occurred independently of inflammation, as demonstrated in ablated immunodeficient mice. Furthermore, exposure to high-fat diet stimulated beta-cell proliferation but negatively impacted beta-cell function. In contrast, an equivalent slower ablation model revealed a delayed but similar proliferative response, suggesting proliferation as a common regenerative response. However, high-fat diet failed to promote proliferation in this model, indicating a differential response to metabolic stressors. Overall, our findings shed light on the complex interplay between beta-cell loss, inflammation, and stress in modulating pancreatic islet regeneration. Understanding these mechanisms could pave the way for novel therapeutic strategies based on beta-cell proliferation.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Kavli
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Maria Daian
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Andrei Mircea Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
46
|
Haykin H, Avishai E, Krot M, Ghiringhelli M, Reshef M, Abboud Y, Melamed S, Merom S, Boshnak N, Azulay-Debby H, Ziv T, Gepstein L, Rolls A. Reward system activation improves recovery from acute myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:841-856. [PMID: 39196183 DOI: 10.1038/s44161-024-00491-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/16/2024] [Indexed: 08/29/2024]
Abstract
Psychological processes have a crucial role in the recovery from acute myocardial infarction (AMI), yet the underlying mechanisms of these effects remain elusive. Here we demonstrate the impact of the reward system, a brain network associated with motivation and positive expectations, on the clinical outcomes of AMI in mice. Chemogenetic activation of dopaminergic neurons in the reward system improved the remodeling processes and vascularization after AMI, leading to enhanced cardiac performance compared to controls. These effects were mediated through several physiological mechanisms, including alterations in immune activity and reduced adrenergic input to the liver. We further demonstrate an anatomical connection between the reward system and the liver, functionally manifested by altered transcription of complement component 3, which in turn affects vascularization and recovery from AMI. These findings establish a causal connection between a motivational brain network and recovery from AMI, introducing potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- H Haykin
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - E Avishai
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Ghiringhelli
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Reshef
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Y Abboud
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Melamed
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Merom
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - N Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - H Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - T Ziv
- Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - L Gepstein
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel.
| | - A Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
47
|
Tharp KM, Kersten K, Maller O, Timblin GA, Stashko C, Canale FP, Menjivar RE, Hayward MK, Berestjuk I, Ten Hoeve J, Samad B, Ironside AJ, di Magliano MP, Muir A, Geiger R, Combes AJ, Weaver VM. Tumor-associated macrophages restrict CD8 + T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. NATURE CANCER 2024; 5:1045-1062. [PMID: 38831058 DOI: 10.1038/s43018-024-00775-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Tumor progression is accompanied by fibrosis, a condition of excessive extracellular matrix accumulation, which is associated with diminished antitumor immune infiltration. Here we demonstrate that tumor-associated macrophages (TAMs) respond to the stiffened fibrotic tumor microenvironment (TME) by initiating a collagen biosynthesis program directed by transforming growth factor-β. A collateral effect of this programming is an untenable metabolic milieu for productive CD8+ T cell antitumor responses, as collagen-synthesizing macrophages consume environmental arginine, synthesize proline and secrete ornithine that compromises CD8+ T cell function in female breast cancer. Thus, a stiff and fibrotic TME may impede antitumor immunity not only by direct physical exclusion of CD8+ T cells but also through secondary effects of a mechano-metabolic programming of TAMs, which creates an inhospitable metabolic milieu for CD8+ T cells to respond to anticancer immunotherapies.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kelly Kersten
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Ori Maller
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Greg A Timblin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Fernando P Canale
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rosa E Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Mary-Kate Hayward
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ilona Berestjuk
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | | | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
49
|
Li CX, Yue L. The Multifaceted Nature of Macrophages in Cardiovascular Disease. Biomedicines 2024; 12:1317. [PMID: 38927523 PMCID: PMC11201197 DOI: 10.3390/biomedicines12061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
As the leading cause of mortality worldwide, cardiovascular disease (CVD) represents a variety of heart diseases and vascular disorders, including atherosclerosis, aneurysm, ischemic injury in the heart and brain, arrythmias, and heart failure. Macrophages, a diverse population of immune cells that can promote or suppress inflammation, have been increasingly recognized as a key regulator in various processes in both healthy and disease states. In healthy conditions, these cells promote the proper clearance of cellular debris, dead and dying cells, and provide a strong innate immune barrier to foreign pathogens. However, macrophages can play a detrimental role in the progression of disease as well, particularly those inflammatory in nature. This review will focus on the current knowledge regarding the role of macrophages in cardiovascular diseases.
Collapse
Affiliation(s)
- Cindy X. Li
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lixia Yue
- Department of Cell Biology, Pat and Jim Calhoun Cardiovascular Center, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
50
|
Chen Z, Cai D, Xie Y, Zhong J, Wu M, Yang H, Feng J, Lian H, Dou K, Nie Y. Triiodothyronine induces a proinflammatory monocyte/macrophage profile and impedes cardiac regeneration. J Mol Cell Cardiol 2024; 191:7-11. [PMID: 38608929 DOI: 10.1016/j.yjmcc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes in vitro. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dongcheng Cai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yifan Xie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jiajun Zhong
- Department of Cardiac Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengge Wu
- Fuwai Central China Cardiovascular Hospital, Animal experimental center of Central, China Subcenter of National Center for Cardiovascular Diseases, Zhengzhou 450046, China
| | - Huijun Yang
- Department of Cardiovascular Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou 450046, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| |
Collapse
|