1
|
Aboelnga MM, Petgrave M, Kalyaanamoorthy S, Ganesan A. Revealing the impact of active site residues in modeling the inhibition mechanism of SARS-Cov-2 main protease by GC373. Comput Biol Med 2025; 187:109779. [PMID: 39933269 DOI: 10.1016/j.compbiomed.2025.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Main protease (Mpro) is a cysteine protease enzyme crucial for the replication of SARS-CoV-2, the etiological agent of COVID-19 and thus considered as a viable target for antiviral development. The GC373 compound, an aldehyde-containing inhibitor, is one of the most effective inhibitors that retards the catalytic function of Mpro. A deeper understanding of the inhibitory action of GC373 by providing precise mechanistic details, is pivotal toward developing more potent inhibitors against Mpro. In this work, we provide novel insights into the inhibition mechanism considering different models and possible pathways using a combination of molecular dynamics and hybrid quantum mechanical/molecular mechanical (QM/MM) methodologies. Our study reveals the impact of key residues on both the binding of the GC373 inhibitor and its inhibition mechanism. Together with the oxyanion hole residues, G143, S144 and C145, we note that H163, and E166 residues play a crucial role in the binding of the inhibitor. Further, our exploration of two pathways namely, water-assisted and direct inhibition mechanisms, using three differently sized QM/MM models shows consistent and distinguishable trends in catalytic pathways and rate-limiting steps, respectively. Our results highlight the importance of treating more representative active site residues in the QM layer enabling a more accurate description of the inhibition mechanism. More importantly, we propose that designing novel inhibitors that could afford stronger interaction with the underlying essential residues is a promising strategy to guide the efforts toward optimizing efficient inhibitors against Mpro.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, N2G 1C5, Ontario, Canada; Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada; Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt; King Salman International University, Faculty of Science, Ras Sudr, 46612, Sinai, Egypt.
| | - Maya Petgrave
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, N2G 1C5, Ontario, Canada.
| | - Subha Kalyaanamoorthy
- Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada; Waterloo Artificial Intelligence Institute, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Aravindhan Ganesan
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, N2G 1C5, Ontario, Canada; ArGan'sLab, Department of Chemistry and Biochemistry, Faculty of Science, Wilfrid Laurier University, Waterloo, N2L 3C5, Ontario, Canada.
| |
Collapse
|
2
|
Galal N, Beshay BY, Soliman O, Ismail MI, Abdelfadil M, El-Hadidi M, Arafa RK, Ibrahim TM. Evaluating the structure-based virtual screening performance of SARS-CoV-2 main protease: A benchmarking approach and a multistage screening example against the wild-type and Omicron variants. PLoS One 2025; 20:e0318712. [PMID: 39970175 PMCID: PMC11838920 DOI: 10.1371/journal.pone.0318712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
COVID-19 still poses a worldwide health threat due to continuous viral mutations and potential resistance to vaccination. SARS-CoV-2 viral multiplication hindrance by inhibiting the viral main protease (Mpro) deemed propitious. Structure-based virtual screening (SBVS) is a conventional strategy for discovering new inhibitors. Nonetheless, the SBVS efforts against Mpro variants needed to be benchmarked. Herein, in the first stage of the study, we evaluated four docking tools (FRED, PLANTS, AutoDock Vina and CDOCKER) via an in-depth benchmarking approach against SARS-CoV2 Mpro of both the wild type (WTMpro) and the deadly Omicron P132H variant (OMpro). We started by compiling an active dataset of non-covalent small molecule inhibitors of the WTMpro from literature and the COVID-Moonshot database along with generating a high-quality benchmark set via DEKOIS 2.0. pROC-Chemotype plots revealed superior performance for AutoDock Vina against WTMpro, while both FRED and AutoDock Vina demonstrated excellent performance for OMPro. In the second stage, VS was performed on a focused library of 636 compounds transformed from the early-enriched cluster related to perampanel via a scaffold hopping approach. Subsequently, molecular dynamics (MD) simulation and MM GBSA calculations validated the binding potential of the recommended hits against both explored targets. This study provides an example of how to conduct an in-depth benchmarking approach for both WTMPro and OMPro variants and offering an evaluated SBVS protocol for them both.
Collapse
Affiliation(s)
- Noha Galal
- Drug Design and Discovery Laboratory, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Botros Y. Beshay
- Pharmaceutical Chemistry Department (Pharmaceutical Sciences Division), College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Omar Soliman
- Genomics Program, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Muhammad I. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Mohamed Abdelfadil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed El-Hadidi
- Institute of Cancer and Genomic Sciences (ICGS), School of Medical Sciences, College of Medicine and Health, University of Birmingham Dubai, Dubai, United Arab Emirates
- Center for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Reem K. Arafa
- Drug Design and Discovery Laboratory, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
- Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Center for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| |
Collapse
|
3
|
Shen X, Zhang H, Zhang P, Zhao X, Liu C, Ju J, Liu A, Wang S. Decoding SARS-CoV-2 Inhibition: Insights From Molecular Dynamics Simulation of Condensed Amino Thiourea Scaffold Small Molecules. J Cell Biochem 2025; 126:e70005. [PMID: 39987526 DOI: 10.1002/jcb.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) plays a crucial role in viral replication. In this study, the binding modes and inhibitory mechanisms of eight condensed amino thiourea scaffold inhibitors of Mpro in proteins were investigated using a combination of molecular docking, molecular dynamics simulations, and MM/PBSA binding free energy calculations. The results indicated that the para-hydroxyl group on the benzene ring at the head of the inhibitor has a decisive influence on the initial docking pose and binding free energy strength of the inhibitor. Additionally, the position and length of the hydrophobic side chain on the tail six-membered ring significantly impacted the final binding pose of the inhibitor. The presence of a long hydrophobic side chain in the ortho position of this ring, through its interaction with the P4 hydrophobic pocket, led to an opposite binding mode in the protein compared with when it was present with or without the para-side chain. Different lengths of para-substituted side chains affected the positioning of the inhibitors in the enzyme. These different binding modes led to variations in the binding free energy between the inhibitor and the protein, which in turn gave rise to differences in inhibitory capability.
Collapse
Affiliation(s)
- Xiaoli Shen
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Hao Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Pengyin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Xuerui Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Chang Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Jianan Ju
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Aijun Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Song Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
4
|
Lewandowski EM, Zhang X, Tan H, Jaskolka-Brown A, Kohaal N, Frazier A, Madsen JJ, Jacobs LMC, Wang J, Chen Y. Distal protein-protein interactions contribute to nirmatrelvir resistance. Nat Commun 2025; 16:1266. [PMID: 39893201 PMCID: PMC11787374 DOI: 10.1038/s41467-025-56651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
SARS-CoV-2 main protease, Mpro, is responsible for processing the viral polyproteins into individual proteins, including the protease itself. Mpro is a key target of anti-COVID-19 therapeutics such as nirmatrelvir (the active component of Paxlovid). Resistance mutants identified clinically and in viral passage assays contain a combination of active site mutations (e.g., E166V, E166A, L167F), which reduce inhibitor binding and enzymatic activity, and non-active site mutations (e.g., P252L, T21I, L50F), which restore the fitness of viral replication. To probe the role of the non-active site mutations in fitness rescue, here we use an Mpro triple mutant (L50F/E166A/L167F) that confers nirmatrelvir drug resistance with a viral fitness level similar to the wild-type. By comparing peptide and full-length Mpro protein as substrates, we demonstrate that the binding of Mpro substrate involves more than residues in the active site. Particularly, L50F and other non-active site mutations can enhance the Mpro dimer-dimer interactions and help place the nsp5-6 substrate at the enzyme catalytic center. The structural and enzymatic activity data of Mpro L50F, L50F/E166A/L167F, and others underscore the importance of considering the whole substrate protein in studying Mpro and substrate interactions, and offers important insights into Mpro function, resistance development, and inhibitor design.
Collapse
Affiliation(s)
- Eric M Lewandowski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Aiden Jaskolka-Brown
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Navita Kohaal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Aliaksandra Frazier
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jesper J Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lian M C Jacobs
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
5
|
Panda SK, Pani P, Sen Gupta PS, Mahanandia N, Kumar Rana M. Computational Assessment of Clinical Drugs against SARS-CoV-2: Foreseeing Molecular Mechanisms and Potent Mpro Inhibitors. Chemphyschem 2025; 26:e202400814. [PMID: 39468850 DOI: 10.1002/cphc.202400814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
The emergence of new SARS-CoV-2 variants of concern (VOC) is a propulsion for accelerated potential therapeutic discovery. SARS-CoV-2's main protease (Mpro), essential for host cell viral replication, is a pre-eminent druggable protein target. Here, we perform extensive drug re-profiling of the comprehensive Excelra database, which compiles various under-trial drug candidates for COVID-19 treatment. For mechanistic understanding, the most promising screened-out molecules with targets are subjected to molecular dynamics (MD) simulations. Post-MD analyses demonstrate Darunavir, Ponatinib, and Tomivosertib forming a stable complex with Mpro, characterized by less fluctuation of Cα atoms, smooth and stable root-mean-square deviation (RMSD), and robust contact with the active site residues. Likewise, they all have lower binding free energy with Mpro, demonstrating strong affinity. In free energy landscape profiles, the distances from His41 and Cys145 exhibit a single energy minima basin, implying their preponderance in proximity to Mpro's catalytic dyad. Overall, the computational assessment earmarks promising candidates from the Excelra database, emphasizing on carrying out exhaustive biochemical experiments along with clinical trials. The work lays the foundation for potential therapeutic interventions in treating COVID-19.
Collapse
Affiliation(s)
- Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Ganjam, Odisha, 760010, India
| | - Pratyush Pani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Ganjam, Odisha, 760010, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Ganjam, Odisha, 760010, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Ganjam, Odisha, 760010, India
- School of Biosciences and Bioengineering, D Y Patil International University (DYPIU), Akurdi, Pune, Maharashtra, 411044, India
| | - Nimai Mahanandia
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, 110012, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Ganjam, Odisha, 760010, India
| |
Collapse
|
6
|
Saha A, Choudhary S, Walia P, Kumar P, Tomar S. Transformative approaches in SARS-CoV-2 management: Vaccines, therapeutics and future direction. Virology 2025; 604:110394. [PMID: 39889481 DOI: 10.1016/j.virol.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 02/03/2025]
Abstract
The global healthcare and economic challenges caused by the pandemic of COVID-19 reinforced the urgent demand for quick and effective therapeutic and preventative interventions. While vaccines served as the frontline of defense, antivirals emerged as adjunctive countermeasures, especially for people who developed infection, were immunocompromised, or were reluctant to be vaccinated. Beyond the serious complications of SARS-CoV-2 infection, the threats of long-COVID and the potential for zoonotic spillover continue to be significant health concerns that cannot be overlooked. Moreover, the incessant viral evolution, clinical safety issues, waning immune responses, and the emergence of drug-resistant variants pinpoint towards more severe viral threats in the future and call for broad-spectrum innovative therapies as a pre-pandemic preparedness measure. The present review provides a comprehensive up-to-date overview of the strategies utilized in the development of classical and next-generation vaccines against SARS-CoV-2, the clinical and experimental data obtained from clinical trials, while addressing safety risks that may arise. Besides vaccines, the review also covers recent breakthroughs in anti-SARS-CoV-2 drug discovery, emphasizing druggable viral and host targets, virus- and host-targeting antivirals, and highlighting mechanistically representative molecules that are either approved or are under clinical investigation. In conclusion, the integration of both vaccines and antiviral therapies, along with swift innovative strategies to address viral evolution and drug resistance is crucial to strengthen our preparedness against future viral outbreaks.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Priyanshu Walia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
7
|
D'Oliviera A, Dai X, Mottaghinia S, Olson S, Geissler EP, Etienne L, Zhang Y, Mugridge JS. Recognition and cleavage of human tRNA methyltransferase TRMT1 by the SARS-CoV-2 main protease. eLife 2025; 12:RP91168. [PMID: 39773525 PMCID: PMC11706605 DOI: 10.7554/elife.91168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.
Collapse
Affiliation(s)
- Angel D'Oliviera
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| | - Xuhang Dai
- Department of Chemistry, New York UniversityNew YorkUnited States
| | - Saba Mottaghinia
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonLyonFrance
| | - Sophie Olson
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| | - Evan P Geissler
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| | - Lucie Etienne
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonLyonFrance
| | - Yingkai Zhang
- Department of Chemistry, New York UniversityNew YorkUnited States
- Simons Center for Computational Physical Chemistry at New York UniversityNew YorkUnited States
| | - Jeffrey S Mugridge
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| |
Collapse
|
8
|
Lee E, Rauscher S. The Conformational Space of the SARS-CoV-2 Main Protease Active Site Loops Is Determined by Ligand Binding and Interprotomer Allostery. Biochemistry 2025; 64:32-46. [PMID: 39513739 DOI: 10.1021/acs.biochem.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The main protease (Mpro) of SARS-CoV-2 is essential for viral replication and is, therefore, an important drug target. Here, we investigate two flexible loops in Mpro that play a role in catalysis. Using all-atom molecular dynamics simulations, we analyze the structural ensemble of Mpro in an apo state and substrate-bound state. We find that the flexible loops can adopt open, intermediate (partly open), and closed conformations in solution, which differs from the partially closed state observed in crystal structures of Mpro. When the loops are in closed or intermediate states, the catalytic residues are more likely to be in close proximity, which is crucial for catalysis. Additionally, we find that substrate binding to one protomer of the homodimer increases the frequency of intermediate states in the bound protomer while also affecting the structural propensity of the apo protomer's flexible loops. Using dynamic network analysis, we identify multiple allosteric pathways connecting the two active sites of the homodimer. Common to these pathways is an allosteric hotspot involving the N-terminus, a critical region that comprises part of the binding pocket. Taken together, the results of our simulation study provide detailed insight into the relationships between the flexible loops and substrate binding in a prime drug target for COVID-19.
Collapse
Affiliation(s)
- Ethan Lee
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H8, Canada
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H8, Canada
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
9
|
Guma SD, Zhou Z, Song K, Yang F, Suo J, Zhang Y, Bonku EM, Odilov A, Tian G, Xu Z, Jiang X, Zhang Q, Zhu W, Shen J. Discovery of peptidomimetic spiropyrrolidine derivatives as novel 3CL pro inhibitors against SARS-CoV -2. Eur J Med Chem 2025; 281:117004. [PMID: 39504795 DOI: 10.1016/j.ejmech.2024.117004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Given the high pathogenicity and rapid mutation rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is imperative to sustain efforts in drug research and development. Herein, we present the design, synthesis, and evaluation of peptidomimetic spiropyrrolidine derivatives as potent 3CLpro inhibitors against SARS-CoV-2. Among the synthesized derivatives, several compounds exhibited high potency in inhibiting 3CLpro, with IC50 values ranging from 21 nM to 53 nM. Notably, compounds 9b and 9h displayed improved enzymatic inhibition (IC50 = 25 nM and 21 nM, respectively) compared to nirmatrelvir (47 nM). Compound 9b showed enhanced stability in human and mouse liver microsomes compared to nirmatrelvir, whereas 9h exhibited similar stability to nirmatrelvir in both species. Furthermore, compound 9h displayed exceptional potency in cellular assays targeting the SARS-CoV-2 replicon within Huh7 cells, with a single-digit nanomolar activity that is 5.6 times better than that of nirmatrelvir. In a pharmacokinetic study in mice (PO, 20 mg/kg), compound 9h exhibited a prolonged plasma half-life (T1/2 = 2.58 h) compared to nirmatrelvir (T1/2 = 0.51 h) and demonstrated an AUC(0-t) value (1106 h∗ng/mL) equivalent to that of nirmatrelvir (1023 h∗ng/mL). These findings indicate that compound 9h is a promising lead for developing a novel 3CLpro inhibitor against SARS-CoV-2.
Collapse
Affiliation(s)
- Samuel Desta Guma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, PR China
| | - Zhaoyin Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China; State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Shanghai, PR China
| | - Kang Song
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Feipu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, PR China
| | - Jin Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, PR China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, PR China
| | - Emmanuel Mintah Bonku
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, PR China
| | - Abdullajon Odilov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, PR China
| | - Guanghui Tian
- Vigonvita Life Science Co., Ltd., 108 Yuxin Road, Suzhou Industrial Park, 215123, Suzhou, Jiangsu, PR China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Shanghai, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, PR China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, PR China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, PR China
| | - Qiumeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, PR China.
| | - Weiliang Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China; State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Shanghai, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, PR China.
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, PR China.
| |
Collapse
|
10
|
Pan F, Zhou Q, Yan M, Yang S, Hu R, Chen Y, Wen Y, Chao Y, Xie C, Ou W, Li Y, Zhang H, Guo D, Zhang X. Development of pyrimidone derivatives as nonpeptidic and noncovalent 3-chymotrypsin-like protease (3CL pro) inhibitors with anti-coronavirus activities. Bioorg Chem 2025; 154:107988. [PMID: 39591689 DOI: 10.1016/j.bioorg.2024.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
3CLPro is crucial to the life cycle of SARS-CoV-2 and exhibits high sequence similarity with other coronaviruses, while being absent in human proteases. This makes it an ideal target for developing broad-spectrum antiviral drugs. Ensitrelvir (S-217622) is the only launched non-covalent, non-peptidomimetic 3CLPro inhibitor, offering certain advantages in terms of dosage and metabolism. Using S-217622 as the lead, we designed and synthesized 43 pyrimidone derivatives and conducted a systematic evaluation of their structure-activity relationships. Among them, A36 exhibited strong inhibitory activity against several β-coronaviruses and demonstrated low cytotoxicity. A36 also displayed moderate stability in mouse liver microsomes. Co-crystal structure analysis of 3CLPro in complex with A36 revealed the similar binding mode with S-217622. A36 shows strong potential as a promising lead for broad-spectrum anti-coronavirus therapy, warranting further investigation.
Collapse
Affiliation(s)
- Fan Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Qifan Zhou
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China.
| | - Ming Yan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Sidi Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Ruiyu Hu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yongzhi Chen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yuanmei Wen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yang Chao
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China
| | - Cailing Xie
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Weixin Ou
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Yingjun Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China
| | - Hongmin Zhang
- Institute of High Energy Physics, CAS, Beijing 100000, China; China Spallation Neutron Source, CAS, Dongguan, Guangdong 523000, China.
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China.
| |
Collapse
|
11
|
Xiong M, Nie T, Li Z, Hu M, Su H, Hu H, Xu Y, Shao Q. Potency Prediction of Covalent Inhibitors against SARS-CoV-2 3CL-like Protease and Multiple Mutants by Multiscale Simulations. J Chem Inf Model 2024; 64:9501-9516. [PMID: 39605253 DOI: 10.1021/acs.jcim.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
3-Chymotrypsin-like protease (3CLpro) is a prominent target against pathogenic coronaviruses. Expert knowledge of the cysteine-targeted covalent reaction mechanism is crucial to predict the inhibitory potency of approved inhibitors against 3CLpros of SARS-CoV-2 variants and perform structure-based drug design against newly emerging coronaviruses. We carried out an extensive array of classical and hybrid QM/MM molecular dynamics simulations to explore covalent inhibition mechanisms of five well-characterized inhibitors toward SARS-CoV-2 3CLpro and its mutants. The calculated binding affinity and reactivity of the inhibitors are highly consistent with experimental data, and the predicted inhibitory potency of the inhibitors against 3CLpro with L167F, E166V, or T21I/E166V mutant is in full agreement with IC50s determined by the accompanying enzymatic assays. The explored mechanisms unveil the impact of residue mutagenesis on structural dynamics that communicates to change not only noncovalent binding strength but also covalent reaction free energy. Such a change is inhibitor dependent, corresponding to varied levels of drug resistance of these 3CLpro mutants against nirmatrelvir and simnotrelvir and no resistance to the 11a compound. These results together suggest that the present simulations with a suitable protocol can efficiently evaluate the reactivity and potency of covalent inhibitors along with the elucidated molecular mechanisms of covalent inhibition.
Collapse
Affiliation(s)
- Muya Xiong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianqing Nie
- Lingang Laboratory, Shanghai 200031, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhewen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyi Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yechun Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Zhu J, Kemp AM, Chenna BC, Kumar V, Rademacher A, Yun S, Laganowsky A, Meek TD. Catalytic Mechanism of SARS-CoV-2 3-Chymotrypsin-Like Protease as Determined by Steady-State and Pre-Steady-State Kinetics. ACS Catal 2024; 14:18292-18309. [PMID: 39722883 PMCID: PMC11667672 DOI: 10.1021/acscatal.4c04695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024]
Abstract
The 3-chymotrypsin-like protease (3CL-PR; also known as Main protease) of SARS-CoV-2 is a cysteine protease that is the target of the COVID-19 drug, Paxlovid. Here, we report for 3CL-PR, the pH-rate profiles of a substrate, an inhibitor, affinity agents, and solvent kinetic isotope effects (sKIEs) obtained under both steady-state and pre-steady-state conditions. "Bell-shaped" plots of log(k cat/K a) vs pH for the substrate (Abz)SAVLQ*SGFRK(Dnp)-NH2 and pK i vs pH for a peptide aldehyde inhibitor demonstrated that essential acidic and basic groups of pK 2 = 8.2 ± 0.4 and pK 1 = 6.2 ± 0.3, respectively, are required for catalysis, and the pH-dependence of inactivation of 3CL-PR by iodoacetamide and diethylpyrocarbonate identified enzymatic groups of pK 2 = 7.8 ± 0.1 and pK 1 = 6.05 ± 0.07, which must be unprotonated for maximal inactivation. These data are most consistent with the presence of a neutral catalytic dyad (Cys-SH-His) in the 3CL-PR free enzyme, with respective pK values for the cysteine and histidine groups of pK 2 = 8.0 and pK 1 = 6.5. The steady-state sKIEs were D2O(k cat/K a) = 0.56 ± 0.05 and D2O k cat = 1.0 ± 0.1, and sKIEs indicated that the Cys-S--HisH+ tautomer was enriched in D2O. Presteady-state kinetic analysis of (Abz)SAVLQ*SGFRK(Dnp)-NH2 exhibited transient lags preceding steady-state rates, which were considerably faster in D2O than in H2O. The transient rates encompass steps that include substrate binding and acylation, and are faster in D2O wherein the more active Cys-S--HisH+ tautomer predominates. A full catalytic mechanism for 3CL-PR is proposed.
Collapse
Affiliation(s)
- Jiyun Zhu
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Alexandria M. Kemp
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Bala C. Chenna
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Vivek Kumar
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Andrew Rademacher
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Sangho Yun
- Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas D. Meek
- Departments
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Sasaki J, Sato A, Sasaki M, Okabe I, Kodama K, Otsuguro S, Yasuda K, Kojima H, Orba Y, Sawa H, Maenaka K, Yanagi Y, Hashiguchi T. X-206 exhibits broad-spectrum anti-β-coronavirus activity, covering SARS-CoV-2 variants and drug-resistant isolates. Antiviral Res 2024; 232:106039. [PMID: 39571911 DOI: 10.1016/j.antiviral.2024.106039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Coronaviruses such as the Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, causing MERS, SARS, and Coronavirus disease-19, respectively, are highly pathogenic to humans. Notably, several antiviral drugs against SARS-CoV-2, such as nirmatrelvir and remdesivir, have been approved. However, no approved vaccines or antiviral agents are available for other highly pathogenic β-coronaviruses. In this study, we identified two compounds, thapsigargin and X-206, that exhibit antiviral activities against SARS-CoV, MERS-CoV, and SARS-CoV-2. Notably, both compounds effectively inhibited the cell-to-cell fusion mediated by the Spike proteins of all three β-coronaviruses. X-206 exhibited antiviral activity against nirmatrelvir- and remdesivir-resistant SARS-CoV-2 isolates and SARS-CoV-2 variants, including Delta, BA.5, and XBB.1. Consequently, the mechanism of action of these compounds with anti-β-coronavirus activities may differ from that of the approved direct-acting drugs for SARS-CoV-2, thereby offering potential use as a cocktail with other antivirals, and serving as a chemical basis for developing therapeutic agents against β-coronaviruses in preparation for the next spillover and pandemic.
Collapse
Affiliation(s)
- Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiko Sato
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan; Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Iori Okabe
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Kota Kodama
- Medical Data Science Lab., Hoshi University, Tokyo, Japan; Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Satoko Otsuguro
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kosuke Yasuda
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan; Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan; Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Barozi V, Chakraborty S, Govender S, Morgan E, Ramahala R, Graham SC, Bishop NT, Tastan Bishop Ö. Revealing SARS-CoV-2 M pro mutation cold and hot spots: Dynamic residue network analysis meets machine learning. Comput Struct Biotechnol J 2024; 23:3800-3816. [PMID: 39525081 PMCID: PMC11550722 DOI: 10.1016/j.csbj.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Deciphering the effect of evolutionary mutations of viruses and predicting future mutations is crucial for designing long-lasting and effective drugs. While understanding the impact of current mutations on protein drug targets is feasible, predicting future mutations due to natural evolution of viruses and environmental pressures remains challenging. Here, we leveraged existing mutation data during the evolution of the SARS-CoV-2 protein drug target main protease (Mpro) to test the predictive power of dynamic residue network (DRN) analysis in identifying mutation cold and hot spots. We conducted molecular dynamics simulations on the Mpro of SARS-CoV-2 (Wuhan strain) and calculated eight DRN metrics (averaged BC, CC, DC, EC, ECC, KC, L, PR), each of which identifies a unique network feature within the protein. The sets of residues with the highest and lowest values for each metric, comprising potential cold and hot spots, were compared to published biochemical analyses and per residue mutation frequencies observed across five SARS-CoV-2 lineages, encompassing a total of 191,878 sequences. Individual DRN metrics displayed only modest power to predict the mutation frequency of individual residues. However, integrating the eight DRN metrics with additional structural and sequence-derived metrics allowed us to develop machine learning models which significantly improved the prediction of residue mutation frequency. While further refinements should enhance accuracy, we demonstrated a robust method to understand pathogen evolution. This approach can also guide the development of long-lasting drugs by targeting functional residues located in and near active site, and allosteric sites, that are less prone to mutations.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Shrestha Chakraborty
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Shaylyn Govender
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Emily Morgan
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Rabelani Ramahala
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Stephen C. Graham
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Nigel T. Bishop
- Department of Pure and Applied Mathematics, Rhodes University, Makhanda 6139, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| |
Collapse
|
15
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
16
|
Fornasier E, Fabbian S, Shehi H, Enderle J, Gatto B, Volpin D, Biondi B, Bellanda M, Giachin G, Sosic A, Battistutta R. Allostery in homodimeric SARS-CoV-2 main protease. Commun Biol 2024; 7:1435. [PMID: 39496839 PMCID: PMC11535432 DOI: 10.1038/s42003-024-07138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
Many enzymes work as homodimers with two distant catalytic sites, but the reason for this choice is often not clear. For the main protease Mpro of SARS-CoV-2, dimerization is essential for function and plays a regulatory role during the coronaviral replication process. Here, to analyze a possible allosteric mechanism, we use X-ray crystallography, native mass spectrometry, isothermal titration calorimetry, and activity assays to study the interaction of Mpro with three peptide substrates. Crystal structures show how the plasticity of Mpro is exploited to face differences in the sequences of the natural substrates. Importantly, unlike in the free form, the Mpro dimer in complex with these peptides is asymmetric and the structures of the substrates nsp5/6 and nsp14/15 bound to a single subunit show allosteric communications between active sites. We identified arginines 4 and 298 as key elements in the transition from symmetric to asymmetric dimers. Kinetic data allowed the identification of positive cooperativity based on the increase in the processing efficiency (kinetic allostery) and not on the better binding of the substrates (thermodynamic allostery). At the physiological level, this allosteric behavior may be justified by the need to regulate the processing of viral polyproteins in time and space.
Collapse
Affiliation(s)
- Emanuele Fornasier
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Simone Fabbian
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Haidi Shehi
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Janine Enderle
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Daniele Volpin
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry of CNR, Padova Unit, via F. Marzolo 1, 35131, Padova, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
- Institute of Biomolecular Chemistry of CNR, Padova Unit, via F. Marzolo 1, 35131, Padova, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Roberto Battistutta
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy.
- Institute of Biomolecular Chemistry of CNR, Padova Unit, via F. Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
17
|
Xu YS, Xiang Y, Zhai L, Chen C, Wu XR, Chen WY, Liu L, Zhao MH, Liu XL, Yang KW. Discovery of a Highly Promising Disulfide Derivative Scaffold as Inhibitor of SARS-CoV-2 Main Protease. Chem Biodivers 2024; 21:e202401034. [PMID: 39109873 DOI: 10.1002/cbdv.202401034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024]
Abstract
The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) represents a promising target for antiviral drugs aimed at combating COVID-19. Consequently, the development of Mpro inhibitor is an ideal strategy for combating the virus. In this study, we identified twenty-two dithiocarbamates (1 a-h), dithiocarbamate-Cu(II) complexes (2 a-hCu) and disulfide derivatives (2 a-e, 2 i) as potent inhibitors of Mpro, with IC50 value range of 0.09-0.72, 0.9-24.7, and 15.1-111 μM, respectively, through FRET screening. The enzyme kinetics, inhibition mode, jump dilution, and DTT assay revealed that 1 g may be a partial reversible inhibitor, while 2 d and 2 f-Cu are the irreversible and dose- and time-dependent inhibitors, potentially covalently binding to the target. Binding of 2 d, 2 f-Cu, and 1 g to Mpro was found to decrease the stability of the protein. Additionally, DTT assays and thermal shift assays indicated that 2 f-Cu and 2 d are the nonspecific and promiscuous cysteine protease inhibitor. ICP-MS implied that the inhibitory activity of 2 f-Cu may stem from the uptake of Cu(II) by the enzyme. Cytotoxicity assays demonstrated that 2 d and 1 g exhibit low cytotoxicity, whereas 2 f-Cu show certain cytotoxicity in L929 cells. Overall, this work presents two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Yin-Sui Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Yang Xiang
- College of Physical Education, Yan'an University, Yan'an, 716000, PR China
| | - Le Zhai
- Engineering Research Center of Advanced Ferroelectric Functional Materials, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, PR China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xiao-Rong Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Wei-Ya Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Lu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Mu-Han Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xiao-Long Liu
- School of medicine, Yan'an University, Yan'an, 716000, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| |
Collapse
|
18
|
D’Oliviera A, Dai X, Mottaghinia S, Olson S, Geissler EP, Etienne L, Zhang Y, Mugridge JS. Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.20.529306. [PMID: 36865253 PMCID: PMC9980103 DOI: 10.1101/2023.02.20.529306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The SARS-CoV-2 main protease (Mpro, or Nsp5) is critical for the production of functional viral proteins during infection and, like many viral proteases, can also target host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 can be recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N 2,N 2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes global protein synthesis and cellular redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. TRMT1 proteolysis results in elimination of TRMT1 tRNA methyltransferase activity and reduced tRNA binding affinity. Evolutionary analysis shows that the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. In primates, regions outside the cleavage site with rapid evolution could indicate adaptation to ancient viral pathogens. Furthermore, we determined the structure of a TRMT1 peptide in complex with Mpro, revealing a substrate binding conformation distinct from the majority of available Mpro-peptide complexes. Kinetic parameters for peptide cleavage show that the TRMT1(526-536) sequence is cleaved with comparable efficiency to the Mpro-targeted nsp8/9 viral cleavage site. Mutagenesis studies and molecular dynamics simulations together indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis that follows substrate binding. Our results provide new information about the structural basis for Mpro substrate recognition and cleavage, the functional roles of the TRMT1 zinc finger domain in tRNA binding and modification, and the regulation of TRMT1 activity by SARS-CoV-2 Mpro. These studies could inform future therapeutic design targeting Mpro and raise the possibility that proteolysis of human TRMT1 during SARS-CoV-2 infection suppresses protein translation and oxidative stress response to impact viral pathogenesis. Significance Statement Viral proteases can strategically target human proteins to manipulate host biochemistry during infection. Here, we show that the SARS-CoV-2 main protease (Mpro) can specifically recognize and cleave the human tRNA methyltransferase enzyme TRMT1, and that cleavage of TRMT1 cripples its ability to install a key modification on human tRNAs that is critical for protein translation. Our structural and functional analysis of the Mpro-TRMT1 interaction shows how the flexible Mpro active site engages a conserved sequence in TRMT1 in an uncommon binding mode to catalyze its cleavage and inactivation. These studies provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.
Collapse
Affiliation(s)
- Angel D’Oliviera
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - Xuhang Dai
- Department of Chemistry, New York University, New York, NY 10003
| | - Saba Mottaghinia
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Sophie Olson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - Evan P. Geissler
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - Lucie Etienne
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
- Simons Center for Computational Physical Chemistry at New York University, New York, NY 10003
| | - Jeffrey S. Mugridge
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| |
Collapse
|
19
|
Poli ANR, Tietjen I, Nandwana NK, Cassel J, Messick TE, Register ET, Keeney F, Rajaiah R, Verma AK, Pandey K, Acharya A, Byrareddy SN, Montaner LJ, Salvino JM. Design of novel and highly selective SARS-CoV-2 main protease inhibitors. Antimicrob Agents Chemother 2024; 68:e0056224. [PMID: 39225484 PMCID: PMC11459967 DOI: 10.1128/aac.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
We have synthesized a novel and highly selective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease peptide mimetic inhibitor mimicking the replicase 1ab recognition sequence -Val-Leu-Gln- and utilizing a cysteine selective acyloxymethyl ketone as the electrophilic warhead to target the active site Cys145. Utilizing a constrained cyclic peptide that locks the conformation between the P3 (Val) and P2 (Leu) residues, we identified a highly selective inhibitor that fills the P2 pocket occupied by the leucine residue sidechain of PF-00835231 and the dimethyl-3-azabicyclo-hexane motif in nirmatrelvir (PF-07321332). This strategy resulted in potent and highly selective Mpro inhibitors without inhibiting essential host cathepsin cysteine or serine proteases. The lead prototype compound 1 (MPro IC50 = 230 ± 18 nM) also inhibits the replication of multiple SARS-CoV-2 variants in vitro, including SARS-CoV-2 variants of concern, and can synergize at lower concentrations with the viral RNA polymerase inhibitor, remdesivir, to inhibit replication. It also reduces SARS-CoV-2 replication in SARS-CoV-2 Omicron-infected Syrian golden hamsters without obvious toxicities, demonstrating in vivo efficacy. This novel lead structure provides the basis for optimization of improved agents targeting evolving SARS-CoV-2 drug resistance that can selectively act on Mpro versus host proteases and are less likely to have off-target effects due to non-specific targeting. Developing inhibitors against the active site of the main protease (Mpro), which is highly conserved across coronaviruses, is expected to impart a higher genetic barrier to evolving SARS-CoV-2 drug resistance. Drugs that selectively inhibit the viral Mpro are less likely to have off-target effects warranting efforts to improve this therapy.
Collapse
Affiliation(s)
- Adi N. R. Poli
- Medicinal Chemistry, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ian Tietjen
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nitesh K. Nandwana
- Medicinal Chemistry, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Joel Cassel
- The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Emery T. Register
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Frederick Keeney
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Rajesh Rajaiah
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Atul K. Verma
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kabita Pandey
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Arpan Acharya
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luis J. Montaner
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Joseph M. Salvino
- Medicinal Chemistry, The Wistar Institute, Philadelphia, Pennsylvania, USA
- The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Purohit P, Panda M, Muya JT, Bandyopadhyay P, Meher BR. Theoretical insights into the binding interaction of Nirmatrelvir with SARS-CoV-2 Mpro mutants (C145A and C145S): MD simulations and binding free-energy calculation to understand drug resistance. J Biomol Struct Dyn 2024; 42:8865-8884. [PMID: 37599474 DOI: 10.1080/07391102.2023.2248519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Mpro, the main protease and a crucial enzyme in SARS-CoV-2 is the most fascinating molecular target for pharmacological treatment and is also liable for viral protein maturation. For antiviral therapy, no drugs have been approved clinically to date. Targeting the Mpro with a compound having inhibitory properties against it can hinder viral replication. The therapeutic potential of the antiviral compound Nirmatrelvir (NMV) against SARS-CoV-2 Mpro was investigated using a systematic approach of molecular docking, MD simulations, and binding free energy calculation based on the MM-GBSA method. NMV, a covalent inhibitor with a recently revealed chemical structure, is a promising oral antiviral clinical candidate with significant in vitro anti-SARS-CoV-2 action in third-phase clinical trials. To explore the therapeutic ability and possible drug resistance, the Mpro system was studied for WT and two of its primary mutants (C145A & C145S). The protein-ligand (Mpro/NMV) complexes were further examined through long MD simulations to check the possible drug resistance in the mutants. To understand the binding affinity, the MM-GBSA method was applied to the Mpro/NMV complexes. Moreover, PCA analysis confirms the detachment of the linker region from the major domains in C145S and C145A mutants allowing for conformational alterations in the active-site region. Based on the predicted biological activities and binding affinities of NMV to WT and mutant (C145A & C145S) Mpro, it can be stipulated that NMV may have conventional potency to act as an anti-viral agent against WT Mpro, while the catalytic-dyad mutations may show substantial mutation-induced drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Purohit
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, India
| | - Madhusmita Panda
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, India
| | - Jules Tshishimbi Muya
- Faculte of Science, Research Centre for Theoretical Chemistry and Physics in Central Africa, University of Kinshasa, Kinshasa, Congo
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Biswa Ranjan Meher
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, India
| |
Collapse
|
21
|
de Munnik M, Lang PA, Calvopiña K, Rabe P, Brem J, Schofield CJ. Biochemical and crystallographic studies of L,D-transpeptidase 2 from Mycobacterium tuberculosis with its natural monomer substrate. Commun Biol 2024; 7:1173. [PMID: 39294212 PMCID: PMC11410929 DOI: 10.1038/s42003-024-06785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
The essential L,D-transpeptidase of Mycobacterium tuberculosis (LdtMt2) catalyses the formation of 3 → 3 cross-links in cell wall peptidoglycan and is a target for development of antituberculosis therapeutics. Efforts to inhibit LdtMt2 have been hampered by lack of knowledge of how it binds its substrate. To address this gap, we optimised the isolation of natural disaccharide tetrapeptide monomers from the Corynebacterium jeikeium bacterial cell wall through overproduction of the peptidoglycan sacculus. The tetrapeptides were used in binding / turnover assays and biophysical studies on LdtMt2. We determined a crystal structure of wild-type LdtMt2 reacted with its natural substrate, the tetrapeptide monomer of the peptidoglycan layer. This structure shows formation of a thioester linking the catalytic cysteine and the donor substrate, reflecting an intermediate in the transpeptidase reaction; it informs on the mode of entrance of the donor substrate into the LdtMt2 active site. The results will be useful in design of LdtMt2 inhibitors, including those based on substrate binding interactions, a strategy successfully employed for other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Oneto A, Hamwi GA, Schäkel L, Krüger N, Sylvester K, Petry M, Shamleh RA, Pillaiyar T, Claff T, Schiedel AC, Sträter N, Gütschow M, Müller CE. Nonpeptidic Irreversible Inhibitors of SARS-CoV-2 Main Protease with Potent Antiviral Activity. J Med Chem 2024; 67:14986-15011. [PMID: 39146284 DOI: 10.1021/acs.jmedchem.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
SARS-CoV-2 infections pose a high risk for vulnerable patients. In this study, we designed benzoic acid halopyridyl esters bearing a variety of substituents as irreversible inhibitors of the main viral protease (Mpro). Altogether, 55 benzoyl chloro/bromo-pyridyl esters were synthesized, with broad variation of the substitution pattern on the benzoyl moiety. A workflow was employed for multiparametric optimization, including Mpro inhibition assays of SARS-CoV-2 and related pathogenic coronaviruses, the duration of enzyme inhibition, the compounds' stability versus glutathione, cytotoxicity, and antiviral activity. Several compounds showed IC50 values in the low nanomolar range, kinact/Ki values of >100,000 M-1 s-1 and high antiviral activity. High-resolution X-ray cocrystal structures indicated an important role of ortho-fluorobenzoyl substitution, forming a water network that stabilizes the inhibitor-bound enzyme. The most potent antiviral compound was the p-ethoxy-o-fluorobenzoyl chloropyridyl ester (PSB-21110, 29b, MW 296 g/mol; EC50 2.68 nM), which may serve as a lead structure for broad-spectrum anticoronaviral therapeutics.
Collapse
Affiliation(s)
- Angelo Oneto
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Ghazl Al Hamwi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Nadine Krüger
- Platform Infection Models, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, Göttingen 37077, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Marvin Petry
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Rasha Abu Shamleh
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Anke C Schiedel
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig 04103, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, Bonn D-53121, Germany
| |
Collapse
|
23
|
Vlachou A, Nchioua R, Regensburger K, Kirchhoff F, Kmiec D. A Gaussia luciferase reporter assay for the evaluation of coronavirus Nsp5/3CLpro activity. Sci Rep 2024; 14:20697. [PMID: 39237598 PMCID: PMC11377810 DOI: 10.1038/s41598-024-71305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Human coronaviruses (hCoVs) infect millions of people every year. Among these, MERS, SARS-CoV-1, and SARS-CoV-2 caused significant morbidity and mortality and their emergence highlights the risk of possible future coronavirus outbreaks. Therefore, broadly-active anti-coronavirus drugs are needed. Pharmacological inhibition of the hCoV protease Nsp5 (3CLpro) is clinically beneficial as shown by the wide and effective use of Paxlovid (nirmatrelvir, ritonavir). However, further treatment options are required due to the risk of drug resistance. To facilitate the assessment of coronavirus protease function and its pharmacological inhibition, we developed an assay allowing rapid and reliable quantification of Nsp5 activity under biosafety level 1 conditions. It is based on an ACE2-Gal4 transcription factor fusion protein separated by a Nsp5 recognition site. Cleavage by Nsp5 releases the Gal4 transcription factor, which then induces the expression of Gaussia luciferase. Our assay is compatible with Nsp5 proteases from all hCoVs and allows simultaneous measurement of inhibitory and cytotoxic effects of the tested compounds. Proof-of-concept measurements confirmed that nirmatrelvir, GC376 and lopinavir inhibit SARS-CoV-2 Nsp5 function. Furthermore, the assay accurately predicted the impact of Nsp5 mutations on catalytic activity and inhibitor sensitivity. Overall, the reporter assay is suitable for evaluating viral protease activity.
Collapse
Affiliation(s)
- Asimenia Vlachou
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Kerstin Regensburger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
24
|
Cui W, Duan Y, Gao Y, Wang W, Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024; 32:1301-1321. [PMID: 39241763 DOI: 10.1016/j.str.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents the most disastrous infectious disease pandemic of the past century. As a member of the Betacoronavirus genus, the SARS-CoV-2 genome encodes a total of 29 proteins. The spike protein, RNA-dependent RNA polymerase, and proteases play crucial roles in the virus replication process and are promising targets for drug development. In recent years, structural studies of these viral proteins and of their complexes with antibodies and inhibitors have provided valuable insights into their functions and laid a solid foundation for drug development. In this review, we summarize the structural features of these proteins and discuss recent progress in research regarding therapeutic development, highlighting mechanistically representative molecules and those that have already been approved or are under clinical investigation.
Collapse
Affiliation(s)
- Wen Cui
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| |
Collapse
|
25
|
Huynh PNH, Khamplong P, Phan MH, Nguyen TP, Vu PNL, Tang QV, Chamsodsai P, Seetaha S, Tuong TL, Vu TY, Vo DD, Choowongkomon K, Vo CVT. Asymmetric imidazole-4,5-dicarboxamide derivatives as SARS-CoV-2 main protease inhibitors: design, synthesis and biological evaluation. RSC Med Chem 2024:d4md00414k. [PMID: 39345712 PMCID: PMC11423687 DOI: 10.1039/d4md00414k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The SARS-CoV-2 main protease, a vital enzyme for virus replication, is a potential target for developing drugs in COVID-19 treatment. Until now, three SARS-CoV-2 main protease inhibitors have been approved for COVID-19 treatment. This study explored the inhibitory potency of asymmetric imidazole-4,5-dicarboxamide derivatives against the SARS-CoV-2 main protease. Fourteen derivatives were designed based on the structure of the SARS-CoV-2 main protease active site, the hydrolysis mechanism, and the experience gained from the reported inhibitor structures. They were synthesized through a four-step procedure from benzimidazole and 2-methylbenzimidazole. SARS-CoV-2 main protease inhibition was evaluated in vitro by fluorogenic assay with lopinavir, ritonavir, and ebselen as positive references. N-(4-Chlorophenyl)-2-methyl-4-(morpholine-4-carbonyl)-1H-imidazole-5-carboxamide (5a2) exhibited the highest potency against the SARS-CoV-2 main protease with an IC50 of 4.79 ± 1.37 μM relative to ebselen with an IC50 of 0.04 ± 0.013 μM. Enzyme kinetic and molecular docking studies were carried out to clarify the inhibitory mechanism and to prove that the compound interacts at the active site. We also performed cytotoxicity assay to confirm that these compounds are not toxic to human cells.
Collapse
Affiliation(s)
- Phuong Nguyen Hoai Huynh
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phatcharin Khamplong
- Department of Biochemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Minh-Hoang Phan
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Thanh-Phuc Nguyen
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phuong Ngoc Lan Vu
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Quang-Vinh Tang
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phumin Chamsodsai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Supaphorn Seetaha
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Truong Lam Tuong
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Thien Y Vu
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Duc-Duy Vo
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University Husargatan 3 75237 Uppsala Sweden
- Department of Chemistry, Biomedical Centre, Uppsala University Husargatan 3 75237 Uppsala Sweden
- School of Applied Chemistry, Tra Vinh University 126 Nguyen Thien Thanh Street, Ward 5 Tra Vinh City Vietnam
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Cam-Van T Vo
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| |
Collapse
|
26
|
Ciardullo G, Orlando C, Russo N, Marchese E, Galano A, Marino T, Prejanò M. On the dual role of (+)-catechin as primary antioxidant and inhibitor of viral proteases. Comput Biol Med 2024; 180:108953. [PMID: 39089115 DOI: 10.1016/j.compbiomed.2024.108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Natural antioxidants have become the subject of many investigations due to the role that they play in the reduction of oxidative stress. Their main scavenging mechanisms concern the direct inactivation of free radicals and the coordination of metal ions involved in Fenton-like reactions. Recently, increasing attention has been paid to non-covalent inhibition of enzymes involved in different diseases by the antioxidants. Here, a computational investigation on the primary antioxidant power of (+)-catechin against the •OOH radical has been performed in both lipid-like and aqueous environments, taking into account the relevant species present in the simulated acid-base equilibria at the physiological pH. Hydrogen Atom Transfer (HAT), Single Electron Transfer (SET), and Radical Adduct Formation (RAF) mechanisms were studied, and relative rate constants were estimated. The potential inhibitory activity of the (+)-catechin towards the most important proteases from SARS-CoV-2, 3C-like (Mpro) and papain-like (PLpro) proteases was also investigated by MD simulations to provide deeper atomistic insights on the binding sites. Based on the antioxidant and antiviral properties also unravelled by comparison with other molecules having similar chemical scaffold, our results propose that (+)-CTc satisfies can explicate a dual action as antioxidant and antiviral in particular versus Mpro from SARS-CoV-2.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Carla Orlando
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Emanuela Marchese
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, 09310, Mexico
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy.
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Rende, (CS), Italy
| |
Collapse
|
27
|
Kovar P, Richardson PL, Korepanova A, Afanador GA, Stojkovic V, Li T, Schrimpf MR, Ng TI, Degoey DA, Gopalakrishnan SM, Chen J. Development of a sensitive high-throughput enzymatic assay capable of measuring sub-nanomolar inhibitors of SARS-CoV2 Mpro. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100179. [PMID: 39151824 DOI: 10.1016/j.slasd.2024.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration.
Collapse
Affiliation(s)
- Peter Kovar
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Paul L Richardson
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Alla Korepanova
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Gustavo A Afanador
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Vladimir Stojkovic
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Tao Li
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Michael R Schrimpf
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Teresa I Ng
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - David A Degoey
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | | | - Jun Chen
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA.
| |
Collapse
|
28
|
Philippsen GS, Seixas FAV. In silico identification of D449-0032 compound as a putative SARS-CoV-2 M pro inhibitor. J Biomol Struct Dyn 2024; 42:6440-6447. [PMID: 37424215 DOI: 10.1080/07391102.2023.2234045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The SARS-CoV-2 pandemic originated the urgency in developing therapeutic resources for the treatment of COVID-19. Despite the current availability of vaccines and some antivirals, the occurence of severe cases of the disease and the risk of the emergence of new virus variants still motivate research in this field. In this context, this study aimed at the computational prospection of likely inhibitors of the main protease (Mpro) of SARS-CoV-2 since inhibiting this enzyme leads to disruption of the viral replication process. The virtual screening of the antiviral libraries Asinex, ChemDiv, and Enamine targeting SARS-CoV-2 Mpro was performed, indicating the D449-0032 compound as a promising inhibitor. Molecular dynamics simulations showed the stability of the protein-ligand complex and in silico predictions of toxicity and pharmacokinetic parameters indicated the probable drug-like behavior of the compound. In vitro and in vivo studies are essential to confirm the Mpro inhibition by the D449-0032.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Flavio Augusto Vicente Seixas
- Laboratory of Structural Biochemistry, Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, Brazil
| |
Collapse
|
29
|
Zhang W, Xiao L, Li D, Hu Y, Yu W. New Strategies for Responding to SARS-CoV-2: The Present and Future of Dual-Target Drugs. J Med Chem 2024; 67:11522-11542. [PMID: 38967785 DOI: 10.1021/acs.jmedchem.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The 2019 coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths, posing a serious threat to public health and safety. Rapid mutations of SARS-CoV-2 and complex interactions among multiple targets during infection pose a risk of expiry for small molecule inhibitors. This suggests that the traditional concept of "one bug, one drug" could be ineffective in dealing with the coronavirus. The dual-target drug strategy is expected to be the key to ending coronavirus infections. However, the lack of design method and improper combination of dual-targets poses obstacle to the discovery of new dual-target drugs. In this Perspective, we summarized the profiles concerning drug design methods, structure-activity relationships, and pharmacological parameters of dual-target drugs for the treatment of COVID-19. Importantly, we underscored how target combination and rational drug design illuminate the development of dual-target drugs for SARS-CoV-2.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lecheng Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
30
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
31
|
Le UNP, Chang YJ, Lu CH, Chen Y, Su WC, Chao ST, Baltina LA, Petrova SF, Li SR, Hung MC, Lai MMC, Baltina LA, Lin CW. Glycyrrhizic acid conjugates with amino acid methyl esters target the main protease, exhibiting antiviral activity against wild-type and nirmatrelvir-resistant SARS-CoV-2 variants. Antiviral Res 2024; 227:105920. [PMID: 38821317 DOI: 10.1016/j.antiviral.2024.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
COVID-19 pandemic is predominantly caused by SARS-CoV-2, with its main protease, Mpro, playing a pivotal role in viral replication and serving as a potential target for inhibiting different variants. In this study, potent Mpro inhibitors were identified from glycyrrhizic acid (GL) derivatives with amino acid methyl/ethyl esters. Out of the 17 derivatives semisynthesized, Compounds 2, 6, 9, and 15, with methionine methyl esters, D-tyrosine methyl esters, glutamic acid methyl esters, and methionines in the carbohydrate moiety, respectively, significantly inhibited wild-type SARS-CoV-2 Mpro-mediated proteolysis, with IC50 values ranging from 0.06 μM to 0.84 μM. They also demonstrated efficacy in inhibiting trans-cleavage by mutant Mpro variants (Mpro_P132H, Mpro_E166V, Mpro_P168A, Mpro_Q189I), with IC50 values ranging from 0.05 to 0.92 μM, surpassing nirmatrelvir (IC50: 1.17-152.9 μM). Molecular modeling revealed stronger interactions with Valine166 in the structural complex of Mpro_E166V with the compounds compared to nirmatrelvir. Moreover, these compounds efficiently inhibited the post-entry viral processes of wild-type SARS-CoV-2 single-round infectious particles (SRIPs), mitigating viral cytopathic effects and reducing replicon-driven GFP reporter signals, as well as in vitro infectivity of wild-type, Mpro_E166V, and Mpro_Q189I SRIPs, with EC50 values ranging from 0.02 to 0.53 μM. However, nirmatrelvir showed a significant decrease in inhibiting the replication of mutant SARS-CoV-2 SRIPs carrying Mpro_E166V (EC50: >20 μM) and Mpro_Q189I (EC50: 13.2 μM) compared to wild-type SRIPs (EC50: 0.06 μM). Overall, this study identifies four GL derivatives as promising lead compounds for developing treatments against various SARS-CoV-2 strains, including Omicron, and nirmatrelvir-resistant variants.
Collapse
Affiliation(s)
- Uyen Nguyen Phuong Le
- Graduate Institute of Biological Science and Technology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Hao Lu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yeh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shao-Ting Chao
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Lia A Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Russia
| | - Svetlana F Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Russia
| | - Sin-Rong Li
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Mien-Chie Hung
- Research Center for Cancer Biology, China Medical University, Taichung, 404327, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Michael M C Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Lidia A Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Russia.
| | - Cheng-Wen Lin
- Graduate Institute of Biological Science and Technology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
32
|
Yang M, Lin L, Flaumenhaft R. Protocol to identify flavonoid antagonists of the SARS-CoV-2 main protease. STAR Protoc 2024; 5:102990. [PMID: 38583157 PMCID: PMC11002865 DOI: 10.1016/j.xpro.2024.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Flavonoids are naturally occurring metabolites of plants that can inhibit the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), which is required for viral replication. Here, we present a protocol to identify flavonoid antagonists of the SARS-CoV-2 Mpro. We describe steps for the expression and purification of Mpro and a kinetic enzymatic assay for Mpro activity using a dequenching fluorescence resonance energy transfer peptide substrate. We then detail procedures for using this enzymatic assay to test flavonoid antagonism and reversible inhibition. For complete details on the use and execution of this protocol, please refer to Lin et al.1.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| | - Lin Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhuo Institute of Oceanography, Fuzhuo, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Breidenbach J, Voget R, Si Y, Hingst A, Claff T, Sylvester K, Wolf V, Krasniqi V, Useini A, Sträter N, Ogura Y, Kawaguchi A, Müller CE, Gütschow M. Macrocyclic Azapeptide Nitriles: Structure-Based Discovery of Potent SARS-CoV-2 Main Protease Inhibitors as Antiviral Drugs. J Med Chem 2024; 67:8757-8790. [PMID: 38753594 DOI: 10.1021/acs.jmedchem.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Given the crucial role of the main protease (Mpro) in the replication cycle of SARS-CoV-2, this viral cysteine protease constitutes a high-profile drug target. We investigated peptidomimetic azapeptide nitriles as auspicious, irreversibly acting inhibitors of Mpro. Our systematic approach combined an Mpro active-site scanning by combinatorially assembled azanitriles with structure-based design. Encouraged by the bioactive conformation of open-chain inhibitors, we conceptualized the novel chemotype of macrocyclic azanitriles whose binding mode was elucidated by cocrystallization. This strategy provided a favorable entropic contribution to target binding and resulted in the development of the extraordinarily potent Mpro inhibitor 84 with an IC50 value of 3.23 nM and a second-order rate constant of inactivation, kinac/Ki, of 448,000 M-1s-1. The open-chain Mpro inhibitor 58, along with the macrocyclic compounds 83 and 84, a broad-spectrum anticoronaviral agent, demonstrated the highest antiviral activity with EC50 values in the single-digit micromolar range. Our findings are expected to promote the future development of peptidomimetic Mpro inhibitors as anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Julian Breidenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Yaoyao Si
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alexandra Hingst
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Valentina Wolf
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Vesa Krasniqi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Abibe Useini
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Yukino Ogura
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Ibaraki, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575 Tsukuba, Ibaraki, Japan
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
34
|
Kenward C, Vuckovic M, Paetzel M, Strynadka NCJ. Kinetic comparison of all eleven viral polyprotein cleavage site processing events by SARS-CoV-2 main protease using a linked protein FRET platform. J Biol Chem 2024; 300:107367. [PMID: 38750796 PMCID: PMC11209022 DOI: 10.1016/j.jbc.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
The main protease (Mpro) remains an essential therapeutic target for COVID-19 post infection intervention given its critical role in processing the majority of viral proteins encoded by the genome of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2). Upon viral entry, the +ssRNA genome is translated into two long polyproteins (pp1a or the frameshift-dependent pp1ab) containing all the nonstructural proteins (nsps) required by the virus for immune modulation, replication, and ultimately, virion assembly. Included among these nsps is the cysteine protease Mpro (nsp5) which self-excises from the polyprotein, dimerizes, then sequentially cleaves 11 of the 15 cut-site junctions found between each nsp within the polyprotein. Many structures of Mpro (often bound to various small molecule inhibitors or peptides) have been detailed recently, including structures of Mpro bound to each of the polyprotein cleavage sequences, showing that Mpro can accommodate a wide range of targets within its active site. However, to date, kinetic characterization of the interaction of Mpro with each of its native cleavage sequences remains incomplete. Here, we present a robust and cost-effective FRET based system that benefits from a more consistent presentation of the substrate that is also closer in organization to the native polyprotein environment compared to previously reported FRET systems that use chemically modified peptides. Using this system, we were able to show that while each site maintains a similar Michaelis constant, the catalytic efficiency of Mpro varies greatly between cut-site sequences, suggesting a clear preference for the order of nsp processing.
Collapse
Affiliation(s)
- Calem Kenward
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
35
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. eLife 2024; 12:RP90316. [PMID: 38814682 PMCID: PMC11139479 DOI: 10.7554/elife.90316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jessica H Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
36
|
Evans D, Sheraz S, Lau A. SARS-CoV-2 3CLPro Dihedral Angles Reveal Allosteric Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595309. [PMID: 38826232 PMCID: PMC11142162 DOI: 10.1101/2024.05.22.595309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
In allosteric proteins, identifying the pathways that signals take from allosteric ligand-binding sites to enzyme active sites or binding pockets and interfaces remains challenging. This avenue of research is motivated by the goals of understanding particular macromolecular systems of interest and creating general methods for their study. An especially important protein that is the subject of many investigations in allostery is the SARS-CoV-2 main protease (Mpro), which is necessary for coronaviral replication. It is both an attractive drug target and, due to intense interest in it for the development of pharmaceutical compounds, a gauge of the state-of-the-art approaches in studying protein inhibition. Here we develop a computational method for characterizing protein allostery and use it to study Mpro. We propose a role of the protein's C-terminal tail in allosteric modulation and warn of unintuitive traps that can plague studies of the role of protein dihedrals angles in transmitting allosteric signals.
Collapse
Affiliation(s)
- Daniel Evans
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Samreen Sheraz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Albert Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
37
|
Taefehshokr N, Lac A, Vrieze AM, Dickson BH, Guo PN, Jung C, Blythe EN, Fink C, Aktar A, Dikeakos JD, Dekaban GA, Heit B. SARS-CoV-2 NSP5 antagonizes MHC II expression by subverting histone deacetylase 2. J Cell Sci 2024; 137:jcs262172. [PMID: 38682259 PMCID: PMC11166459 DOI: 10.1242/jcs.262172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Alex Lac
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Angela M. Vrieze
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Brandon H. Dickson
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Peter N. Guo
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Catherine Jung
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Eoin N. Blythe
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Corby Fink
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Amena Aktar
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Gregory A. Dekaban
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Bryan Heit
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| |
Collapse
|
38
|
M L SP, Kumari S, Martinek TA, M ES. De novo design of potential peptide analogs against the main protease of Omicron variant using in silico studies. Phys Chem Chem Phys 2024; 26:14006-14017. [PMID: 38683190 DOI: 10.1039/d4cp01199f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
SARS-CoV-2 and its variants are crossing the immunity barrier induced through vaccination. Recent Omicron sub-variants are highly transmissible and have a low mortality rate. Despite the low severity of Omicron variants, these new variants are known to cause acute post-infectious syndromes. Nowadays, novel strategies to develop new potential inhibitors for SARS-CoV-2 and other Omicron variants have gained prominence. For viral replication and survival the main protease of SARS-CoV-2 plays a vital role. Peptide-like inhibitors that mimic the substrate peptide have already proved to be effective in inhibiting the Mpro of SARS-CoV-2 variants. Our systematic canonical amino acid point mutation analysis on the native peptide has revealed various ways to improve the native peptide of the main protease. Multi mutation analysis has led us to identify and design potent peptide-analog inhibitors that act against the Mpro of the Omicron sub-variants. Our in-depth analysis of all-atom molecular dynamics studies has paved the way to characterize the atomistic behavior of Mpro in Omicron variants. Our goal is to develop potent peptide-analogs that could be therapeutically effective against Omicron and its sub-variants.
Collapse
Affiliation(s)
- Stanly Paul M L
- Institute of Pharmaceutical Analysis, University of Szeged, Eotvos u. 6, G-6720 Szeged, Hungary.
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali 160062, India.
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- ELKH-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Elizabeth Sobhia M
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali 160062, India.
| |
Collapse
|
39
|
Azevedo PHRDA, Camargo PG, Constant LEC, Costa SDS, Silva CS, Rosa AS, Souza DDC, Tucci AR, Ferreira VNS, Oliveira TKF, Borba NRR, Rodrigues CR, Albuquerque MG, Dias LRS, Garrett R, Miranda MD, Allonso D, Lima CHDS, Muri EMF. Statine-based peptidomimetic compounds as inhibitors for SARS-CoV-2 main protease (SARS-CoV‑2 Mpro). Sci Rep 2024; 14:8991. [PMID: 38637583 PMCID: PMC11026380 DOI: 10.1038/s41598-024-59442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.
Collapse
Affiliation(s)
- Pedro Henrique R de A Azevedo
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Priscila G Camargo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Larissa E C Constant
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Stephany da S Costa
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Celimar Sinézia Silva
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Alice S Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Daniel D C Souza
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Amanda R Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Vivian N S Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Thamara Kelcya F Oliveira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Nathalia R R Borba
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Carlos R Rodrigues
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Magaly G Albuquerque
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Luiza R S Dias
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Rafael Garrett
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Milene D Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Diego Allonso
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Camilo Henrique da S Lima
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil.
| | - Estela Maris F Muri
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil.
| |
Collapse
|
40
|
Mohebbi A, Eskandarzadeh M, Zangi H, Fatehi M. In silico study of alkaloids with quercetin nucleus for inhibition of SARS-CoV-2 protease and receptor cell protease. PLoS One 2024; 19:e0298201. [PMID: 38626042 PMCID: PMC11020608 DOI: 10.1371/journal.pone.0298201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/21/2024] [Indexed: 04/18/2024] Open
Abstract
Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Ali Mohebbi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzieh Eskandarzadeh
- Research Committee of Faculty of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Hanieh Zangi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzie Fatehi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
41
|
Lewandowski EM, Zhang X, Tan H, Jaskolka-Brown A, Kohaal N, Frazier A, Madsen JJ, Jacobs LMC, Wang J, Chen Y. Distal Protein-Protein Interactions Contribute to SARS-CoV-2 Main Protease Substrate Binding and Nirmatrelvir Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587566. [PMID: 38617221 PMCID: PMC11014590 DOI: 10.1101/2024.04.01.587566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
SARS-CoV-2 main protease, M pro , is responsible for the processing of the viral polyproteins into individual proteins, including the protease itself. M pro is a key target of anti-COVID-19 therapeutics such as nirmatrelvir (the active component of Paxlovid). Resistance mutants identified clinically and in viral passage assays contain a combination of active site mutations (e.g. E166V, E166A, L167F), which reduce inhibitor binding and enzymatic activity, and non-active site mutations (e.g. P252L, T21I, L50F), which restore the fitness of viral replication. Although the mechanism of resistance for the active site mutations is apparent, the role of the non-active site mutations in fitness rescue remains elusive. In this study, we use the model system of a M pro triple mutant (L50F/E166A/L167F) that confers not only nirmatrelvir drug resistance but also a similar fitness of replication compared to the wild-type both in vitro and in vivo. By comparing peptide and full-length M pro protein as substrates, we demonstrate that the binding of M pro substrate involves more than residues in the active site. In particular, L50F and other non-active site mutations can enhance the M pro dimer-dimer interactions and help place the nsp5-6 substrate at the enzyme catalytic center. The structural and enzymatic activity data of M pro L50F, L50F/E166A/L167F, and others underscore the importance of considering the whole substrate protein in studying M pro and substrate interactions, and offers important insights into M pro function, resistance development, and inhibitor design.
Collapse
|
42
|
Ruiz-Moreno AJ, Cedillo-González R, Cordova-Bahena L, An Z, Medina-Franco JL, Velasco-Velázquez MA. Consensus Pharmacophore Strategy For Identifying Novel SARS-Cov-2 M pro Inhibitors from Large Chemical Libraries. J Chem Inf Model 2024; 64:1984-1995. [PMID: 38472094 PMCID: PMC10966741 DOI: 10.1021/acs.jcim.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main Protease (Mpro) is an enzyme that cleaves viral polyproteins translated from the viral genome and is critical for viral replication. Mpro is a target for anti-SARS-CoV-2 drug development, and multiple Mpro crystals complexed with competitive inhibitors have been reported. In this study, we aimed to develop an Mpro consensus pharmacophore as a tool to expand the search for inhibitors. We generated a consensus model by aligning and summarizing pharmacophoric points from 152 bioactive conformers of SARS-CoV-2 Mpro inhibitors. Validation against a library of conformers from a subset of ligands showed that our model retrieved poses that reproduced the crystal-binding mode in 77% of the cases. Using models derived from a consensus pharmacophore, we screened >340 million compounds. Pharmacophore-matching and chemoinformatics analyses identified new potential Mpro inhibitors. The candidate compounds were chemically dissimilar to the reference set, and among them, demonstrating the relevance of our model. We evaluated the effect of 16 candidates on Mpro enzymatic activity finding that seven have inhibitory activity. Three compounds (1, 4, and 5) had IC50 values in the midmicromolar range. The Mpro consensus pharmacophore reported herein can be used to identify compounds with improved activity and novel chemical scaffolds against Mpro. The method developed for its generation is provided as an open-access code (https://github.com/AngelRuizMoreno/ConcensusPharmacophore) and can be applied to other pharmacological targets.
Collapse
Affiliation(s)
- Angel J. Ruiz-Moreno
- School
of Medicine, Universidad Nacional Autónoma
de México, Mexico
City 04510, Mexico
| | - Raziel Cedillo-González
- School
of Medicine, Universidad Nacional Autónoma
de México, Mexico
City 04510, Mexico
- Graduate
Program in Biochemical Sciences, Universidad
Nacional Autónoma de México, Mexico City 04510, Mexico
- DIFACQUIM
Research Group, School of Chemistry, Universidad
Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Luis Cordova-Bahena
- School
of Medicine, Universidad Nacional Autónoma
de México, Mexico
City 04510, Mexico
- Consejo
Nacional de Humanidades, Ciencias y Tecnología, Mexico City 03940, Mexico
| | - Zhiqiang An
- Texas
Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - José L. Medina-Franco
- DIFACQUIM
Research Group, School of Chemistry, Universidad
Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marco A. Velasco-Velázquez
- School
of Medicine, Universidad Nacional Autónoma
de México, Mexico
City 04510, Mexico
- Texas
Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030, United States
| |
Collapse
|
43
|
Nguyen HH, Tufts J, Minh DDL. On Inactivation of the Coronavirus Main Protease. J Chem Inf Model 2024; 64:1644-1656. [PMID: 38423522 PMCID: PMC10936523 DOI: 10.1021/acs.jcim.3c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
A deeper understanding of the inactive conformations of the coronavirus main protease (MPro) could inform the design of allosteric drugs. Based on extensive molecular dynamics simulations, we built a Markov State Model to investigate structural changes that can inactivate the SARS-CoV-2 MPro. In a subset of structures, one subunit of the homodimer assumes an inactive conformation that resembles an inactive crystal structure. However, contradicting the widely held half-of-sites activity hypothesis, the most populated enzyme structures have two active subunits. We then used transition path theory (TPT) and the Jensen-Shannon Divergence (JSD) to pinpoint residues involved in the inactivation process. A π stack between Phe140 and His163 is a key feature that can distinguish active and inactive conformations of MPro. Each subunit has unique inactive conformations stabilized by π stacking interactions involving residues Phe140, Tyr118, His163, and His172, a hydrogen bonding network centered around His163 and His172, and a modified network of interactions in the dimer interface. The importance of these residues in maintaining an active structure explains the sensitivity of enzymatic activity to site-directed mutagenesis.
Collapse
Affiliation(s)
- Hong Ha Nguyen
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Jim Tufts
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
44
|
Barton LS, Callahan JF, Cantizani J, Concha NO, Cotillo Torrejon I, Goodwin NC, Joshi-Pangu A, Kiesow TJ, McAtee JJ, Mellinger M, Nixon CJ, Padrón-Barthe L, Patterson JR, Pearson ND, Pouliot JJ, Rendina AR, Buitrago Santanilla A, Schneck JL, Sanz O, Thalji RK, Ward P, Williams SP, King BW. Exploration of the P1 residue in 3CL protease inhibitors leading to the discovery of a 2-tetrahydrofuran P1 replacement. Bioorg Med Chem 2024; 100:117618. [PMID: 38309201 DOI: 10.1016/j.bmc.2024.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The virally encoded 3C-like protease (3CLpro) is a well-validated drug target for the inhibition of coronaviruses including Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Most inhibitors of 3CLpro are peptidomimetic, with a γ-lactam in place of Gln at the P1 position of the pseudopeptide chain. An effort was pursued to identify a viable alternative to the γ-lactam P1 mimetic which would improve physicochemical properties while retaining affinity for the target. Discovery of a 2-tetrahydrofuran as a suitable P1 replacement that is a potent enzymatic inhibitor of 3CLpro in SARS-CoV-2 virus is described herein.
Collapse
Affiliation(s)
- Linda S Barton
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States.
| | - James F Callahan
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Juan Cantizani
- GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Nestor O Concha
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | | | - Nicole C Goodwin
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Amruta Joshi-Pangu
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Terry J Kiesow
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Jeff J McAtee
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Mark Mellinger
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Christopher J Nixon
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | | | - Jaclyn R Patterson
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Neil D Pearson
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Jeffrey J Pouliot
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Alan R Rendina
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | | | - Jessica L Schneck
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Olalla Sanz
- GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Reema K Thalji
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Paris Ward
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Shawn P Williams
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Bryan W King
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| |
Collapse
|
45
|
Albani S, Costanzi E, Hoang GL, Kuzikov M, Frings M, Ansari N, Demitri N, Nguyen TT, Rizzi V, Schulz JB, Bolm C, Zaliani A, Carloni P, Storici P, Rossetti G. Unexpected Single-Ligand Occupancy and Negative Cooperativity in the SARS-CoV-2 Main Protease. J Chem Inf Model 2024; 64:892-904. [PMID: 38051605 PMCID: PMC10865365 DOI: 10.1021/acs.jcim.3c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
Many homodimeric enzymes tune their functions by exploiting either negative or positive cooperativity between subunits. In the SARS-CoV-2 Main protease (Mpro) homodimer, the latter has been suggested by symmetry in most of the 500 reported protease/ligand complex structures solved by macromolecular crystallography (MX). Here we apply the latter to both covalent and noncovalent ligands in complex with Mpro. Strikingly, our experiments show that the occupation of both active sites of the dimer originates from an excess of ligands. Indeed, cocrystals obtained using a 1:1 ligand/protomer stoichiometry lead to single occupation only. The empty binding site exhibits a catalytically inactive geometry in solution, as suggested by molecular dynamics simulations. Thus, Mpro operates through negative cooperativity with the asymmetric activity of the catalytic sites. This allows it to function with a wide range of substrate concentrations, making it resistant to saturation and potentially difficult to shut down, all properties advantageous for the virus' adaptability and resistance.
Collapse
Affiliation(s)
- Simone Albani
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich 52425, Germany
- Faculty
of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, Aachen 52062, Germany
| | - Elisa Costanzi
- Elettra–Sincrotrone
Trieste S.C.p.A., SS 14 – km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Gia Linh Hoang
- JARA-Brain
Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich 52425, Germany
- RWTH
Aachen University, Aachen 52056, Germany
| | - Maria Kuzikov
- Fraunhofer
Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern Kai 7, Frankfurt 60590, Germany
- Constructor University, School of Science, Campus Ring 1, Bremen 28759, Germany
| | - Marcus Frings
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Narjes Ansari
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Nicola Demitri
- Elettra–Sincrotrone
Trieste S.C.p.A., SS 14 – km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Toan T. Nguyen
- Key
Laboratory for Multiscale Simulation of Complex Systems, and Department
of Theoretical Physics, Faculty of Physics, University of Science, Vietnam National University – Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 11400, Vietnam
| | - Valerio Rizzi
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland
| | - Jörg B. Schulz
- JARA-Brain
Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich 52425, Germany
- RWTH
Aachen University, Aachen 52056, Germany
- Department
of Neurology, Medical Faculty, RWTH Aachen
University, Aachen 52074, Germany
| | - Carsten Bolm
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Andrea Zaliani
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, Hamburg 22525, Germany
- Fraunhofer
Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern Kai 7, Frankfurt 60590, Germany
| | - Paolo Carloni
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich 52425, Germany
- JARA-Brain
Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich 52425, Germany
- RWTH
Aachen University, Aachen 52056, Germany
- Key
Laboratory for Multiscale Simulation of Complex Systems, and Department
of Theoretical Physics, Faculty of Physics, University of Science, Vietnam National University – Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 11400, Vietnam
| | - Paola Storici
- Elettra–Sincrotrone
Trieste S.C.p.A., SS 14 – km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Giulia Rossetti
- Institute
for Neuroscience and Medicine (INM-9), Forschungszentrum
Jülich, Jülich 52425, Germany
- JARA-Brain
Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich 52425, Germany
- RWTH
Aachen University, Aachen 52056, Germany
- Department
of Neurology, Medical Faculty, RWTH Aachen
University, Aachen 52074, Germany
- Jülich
Supercomputing Center (JSC), Forschungszentrum
Jülich, Jülich 52425, Germany
| |
Collapse
|
46
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.10.527147. [PMID: 37502865 PMCID: PMC10370084 DOI: 10.1101/2023.02.10.527147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jessica H. Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
47
|
Funk LM, Poschmann G, Rabe von Pappenheim F, Chari A, Stegmann KM, Dickmanns A, Wensien M, Eulig N, Paknia E, Heyne G, Penka E, Pearson AR, Berndt C, Fritz T, Bazzi S, Uranga J, Mata RA, Dobbelstein M, Hilgenfeld R, Curth U, Tittmann K. Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design. Nat Commun 2024; 15:411. [PMID: 38195625 PMCID: PMC10776599 DOI: 10.1038/s41467-023-44621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for preventing future COVID outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation in vitro and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include a disulfide-dithiol switch between the catalytic cysteine C145 and cysteine C117, and generation of an allosteric cysteine-lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and inhibit Mpro activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS-CoV and SARS-CoV, indicating their potential as common druggable sites.
Collapse
Affiliation(s)
- Lisa-Marie Funk
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fabian Rabe von Pappenheim
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Ashwin Chari
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Kim M Stegmann
- Institute of Molecular Oncology, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Marie Wensien
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Nora Eulig
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Elham Paknia
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Gabi Heyne
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Elke Penka
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Arwen R Pearson
- Institute for Nanostructure and Solid-State Physics, Hamburg Centre for Ultrafast Imaging, Hamburg University, HARBOR, Luruper Chaussee 149, Hamburg, 22761, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Tobias Fritz
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Sophia Bazzi
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Jon Uranga
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Ricardo A Mata
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Rolf Hilgenfeld
- Institute for Biochemistry, Lübeck University, Ratzeburger Allee 160, 23562, Lübeck, Germany
- German Center for Infection Research, Hamburg - Lübeck-Borstel-Riems Site, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany.
| |
Collapse
|
48
|
Mizuno A, Nakayoshi T, Kato K, Kurimoto E, Oda A. Computational Estimation of Residues Involving Resistance to the SARS-CoV-2 Main Protease Inhibitor Ensitrelvir Based on Virtual Alanine Scan of the Active Site. Biol Pharm Bull 2024; 47:967-977. [PMID: 38763751 DOI: 10.1248/bpb.b24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ensitrelvir is a noncovalent inhibitor of the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2. Acquisition of drug resistance in virus-derived proteins is a serious therapeutic concern, and drug resistance occurs due to amino acid mutations. In this study, we computationally constructed 24 mutants, in which one residue around the active site was replaced with alanine and performed molecular dynamics simulations to the complex of Mpro and ensitrelvir to predict the residues involved in drug resistance. We evaluated the changes in the entire protein structure and ligand configuration in each of these mutants and estimated which residues were involved in ensitrelvir recognition. This method is called a virtual alanine scan. In nine mutants (S1A, T26A, H41A, M49A, L141A, H163A, E166A, V186A, and R188A), although the entire protein structure and catalytic dyad (cysteine (Cys)145 and histidine (His)41) were not significantly moved, the ensitrelvir configuration changed. Thus, it is considered that these mutants did not recognize ensitrelvir while maintaining Mpro enzymatic activities, and Ser1, Thr26, His41, Met49, Leu141, His163, Glu166, Val186, and Arg188 may be related to ensitrelvir resistance. The ligand shift noted in M49A was similar to that observed in M49I, which has been shown to be experimentally ensitrelvir resistant. These findings suggest that our research approach can predict mutations that incite drug resistance.
Collapse
Affiliation(s)
| | - Tomoki Nakayoshi
- Faculty of Pharmacy, Meijo University
- Graduate School of Information Sciences, Hiroshima City University
| | - Koichi Kato
- Faculty of Pharmacy, Meijo University
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences
| | | | - Akifumi Oda
- Faculty of Pharmacy, Meijo University
- Institute for Protein Research, Osaka University
| |
Collapse
|
49
|
Khan MT, Ali A, Wei X, Nadeem T, Muhammad S, Al-Sehemi AG, Wei D. Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-silico study. BRAZ J BIOL 2024; 84:e250667. [DOI: 10.1590/1519-6984.25066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Nigella sativa is known for the safety profile, containing a wealth of useful antiviral compounds. The main protease (Mpro, 3CLpro) of severe acute respiratory syndrome 2 (SARS-CoV-2) is being considered as one of the most attractive viral target, processing the polyproteins during viral pathogenesis and replication. In the current investigation we analyzed the potency of active component, thymoquinone (TQ) of Nigella sativa against SARS-CoV-2 Mpro. The structures of TQ and Mpro was retrieved from PubChem (CID10281) and Protein Data Bank (PDB ID 6MO3) respectively. The Mpro and TQ were docked and the complex was subjected to molecular dynamic (MD) simulations for a period 50ns. Protein folding effect was analyzed using radius of gyration (Rg) while stability and flexibility was measured, using root means square deviations (RMSD) and root means square fluctuation (RMSF) respectively. The simulation results shows that TQ is exhibiting good binding activity against SARS-CoV-2 Mpro, interacting many residues, present in the active site (His41, Cys145) and also the Glu166, facilitating the pocket shape. Further, experimental approaches are needed to validate the role of TQ against virus infection. The TQ is interfering with pocket maintaining residues as well as active site of virus Mpro which may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.
Collapse
Affiliation(s)
| | - A. Ali
- Shanghai Jiao Tong University, China
| | - X. Wei
- Shanghai Jiao Tong University, China
| | | | | | | | - Dongqing Wei
- Shanghai Jiao Tong University, China; Peng Cheng Laboratory, China
| |
Collapse
|
50
|
Ferraro S, Convertino I, Cappello E, Valdiserra G, Bonaso M, Tuccori M. Lessons learnt from the preclinical discovery and development of ensitrelvir as a COVID-19 therapeutic option. Expert Opin Drug Discov 2024; 19:9-20. [PMID: 37830361 DOI: 10.1080/17460441.2023.2267001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION The COVID-19 pandemic stimulated the development of several therapeutic tools with several degrees of success. Ensitrelvir, a protease inhibitor that blocks the replication of SARS-CoV-2, can reduce the viral load and the severity of symptoms in infected patients and become available for emergency use in Japan. Clinical trials showed a good tolerability profile although the potential for interactions with substrates, inhibitors, and inducers of CYP3A must be considered. The occurrence of resistance is also a matter of investigation. AREAS COVERED In this article, the authors describe the development of ensitrelvir starting from the identification of the molecule to the pre-clinical and clinical trials up to the post-authorization phase. EXPERT OPINION Ensitrelvir was developed in a late phase of the pandemic when the availability of patients that can be candidate to enter the clinical trial was limited with consequences for the possibility of assessing certain outcomes and for the robustness of results. Although the evidence about the benefits of ensitrelvir in COVID-19 is not questionable, the problems of interactions with other drugs, emerging resistant variants, the availability of alternative therapeutic options, costs, and accessibility will concur to its probable limited clinical use in the future.
Collapse
Affiliation(s)
- Sara Ferraro
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Irma Convertino
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Emiliano Cappello
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Giulia Valdiserra
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Marco Bonaso
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa Italy
- Unit of Adverse Drug Reaction Monitoring, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|