1
|
Gay SM, Chartampila E, Lord JS, Grizzard S, Maisashvili T, Ye M, Barker NK, Mordant AL, Mills CA, Herring LE, Diering GH. Developing forebrain synapses are uniquely vulnerable to sleep loss. Proc Natl Acad Sci U S A 2024; 121:e2407533121. [PMID: 39441640 PMCID: PMC11536182 DOI: 10.1073/pnas.2407533121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Sleep is an essential behavior that supports lifelong brain health and cognition. Neuronal synapses are a major target for restorative sleep function and a locus of dysfunction in response to sleep deprivation (SD). Synapse density is highly dynamic during development, becoming stabilized with maturation to adulthood, suggesting sleep exerts distinct synaptic functions between development and adulthood. Importantly, problems with sleep are common in neurodevelopmental disorders including autism spectrum disorder (ASD). Moreover, early life sleep disruption in animal models causes long-lasting changes in adult behavior. Divergent plasticity engaged during sleep necessarily implies that developing and adult synapses will show differential vulnerability to SD. To investigate distinct sleep functions and mechanisms of vulnerability to SD across development, we systematically examined the behavioral and molecular responses to acute SD between juvenile (P21 to P28), adolescent (P42 to P49), and adult (P70 to P100) mice of both sexes. Compared to adults, juveniles lack robust adaptations to SD, precipitating cognitive deficits in the novel object recognition task. Subcellular fractionation, combined with proteome and phosphoproteome analysis revealed the developing synapse is profoundly vulnerable to SD, whereas adults exhibit comparative resilience. SD in juveniles, and not older mice, aberrantly drives induction of synapse potentiation, synaptogenesis, and expression of perineuronal nets. Our analysis further reveals the developing synapse as a putative node of convergence between vulnerability to SD and ASD genetic risk. Together, our systematic analysis supports a distinct developmental function of sleep and reveals how sleep disruption impacts key aspects of brain development, providing insights for ASD susceptibility.
Collapse
Affiliation(s)
- Sean M. Gay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Elissavet Chartampila
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Julia S. Lord
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Sawyer Grizzard
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Tekla Maisashvili
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Michael Ye
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Natalie K. Barker
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Angie L. Mordant
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - C. Allie Mills
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Graham H. Diering
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Carolina Institute for Developmental Disabilities, Carrboro, NC27510
| |
Collapse
|
2
|
Zheng Q, Huang Y, Mu C, Hu X, Lai CSW. Selective Modulation of Fear Memory in Non-Rapid Eye Movement Sleep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400662. [PMID: 39382074 DOI: 10.1002/advs.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/20/2024] [Indexed: 10/10/2024]
Abstract
Sleep stabilizes memories for their consolidation, but how to modify specific fear memory during sleep remains unclear. Here, it is reported that using targeted memory reactivation (TMR) to reactivate prior fear learning experience in non-slow wave sleep (NS) inhibits fear memory consolidation, while TMR during slow wave sleep (SWS) enhances fear memory in mice. Replaying conditioned stimulus (CS) during sleep affects sleep spindle occurrence, leading to the reduction or enhancement of slow oscillation-spindle (SO-spindle) coupling in NS and SWS, respectively. Optogenetic inhibition of pyramidal neurons in the frontal association cortex (FrA) during TMR abolishes the behavioral effects of NS-TMR and SWS-TMR by modulating SO-spindle coupling. Notably, calcium imaging of the L2/3 pyramidal neurons in the FrA shows that CS during SWS selectively enhances the activity of neurons previously activated during fear conditioning (FC+ neurons), which significantly correlates with CS-elicited spindle power spectrum density. Intriguingly, these TMR-induced calcium activity changes of FC+ neurons further correlate with mice freezing behavior, suggesting their contributions to the consolidation of fear memories. The findings indicate that TMR can selectively weaken or strengthen fear memory, in correlation with modulating SO-spindle coupling and the reactivation of FC+ neurons during substages of non-rapid eye movement (NREM) sleep.
Collapse
Affiliation(s)
- Qiyu Zheng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Yuhua Huang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Changrui Mu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Xiaoqing Hu
- Department of Psychology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
3
|
Kim DY, Kim SM, Han IO. Chronic rapid eye movement sleep deprivation aggravates the pathogenesis of Alzheimer's disease by decreasing brain O-GlcNAc cycling in mice. J Neuroinflammation 2024; 21:180. [PMID: 39044290 PMCID: PMC11264383 DOI: 10.1186/s12974-024-03179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aβ) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3β and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
4
|
López-Canul M, He Q, Sasson T, Ettaoussi M, Gregorio DD, Ochoa-Sanchez R, Catoire H, Posa L, Rouleau G, Beaulieu JM, Comai S, Gobbi G. Selective Enhancement of REM Sleep in Male Rats through Activation of Melatonin MT 1 Receptors Located in the Locus Ceruleus Norepinephrine Neurons. J Neurosci 2024; 44:e0914232024. [PMID: 38744530 PMCID: PMC11255427 DOI: 10.1523/jneurosci.0914-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus ceruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector, which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.
Collapse
Affiliation(s)
- Martha López-Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Qianzi He
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Tania Sasson
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Mohamed Ettaoussi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Rafael Ochoa-Sanchez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Helene Catoire
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 2C8, Canada
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua 35131, Italy
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Research Institute, McGill University Health Center, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
5
|
Nwabudike I, Che A. Early-life maturation of the somatosensory cortex: sensory experience and beyond. Front Neural Circuits 2024; 18:1430783. [PMID: 39040685 PMCID: PMC11260818 DOI: 10.3389/fncir.2024.1430783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Early life experiences shape physical and behavioral outcomes throughout lifetime. Sensory circuits are especially susceptible to environmental and physiological changes during development. However, the impact of different types of early life experience are often evaluated in isolation. In this mini review, we discuss the specific effects of postnatal sensory experience, sleep, social isolation, and substance exposure on barrel cortex development. Considering these concurrent factors will improve understanding of the etiology of atypical sensory perception in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ijeoma Nwabudike
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Maurer JJ, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of rapid eye movement sleep by the preoptic area of the hypothalamus. eLife 2024; 12:RP92095. [PMID: 38884573 PMCID: PMC11182646 DOI: 10.7554/elife.92095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John J Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexandra Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Shuster AE, Chen PC, Niknazar H, McDevitt EA, Lopour B, Mednick SC. Novel Electrophysiological Signatures of Learning and Forgetting in Human Rapid Eye Movement Sleep. J Neurosci 2024; 44:e1517232024. [PMID: 38670803 PMCID: PMC11170679 DOI: 10.1523/jneurosci.1517-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the known behavioral benefits of rapid eye movement (REM) sleep, discrete neural oscillatory events in human scalp electroencephalography (EEG) linked with behavior have not been discovered. This knowledge gap hinders mechanistic understanding of the function of sleep, as well as the development of biophysical models and REM-based causal interventions. We designed a detection algorithm to identify bursts of activity in high-density, scalp EEG within theta (4-8 Hz) and alpha (8-13 Hz) bands during REM sleep. Across 38 nights of sleep, we characterized the burst events (i.e., count, duration, density, peak frequency, amplitude) in healthy, young male and female human participants (38; 21F) and investigated burst activity in relation to sleep-dependent memory tasks: hippocampal-dependent episodic verbal memory and nonhippocampal visual perceptual learning. We found greater burst count during the more REM-intensive second half of the night (p < 0.05), longer burst duration during the first half of the night (p < 0.05), but no differences across the night in density or power (p > 0.05). Moreover, increased alpha burst power was associated with increased overnight forgetting for episodic memory (p < 0.05). Furthermore, we show that increased REM theta burst activity in retinotopically specific regions was associated with better visual perceptual performance. Our work provides a critical bridge between discrete REM sleep events in human scalp EEG that support cognitive processes and the identification of similar activity patterns in animal models that allow for further mechanistic characterization.
Collapse
Affiliation(s)
| | - Pin-Chun Chen
- University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hamid Niknazar
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| | | | - Beth Lopour
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| | - Sara C Mednick
- Sleep and Cognition Lab, University of California, Irvine, California 92697
| |
Collapse
|
8
|
Hong J, Choi K, Fuccillo MV, Chung S, Weber F. Infralimbic activity during REM sleep facilitates fear extinction memory. Curr Biol 2024; 34:2247-2255.e5. [PMID: 38714199 PMCID: PMC11111341 DOI: 10.1016/j.cub.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyuhyun Choi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Pei J, Zhang C, Zhang X, Zhao Z, Zhang X, Yuan Y. Low-intensity transcranial ultrasound stimulation improves memory in vascular dementia by enhancing neuronal activity and promoting spine formation. Neuroimage 2024; 291:120584. [PMID: 38522806 DOI: 10.1016/j.neuroimage.2024.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
Memory is closely associated with neuronal activity and dendritic spine formation. Low-intensity transcranial ultrasound stimulation (TUS) improves the memory of individuals with vascular dementia (VD). However, it is unclear whether neuronal activity and dendritic spine formation under ultrasound stimulation are involved in memory improvement in VD. In this study, we found that seven days of TUS improved memory in VD model while simultaneously increasing pyramidal neuron activity, promoting dendritic spine formation, and reducing dendritic spine elimination. These effects lasted for 7 days but disappeared on 14 d after TUS. Neuronal activity and dendritic spine formation strongly corresponded to improvements in memory behavior over time. In addition, we also found that the memory, neuronal activity and dendritic spine of VD mice cannot be restored again by TUS of 7 days after 28 d. Collectively, these findings suggest that TUS increases neuronal activity and promotes dendritic spine formation and is thus important for improving memory in patients with VD.
Collapse
Affiliation(s)
- Jiamin Pei
- School of Electrical Engineering, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Cong Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, No.215 Heping Road, Shijiazhuang 050000, China
| | - Xiao Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, No.215 Heping Road, Shijiazhuang 050000, China
| | - Zhe Zhao
- School of Electrical Engineering, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, No.215 Heping Road, Shijiazhuang 050000, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China.
| |
Collapse
|
10
|
Zhang J, Pena A, Delano N, Sattari N, Shuster AE, Baker FC, Simon K, Mednick SC. Evidence of an active role of dreaming in emotional memory processing shows that we dream to forget. Sci Rep 2024; 14:8722. [PMID: 38622204 PMCID: PMC11018802 DOI: 10.1038/s41598-024-58170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Dreaming is a universal human behavior that has inspired searches for meaning across many disciplines including art, psychology, religion, and politics, yet its function remains poorly understood. Given the suggested role of sleep in emotional memory processing, we investigated whether reported overnight dreaming and dream content are associated with sleep-dependent changes in emotional memory and reactivity, and whether dreaming plays an active or passive role. Participants completed an emotional picture task before and after a full night of sleep and they recorded the presence and content of their dreams upon waking in the morning. The results replicated the emotional memory trade-off (negative images maintained at the cost of neutral memories), but only in those who reported dreaming (Dream-Recallers), and not in Non-Dream-Recallers. Results also replicated sleep-dependent reductions in emotional reactivity, but only in Dream-Recallers, not in Non-Dream-Recallers. Additionally, the more positive the dream report, the more positive the next-day emotional reactivity is compared to the night before. These findings implicate an active role for dreaming in overnight emotional memory processing and suggest a mechanistic framework whereby dreaming may enhance salient emotional experiences via the forgetting of less relevant information.
Collapse
|
11
|
Gay SM, Chartampila E, Lord JS, Grizzard S, Maisashvili T, Ye M, Barker NK, Mordant AL, Mills CA, Herring LE, Diering GH. Developing forebrain synapses are uniquely vulnerable to sleep loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565853. [PMID: 37986967 PMCID: PMC10659326 DOI: 10.1101/2023.11.06.565853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Sleep is an essential behavior that supports lifelong brain health and cognition. Neuronal synapses are a major target for restorative sleep function and a locus of dysfunction in response to sleep deprivation (SD). Synapse density is highly dynamic during development, becoming stabilized with maturation to adulthood, suggesting sleep exerts distinct synaptic functions between development and adulthood. Importantly, problems with sleep are common in neurodevelopmental disorders including autism spectrum disorder (ASD). Moreover, early life sleep disruption in animal models causes long lasting changes in adult behavior. Different plasticity engaged during sleep necessarily implies that developing and adult synapses will show differential vulnerability to SD. To investigate distinct sleep functions and mechanisms of vulnerability to SD across development, we systematically examined the behavioral and molecular responses to acute SD between juvenile (P21-28), adolescent (P42-49) and adult (P70-100) mice of both sexes. Compared to adults, juveniles lack robust adaptations to SD, precipitating cognitive deficits in the novel object recognition test. Subcellular fractionation, combined with proteome and phosphoproteome analysis revealed the developing synapse is profoundly vulnerable to SD, whereas adults exhibit comparative resilience. SD in juveniles, and not older mice, aberrantly drives induction of synapse potentiation, synaptogenesis, and expression of peri-neuronal nets. Our analysis further reveals the developing synapse as a convergent node between vulnerability to SD and ASD genetic risk. Together, our systematic analysis supports a distinct developmental function of sleep and reveals how sleep disruption impacts key aspects of brain development, providing mechanistic insights for ASD susceptibility.
Collapse
|
12
|
Masmudi-Martín M, López-Aranda MF, Navarro-Lobato I, Khan ZU. A role of frontal association cortex in long-term object recognition memory of objects with complex features in rats. Eur J Neurosci 2024; 59:1743-1752. [PMID: 38238909 DOI: 10.1111/ejn.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 04/04/2024]
Abstract
Perirhinal cortex is a brain area that has been considered crucial for the object recognition memory (ORM). However, with the use of an ORM enhancer named RGS14414 as gain-in-function tool, we show here that frontal association cortex and not the Perirhinal cortex is essential for the ORM of objects with complex features that consisted of detailed drawing on the object surface (complex ORM). An expression of RGS14414, in rat brain frontal association cortex, induced the formation of long-term complex ORM, whereas the expression of the same memory enhancer in Perirhinal cortex failed to produce this effect. Instead, RGS14414 expression in Perirhinal cortex caused the formation of ORM of objects with simple features that consisted of the shape of object (simple ORM). Further, a selective elimination of frontal association cortex neurons by treatment with an immunotoxin Ox7-SAP completely abrogated the formation of complex ORM. Thus, our results suggest that frontal association cortex plays a key role in processing of a high-order recognition memory information in brain.
Collapse
Affiliation(s)
- Mariam Masmudi-Martín
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- Brain Metastasis Group, National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel F López-Aranda
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- Department of Neurobiology, University of California-Los Angeles, Los Angeles, California, USA
| | - Irene Navarro-Lobato
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Zafar U Khan
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- CIBERNED, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Cabrera Y, Koymans KJ, Poe GR, Kessels HW, Van Someren EJW, Wassing R. Overnight neuronal plasticity and adaptation to emotional distress. Nat Rev Neurosci 2024; 25:253-271. [PMID: 38443627 DOI: 10.1038/s41583-024-00799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Expressions such as 'sleep on it' refer to the resolution of distressing experiences across a night of sound sleep. Sleep is an active state during which the brain reorganizes the synaptic connections that form memories. This Perspective proposes a model of how sleep modifies emotional memory traces. Sleep-dependent reorganization occurs through neurophysiological events in neurochemical contexts that determine the fates of synapses to grow, to survive or to be pruned. We discuss how low levels of acetylcholine during non-rapid eye movement sleep and low levels of noradrenaline during rapid eye movement sleep provide a unique window of opportunity for plasticity in neuronal representations of emotional memories that resolves the associated distress. We integrate sleep-facilitated adaptation over three levels: experience and behaviour, neuronal circuits, and synaptic events. The model generates testable hypotheses for how failed sleep-dependent adaptation to emotional distress is key to mental disorders, notably disorders of anxiety, depression and post-traumatic stress with the common aetiology of insomnia.
Collapse
Affiliation(s)
- Yesenia Cabrera
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Karin J Koymans
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Gina R Poe
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Synaptic Plasticity and Behaviour, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology and Psychiatry, VU University, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam UMC, Amsterdam, Netherlands
| | - Rick Wassing
- Sleep and Circadian Research, Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia.
- School of Psychological Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
- Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Wang T, Wang M, Wang J, Li Z, Yuan Y. Modulatory effects of low-intensity retinal ultrasound stimulation on rapid and non-rapid eye movement sleep. Cereb Cortex 2024; 34:bhae143. [PMID: 38602742 DOI: 10.1093/cercor/bhae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
Prior investigations have established that the manipulation of neural activity has the potential to influence both rapid eye movement and non-rapid eye movement sleep. Low-intensity retinal ultrasound stimulation has shown effectiveness in the modulation of neural activity. Nevertheless, the specific effects of retinal ultrasound stimulation on rapid eye movement and non-rapid eye movement sleep, as well as its potential to enhance overall sleep quality, remain to be elucidated. Here, we found that: In healthy mice, retinal ultrasound stimulation: (i) reduced total sleep time and non-rapid eye movement sleep ratio; (ii) changed relative power and sample entropy of the delta (0.5-4 Hz) in non-rapid eye movement sleep; and (iii) enhanced relative power of the theta (4-8 Hz) and reduced theta-gamma coupling strength in rapid eye movement sleep. In Alzheimer's disease mice with sleep disturbances, retinal ultrasound stimulation: (i) reduced the total sleep time; (ii) altered the relative power of the gamma band during rapid eye movement sleep; and (iii) enhanced the coupling strength of delta-gamma in non-rapid eye movement sleep and weakened the coupling strength of theta-fast gamma. The results indicate that retinal ultrasound stimulation can modulate rapid eye movement and non-rapid eye movement-related neural activity; however, it is not beneficial to the sleep quality of healthy and Alzheimer's disease mice.
Collapse
Affiliation(s)
- Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Jiawei Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhen Li
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
15
|
Fok AHK, Huang Y, So BWL, Zheng Q, Tse CSC, Li X, Wong KKY, Huang J, Lai KO, Lai CSW. KIF5B plays important roles in dendritic spine plasticity and dendritic localization of PSD95 and FMRP in the mouse cortex in vivo. Cell Rep 2024; 43:113906. [PMID: 38451812 DOI: 10.1016/j.celrep.2024.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Kinesin 1 (KIF5) is one major type of motor protein in neurons, but its members' function in the intact brain remains less studied. Using in vivo two-photon imaging, we find that conditional knockout of Kif5b (KIF5B cKO) in CaMKIIα-Cre-expressing neurons shows heightened turnover and lower stability of dendritic spines in layer 2/3 pyramidal neurons with reduced spine postsynaptic density protein 95 acquisition in the mouse cortex. Furthermore, the RNA-binding protein fragile X mental retardation protein (FMRP) is translocated to the proximity of newly formed spines several hours before the spine formation events in vivo in control mice, but this preceding transport of FMRP is abolished in KIF5B cKO mice. We further find that FMRP is localized closer to newly formed spines after fear extinction, but this learning-dependent localization is disrupted in KIF5B cKO mice. Our findings provide the crucial in vivo evidence that KIF5B is involved in the dendritic targeting of synaptic proteins that underlies dendritic spine plasticity.
Collapse
Affiliation(s)
- Albert Hiu Ka Fok
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhua Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Beth Wing Lam So
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Qiyu Zheng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Sing Carlos Tse
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoyang Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Kin-Yip Wong
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Jiandong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China; State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong SAR, China.
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegener 2024; 19:23. [PMID: 38462606 PMCID: PMC10926682 DOI: 10.1186/s13024-024-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.
Collapse
Affiliation(s)
- Michael Z Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, College of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Thomas Peng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Science Research Program, Scarsdale High School, New York, NY, 10583, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, The University of Minnesota, Minneapolis, MN, 55455, USA.
- Geriatric Research Education & Clinical Center (GRECC), The Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
| |
Collapse
|
17
|
Navarrete M, Greco V, Rakowska M, Bellesi M, Lewis PA. Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance. Commun Biol 2024; 7:193. [PMID: 38365955 PMCID: PMC10873307 DOI: 10.1038/s42003-024-05825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024] Open
Abstract
REM sleep is critical for memory, emotion, and cognition. Manipulating brain activity during REM could improve our understanding of its function and benefits. Earlier studies have suggested that auditory stimulation in REM might modulate REM time and reduce rapid eye movement density. Building on this, we studied the cognitive effects and electroencephalographic responses related to such stimulation. We used acoustic stimulation locked to eye movements during REM and compared two overnight conditions (stimulation and no-stimulation). We evaluated the impact of this stimulation on REM sleep duration and electrophysiology, as well as two REM-sensitive memory tasks: visual discrimination and mirror tracing. Our results show that this auditory stimulation in REM decreases the rapid eye movements that characterize REM sleep and improves performance on the visual task but is detrimental to the mirror tracing task. We also observed increased beta-band activity and decreased theta-band activity following stimulation. Interestingly, these spectral changes were associated with changes in behavioural performance. These results show that acoustic stimulation can modulate REM sleep and suggest that different memory processes underpin its divergent impacts on cognitive performance.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
- Psychology and Biobehavioral Sciences Department, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Viviana Greco
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Martyna Rakowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino (MC), Italy
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
18
|
Yang K, Wei R, Liu Q, Tao Y, Wu Z, Yang L, Wang QH, Wang H, Pan Z. Specific inhibition of TET1 in the spinal dorsal horn alleviates inflammatory pain in mice by regulating synaptic plasticity. Neuropharmacology 2024; 244:109799. [PMID: 38008374 DOI: 10.1016/j.neuropharm.2023.109799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
DNA demethylation mediated by ten-eleven translocation 1 (TET1) is a critical epigenetic mechanism in which gene expression is regulated via catalysis of 5-methylcytosine to 5-hydroxymethylcytosine. Previously, we demonstrated that TET1 is associated with the genesis of chronic inflammatory pain. However, how TET1 participates in enhanced nociceptive responses in chronic pain remains poorly understood. Here, we report that conditional knockout of Tet1 in dorsal horn neurons via intrathecal injection of rAAV-hSyn-Cre in Tet1fl/fl mice not only reversed the inflammation-induced upregulation of synapse-associated proteins (post-synaptic density protein 95 (PSD95) and synaptophysin (SYP)) in the dorsal horn but also ameliorated abnormalities in dendritic spine morphology and alleviated pain hypersensitivities. Pharmacological blockade of TET1 by intrathecal injection of a TET1-specific inhibitor-Bobcat 339-produced similar results, as did knockdown of Tet1 by intrathecal injection of siRNA. Thus, our data strongly suggest that increased TET1 expression during inflammatory pain upregulates the expression of multiple synapse-associated proteins and dysregulates synaptic morphology in dorsal horn neurons, suggesting that Tet1 may be a potential target for analgesic strategies.
Collapse
Affiliation(s)
- Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zixuan Wu
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hongjun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
19
|
Satchell M, Fry B, Noureddine Z, Simmons A, Ognjanovski NN, Aton SJ, Zochowski MR. Neuromodulation via muscarinic acetylcholine pathway can facilitate distinct, complementary, and sequential roles for NREM and REM states during sleep-dependent memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541465. [PMID: 38293183 PMCID: PMC10827095 DOI: 10.1101/2023.05.19.541465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Across vertebrate species, sleep consists of repeating cycles of NREM followed by REM. However, the respective functions of NREM, REM, and their stereotypic cycling pattern are not well understood. Using a simplified biophysical network model, we show that NREM and REM sleep can play differential and critical roles in memory consolidation primarily regulated, based on state-specific changes in cholinergic signaling. Within this network, decreasing and increasing muscarinic acetylcholine (ACh) signaling during bouts of NREM and REM, respectively, differentially alters neuronal excitability and excitatory/inhibitory balance. During NREM, deactivation of inhibitory neurons leads to network-wide disinhibition and bursts of synchronized activity led by firing in engram neurons. These features strengthen connections from the original engram neurons to less-active network neurons. In contrast, during REM, an increase in network inhibition suppresses firing in all but the most-active excitatory neurons, leading to competitive strengthening/pruning of the memory trace. We tested the predictions of the model against in vivo recordings from mouse hippocampus during active sleep-dependent memory storage. Consistent with modeling results, we find that functional connectivity between CA1 neurons changes differentially at transition from NREM to REM sleep during learning. Returning to the model, we find that an iterative sequence of state-specific activations during NREM/REM cycling is essential for memory storage in the network, serving a critical role during simultaneous consolidation of multiple memories. Together these results provide a testable mechanistic hypothesis for the respective roles of NREM and REM sleep, and their universal relative timing, in memory consolidation. Significance statement Using a simplified computational model and in vivo recordings from mouse hippocampus, we show that NREM and REM sleep can play differential roles in memory consolidation. The specific neurophysiological features of the two sleep states allow for expansion of memory traces (during NREM) and prevention of overlap between different memory traces (during REM). These features are likely essential in the context of storing more than one new memory simultaneously within a brain network.
Collapse
|
20
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Pracucci E, Graham RT, Alberio L, Nardi G, Cozzolino O, Pillai V, Pasquini G, Saieva L, Walsh D, Landi S, Zhang J, Trevelyan AJ, Ratto GM. Daily rhythm in cortical chloride homeostasis underpins functional changes in visual cortex excitability. Nat Commun 2023; 14:7108. [PMID: 37925453 PMCID: PMC10625537 DOI: 10.1038/s41467-023-42711-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Cortical activity patterns are strongly modulated by fast synaptic inhibition mediated through ionotropic, chloride-conducting receptors. Consequently, chloride homeostasis is ideally placed to regulate activity. We therefore investigated the stability of baseline [Cl-]i in adult mouse neocortex, using in vivo two-photon imaging. We found a two-fold increase in baseline [Cl-]i in layer 2/3 pyramidal neurons, from day to night, with marked effects upon both physiological cortical processing and seizure susceptibility. Importantly, the night-time activity can be converted to the day-time pattern by local inhibition of NKCC1, while inhibition of KCC2 converts day-time [Cl-]i towards night-time levels. Changes in the surface expression and phosphorylation of the cation-chloride cotransporters, NKCC1 and KCC2, matched these pharmacological effects. When we extended the dark period by 4 h, mice remained active, but [Cl-]i was modulated as for animals in normal light cycles. Our data thus demonstrate a daily [Cl-]i modulation with complex effects on cortical excitability.
Collapse
Affiliation(s)
- Enrico Pracucci
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Robert T Graham
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Alberio
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gabriele Nardi
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Olga Cozzolino
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Giacomo Pasquini
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Luciano Saieva
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Darren Walsh
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Silvia Landi
- Institute of Neuroscience CNR, Pisa, Italy
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Institute of Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology. Research Center of Chemical Kinomics, Shangai. Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Gian-Michele Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy.
- Institute of Neuroscience CNR, Pisa, Italy.
- Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
22
|
Roliz AH, Kothare S. The Relationship Between Sleep, Epilepsy, and Development: a Review. Curr Neurol Neurosci Rep 2023; 23:469-477. [PMID: 37458984 DOI: 10.1007/s11910-023-01284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW To review the relationship between sleep, neurodevelopment, and epilepsy and potential underlying physiological mechanisms. RECENT FINDINGS Recent studies have advanced our understanding of the role of sleep in early brain development and epilepsy. Epileptogenesis has been proposed to occur when there is a failure of normal adaptive processes of synaptic and homeostatic plasticity. This sleep-dependent transformation may explain the cognitive impairment seen in epilepsy, especially when occurring early in life. The glymphatic system, a recently discovered waste clearance system of the central nervous system, has been described as a potential mechanism underlying the relationship between sleep and seizures and may account for the common association between sleep deprivation and increased seizure risk. Epilepsy and associated sleep disturbances can critically affect brain development and neurocognition. Here we highlight recent findings on this topic and emphasize the importance of screening for sleep concerns in people with epilepsy.
Collapse
Affiliation(s)
- Annie H Roliz
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Ave, Suite W290, New Hyde Park, NY, 11042, USA
| | - Sanjeev Kothare
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Ave, Suite W290, New Hyde Park, NY, 11042, USA.
| |
Collapse
|
23
|
Lendner JD, Niethard N, Mander BA, van Schalkwijk FJ, Schuh-Hofer S, Schmidt H, Knight RT, Born J, Walker MP, Lin JJ, Helfrich RF. Human REM sleep recalibrates neural activity in support of memory formation. SCIENCE ADVANCES 2023; 9:eadj1895. [PMID: 37624898 PMCID: PMC10456851 DOI: 10.1126/sciadv.adj1895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
The proposed mechanisms of sleep-dependent memory consolidation involve the overnight regulation of neural activity at both synaptic and whole-network levels. Now, there is a lack of in vivo data in humans elucidating if, and how, sleep and its varied stages balance neural activity, and if such recalibration benefits memory. We combined electrophysiology with in vivo two-photon calcium imaging in rodents as well as intracranial and scalp electroencephalography (EEG) in humans to reveal a key role for non-oscillatory brain activity during rapid eye movement (REM) sleep to mediate sleep-dependent recalibration of neural population dynamics. The extent of this REM sleep recalibration predicted the success of overnight memory consolidation, expressly the modulation of hippocampal-neocortical activity, favoring remembering rather than forgetting. The findings describe a non-oscillatory mechanism how human REM sleep modulates neural population activity to enhance long-term memory.
Collapse
Affiliation(s)
- Janna D. Lendner
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Bryce A. Mander
- Department of Psychiatry and Human Behavior, UC Irvine, 101 The City Dr, Orange, CA 92868, USA
| | - Frank J. van Schalkwijk
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, University Medical Center Mannheim, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| | - Hannah Schmidt
- Department of Neurophysiology, University Medical Center Mannheim, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, CA 94720, USA
- Department of Psychology, UC Berkeley, 2121 Berkeley Way, CA 94720, USA
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen 72076, Germany
| | - Matthew P. Walker
- Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, CA 94720, USA
- Department of Psychology, UC Berkeley, 2121 Berkeley Way, CA 94720, USA
| | - Jack J. Lin
- Department of Neurology, UC Davis, 3160 Folsom Blvd., Sacramento, CA 95816, USA
- Center for Mind and Brain, UC Davis, 267 Cousteau Pl, Davis, CA 95618, USA
| | - Randolph F. Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
- Department of Neurology and Epileptology, University Medical Center Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Wang M, Yu X. Experience-dependent structural plasticity of pyramidal neurons in the developing sensory cortices. Curr Opin Neurobiol 2023; 81:102724. [PMID: 37068383 DOI: 10.1016/j.conb.2023.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023]
Abstract
Sensory experience regulates the structural and functional wiring of neuronal circuits, during development and throughout adulthood. Here, we review current knowledge of how experience affects structural plasticity of pyramidal neurons in the sensory cortices. We discuss the pros and cons of existing labeling approaches, as well as what structural parameters are most plastic. We further discuss how recent advances in sparse labeling of specific neuronal subtypes, as well as development of techniques that allow fast, high resolution imaging in large fields, would enable future studies to address currently unanswered questions in the field of structural plasticity.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and PKU-IDG/McGovern Institute, Peking University, Beijing 100871, China.
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and PKU-IDG/McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
25
|
Chen Y, Li W. Rapid eye movement sleep contributes to the formation of new axonal varicosities in mouse cerebellar parallel fibers after motor training. Neurosci Lett 2023; 810:137349. [PMID: 37327855 DOI: 10.1016/j.neulet.2023.137349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Synaptic structural plasticity is essential for the development, learning and memory. It is well established that sleep plays important roles in synaptic plasticity after motor learning. In cerebellar cortex, parallel fibers of granule cells make excitatory synapses to the dendrites of Purkinje cells. However, the synaptic structural dynamics between parallel and Purkinje cells after motor training and the function of sleep in cerebellar synaptic plasticity remain unclear. Here, we used two-photon microscopy to examine presynaptic axonal structural dynamics at parallel fiber-Purkinje cell synapses and investigated the effect of REM sleep in synaptic plasticity of mouse cerebellar cortex following motor training. We found that motor training induces higher formation of new axonal varicosities in cerebellar parallel fibers. Our results also indicate that calcium activities of granule cells significantly increase during REM sleep, and REM sleep deprivation prevents motor training-induced formation of axonal varicosities in parallel fibers, suggesting that higher calcium activity of granule cells was crucial for promoting newly formed axonal varicosities after motor training. Together, these findings reveal the effect of motor training on parallel fiber presynaptic structural modification and the important role of REM sleep in synaptic plasticity in cerebellar cortex.
Collapse
Affiliation(s)
- Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
26
|
Poe GR, Donlea JM. Sleep sculpts circuits in every species studied. Cell 2023; 186:2730-2732. [PMID: 37352834 DOI: 10.1016/j.cell.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
In this issue of Cell, we see first evidence of sleep-dependent circuit remodeling alongside behavioral memory consolidation in C. elegans. Examining memory of a never-rewarded odor during post-training sleep from synapse to behavior all in one organism opens the opportunity to use this well-mapped nervous system to study mechanisms of sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Gina R Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey M Donlea
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
27
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
28
|
Milman NE, Tinsley CE, Raju RM, Lim MM. Loss of sleep when it is needed most - Consequences of persistent developmental sleep disruption: A scoping review of rodent models. Neurobiol Sleep Circadian Rhythms 2023; 14:100085. [PMID: 36567958 PMCID: PMC9768382 DOI: 10.1016/j.nbscr.2022.100085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Sleep is an essential component of development. Developmental sleep disruption (DSD) impacts brain maturation and has been associated with significant consequences on socio-emotional development. In humans, poor sleep during infancy and adolescence affects neurodevelopmental outcomes and may be a risk factor for the development of autism spectrum disorder (ASD) or other neuropsychiatric illness. Given the wide-reaching and enduring consequences of DSD, identifying underlying mechanisms is critical to best inform interventions with translational capacity. In rodents, studies have identified some mechanisms and neural circuits by which DSD causes later social, emotional, sensorimotor, and cognitive changes. However, these studies spanned methodological differences, including different developmental timepoints for both sleep disruption and testing, different DSD paradigms, and even different rodent species. In this scoping review on DSD in rodents, we synthesize these various studies into a cohesive framework to identify common neural mechanisms underlying DSD-induced dysfunction in brain and behavior. Ultimately, this review serves the goal to inform the generation of novel translational interventions for human developmental disorders featuring sleep disruption.
Collapse
Affiliation(s)
- Noah E.P. Milman
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Carolyn E. Tinsley
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Ravikiran M. Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Miranda M. Lim
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| |
Collapse
|
29
|
Muheim CM, Ford K, Medina E, Singletary K, Peixoto L, Frank MG. Ontogenesis of the molecular response to sleep loss. Neurobiol Sleep Circadian Rhythms 2023; 14:100092. [PMID: 37020466 PMCID: PMC10068260 DOI: 10.1016/j.nbscr.2023.100092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Sleep deprivation (SD) results in profound cellular and molecular changes in the adult mammalian brain. Some of these changes may result in, or aggravate, brain disease. However, little is known about how SD impacts gene expression in developing animals. We examined the transcriptional response in the prefrontal cortex (PFC) to SD across postnatal development in male mice. We used RNA sequencing to identify functional gene categories that were specifically impacted by SD. We find that SD has dramatically different effects on PFC genes depending on developmental age. Gene expression differences after SD fall into 3 categories: present at all ages (conserved), present when mature sleep homeostasis is first emerging, and those unique to certain ages. Developmentally conserved gene expression was limited to a few functional categories, including Wnt-signaling which suggests that this pathway is a core mechanism regulated by sleep. In younger ages, genes primarily related to growth and development are affected while changes in genes related to metabolism are specific to the effect of SD in adults.
Collapse
Affiliation(s)
- Christine M. Muheim
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
- WSU Health Sciences Spokane, Steve Gleason Institute for Neuroscience, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
| | - Kaitlyn Ford
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
| | - Elizabeth Medina
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
| | - Kristan Singletary
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
- WSU Health Sciences Spokane, Steve Gleason Institute for Neuroscience, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
| | - Lucia Peixoto
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
| | - Marcos G. Frank
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
- WSU Health Sciences Spokane, Steve Gleason Institute for Neuroscience, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
| |
Collapse
|
30
|
Lines J, Yuste R. Visually evoked neuronal ensembles reactivate during sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538480. [PMID: 37162988 PMCID: PMC10168341 DOI: 10.1101/2023.04.26.538480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Neuronal ensembles, defined as groups of coactive neurons, dominate cortical activity and are causally related to perceptual states and behavior. Interestingly, ensembles occur spontaneously in the absence of sensory stimulation. To better understand the function of ensembles in spontaneous activity, we explored if ensembles also occur during different brain states, including sleep, using two-photon calcium imaging from mouse primary visual cortex. We find that ensembles are present during all wake and sleep states, with different characteristics depending on the exact sleep stage. Moreover, visually evoked ensembles are reactivated during subsequent slow wave sleep cycles. Our results are consistent with the hypothesis that repeated sensory stimulation can reconfigure cortical circuits and imprint neuronal ensembles that are reactivated during sleep for potential processing or memory consolidation. One-Sentence Summary Cortical neuronal ensembles are present across wake and sleep states, and visually evoked ensembles are reactivated in subsequent slow-wave sleep.
Collapse
|
31
|
Zhao Z, Ji H, Zhang C, Pei J, Zhang X, Yuan Y. Modulation effects of low-intensity transcranial ultrasound stimulation on the neuronal firing activity and synaptic plasticity of mice. Neuroimage 2023; 270:119952. [PMID: 36805093 DOI: 10.1016/j.neuroimage.2023.119952] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) has been effective in modulating several neurological and psychiatric disorders. However, how TUS modulates neuronal firing activity and synaptic plasticity remains unclear. Thus, we behaviorally tested the whisker-dependent novel object discrimination ability in mice after ultrasound stimulation and examined the cortical neuronal firing activity and synaptic plasticity in awake mice after ultrasound stimulation by two-photon fluorescence imaging. The current study presented the following results: (1) TUS could significantly improve the whisker-dependent new object discrimination ability of mice, suggesting that their learning and memory abilities were significantly enhanced; (2) TUS significantly enhanced neuronal firing activity; and (3) TUS increased the growth rate of dendritic spines in the barrel cortex, but did not promote the extinction of dendritic spines, resulting in enhanced synaptic plasticity. The above results indicate that TUS can improve the learning and memory ability of mice and enhance the neuronal firing activity and synaptic plasticity that are closely related to it. This study provides a research basis for the application of ultrasound stimulation in the treatment of learning- and memory-related diseases.
Collapse
Affiliation(s)
- Zhe Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Hui Ji
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Cong Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jiamin Pei
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
32
|
Martinez JD, Donnelly MJ, Popke DS, Torres D, Wilson LG, Brancaleone WP, Sheskey S, Lin CM, Clawson BC, Jiang S, Aton SJ. Enriched binocular experience followed by sleep optimally restores binocular visual cortical responses in a mouse model of amblyopia. Commun Biol 2023; 6:408. [PMID: 37055505 PMCID: PMC10102075 DOI: 10.1038/s42003-023-04798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Studies of primary visual cortex have furthered our understanding of amblyopia, long-lasting visual impairment caused by imbalanced input from the two eyes during childhood, which is commonly treated by patching the dominant eye. However, the relative impacts of monocular vs. binocular visual experiences on recovery from amblyopia are unclear. Moreover, while sleep promotes visual cortex plasticity following loss of input from one eye, its role in recovering binocular visual function is unknown. Using monocular deprivation in juvenile male mice to model amblyopia, we compared recovery of cortical neurons' visual responses after identical-duration, identical-quality binocular or monocular visual experiences. We demonstrate that binocular experience is quantitatively superior in restoring binocular responses in visual cortex neurons. However, this recovery was seen only in freely-sleeping mice; post-experience sleep deprivation prevented functional recovery. Thus, both binocular visual experience and subsequent sleep help to optimally renormalize bV1 responses in a mouse model of amblyopia.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Marcus J Donnelly
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | - Donald S Popke
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Torres
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah Sheskey
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brittany C Clawson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Rexrode L, Tennin M, Babu J, Young C, Bollavarapu R, Lawson LA, Valeri J, Pantazopoulos H, Gisabella B. Regulation of dendritic spines in the amygdala following sleep deprivation. FRONTIERS IN SLEEP 2023; 2:1145203. [PMID: 37928499 PMCID: PMC10624159 DOI: 10.3389/frsle.2023.1145203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The amygdala is a hub of emotional circuits involved in the regulation of cognitive and emotional behaviors and its critically involved in emotional reactivity, stress regulation, and fear memory. Growing evidence suggests that the amygdala plays a key role in the consolidation of emotional memories during sleep. Neuroimaging studies demonstrated that the amygdala is selectively and highly activated during rapid eye movement sleep (REM) and sleep deprivation induces emotional instability and dysregulation of the emotional learning process. Regulation of dendritic spines during sleep represents a morphological correlate of memory consolidation. Several studies indicate that dendritic spines are remodeled during sleep, with evidence for broad synaptic downscaling and selective synaptic upscaling in several cortical areas and the hippocampus. Currently, there is a lack of information regarding the regulation of dendritic spines in the amygdala during sleep. In the present work, we investigated the effect of 5 h of sleep deprivation on dendritic spines in the mouse amygdala. Our data demonstrate that sleep deprivation results in differential dendritic spine changes depending on both the amygdala subregions and the morphological subtypes of dendritic spines. We observed decreased density of mushroom spines in the basolateral amygdala of sleep deprived mice, together with increased neck length and decreased surface area and volume. In contrast, we observed greater densities of stubby spines in sleep deprived mice in the central amygdala, indicating that downscaling selectively occurs in this spine type. Greater neck diameters for thin spines in the lateral and basolateral nuclei of sleep deprived mice, and decreases in surface area and volume for mushroom spines in the basolateral amygdala compared to increases in the cental amygdala provide further support for spine type-selective synaptic downscaling in these areas during sleep. Our findings suggest that sleep promotes synaptic upscaling of mushroom spines in the basolateral amygdala, and downscaling of selective spine types in the lateral and central amygdala. In addition, we observed decreased density of phosphorylated cofilin immunoreactive and growth hormone immunoreactive cells in the amygdala of sleep deprived mice, providing further support for upscaling of dendritic spines during sleep. Overall, our findings point to region-and spine type-specific changes in dendritic spines during sleep in the amygdala, which may contribute to consolidation of emotional memories during sleep.
Collapse
Affiliation(s)
- Lindsay Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Matthew Tennin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jobin Babu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Caleb Young
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lamiorkor Ameley Lawson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
34
|
Gao Y, Hong Y, Huang L, Zheng S, Zhang H, Wang S, Yao Y, Zhao Y, Zhu L, Xu Q, Chai X, Zeng Y, Zeng Y, Zheng L, Zhou Y, Luo H, Zhang X, Zhang H, Zhou Y, Fu G, Sun H, Huang TY, Zheng Q, Xu H, Wang X. β2-microglobulin functions as an endogenous NMDAR antagonist to impair synaptic function. Cell 2023; 186:1026-1038.e20. [PMID: 36868208 DOI: 10.1016/j.cell.2023.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 03/05/2023]
Abstract
Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of β2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lihong Huang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Haibin Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Shihua Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Yao
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361003, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lin Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiang Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xuhui Chai
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuanyuan Zeng
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuzhe Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Liangkai Zheng
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361103, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361103, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Huaxi Xu
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
35
|
Yuksel C, Denis D, Coleman J, Oh A, Cox R, Morgan A, Sato E, Stickgold R. Emotional memories are enhanced when reactivated in slow wave sleep, but impaired when reactivated in REM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530661. [PMID: 36909630 PMCID: PMC10002730 DOI: 10.1101/2023.03.01.530661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Sleep supports memory consolidation. However, it is not completely clear how different sleep stages contribute to this process. While rapid eye movement sleep (REM) has been traditionally implicated in the processing of emotionally charged material, recent studies indicate a role for slow wave sleep (SWS) in strengthening the memories of emotional stimuli. Here, to directly examine which sleep stage is primarily involved in emotional memory consolidation, we used targeted memory reactivation (TMR) in REM and SWS during a daytime nap. We also examined neural oscillations associated with TMR-related changes in memory. Contrary to our hypothesis, reactivation of emotional stimuli during REM led to impaired memory. Meanwhile, reactivation of emotional stimuli in SWS improved memory and was strongly correlated with the product of times spent in REM and SWS (%SWS Ã- %REM). When this variable was taken into account, reactivation significantly enhanced memory, with larger reactivation benefits compared to reactivation in REM. Notably, sleep spindle activity was modulated by emotional valence, and delta/theta activity was correlated with the memory benefit for both emotional and neutral items. Finally, we found no evidence that emotional memories benefited from TMR more than did neutral ones. Our results provide direct evidence for a complementary role of both REM and SWS in emotional memory consolidation, and suggest that REM may separately facilitate forgetting. In addition, our findings expand upon recent evidence indicating a link between sleep spindles and emotional processing.
Collapse
|
36
|
Kroeger D, Vetrivelan R. To sleep or not to sleep - Effects on memory in normal aging and disease. AGING BRAIN 2023; 3:100068. [PMID: 36911260 PMCID: PMC9997183 DOI: 10.1016/j.nbas.2023.100068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Sleep behavior undergoes significant changes across the lifespan, and aging is associated with marked alterations in sleep amounts and quality. The primary sleep changes in healthy older adults include a shift in sleep timing, reduced slow-wave sleep, and impaired sleep maintenance. However, neurodegenerative and psychiatric disorders are more common among the elderly, which further worsen their sleep health. Irrespective of the cause, insufficient sleep adversely affects various bodily functions including energy metabolism, mood, and cognition. In this review, we will focus on the cognitive changes associated with inadequate sleep during normal aging and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Kroeger
- Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
37
|
Muheim CM, Ford K, Medina E, Singletary K, Peixoto L, Frank MG. Ontogenesis of the molecular response to sleep loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524266. [PMID: 36712085 PMCID: PMC9882159 DOI: 10.1101/2023.01.16.524266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sleep deprivation (SD) results in profound cellular and molecular changes in the adult mammalian brain. Some of these changes may result in, or aggravate, brain disease. However, little is known about how SD impacts gene expression in developing animals. We examined the transcriptional response in the prefrontal cortex (PFC) to SD across postnatal development in male mice. We used RNA sequencing to identify functional gene categories that were specifically impacted by SD. We find that SD has dramatically different effects on PFC genes depending on developmental age. Gene expression differences after SD fall into 3 categories: present at all ages (conserved), present when mature sleep homeostasis is first emerging, and those unique to certain ages in adults. Developmentally conserved gene expression was limited to a few functional categories, including Wnt-signaling which suggests that this pathway is a core mechanism regulated by sleep. In younger ages, genes primarily related to growth and development are affected while changes in genes related to metabolism are specific to the effect of SD in adults.
Collapse
Affiliation(s)
- Christine M. Muheim
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane WA 99202, USA
- WSU Health Sciences Spokane, Steve Gleason Institute for Neuroscience, 412 E. Spokane Falls Blvd., Spokane, WA 99202, USA
| | - Kaitlyn Ford
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane WA 99202, USA
| | - Elizabeth Medina
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane WA 99202, USA
| | - Kristan Singletary
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane WA 99202, USA
- WSU Health Sciences Spokane, Steve Gleason Institute for Neuroscience, 412 E. Spokane Falls Blvd., Spokane, WA 99202, USA
| | - Lucia Peixoto
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane WA 99202, USA
| | - Marcos G. Frank
- Washington State University Spokane, Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd., Spokane WA 99202, USA
- WSU Health Sciences Spokane, Steve Gleason Institute for Neuroscience, 412 E. Spokane Falls Blvd., Spokane, WA 99202, USA
| |
Collapse
|
38
|
Picard K, Corsi G, Decoeur F, Di Castro MA, Bordeleau M, Persillet M, Layé S, Limatola C, Tremblay MÈ, Nadjar A. Microglial homeostasis disruption modulates non-rapid eye movement sleep duration and neuronal activity in adult female mice. Brain Behav Immun 2023; 107:153-164. [PMID: 36202169 DOI: 10.1016/j.bbi.2022.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Sleep is a natural physiological state, tightly regulated through several neuroanatomical and neurochemical systems, which is essential to maintain physical and mental health. Recent studies revealed that the functions of microglia, the resident immune cells of the brain, differ along the sleep-wake cycle. Inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mainly produced by microglia in the brain, are also well-known to promote sleep. However, the contributing role of microglia on sleep regulation remains largely elusive, even more so in females. Given the higher prevalence of various sleep disorders in women, we aimed to determine the role of microglia in regulating the sleep-wake cycle specifically in female mice. Microglia were depleted in adult female mice with inhibitors of the colony-stimulating factor 1 receptor (CSF1R) (PLX3397 or PLX5622), which is required for microglial population maintenance. This led to a 65-73% reduction of the microglial population, as confirmed by immunofluorescence staining against IBA1 (marker of microglia/macrophages) and TMEM119 (microglia-specific marker) in the reticular nucleus of the thalamus and primary motor cortex. The spontaneous sleep-wake cycle was evaluated at steady-state, during microglial homeostasis disruption and after complete microglial repopulation, upon cessation of treatment with the inhibitors of CSF1R, using electroencephalography (EEG) and electromyography (EMG). We found that microglia-depleted female mice spent more time in non-rapid eye movement (NREM) sleep and had an increased number of NREM sleep episodes, which was partially restored after microglial total repopulation. To determine whether microglia could regulate sleep locally by modulating synaptic transmission, we used patch clamp to record spontaneous activity of pyramidal neurons in the primary motor cortex, which showed an increase of excitatory synaptic transmission during the dark phase. These changes in neuronal activity were modulated by microglial depletion in a phase-dependent manner. Altogether, our results indicate that microglia are involved in the sleep regulation of female mice, further strengthening their potential implication in the development and/or progression of sleep disorders. Furthermore, our findings indicate that microglial repopulation can contribute to normalizing sleep alterations caused by their partial depletion.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Giorgio Corsi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fanny Decoeur
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marine Persillet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Department of Neurophysiology, Neuropharmacology, Inflammaging, IRCCS Neuromed, Pozzilli, Italy
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Agnès Nadjar
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
39
|
Cichon J, Wasilczuk AZ, Looger LL, Contreras D, Kelz MB, Proekt A. Ketamine triggers a switch in excitatory neuronal activity across neocortex. Nat Neurosci 2023; 26:39-52. [PMID: 36424433 PMCID: PMC10823523 DOI: 10.1038/s41593-022-01203-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
The brain can become transiently disconnected from the environment while maintaining vivid, internally generated experiences. This so-called 'dissociated state' can occur in pathological conditions and under the influence of psychedelics or the anesthetic ketamine (KET). The cellular and circuit mechanisms producing the dissociative state remain poorly understood. We show in mice that KET causes spontaneously active neurons to become suppressed while previously silent neurons become spontaneously activated. This switch occurs in all cortical layers and different cortical regions, is induced by both systemic and cortical application of KET and is mediated by suppression of parvalbumin and somatostatin interneuron activity and inhibition of NMDA receptors and HCN channels. Combined, our results reveal two largely non-overlapping cortical neuronal populations-one engaged in wakefulness, the other contributing to the KET-induced brain state-and may lay the foundation for understanding how the brain might become disconnected from the surrounding environment while maintaining internal subjective experiences.
Collapse
Affiliation(s)
- Joseph Cichon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Diego Contreras
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
Xie X, Gong S, Sun N, Zhu J, Xu X, Xu Y, Li X, Du Z, Liu X, Zhang J, Gong W, Si K. Contextual Fear Learning and Extinction in the Primary Visual Cortex of Mice. Neurosci Bull 2023; 39:29-40. [PMID: 35704211 PMCID: PMC9849540 DOI: 10.1007/s12264-022-00889-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/28/2022] [Indexed: 01/22/2023] Open
Abstract
Fear memory contextualization is critical for selecting adaptive behavior to survive. Contextual fear conditioning (CFC) is a classical model for elucidating related underlying neuronal circuits. The primary visual cortex (V1) is the primary cortical region for contextual visual inputs, but its role in CFC is poorly understood. Here, our experiments demonstrated that bilateral inactivation of V1 in mice impaired CFC retrieval, and both CFC learning and extinction increased the turnover rate of axonal boutons in V1. The frequency of neuronal Ca2+ activity decreased after CFC learning, while CFC extinction reversed the decrease and raised it to the naïve level. Contrary to control mice, the frequency of neuronal Ca2+ activity increased after CFC learning in microglia-depleted mice and was maintained after CFC extinction, indicating that microglial depletion alters CFC learning and the frequency response pattern of extinction-induced Ca2+ activity. These findings reveal a critical role of microglia in neocortical information processing in V1, and suggest potential approaches for cellular-based manipulation of acquired fear memory.
Collapse
Affiliation(s)
- Xiaoke Xie
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310012, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314001, China
| | - Shangyue Gong
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
| | - Ning Sun
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Jiazhu Zhu
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314001, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310012, China
| | - Xiaobin Xu
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Yongxian Xu
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Xiaojing Li
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Zhenhong Du
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314001, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310012, China
| | - Xuanting Liu
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
| | - Wei Gong
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Ke Si
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China.
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310012, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314001, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
42
|
Functional roles of REM sleep. Neurosci Res 2022; 189:44-53. [PMID: 36572254 DOI: 10.1016/j.neures.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Rapid eye movement (REM) sleep is an enigmatic and intriguing sleep state. REM sleep differs from non-REM sleep by its characteristic brain activity and from wakefulness by a reduced anti-gravity muscle tone. In addition to these key traits, diverse physiological phenomena appear across the whole body during REM sleep. However, it remains unclear whether these phenomena are the causes or the consequences of REM sleep. Experimental approaches using humans and animal models have gradually revealed the functional roles of REM sleep. Extensive efforts have been made to interpret the characteristic brain activity in the context of memory functions. Numerous physical and psychological functions of REM sleep have also been proposed. Moreover, REM sleep has been implicated in aspects of brain development. Here, we review the variety of functional roles of REM sleep, mainly as revealed by animal models. In addition, we discuss controversies regarding the functional roles of REM sleep.
Collapse
|
43
|
Sleep and wake cycles dynamically modulate hippocampal inhibitory synaptic plasticity. PLoS Biol 2022; 20:e3001812. [PMID: 36318572 PMCID: PMC9624398 DOI: 10.1371/journal.pbio.3001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 01/01/2023] Open
Abstract
Sleep is an essential process that consolidates memories by modulating synapses through poorly understood mechanisms. Here, we report that GABAergic synapses in hippocampal CA1 pyramidal neurons undergo daily rhythmic alterations. Specifically, wake inhibits phasic inhibition, whereas it promotes tonic inhibition compared to sleep. We further utilize a model of chemically induced inhibitory long-term potentiation (iLTP) to examine inhibitory plasticity. Intriguingly, while CA1 pyramidal neurons in both wake and sleep mice undergo iLTP, wake mice have a much higher magnitude. We also employ optogenetics and observe that inhibitory inputs from parvalbumin-, but not somatostatin-, expressing interneurons contribute to dynamic iLTP during sleep and wake. Finally, we demonstrate that synaptic insertion of α5-GABAA receptors underlies the wake-specific enhancement of iLTP at parvalbumin-synapses, which is independent of time of the day. These data reveal a previously unappreciated daily oscillation of inhibitory LTP in hippocampal neurons and uncover a dynamic contribution of inhibitory synapses in memory mechanisms across sleep and wake.
Collapse
|
44
|
Anastasiades PG, de Vivo L, Bellesi M, Jones MW. Adolescent sleep and the foundations of prefrontal cortical development and dysfunction. Prog Neurobiol 2022; 218:102338. [PMID: 35963360 PMCID: PMC7616212 DOI: 10.1016/j.pneurobio.2022.102338] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Modern life poses many threats to good-quality sleep, challenging brain health across the lifespan. Curtailed or fragmented sleep may be particularly damaging during adolescence, when sleep disruption by delayed chronotypes and societal pressures coincides with our brains preparing for adult life via intense refinement of neural connectivity. These vulnerabilities converge on the prefrontal cortex, one of the last brain regions to mature and a central hub of the limbic-cortical circuits underpinning decision-making, reward processing, social interactions and emotion. Even subtle disruption of prefrontal cortical development during adolescence may therefore have enduring impact. In this review, we integrate synaptic and circuit mechanisms, glial biology, sleep neurophysiology and epidemiology, to frame a hypothesis highlighting the implications of adolescent sleep disruption for the neural circuitry of the prefrontal cortex. Convergent evidence underscores the importance of acknowledging, quantifying and optimizing adolescent sleep's contributions to normative brain development and to lifelong mental health.
Collapse
Affiliation(s)
- Paul G Anastasiades
- University of Bristol, Translational Health Sciences, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Luisa de Vivo
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Pharmacy, via Gentile III Da Varano, Camerino 62032, Italy
| | - Michele Bellesi
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK; University of Camerino, School of Bioscience and Veterinary Medicine, via Gentile III Da Varano, Camerino 62032, Italy
| | - Matt W Jones
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
45
|
Speranza L, Filiz KD, Goebel S, Perrone-Capano C, Pulcrano S, Volpicelli F, Francesconi A. Combined DiI and Antibody Labeling Reveals Complex Dysgenesis of Hippocampal Dendritic Spines in a Mouse Model of Fragile X Syndrome. Biomedicines 2022; 10:2692. [PMID: 36359212 PMCID: PMC9687937 DOI: 10.3390/biomedicines10112692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Structural, functional, and molecular alterations in excitatory spines are a common hallmark of many neurodevelopmental disorders including intellectual disability and autism. Here, we describe an optimized methodology, based on combined use of DiI and immunofluorescence, for rapid and sensitive characterization of the structure and composition of spines in native brain tissue. We successfully demonstrate the applicability of this approach by examining the properties of hippocampal spines in juvenile Fmr1 KO mice, a mouse model of Fragile X Syndrome. We find that mutant mice display pervasive dysgenesis of spines evidenced by an overabundance of both abnormally elongated thin spines and cup-shaped spines, in combination with reduced density of mushroom spines. We further find that mushroom spines expressing the actin-binding protein Synaptopodin-a marker for spine apparatus-are more prevalent in mutant mice. Previous work identified spines with Synaptopodin/spine apparatus as the locus of mGluR-LTD, which is abnormally elevated in Fmr1 KO mice. Altogether, our data suggest this enhancement may be linked to the preponderance of this subset of spines in the mutant. Overall, these findings demonstrate the sensitivity and versatility of the optimized methodology by uncovering a novel facet of spine dysgenesis in Fmr1 KO mice.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kardelen Dalım Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sarah Goebel
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, C.N.R., 80131 Naples, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
46
|
Large-volume and deep brain imaging in rabbits and monkeys using COMPACT two-photon microscopy. Sci Rep 2022; 12:17736. [PMID: 36273090 PMCID: PMC9588025 DOI: 10.1038/s41598-022-20842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
In vivo imaging has been widely used for investigating the structure and function of neurons typically located within ~ 800 μm below the cortical surface. Due to light scattering and absorption, it has been difficult to perform in-vivo imaging of neurons in deep cortical and subcortical regions of large animals with two-photon microscopy. Here, we combined a thin-wall quartz capillary with a GRIN lens attached to a prism for large-volume structural and calcium imaging of neurons located 2 mm below the surface of rabbit and monkey brains. The field of view was greatly expanded by rotating and changing the depth of the imaging probe inside a quartz capillary. Calcium imaging of layer 5/6 neurons in the rabbit motor cortex revealed differential activity of these neurons between quiet wakefulness and slow wave sleep. The method described here provides an important tool for studying the structure and function of neurons located deep in the brains of large animals.
Collapse
|
47
|
Blumberg MS, Dooley JC, Tiriac A. Sleep, plasticity, and sensory neurodevelopment. Neuron 2022; 110:3230-3242. [PMID: 36084653 PMCID: PMC9588561 DOI: 10.1016/j.neuron.2022.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
A defining feature of early infancy is the immense neural plasticity that enables animals to develop a brain that is functionally integrated with a growing body. Early infancy is also defined as a period dominated by sleep. Here, we describe three conceptual frameworks that vary in terms of whether and how they incorporate sleep as a factor in the activity-dependent development of sensory and sensorimotor systems. The most widely accepted framework is exemplified by the visual system where retinal waves seemingly occur independent of sleep-wake states. An alternative framework is exemplified by the sensorimotor system where sensory feedback from sleep-specific movements activates the brain. We prefer a third framework that encompasses the first two but also captures the diverse ways in which sleep modulates activity-dependent development throughout the nervous system. Appreciation of the third framework will spur progress toward a more comprehensive and cohesive understanding of both typical and atypical neurodevelopment.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - James C Dooley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexandre Tiriac
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
48
|
Buchanan IM, Smith TM, Gerber AP, Seibt J. Are there roles for heterogeneous ribosomes during sleep in the rodent brain? Front Mol Biosci 2022; 9:1008921. [PMID: 36275625 PMCID: PMC9582285 DOI: 10.3389/fmolb.2022.1008921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The regulation of mRNA translation plays an essential role in neurons, contributing to important brain functions, such as brain plasticity and memory formation. Translation is conducted by ribosomes, which at their core consist of ribosomal proteins (RPs) and ribosomal RNAs. While translation can be regulated at diverse levels through global or mRNA-specific means, recent evidence suggests that ribosomes with distinct configurations are involved in the translation of different subsets of mRNAs. However, whether and how such proclaimed ribosome heterogeneity could be connected to neuronal functions remains largely unresolved. Here, we postulate that the existence of heterologous ribosomes within neurons, especially at discrete synapses, subserve brain plasticity. This hypothesis is supported by recent studies in rodents showing that heterogeneous RP expression occurs in dendrites, the compartment of neurons where synapses are made. We further propose that sleep, which is fundamental for brain plasticity and memory formation, has a particular role in the formation of heterologous ribosomes, specialised in the translation of mRNAs specific for synaptic plasticity. This aspect of our hypothesis is supported by recent studies showing increased translation and changes in RP expression during sleep after learning. Thus, certain RPs are regulated by sleep, and could support different sleep functions, in particular brain plasticity. Future experiments investigating cell-specific heterogeneity in RPs across the sleep-wake cycle and in response to different behaviour would help address this question.
Collapse
Affiliation(s)
- Isla M. Buchanan
- Integrated Master Programme in Biochemistry, University of Surrey, Guildford, United Kingdom
| | - Trevor M. Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- *Correspondence: André P. Gerber, ; Julie Seibt,
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- *Correspondence: André P. Gerber, ; Julie Seibt,
| |
Collapse
|
49
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
50
|
Electroacupuncture Enhances Cognitive Deficits in a Rat Model of Rapid Eye Movement Sleep Deprivation via Targeting MiR-132. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7044208. [PMID: 36159559 PMCID: PMC9507748 DOI: 10.1155/2022/7044208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Deprivation of rapid eye movement sleep (REMSD) reduces the potential for learning and memory. The neuronal foundation of cognitive performance is synapse plasticity. MicroRNA-132 (MiR-132) is an important microRNA related to cognitive and synapse plasticity. Acupuncture is effective at improving cognitive impairment caused by sleep deprivation. Furthermore, its underlying principle is still unclear. Herein, whether electroacupuncture (EA) helps alleviate cognitive impairment in REMSD by targeting miR-132 was assessed. A rat model of REMSD was constructed using the developing multiplatform water environment technique, as well as EA therapy in Baihui (GV20) and Dazhui (GV14) was performed for 15 minutes, once daily for 7 days. Agomir or antagomir of MiR-132 was injected into the hippocampal CA1 areas to assess the EA mechanism in rats with REMSD. Then, the learning and memory abilities were detected by behavioral tests; synapse structure was assessed by transmission electron microscope (TCM); and dendrites branches and length were examined by Golgi staining. MiR-132-3p was assessed by real-time quantitative polymerase chain reaction (qRT-PCR). P250GAP, ras-related C3 botulinum toxin substrate 1 (Rac1), and cell division cycle 42 (Cdc42) expression levels in hippocampal tissues were evaluated by immunohistochemistry and Western blot. According to the research, EA therapy enhanced cognitive in REMSD rats, as evidenced by reduced escape latency; upregulated the performance of platform crossings and prolonged duration in the goal region; and improved spontaneous alternation. EA administration restored synaptic and dendritic structural damage in hippocampal neurons, enhanced miR-132 expression, and reduced p250GAP mRNA and protein levels. Additionally, EA boosted the protein level of Rac1 and Cdc42 associated with synaptic plasticity. MiR-132 agomir enhanced this effect, whereas miR-13 antagomir reversed this action. The current data demonstrate that EA at GV20 and GV14 attenuates cognitive impairment and modulates synaptic plasticity in hippocampal neurons via miR-132 in a sleep-deprived rat model.
Collapse
|