1
|
Joseph OO, Dahunsi SO, Okoh A. SARS-CoV-2 infection of domestic animals and their role in evolution and emergence of variants of concern. New Microbes New Infect 2024; 62:101468. [PMID: 39268173 PMCID: PMC11391865 DOI: 10.1016/j.nmni.2024.101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is responsible for COVID-19 pandemic, is a zoonotic RNA virus that has been reported in animals, including domestic animals. Due to the growing concern of health threat that could arise from active transmission of SARS-CoV-2 between pet owners and their pets, there is need to monitoring the emergence of a highly pathogenic strain of SARS-CoV-2 that is capable of transboundary infection, or a serious outbreak among human populations. Methods We carried out a search in English, on PubMed and NCBI (National Center for Biotechnology Information) SARS-CoV-2 resources for relevant journals and nucleotide sequence data, that were published between 2019 and 2023. The CoVsurver mutations application on GISAID webpage was used to analyse mutation, nucleotide sequence alignment was carried out using MAFFT (Multiple Alignment using Fast Fourier Transform) version 7 and maximum likelihood tree was constructed by bootstrapping with 1000 replicates on MEGA 11 software. Results A total of 47 mutations at the Spike gene region were identified, and mutation D614 was the most observed mutation. Nucleotide sequences of isolates from domestic animals had high sequence identity with Wuhan-Hu-1 reference sequence and the representative sequences of previously circulating VOCs from humans. Conclusion This reveals that there is spill over of previously circulating variants of concern (VOC) to household pets from their infected owners. Hence, there is an urgent need for more intense surveillance to be carried out globally to monitor evolution of SARS-CoV-2 coronaviruses as a result of human - pet association.
Collapse
Affiliation(s)
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering, and Sciences, Bowen University Iwo, Osun State Nigeria
- The Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, USA
| | - Anthony Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
2
|
Ghaemi S, Abdoli A, Karimi H, Saadatpour F, Arefian E. The impact of host microRNAs on the development of conserved mutations of SARS-CoV-2. Sci Rep 2024; 14:22091. [PMID: 39333651 PMCID: PMC11437047 DOI: 10.1038/s41598-024-70974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024] Open
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has undergone various genetic alterations due to evolutionary pressures exerted by host cells, including intracellular antiviral mechanisms such as targeting by human microRNAs (miRNAs). This study investigates the impact of miRNAs hsa-miR-3132 and hsa-miR-4650 on the viral genome. Sequence alignment revealed conserved mutations in the binding sites of these miRNAs in adapted strains compared to the original Wuhan-Hu-1 strain, leading to their deletion. Despite modest expression of these miRNAs in SARS-CoV-2 target tissues, their efficacy against mutant strains is reduced due to the loss of binding sites. Structural analysis indicates that the mutant genome is more stable than the Wuhan-Hu-1 genome. Luciferase and virus titration assays demonstrate that hsa-miR-3132 and hsa-miR-4650 effectively target the Nsp3 gene in the Wuhan-Hu-1 strain but not in mutant strains lacking their binding sites. These findings suggest that the observed mutations help the virus evade selective pressure from human miRNAs, contributing to its adaptation.
Collapse
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Amirabad Virology Laboratory, Vaccine Unit, Tehran, 1413693341, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
- Stem Cells Technology and Tissue Regeneration Department, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Sarkar M, Madabhavi I. COVID-19 mutations: An overview. World J Methodol 2024; 14:89761. [PMID: 39310238 PMCID: PMC11230071 DOI: 10.5662/wjm.v14.i3.89761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 06/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the genus Beta coronavirus and the family of Coronaviridae. It is a positive-sense, non-segmented single-strand RNA virus. Four common types of human coronaviruses circulate globally, particularly in the fall and winter seasons. They are responsible for 10%-30% of all mild upper respiratory tract infections in adults. These are 229E, NL63 of the Alfacoronaviridae family, OC43, and HKU1 of the Betacoronaviridae family. However, there are three highly pathogenic human coronaviruses: SARS-CoV-2, Middle East respiratory syndrome coronavirus, and the latest pandemic caused by the SARS-CoV-2 infection. All viruses, including SARS-CoV-2, have the inherent tendency to evolve. SARS-CoV-2 is still evolving in humans. Additionally, due to the development of herd immunity, prior infection, use of medication, vaccination, and antibodies, the viruses are facing immune pressure. During the replication process and due to immune pressure, the virus may undergo mutations. Several SARS-CoV-2 variants, including the variants of concern (VOCs), such as B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617/B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron) have been reported from various parts of the world. These VOCs contain several important mutations; some of them are on the spike proteins. These mutations may lead to enhanced infectivity, transmissibility, and decreased neutralization efficacy by monoclonal antibodies, convalescent sera, or vaccines. Mutations may also lead to a failure of detection by molecular diagnostic tests, leading to a delayed diagnosis, increased community spread, and delayed treatment. We searched PubMed, EMBASE, Covariant, the Stanford variant Database, and the CINAHL from December 2019 to February 2023 using the following search terms: VOC, SARS-CoV-2, Omicron, mutations in SARS-CoV-2, etc. This review discusses the various mutations and their impact on infectivity, transmissibility, and neutralization efficacy.
Collapse
Affiliation(s)
- Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla 171001, Himachal Pradesh, India
| | - Irappa Madabhavi
- Department of Medical and Pediatric Oncology and Hematology, J N Medical College, and KAHER, Belagavi, Karnataka 590010, India
- Department of Medical and Pediatric Oncology and Hematology, Kerudi Cancer Hospital, Bagalkot, Karnataka 587103, India
| |
Collapse
|
4
|
Bonetti Franceschi V, Volz E. Phylogenetic signatures reveal multilevel selection and fitness costs in SARS-CoV-2. Wellcome Open Res 2024; 9:85. [PMID: 39132669 PMCID: PMC11316176 DOI: 10.12688/wellcomeopenres.20704.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background Large-scale sequencing of SARS-CoV-2 has enabled the study of viral evolution during the COVID-19 pandemic. Some viral mutations may be advantageous to viral replication within hosts but detrimental to transmission, thus carrying a transient fitness advantage. By affecting the number of descendants, persistence times and growth rates of associated clades, these mutations generate localised imbalance in phylogenies. Quantifying these features in closely-related clades with and without recurring mutations can elucidate the tradeoffs between within-host replication and between-host transmission. Methods We implemented a novel phylogenetic clustering algorithm ( mlscluster, https://github.com/mrc-ide/mlscluster) to systematically explore time-scaled phylogenies for mutations under transient/multilevel selection. We applied this method to a SARS-CoV-2 time-calibrated phylogeny with >1.2 million sequences from England, and characterised these recurrent mutations that may influence transmission fitness across PANGO-lineages and genomic regions using Poisson regressions and summary statistics. Results We found no major differences across two epidemic stages (before and after Omicron), PANGO-lineages, and genomic regions. However, spike, nucleocapsid, and ORF3a were proportionally more enriched for transmission fitness polymorphisms (TFP)-homoplasies than other proteins. We provide a catalog of SARS-CoV-2 sites under multilevel selection, which can guide experimental investigations within and beyond the spike protein. Conclusions This study provides empirical evidence for the existence of important tradeoffs between within-host replication and between-host transmission shaping the fitness landscape of SARS-CoV-2. This method may be used as a fast and scalable means to shortlist large sequence databases for sites under putative multilevel selection which may warrant subsequent confirmatory analyses and experimental confirmation.
Collapse
Affiliation(s)
- Vinicius Bonetti Franceschi
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| | - Erik Volz
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| |
Collapse
|
5
|
Surasinghe S, Kabengele K, Turner PE, Ogbunugafor CB. Evolutionary Invasion Analysis of Modern Epidemics Highlights the Context-Dependence of Virulence Evolution. Bull Math Biol 2024; 86:88. [PMID: 38877355 PMCID: PMC11178639 DOI: 10.1007/s11538-024-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Models are often employed to integrate knowledge about epidemics across scales and simulate disease dynamics. While these approaches have played a central role in studying the mechanics underlying epidemics, we lack ways to reliably predict how the relationship between virulence (the harm to hosts caused by an infection) and transmission will evolve in certain virus-host contexts. In this study, we invoke evolutionary invasion analysis-a method used to identify the evolution of uninvadable strategies in dynamical systems-to examine how the virulence-transmission dichotomy can evolve in models of virus infections defined by different natural histories. We reveal peculiar patterns of virulence evolution between epidemics with different disease natural histories (SARS-CoV-2 and hepatitis C virus). We discuss the findings with regards to the public health implications of predicting virus evolution, and in broader theoretical canon involving virulence evolution in host-parasite systems.
Collapse
Affiliation(s)
- Sudam Surasinghe
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Ketty Kabengele
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Microbiology Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, 06510, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
6
|
Guevara C, Coronel D, Salazar B, Salazar J, Arias-Flores H. Analysis of the Spread and Evolution of COVID-19 Mutations in Ecuador Using Open Data. Life (Basel) 2024; 14:735. [PMID: 38929718 PMCID: PMC11205030 DOI: 10.3390/life14060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, the analyses of and prediction using COVID-19-related data extracted from patient information repositories compiled by hospitals and health organizations are of paramount importance. These efforts significantly contribute to vaccine development and the formulation of contingency techniques, providing essential tools to prevent resurgence and to effectively manage the spread of the disease. In this context, the present research focuses on analyzing the biological information of the SARS-CoV-2 viral gene sequences and the clinical data of COVID-19-affected patients using publicly accessible data from Ecuador. This involves considering variables such as age, gender, and geographical location to understand the evolution of mutations and their distributions across Ecuadorian provinces. The Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology is applied for data analysis. Various data preprocessing and statistical analysis techniques are employed, including Pearson correlation, the chi-square test, and analysis of variance (ANOVA). Statistical diagrams and charts are used to facilitate a better visualization of the results. The results illuminate the genetic diversity of the virus and its correlation with clinical variables, offering a comprehensive understanding of the dynamics of COVID-19 spread in Ecuador. Critical variables influencing population vulnerability are highlighted, and the findings underscore the significance of mutation monitoring and indicate a need for global expansion of the research area.
Collapse
Affiliation(s)
- Cesar Guevara
- Centro de Mecatrónica y Sistemas Interactivos—MIST, Universidad Tecnológica Indoamérica, Quito 170301, Ecuador; (D.C.); (H.A.-F.)
| | - Dennys Coronel
- Centro de Mecatrónica y Sistemas Interactivos—MIST, Universidad Tecnológica Indoamérica, Quito 170301, Ecuador; (D.C.); (H.A.-F.)
| | - Byron Salazar
- Neurosurgery Department, Hospital de las Fuerzas Armadas HE-1, Quito 170136, Ecuador;
| | - Jorge Salazar
- Neurosurgery Department, Metropolitano Hospital, Quito 170521, Ecuador;
| | - Hugo Arias-Flores
- Centro de Mecatrónica y Sistemas Interactivos—MIST, Universidad Tecnológica Indoamérica, Quito 170301, Ecuador; (D.C.); (H.A.-F.)
| |
Collapse
|
7
|
Maiti AK. Progressive Evolutionary Dynamics of Gene-Specific ω Led to the Emergence of Novel SARS-CoV-2 Strains Having Super-Infectivity and Virulence with Vaccine Neutralization. Int J Mol Sci 2024; 25:6306. [PMID: 38928018 PMCID: PMC11204377 DOI: 10.3390/ijms25126306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
An estimation of the proportion of nonsynonymous to synonymous mutation (dn/ds, ω) of the SARS-CoV-2 genome would indicate the evolutionary dynamics necessary to evolve into novel strains with increased infection, virulence, and vaccine neutralization. A temporal estimation of ω of the whole genome, and all twenty-nine SARS-CoV-2 genes of major virulent strains of alpha, delta and omicron demonstrates that the SARS-CoV-2 genome originally emerged (ω ~ 0.04) with a strong purifying selection (ω < 1) and reached (ω ~ 0.85) in omicron towards diversifying selection (ω > 1). A marked increase in the ω occurred in the spike gene from alpha (ω = 0.2) to omicron (ω = 1.97). The ω of the replication machinery genes including RDRP, NSP3, NSP4, NSP7, NSP8, NSP10, NSP13, NSP14, and ORF9 are markedly increased, indicating that these genes/proteins are yet to be evolutionary stabilized and are contributing to the evolution of novel virulent strains. The delta-specific maximum increase in ω in the immunomodulatory genes of NSP8, NSP10, NSP16, ORF4, ORF5, ORF6, ORF7A, and ORF8 compared to alpha or omicron indicates delta-specific vulnerabilities for severe COVID-19 related hospitalization and death. The maximum values of ω are observed for spike (S), NSP4, ORF8 and NSP15, which indicates that the gene-specific temporal estimation of ω identifies specific genes for its super-infectivity and virulency that could be targeted for drug development.
Collapse
Affiliation(s)
- Amit K Maiti
- Department of Genetics and Genomics, Mydnavar, 28475 Greenfield Rd, Southfield, MI 48076, USA
| |
Collapse
|
8
|
Balasco N, Damaggio G, Esposito L, Colonna V, Vitagliano L. A comprehensive analysis of SARS-CoV-2 missense mutations indicates that all possible amino acid replacements in the viral proteins occurred within the first two-and-a-half years of the pandemic. Int J Biol Macromol 2024; 266:131054. [PMID: 38522702 DOI: 10.1016/j.ijbiomac.2024.131054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
The surveillance of COVID-19 pandemic has led to the determination of millions of genome sequences of the SARS-CoV-2 virus, with the accumulation of a wealth of information never collected before for an infectious disease. Exploring the information retrieved from the GISAID database reporting at that time >13 million genome sequences, we classified the 141,639 unique missense mutations detected in the first two-and-a-half years (up to October 2022) of the pandemic. Notably, our analysis indicates that 98.2 % of all possible conservative amino acid replacements occurred. Even non-conservative mutations were highly represented (73.9 %). For a significant number of residues (3 %), all possible replacements with the other nineteen amino acids have been observed. These observations strongly indicate that, in this time interval, the virus explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain and that those that are not observed severely affect SARS-CoV-2 integrity. The implications of the present findings go well beyond the structural biology of SARS-CoV-2 as the huge amount of information here collected and classified may be valuable for the elucidation of the sequence-structure-function relationships in proteins.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Dep. Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Gianluca Damaggio
- Institute of Genetics and Biophysics, CNR, Naples, Italy; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, Milan, Italy; University of Naples Federico II, Naples, Italy
| | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, CNR, Naples, Italy; Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | | |
Collapse
|
9
|
Rogozin IB, Saura A, Poliakov E, Bykova A, Roche-Lima A, Pavlov YI, Yurchenko V. Properties and Mechanisms of Deletions, Insertions, and Substitutions in the Evolutionary History of SARS-CoV-2. Int J Mol Sci 2024; 25:3696. [PMID: 38612505 PMCID: PMC11011937 DOI: 10.3390/ijms25073696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus's macro- and microevolution. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions, loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagenesis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with repetitive sequences, whereas C>U substitutions are often surrounded by nucleotides resembling the APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including the context features of RNAs that are likely to be involved in the generation of recurrent mutations. We also discuss the interplay between mutations and natural selection as a complex evolutionary trend. The substantial variability and complexity of pipelines for the reconstruction of mutations and the huge number of genomic sequences are major problems for the analyses of mutations in the SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of predicted mutations, which needs to be updated on a regular basis.
Collapse
Affiliation(s)
- Igor B. Rogozin
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastassia Bykova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities—RCMI Program, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
10
|
Tchoupou Saha OLF, Dubourg G, Yacouba A, Tola R, Raoult D, Lagier JC. Description of nasopharyngeal bacterial pathogens associated with different SARS-CoV-2 variants. Microb Pathog 2024; 188:106561. [PMID: 38307371 DOI: 10.1016/j.micpath.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The emergence of the coronavirus pandemic facilitated the acquisition of mutations in the SARS-CoV-2 genome, resulting in the appearance of new variants over the past three years. We previously identified several taxa associated with the clinical outcome of COVID-19 disease in a retrospective study involving 120 patients (infected patients and negative subjects). However, little is known about whether the different variants could influence variations in the composition of the nasopharyngeal microbiota. In this study, we used multiplex pathogen-specific PCR to analyse the presence of nasopharyngeal bacterial pathogens from 400 SARS-CoV-2 positive patients (equally distributed in the four SARS-CoV-2 variants studied: B.1.1.7 (Alpha), B.1 0.617.2 (Delta), B.1.160 (Marseille-4), and B.1.1.529 (omicron)). We then compared them to 400 patients who tested negative for all respiratory viruses tested in this study, including SARS-CoV-2. We first observed an enrichment of Staphylococcus aureus (P ≤ .05) and Corynebacterium propinquum (P ≤ .05) in COVID-19-positive patients, regardless of the variant, compared to negative subjects. We specifically highlighted a significantly higher frequency of S. aureus (P ≤ .0001), C. propinquum (P ≤ .0001), and Klebsiella pneumoniae (P ≤ .0001), in patients infected with the omicron variant, whereas that of Haemophilus influenzae was higher in patients infected with Marseille-4 (P ≤ .001) and Alpha (P ≤ .01) variants. Our results suggest that the nasopharyngeal bacterial pathogens have their own specificity according to the SARS-CoV-2 variant and independently of the season. Additional studies are needed to determine the role of these pathogens in the evolution of the clinical outcome of patients.
Collapse
Affiliation(s)
- Ornella La Fortune Tchoupou Saha
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), AP-HM, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Grégory Dubourg
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), AP-HM, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France.
| | - Abdourahamane Yacouba
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), AP-HM, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | | | - Didier Raoult
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), AP-HM, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Jean-Christophe Lagier
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), AP-HM, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
11
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Ravi V, Shamim U, Khan MA, Swaminathan A, Mishra P, Singh R, Bharali P, Chauhan NS, Pandey R. Unraveling the genetic evolution of SARS-CoV-2 Recombinants using mutational dynamics across the different lineages. Front Med (Lausanne) 2024; 10:1294699. [PMID: 38288302 PMCID: PMC10823376 DOI: 10.3389/fmed.2023.1294699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Recombination serves as a common strategy employed by RNA viruses for their genetic evolution. Extensive genomic surveillance during the COVID-19 pandemic has reported SARS-CoV-2 Recombinant strains indicating recombination events during the viral evolution. This study introspects the phenomenon of genome recombination by tracing the footprint of prominent lineages of SARS-CoV-2 at different time points in the context of on-going evolution and emergence of Recombinants. Method Whole genome sequencing was carried out for 2,516 SARS-CoV-2 (discovery cohort) and 1,126 (validation cohort) using nasopharyngeal samples collected between the time period of March 2020 to August 2022, as part of the genomic surveillance program. The sequences were classified according to the different lineages of SARS-CoV-2 prevailing in India at respective time points. Results Mutational diversity and abundance evaluation across the 12 lineages identified 58 Recombinant sequences as harboring the least number of mutations (n = 111), with 14 low-frequency unique mutations with major chunk of mutations coming from the BA.2. The spontaneously/dynamically increasing and decreasing trends of mutations highlight the loss of mutations in the Recombinants that were associated with the SARS-CoV-2 replication efficiency, infectivity, and disease severity, rendering them functionally with low infectivity and pathogenicity. Linkage disequilibrium (LD) analysis revealed that mutations comprising the LD blocks of BA.1, BA.2, and Recombinants were found as minor alleles or as low-frequency alleles in the LD blocks from the previous SARS-CoV-2 variant samples, especially Pre-VOC. Moreover, a dissipation in the size of LD blocks as well as LD decay along with a high negative regression coefficient (R squared) value was demonstrated in the Omicron and BA.1 and BA.2 lineages, which corroborated with the breakpoint analysis. Conclusion Together, the findings help to understand the evolution and emergence of Recombinants after the Omicron lineages, for sustenance and adaptability, to maintain the epidemic spread of SARS-CoV-2 in the host population already high in immunity levels.
Collapse
Affiliation(s)
- Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Md Abuzar Khan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aparna Swaminathan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajender Singh
- CSIR-Central Drug Research Institute, (CSIR-CDRI), Lucknow, Lucknow, India
| | - Pankaj Bharali
- CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Mattiuz G, Di Giorgio S, Conticello SG. An elusive debate on the evidence for RNA editing in SARS-CoV-2. RNA Biol 2024; 21:1-2. [PMID: 38426405 PMCID: PMC10913694 DOI: 10.1080/15476286.2024.2321032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Giorgio Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Salvatore Di Giorgio
- German Cancer Research Center (DKFZ) - Division of Immune Diversity, Foundation under Public Law, Heidelberg, Germany
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, Firenze, Italy
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
14
|
Kramer AM, Thornlow B, Ye C, De Maio N, McBroome J, Hinrichs AS, Lanfear R, Turakhia Y, Corbett-Detig R. Online Phylogenetics with matOptimize Produces Equivalent Trees and is Dramatically More Efficient for Large SARS-CoV-2 Phylogenies than de novo and Maximum-Likelihood Implementations. Syst Biol 2023; 72:1039-1051. [PMID: 37232476 PMCID: PMC10627557 DOI: 10.1093/sysbio/syad031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/14/2023] [Accepted: 06/22/2023] [Indexed: 05/27/2023] Open
Abstract
Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all data are collected before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 data sets do not fit this mold. There are currently over 14 million sequenced SARS-CoV-2 genomes in online databases, with tens of thousands of new genomes added every day. Continuous data collection, combined with the public health relevance of SARS-CoV-2, invites an "online" approach to phylogenetics, in which new samples are added to existing phylogenetic trees every day. The extremely dense sampling of SARS-CoV-2 genomes also invites a comparison between likelihood and parsimony approaches to phylogenetic inference. Maximum likelihood (ML) and pseudo-ML methods may be more accurate when there are multiple changes at a single site on a single branch, but this accuracy comes at a large computational cost, and the dense sampling of SARS-CoV-2 genomes means that these instances will be extremely rare because each internal branch is expected to be extremely short. Therefore, it may be that approaches based on maximum parsimony (MP) are sufficiently accurate for reconstructing phylogenies of SARS-CoV-2, and their simplicity means that they can be applied to much larger data sets. Here, we evaluate the performance of de novo and online phylogenetic approaches, as well as ML, pseudo-ML, and MP frameworks for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that online phylogenetics produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that MP optimization with UShER and matOptimize produces equivalent SARS-CoV-2 phylogenies to some of the most popular ML and pseudo-ML inference tools. MP optimization with UShER and matOptimize is thousands of times faster than presently available implementations of ML and online phylogenetics is faster than de novo inference. Our results therefore suggest that parsimony-based methods like UShER and matOptimize represent an accurate and more practical alternative to established ML implementations for large SARS-CoV-2 phylogenies and could be successfully applied to other similar data sets with particularly dense sampling and short branch lengths.
Collapse
Affiliation(s)
- Alexander M Kramer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bryan Thornlow
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Cheng Ye
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Jakob McBroome
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Angie S Hinrichs
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Robert Lanfear
- Department of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
15
|
Colson P, Bader W, Fantini J, Dudouet P, Levasseur A, Pontarotti P, Devaux C, Raoult D. From viral democratic genomes to viral wild bunch of quasispecies. J Med Virol 2023; 95:e29209. [PMID: 37937701 DOI: 10.1002/jmv.29209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The tremendous majority of RNA genomes from pathogenic viruses analyzed and deposited in databases are consensus or "democratic" genomes. They represent the genomes most frequently found in the clinical samples of patients but do not account for the huge genetic diversity of coexisting genomes, which is better described as quasispecies. A viral quasispecies is defined as the dynamic distribution of nonidentical but closely related mutants, variants, recombinant, or reassortant viral genomes. Viral quasispecies have collective behavior and dynamics and are the subject of internal interactions that comprise interference, complementation, or cooperation. In the setting of SARS-CoV-2 infection, intrahost SARS-CoV-2 genetic diversity was recently notably reported for immunocompromised, chronically infected patients, for patients treated with monoclonal antibodies targeting the viral spike protein, and for different body compartments of a single patient. A question that deserves attention is whether such diversity is generated postinfection from a clonal genome in response to selection pressure or is already present at the time of infection as a quasispecies. In the present review, we summarize the data supporting that hosts are infected by a "wild bunch" of viruses rather than by multiple virions sharing the same genome. Each virion in the "wild bunch" may have different virulence and tissue tropisms. As the number of viruses replicated during host infections is huge, a viral quasispecies at any time of infection is wide and is also influenced by host-specific selection pressure after infection, which accounts for the difficulty in deciphering and predicting the appearance of more fit variants and the evolution of epidemics of novel RNA viruses.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Wahiba Bader
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Pierre Dudouet
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS)-SNC5039, Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS)-SNC5039, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
16
|
Benhamou W, Lion S, Choquet R, Gandon S. Phenotypic evolution of SARS-CoV-2: a statistical inference approach. Evolution 2023; 77:2213-2223. [PMID: 37470192 DOI: 10.1093/evolut/qpad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Since its emergence in late 2019, the SARS-CoV-2 virus has spread globally, causing the ongoing COVID-19 pandemic. In the fall of 2020, the Alpha variant (lineage B.1.1.7) was detected in England and spread rapidly, outcompeting the previous lineage. Yet, very little is known about the underlying modifications of the infection process that can explain this selective advantage. Here, we try to quantify how the Alpha variant differed from its predecessor on two phenotypic traits: The transmission rate and the duration of infectiousness. To this end, we analyzed the joint epidemiological and evolutionary dynamics as a function of the Stringency Index, a measure of the amount of Non-Pharmaceutical Interventions. Assuming that these control measures reduce contact rates and transmission, we developed a two-step approach based on ${{SEIR}}$ models and the analysis of a combination of epidemiological and evolutionary information. First, we quantify the link between the Stringency Index and the reduction in viral transmission. Second, based on a novel theoretical derivation of the selection gradient in an ${{SEIR}}$ model, we infer the phenotype of the Alpha variant from its frequency changes. We show that its selective advantage is more likely to result from a higher transmission than from a longer infectious period. Our work illustrates how the analysis of the joint epidemiological and evolutionary dynamics of infectious diseases can help understand the phenotypic evolution driving pathogen adaptation.
Collapse
Affiliation(s)
- Wakinyan Benhamou
- CEFE (UMR 5175), Campus du CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Sébastien Lion
- CEFE (UMR 5175), Campus du CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Rémi Choquet
- CEFE (UMR 5175), Campus du CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Sylvain Gandon
- CEFE (UMR 5175), Campus du CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| |
Collapse
|
17
|
Volz E. Fitness, growth and transmissibility of SARS-CoV-2 genetic variants. Nat Rev Genet 2023; 24:724-734. [PMID: 37328556 DOI: 10.1038/s41576-023-00610-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 06/18/2023]
Abstract
The massive scale of the global SARS-CoV-2 sequencing effort created new opportunities and challenges for understanding SARS-CoV-2 evolution. Rapid detection and assessment of new variants has become one of the principal objectives of genomic surveillance of SARS-CoV-2. Because of the pace and scale of sequencing, new strategies have been developed for characterizing fitness and transmissibility of emerging variants. In this Review, I discuss a wide range of approaches that have been rapidly developed in response to the public health threat posed by emerging variants, ranging from new applications of classic population genetics models to contemporary synthesis of epidemiological models and phylodynamic analysis. Many of these approaches can be adapted to other pathogens and will have increasing relevance as large-scale pathogen sequencing becomes a regular feature of many public health systems.
Collapse
Affiliation(s)
- Erik Volz
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
| |
Collapse
|
18
|
Ma W, Fu H, Jian F, Cao Y, Li M. Immune evasion and ACE2 binding affinity contribute to SARS-CoV-2 evolution. Nat Ecol Evol 2023; 7:1457-1466. [PMID: 37443189 DOI: 10.1038/s41559-023-02123-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Mutations in the SARS-CoV-2 genome could confer resistance to pre-existing antibodies and/or increased transmissibility. The recently emerged Omicron subvariants exhibit a strong tendency for immune evasion, suggesting adaptive evolution. However, because previous studies have been limited to specific lineages or subsets of mutations, the overall evolutionary trajectory of SARS-CoV-2 and the underlying driving forces are still not fully understood. Here we analysed all open-access SARS-CoV-2 genomes (up to November 2022) and correlated the mutation incidence and fitness changes with the impacts of mutations on immune evasion and ACE2 binding affinity. Our results show that the Omicron lineage had an accelerated mutation rate in the RBD region, while the mutation incidence in other genomic regions did not change dramatically over time. Mutations in the RBD region exhibited a lineage-specific pattern and tended to become more aggregated over time, and the mutation incidence was positively correlated with the strength of antibody pressure. Additionally, mutation incidence was positively correlated with changes in ACE2 binding affinity, but with a lower correlation coefficient than with immune evasion. In contrast, the effect of mutations on fitness was more closely correlated with changes in ACE2 binding affinity than with immune evasion. Our findings suggest that immune evasion and ACE2 binding affinity play significant and diverse roles in the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoyi Fu
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Balakrishnan KN, Yew CW, Chong ETJ, Daim S, Mohamad NE, Rodrigues K, Lee PC. Timeline of SARS-CoV-2 Transmission in Sabah, Malaysia: Tracking the Molecular Evolution. Pathogens 2023; 12:1047. [PMID: 37624007 PMCID: PMC10459040 DOI: 10.3390/pathogens12081047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic poses an unprecedented public health challenge in Malaysia. The impact of COVID-19 varies between countries, including geographically divided states within a country. The deadly transmission of COVID-19 has taken a heavy toll in Sabah, Malaysia's third most populous state, contributing nearly 10% to the recorded national death toll as of 31 December 2022. Although several SARS-CoV-2 genome sequences have been analysed in Malaysia, molecular epidemiology data from Sabah focusing on the diversity and evolution of SARS-CoV-2 variants are still lacking. This study examines the major SARS-CoV-2 variants and emerging mutations from Sabah, the Malaysian Borneo, which is geographically divided from West Malaysia by the South China Sea. METHODS A total of 583 COVID-19 samples were subjected to whole genome sequencing and analysed with an additional 1123 Sabah COVID-19 sequences retrieved from the GISAID EpiCoV consortium. Nextclade and Pangolin were used to classify these sequences according to the clades and lineages. To determine the molecular evolutionary characteristics, Bayesian time-scaled phylogenetic analysis employing the maximum likelihood algorithm was performed on selected SARS-CoV-2 genome sequences, using the Wuhan-Hu-1 sequence as a reference. RESULTS Sabah was affected starting from the second COVID-19 wave in Malaysia, and the early sequences were classified under the O clade. The clade was gradually replaced during subsequent waves by G, GH, GK and GRA, with the latter being dominant as of December 2022. Phylogenetically, the Delta isolates in this study belong to the three main subclades 21A, 21J and 21I, while Omicron isolates belong to 21M, 21L and 22B. The time-scaled phylogeny suggested that SARS-CoV-2 introduced into Sabah originated from Peninsular Malaysia in early March 2020, and phylodynamic analysis indicated that increased viral spread was observed in early March and declined in late April, followed by an evolutionary stationary phase in June 2020. CONCLUSION Continuous molecular epidemiology of SARS-CoV-2 in Sabah will provide a deeper understanding of the emergence and dominance of each variant in the locality, thus facilitating public health intervention measures.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (K.N.B.); (C.W.Y.); (E.T.J.C.); (N.E.M.); (K.R.)
| | - Chee Wei Yew
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (K.N.B.); (C.W.Y.); (E.T.J.C.); (N.E.M.); (K.R.)
| | - Eric Tzyy Jiann Chong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (K.N.B.); (C.W.Y.); (E.T.J.C.); (N.E.M.); (K.R.)
| | - Sylvia Daim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Nurul Elyani Mohamad
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (K.N.B.); (C.W.Y.); (E.T.J.C.); (N.E.M.); (K.R.)
| | - Kenneth Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (K.N.B.); (C.W.Y.); (E.T.J.C.); (N.E.M.); (K.R.)
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (K.N.B.); (C.W.Y.); (E.T.J.C.); (N.E.M.); (K.R.)
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
20
|
Wu X, Shan K, Zan F, Tang X, Qian Z, Lu J. Optimization and Deoptimization of Codons in SARS-CoV-2 and Related Implications for Vaccine Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205445. [PMID: 37267926 PMCID: PMC10427376 DOI: 10.1002/advs.202205445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/08/2023] [Indexed: 06/04/2023]
Abstract
The spread of coronavirus disease 2019 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed into a global pandemic. To date, thousands of genetic variants have been identified among SARS-CoV-2 isolates collected from patients. Sequence analysis reveals that the codon adaptation index (CAI) values of viral sequences have decreased over time but with occasional fluctuations. Through evolution modeling, it is found that this phenomenon may result from the virus's mutation preference during transmission. Using dual-luciferase assays, it is further discovered that the deoptimization of codons in the viral sequence may weaken protein expression during virus evolution, indicating that codon usage may play an important role in virus fitness. Finally, given the importance of codon usage in protein expression and particularly for mRNA vaccines, it is designed several codon-optimized Omicron BA.2.12.1, BA.4/5, and XBB.1.5 spike mRNA vaccine candidates and experimentally validated their high levels of expression. This study highlights the importance of codon usage in virus evolution and provides guidelines for codon optimization in mRNA and DNA vaccine development.
Collapse
Affiliation(s)
- Xinkai Wu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Ke‐jia Shan
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Fuwen Zan
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| |
Collapse
|
21
|
Biancolella M, Colona VL, Luzzatto L, Watt JL, Mattiuz G, Conticello SG, Kaminski N, Mehrian-Shai R, Ko AI, Gonsalves GS, Vasiliou V, Novelli G, Reichardt JKV. COVID-19 annual update: a narrative review. Hum Genomics 2023; 17:68. [PMID: 37488607 PMCID: PMC10367267 DOI: 10.1186/s40246-023-00515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
Three and a half years after the pandemic outbreak, now that WHO has formally declared that the emergency is over, COVID-19 is still a significant global issue. Here, we focus on recent developments in genetic and genomic research on COVID-19, and we give an outlook on state-of-the-art therapeutical approaches, as the pandemic is gradually transitioning to an endemic situation. The sequencing and characterization of rare alleles in different populations has made it possible to identify numerous genes that affect either susceptibility to COVID-19 or the severity of the disease. These findings provide a beginning to new avenues and pan-ethnic therapeutic approaches, as well as to potential genetic screening protocols. The causative virus, SARS-CoV-2, is still in the spotlight, but novel threatening virus could appear anywhere at any time. Therefore, continued vigilance and further research is warranted. We also note emphatically that to prevent future pandemics and other world-wide health crises, it is imperative to capitalize on what we have learnt from COVID-19: specifically, regarding its origins, the world's response, and insufficient preparedness. This requires unprecedented international collaboration and timely data sharing for the coordination of effective response and the rapid implementation of containment measures.
Collapse
Affiliation(s)
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- University of Florence, 50121, Florence, Italy
| | - Jessica Lee Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
| | | | - Silvestro G Conticello
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
- Institute of Clinical Physiology - National Council of Research (IFC-CNR), 56124, Pisa, Italy
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ruty Mehrian-Shai
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 2 Sheba Road, 52621, Ramat Gan, Israel
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, USA
- Instituto Gonçalo MonizFundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Gregg S Gonsalves
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, USA
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy.
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
- Department of Pharmacology, School of Medicine, University of Nevada, 89557, Reno, NV, USA.
| | - Juergen K V Reichardt
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| |
Collapse
|
22
|
Kalendar R, Kairov U, Karabayev D, Aitkulova A, Tynyshtykbayeva N, Daniyarov A, Otarbay Z, Rakhimova S, Akilzhanova A, Sarbassov D. Universal whole-genome Oxford nanopore sequencing of SARS-CoV-2 using tiled amplicons. Sci Rep 2023; 13:10334. [PMID: 37365249 DOI: 10.1038/s41598-023-37588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
We developed a comprehensive multiplexed set of primers adapted for the Oxford Nanopore Rapid Barcoding library kit that allows universal SARS-CoV-2 genome sequencing. This primer set is designed to set up any variants of the primers pool for whole-genome sequencing of SARS-CoV-2 using single- or double-tiled amplicons from 1.2 to 4.8 kb with the Oxford Nanopore. This multiplexed set of primers is also applicable for tasks like targeted SARS-CoV-2 genome sequencing. We proposed here an optimized protocol to synthesize cDNA using Maxima H Minus Reverse Transcriptase with a set of SARS-CoV-2 specific primers, which has high yields of cDNA template for RNA and is capable of long-length cDNA synthesis from a wide range of RNA amounts and quality. The proposed protocol allows whole-genome sequencing of the SARS-CoV-2 virus with tiled amplicons up to 4.8 kb on low-titer virus samples and even where RNA degradation has occurred. This protocol reduces the time and cost from RNA to genome sequence compared to the Midnight multiplex PCR method for SARS-CoV-2 genome sequencing using the Oxford Nanopore.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Daniyar Karabayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Akbota Aitkulova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Nuray Tynyshtykbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Asset Daniyarov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Saule Rakhimova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Dos Sarbassov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
23
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
24
|
Lambrechts L. Does arbovirus emergence in humans require adaptation to domestic mosquitoes? Curr Opin Virol 2023; 60:101315. [PMID: 36996522 DOI: 10.1016/j.coviro.2023.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
In the last few decades, several mosquito-borne arboviruses of zoonotic origin have established large-scale epidemic transmission cycles in the human population. It is often considered that arbovirus emergence is driven by adaptive evolution, such as virus adaptation for transmission by 'domestic' mosquito vector species that live in close association with humans. Here, I argue that although arbovirus adaptation to domestic mosquito vectors has been observed for several emerging arboviruses, it was generally not directly responsible for their initial emergence. Secondary adaptation to domestic mosquitoes often amplified epidemic transmission, however, this was more likely a consequence than a cause of arbovirus emergence. Considering that emerging arboviruses are generally 'preadapted' for transmission by domestic mosquito vectors may help to enhance preparedness toward future arbovirus emergence events.
Collapse
|
25
|
Bhattacharya M, Alshammari A, Alharbi M, Dhama K, Lee SS, Chakraborty C. A novel mutation-proof, next-generation vaccine to fight against upcoming SARS-CoV-2 variants and subvariants, designed through AI enabled approaches and tools, along with the machine learning based immune simulation: A vaccine breakthrough. Int J Biol Macromol 2023; 242:124893. [PMID: 37207746 DOI: 10.1016/j.ijbiomac.2023.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Emerging SARS-CoV-2 variants and subvariants are great concerns for their significant mutations, which are also responsible for vaccine escape. Therefore, the study was undertaken to develop a mutation-proof, next-generation vaccine to protect against all upcoming SARS-CoV-2 variants. We used advanced computational and bioinformatics approaches to develop a multi-epitopic vaccine, especially the AI model for mutation selection and machine learning (ML) strategies for immune simulation. AI-enabled and the top-ranked antigenic selection approaches were used to select nine mutations from 835 RBD mutations. We selected twelve common antigenic B cell and T cell epitopes (CTL and HTL) containing the nine RBD mutations and joined them with the adjuvants, PADRE sequence, and suitable linkers. The constructs' binding affinity was confirmed through docking with TLR4/MD2 complex and showed significant binding free energy (-96.67 kcal mol-1) with positive binding affinity. Similarly, the calculated eigenvalue (2.428517e-05) from the NMA of the complex reveals proper molecular motion and superior residues' flexibility. Immune simulation shows that the candidate can induce a robust immune response. The designed mutation-proof, multi-epitopic vaccine could be a remarkable candidate for upcoming SARS-CoV-2 variants and subvariants. The study method might guide researchers in developing AI-ML and immunoinformatics-based vaccines for infectious disease.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| |
Collapse
|
26
|
Yurkovetskiy L, Egri S, Kurhade C, Diaz-Salinas MA, Jaimes JA, Nyalile T, Xie X, Choudhary MC, Dauphin A, Li JZ, Munro JB, Shi PY, Shen K, Luban J. S:D614G and S:H655Y are gateway mutations that act epistatically to promote SARS-CoV-2 variant fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.535005. [PMID: 37034621 PMCID: PMC10081308 DOI: 10.1101/2023.03.30.535005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
SARS-CoV-2 variants bearing complex combinations of mutations that confer increased transmissibility, COVID-19 severity, and immune escape, were first detected after S:D614G had gone to fixation, and likely originated during persistent infection of immunocompromised hosts. To test the hypothesis that S:D614G facilitated emergence of such variants, S:D614G was reverted to the ancestral sequence in the context of sequential Spike sequences from an immunocompromised individual, and within each of the major SARS-CoV-2 variants of concern. In all cases, infectivity of the S:D614G revertants was severely compromised. The infectivity of atypical SARS-CoV-2 lineages that propagated in the absence of S:D614G was found to be dependent upon either S:Q613H or S:H655Y. Notably, Gamma and Omicron variants possess both S:D614G and S:H655Y, each of which contributed to infectivity of these variants. Among sarbecoviruses, S:Q613H, S:D614G, and S:H655Y are only detected in SARS-CoV-2, which is also distinguished by a polybasic S1/S2 cleavage site. Genetic and biochemical experiments here showed that S:Q613H, S:D614G, and S:H655Y each stabilize Spike on virions, and that they are dispensable in the absence of S1/S2 cleavage, consistent with selection of these mutations by the S1/S2 cleavage site. CryoEM revealed that either S:D614G or S:H655Y shift the Spike receptor binding domain (RBD) towards the open conformation required for ACE2-binding and therefore on pathway for infection. Consistent with this, an smFRET reporter for RBD conformation showed that both S:D614G and S:H655Y spontaneously adopt the conformation that ACE2 induces in the parental Spike. Data from these orthogonal experiments demonstrate that S:D614G and S:H655Y are convergent adaptations to the polybasic S1/S2 cleavage site which stabilize S1 on the virion in the open RBD conformation and act epistatically to promote the fitness of variants bearing complex combinations of clinically significant mutations.
Collapse
Affiliation(s)
- Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- These authors contributed equally
| | - Shawn Egri
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
- These authors contributed equally
| | - Marco A. Diaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Javier A. Jaimes
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- These authors contributed equally
| | - Thomas Nyalile
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Manish C. Choudhary
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Jonathan Z. Li
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Kim CM, Kim DM, Bang MS, Seo JW, Kim DY, Yun NR, Lim SC, Lee JH, Sohn EJ, Kang H, Min K, Choi BH, Lee S. Efficacy of Plant-Made Human Recombinant ACE2 against COVID-19 in a Golden Syrian Hamster Model. Viruses 2023; 15:v15040964. [PMID: 37112944 PMCID: PMC10146983 DOI: 10.3390/v15040964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel infectious respiratory disease caused by SARS-CoV-2. We evaluated the efficacy of a plant-based human recombinant angiotensin-converting enzyme 2 (hrACE2) and hrACE2-foldon (hrACE2-Fd) protein against COVID-19. In addition, we analyzed the antiviral activity of hrACE2 and hrACE2-Fd against SARS-CoV-2 using real-time reverse-transcription PCR and plaque assays. The therapeutic efficacy was detected using the Golden Syrian hamster model infected with SARS-CoV-2. Both hrACE2 and hrACE2-Fd inhibited SARS-CoV-2 by 50% at concentrations below the maximum plasma concentration, with EC50 of 5.8 μg/mL and 6.2 μg/mL, respectively. The hrACE2 and hrACE2-Fd injection groups showed a tendency for decreased viral titers in nasal turbinate tissues on day 3 after virus inoculation; however, this decrease was not detectable in lung tissues. Histopathological examination on day 9 after virus inoculation showed continued inflammation in the SARS-CoV-2 infection group, whereas decreased inflammation was observed in both the hrACE2 and hrACE2-Fd injection groups. No significant changes were observed at other time points. In conclusion, the potential therapeutic efficacy of plant-based proteins, hrACE2 and hrACE2-Fd, against COVID-19 was confirmed in a SARS-CoV-2-inoculated Golden Syrian hamster model. Further preclinical studies on primates and humans are necessary to obtain additional evidence and determine the effectiveness of these therapies.
Collapse
Affiliation(s)
- Choon-Mee Kim
- Premedical Science, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Dong-Min Kim
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Mi-Seon Bang
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Jun-Won Seo
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Da-Young Kim
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Na-Ra Yun
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Ju-Hyung Lee
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Eun-Ju Sohn
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| | - Hyangju Kang
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| | - Kyungmin Min
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| | - Bo-Hwa Choi
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| | - Sangmin Lee
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| |
Collapse
|
28
|
Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, Katzourakis A. The evolution of SARS-CoV-2. Nat Rev Microbiol 2023; 21:361-379. [PMID: 37020110 DOI: 10.1038/s41579-023-00878-2] [Citation(s) in RCA: 363] [Impact Index Per Article: 363.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths and substantial morbidity worldwide. Intense scientific effort to understand the biology of SARS-CoV-2 has resulted in daunting numbers of genomic sequences. We witnessed evolutionary events that could mostly be inferred indirectly before, such as the emergence of variants with distinct phenotypes, for example transmissibility, severity and immune evasion. This Review explores the mechanisms that generate genetic variation in SARS-CoV-2, underlying the within-host and population-level processes that underpin these events. We examine the selective forces that likely drove the evolution of higher transmissibility and, in some cases, higher severity during the first year of the pandemic and the role of antigenic evolution during the second and third years, together with the implications of immune escape and reinfections, and the increasing evidence for and potential relevance of recombination. In order to understand how major lineages, such as variants of concern (VOCs), are generated, we contrast the evidence for the chronic infection model underlying the emergence of VOCs with the possibility of an animal reservoir playing a role in SARS-CoV-2 evolution, and conclude that the former is more likely. We evaluate uncertainties and outline scenarios for the possible future evolutionary trajectories of SARS-CoV-2.
Collapse
Affiliation(s)
- Peter V Markov
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
- London School of Hygiene & Tropical Medicine, University of London, London, UK.
| | - Mahan Ghafari
- Big Data Institute, University of Oxford, Oxford, UK
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | | | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos I Stilianakis
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Department of Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
29
|
Akhter N, Sana S, Adnan Ahsan M, Siddique Z, Huraira A, Sana S. Advances in Diagnosis and Treatment for SARS-CoV-2 Variants. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
The COVID-19 pandemic’s epidemiological and clinical characteristics have been affected in recent months by the introduction of SARS-CoV-2 variants with unique spikes of protein alterations. These variations can lessen the protection provided by suppressing monoclonal antibodies and vaccines, as well as enhance the frequencies of transmission of the virus and/or the risk of contracting the disease. Due to these mutations, SARS-CoV-2 may be able to proliferate despite increasing levels of vaccination coverage while preserving and enhancing its reproduction efficiency. This is one of the main strategies in tackling the COVID-19 epidemics, the accessibility of precise and trustworthy biomarkers for the SARS-CoV-2 genetic material and also its nucleic acids is important to investigate the disease in suspect communities, start making diagnoses and management in symptomatic or asymptomatic persons, and evaluate authorization of the pathogen after infection. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) for virus nucleic acid identification is still the most effective method for such uses due to its sensitivity, quickness, high-throughput sequencing capacity, and trustworthiness. It is essential to update the primer and probe sequences to maintain the recognition of recently emerging variations. Concerning viral variations could develop that are dangerously resistant to the immunization induced by the present vaccinations in coronavirus disease 2019. Additionally, the significance of effective public health interventions and vaccination programs will grow if some variations of concern exhibit an increased risk of transmission or toxicity. The international reaction must’ve been immediate and established in science. These results supported ongoing efforts to prevent and identify infection, as well as to describe mutations in vaccine recipients, and they suggest a potential risk of illness following effective immunization and transmission of pathogens with a mutant viral.
Collapse
|
30
|
Gazeau S, Deng X, Ooi HK, Mostefai F, Hussin J, Heffernan J, Jenner AL, Craig M. The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2023; 9:100021. [PMID: 36643886 PMCID: PMC9826539 DOI: 10.1016/j.immuno.2023.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The COVID-19 pandemic has revealed the need for the increased integration of modelling and data analysis to public health, experimental, and clinical studies. Throughout the first two years of the pandemic, there has been a concerted effort to improve our understanding of the within-host immune response to the SARS-CoV-2 virus to provide better predictions of COVID-19 severity, treatment and vaccine development questions, and insights into viral evolution and the impacts of variants on immunopathology. Here we provide perspectives on what has been accomplished using quantitative methods, including predictive modelling, population genetics, machine learning, and dimensionality reduction techniques, in the first 26 months of the COVID-19 pandemic approaches, and where we go from here to improve our responses to this and future pandemics.
Collapse
Affiliation(s)
- Sonia Gazeau
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| | - Xiaoyan Deng
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| | - Hsu Kiang Ooi
- Digital Technologies Research Centre, National Research Council Canada, Toronto, Canada
| | - Fatima Mostefai
- Montréal Heart Institute Research Centre, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Julie Hussin
- Montréal Heart Institute Research Centre, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Jane Heffernan
- Modelling Infection and Immunity Lab, Mathematics Statistics, York University, Toronto, Canada
- Centre for Disease Modelling (CDM), Mathematics Statistics, York University, Toronto, Canada
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane Australia
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| |
Collapse
|
31
|
Escalera-Zamudio M, Kosakovsky Pond SL, de la Viña NM, Gutiérrez B, Inward RPD, Thézé J, van Dorp L, Castelán-Sánchez HG, Bowden TA, Pybus OG, Hulswit RJG. Identification of evolutionary trajectories shared across human betacoronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.05.24.445313. [PMID: 34075377 PMCID: PMC8168386 DOI: 10.1101/2021.05.24.445313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Comparing the evolution of distantly related viruses can provide insights into common adaptive processes related to shared ecological niches. Phylogenetic approaches, coupled with other molecular evolution tools, can help identify mutations informative on adaptation, whilst the structural contextualization of these to functional sites of proteins may help gain insight into their biological properties. Two zoonotic betacoronaviruses capable of sustained human-to-human transmission have caused pandemics in recent times (SARS-CoV-1 and SARS-CoV-2), whilst a third virus (MERS-CoV) is responsible for sporadic outbreaks linked to animal infections. Moreover, two other betacoronaviruses have circulated endemically in humans for decades (HKU1 and OC43). To search for evidence of adaptive convergence between established and emerging betacoronaviruses capable of sustained human-to-human transmission (HKU1, OC43, SARS-CoV-1 and SARS-CoV-2), we developed a methodological pipeline to classify shared non-synonymous mutations as putatively denoting homoplasy (repeated mutations that do not share direct common ancestry) or stepwise evolution (sequential mutations leading towards a novel genotype). In parallel, we look for evidence of positive selection, and draw upon protein structure data to identify potential biological implications. We find 30 mutations, with four of these [codon sites 18121 (nsp14/residue 28), 21623 (spike/21), 21635 (spike/25) and 23948 (spike/796); SARS-CoV-2 genome numbering] displaying evolution under positive selection and proximity to functional protein regions. Our findings shed light on potential mechanisms underlying betacoronavirus adaptation to the human host and pinpoint common mutational pathways that may occur during establishment of human endemicity.
Collapse
|
32
|
Wang W, Hu Y, Li B, Wang H, Shen J. Applications of nanobodies in the prevention, detection, and treatment of the evolving SARS-CoV-2. Biochem Pharmacol 2023; 208:115401. [PMID: 36592707 PMCID: PMC9801699 DOI: 10.1016/j.bcp.2022.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Global health and economy are deeply influenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its newly emerging variants. Nanobodies with nanometer-scale size are promising for the detection and treatment of SARS-CoV-2 and its variants because they are superior to conventional antibodies in terms of cryptic epitope accessibility, tissue penetration, cost, formatting adaptability, and especially protein stability, which enables their aerosolized specific delivery to lung tissues. This review summarizes the progress in the prevention, detection, and treatment of SARS-CoV-2 using nanobodies, as well as strategies to combat the evolving SARS-CoV-2 variants. Generally, highly efficient generation of potent broad-spectrum nanobodies targeting conserved epitopes or further construction of multivalent formats targeting non-overlapping epitopes can promote neutralizing activity against SARS-CoV-2 variants and suppress immune escape.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China,Corresponding author
| | - Yue Hu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Bohan Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Huanan Wang
- Department of Respiratory Medicine, The 990th Hospital of Joint Logistics Support Force, Zhumadian, Henan 463000, PR China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| |
Collapse
|
33
|
Kullappan M, Mary U, Ambrose JM, Veeraraghavan VP, Surapaneni KM. Elucidating the role of N440K mutation in SARS-CoV-2 spike - ACE-2 binding affinity and COVID-19 severity by virtual screening, molecular docking and dynamics approach. J Biomol Struct Dyn 2023; 41:912-929. [PMID: 34904526 DOI: 10.1080/07391102.2021.2014973] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
COVID-19 has become a public health concern around the world. The frequency of N440K variant was higher during the second wave in South India. The mutation was observed in the Receptor Binding Domain region (RBD) of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) spike (S) protein. The binding affinity of SARS-CoV-2-Angiotensin-Converting Enzyme-2 (ACE-2) plays a major role in the transmission and severity of the disease. To understand the binding affinity of the wild and mutant SARS-CoV-2 S with ACE2, molecular modeling studies were carried out. We discovered that the wild SARS-CoV-2 S RBD-ACE-2 complex has a high binding affinity and stability than that of the mutant. The N440K strain escapes from antibody neutralization, which might increase reinfection and decrease vaccine efficiency. To find a potential inhibitor against mutant N440K SARS-CoV-2, a virtual screening process was carried out and found ZINC169293961, ZINC409421825 and ZINC22060839 as the best binding energy compounds. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India
| | - Usha Mary
- Department of Chemistry, Panimalar Engineering College, Varadharajapuram, Poonamallee, Chennai, India
| | - Jenifer M Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Velappanchavadi, Chennai, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India.,Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India.,Department of Molecular Virology, Clinical Skills & Simulation, Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India.,Department of Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India
| |
Collapse
|
34
|
Bendall EE, Callear AP, Getz A, Goforth K, Edwards D, Monto AS, Martin ET, Lauring AS. Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants. Nat Commun 2023; 14:272. [PMID: 36650162 PMCID: PMC9844183 DOI: 10.1038/s41467-023-36001-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Transmission bottlenecks limit the spread of novel mutations and reduce the efficiency of selection along a transmission chain. While increased force of infection, receptor binding, or immune evasion may influence bottleneck size, the relationship between transmissibility and the transmission bottleneck is unclear. Here we compare the transmission bottleneck of non-VOC SARS-CoV-2 lineages to those of Alpha, Delta, and Omicron. We sequenced viruses from 168 individuals in 65 households. Most virus populations had 0-1 single nucleotide variants (iSNV). From 64 transmission pairs with detectable iSNV, we identify a per clade bottleneck of 1 (95% CI 1-1) for Alpha, Delta, and Omicron and 2 (95% CI 2-2) for non-VOC. These tight bottlenecks reflect the low diversity at the time of transmission, which may be more pronounced in rapidly transmissible variants. Tight bottlenecks will limit the development of highly mutated VOC in transmission chains, adding to the evidence that selection over prolonged infections may drive their evolution.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Amy P Callear
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Getz
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Kendra Goforth
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Drew Edwards
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Emily T Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Nakata Y, Ode H, Kubota M, Kasahara T, Matsuoka K, Sugimoto A, Imahashi M, Yokomaku Y, Iwatani Y. Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome. Nucleic Acids Res 2023; 51:783-795. [PMID: 36610792 PMCID: PMC9881129 DOI: 10.1093/nar/gkac1238] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The number of genetic variations in the SARS-CoV-2 genome has been increasing primarily due to continuous viral mutations. Here, we report that the human APOBEC3A (A3A) cytidine deaminase plays a critical role in the induction of C-to-U substitutions in the SARS-CoV-2 genome. Bioinformatic analysis of the chronological genetic changes in a sequence database indicated that the largest UC-to-UU mutation signature, consistent with APOBEC-recognized nucleotide motifs, was predominant in single-stranded RNA regions of the viral genome. In SARS-CoV-2-infected cells, exogenous expression of A3A but not expression of other APOBEC proteins induced UC-to-UU mutations in viral RNA (vRNA). Additionally, the mutated C bases were often located at the tips in bulge or loop regions in the vRNA secondary structure. Interestingly, A3A mRNA expression was drastically increased by interferons (IFNs) and tumour necrosis factor-α (TNF-α) in epithelial cells derived from the respiratory system, a site of efficient SARS-CoV-2 replication. Moreover, the UC-to-UU mutation rate was increased in SARS-CoV-2 produced from lung epithelial cells treated with IFN-ß and TNF-α, but not from CRISPR/Cas9-based A3A knockout cells. Collectively, these findings demonstrate that A3A is a primary host factor that drives mutations in the SARS-CoV-2 RNA genome via RNA editing.
Collapse
Affiliation(s)
- Yoshihiro Nakata
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan,Department of AIDS Research, Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Mai Kubota
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Takaaki Kasahara
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan,Department of Respiratory Medicine, Division of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kazuhiro Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Atsuko Sugimoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yasumasa Iwatani
- To whom correspondence should be addressed. Tel: +81 52 951 1111; Fax: +81 52 963 3970;
| |
Collapse
|
36
|
Bader W, Delerce J, Aherfi S, La Scola B, Colson P. Quasispecies Analysis of SARS-CoV-2 of 15 Different Lineages during the First Year of the Pandemic Prompts Scratching under the Surface of Consensus Genome Sequences. Int J Mol Sci 2022; 23:15658. [PMID: 36555300 PMCID: PMC9779826 DOI: 10.3390/ijms232415658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The tremendous majority of SARS-CoV-2 genomic data so far neglected intra-host genetic diversity. Here, we studied SARS-CoV-2 quasispecies based on data generated by next-generation sequencing (NGS) of complete genomes. SARS-CoV-2 raw NGS data had been generated for nasopharyngeal samples collected between March 2020 and February 2021 by the Illumina technology on a MiSeq instrument, without prior PCR amplification. To analyze viral quasispecies, we designed and implemented an in-house Excel file (“QuasiS”) that can characterize intra-sample nucleotide diversity along the genomes using data of the mapping of NGS reads. We compared intra-sample genetic diversity and global genetic diversity available from Nextstrain. Hierarchical clustering of all samples based on the intra-sample genetic diversity was performed and visualized with the Morpheus web application. NGS mapping data from 110 SARS-CoV-2-positive respiratory samples characterized by a mean depth of 169 NGS reads/nucleotide position and for which consensus genomes that had been obtained were classified into 15 viral lineages were analyzed. Mean intra-sample nucleotide diversity was 0.21 ± 0.65%, and 5357 positions (17.9%) exhibited significant (>4%) diversity, in ≥2 genomes for 1730 (5.8%) of them. ORF10, spike, and N genes had the highest number of positions exhibiting diversity (0.56%, 0.34%, and 0.24%, respectively). Nine hot spots of intra-sample diversity were identified in the SARS-CoV-2 NSP6, NSP12, ORF8, and N genes. Hierarchical clustering delineated a set of six genomes of different lineages characterized by 920 positions exhibiting intra-sample diversity. In addition, 118 nucleotide positions (0.4%) exhibited diversity at both intra- and inter-patient levels. Overall, the present study illustrates that the SARS-CoV-2 consensus genome sequences are only an incomplete and imperfect representation of the entire viral population infecting a patient, and that quasispecies analysis may allow deciphering more accurately the viral evolutionary pathways.
Collapse
Affiliation(s)
- Wahiba Bader
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| |
Collapse
|
37
|
Saldivar-Espinoza B, Macip G, Garcia-Segura P, Mestres-Truyol J, Puigbò P, Cereto-Massagué A, Pujadas G, Garcia-Vallve S. Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks. Int J Mol Sci 2022; 23:ijms232314683. [PMID: 36499005 PMCID: PMC9736107 DOI: 10.3390/ijms232314683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Predicting SARS-CoV-2 mutations is difficult, but predicting recurrent mutations driven by the host, such as those caused by host deaminases, is feasible. We used machine learning to predict which positions from the SARS-CoV-2 genome will hold a recurrent mutation and which mutations will be the most recurrent. We used data from April 2021 that we separated into three sets: a training set, a validation set, and an independent test set. For the test set, we obtained a specificity value of 0.69, a sensitivity value of 0.79, and an Area Under the Curve (AUC) of 0.8, showing that the prediction of recurrent SARS-CoV-2 mutations is feasible. Subsequently, we compared our predictions with updated data from January 2022, showing that some of the false positives in our prediction model become true positives later on. The most important variables detected by the model's Shapley Additive exPlanation (SHAP) are the nucleotide that mutates and RNA reactivity. This is consistent with the SARS-CoV-2 mutational bias pattern and the preference of some host deaminases for specific sequences and RNA secondary structures. We extend our investigation by analyzing the mutations from the variants of concern Alpha, Beta, Delta, Gamma, and Omicron. Finally, we analyzed amino acid changes by looking at the predicted recurrent mutations in the M-pro and spike proteins.
Collapse
Affiliation(s)
- Bryan Saldivar-Espinoza
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Guillem Macip
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Garcia-Segura
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Júlia Mestres-Truyol
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pere Puigbò
- Department of Biology, University of Turku, 20500 Turku, Finland
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Spain
- Nutrition and Health Unit, Eurecat Technology Centre of Catalonia, 43204 Reus, Spain
| | - Adrià Cereto-Massagué
- EURECAT Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Santiago Garcia-Vallve
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence:
| |
Collapse
|
38
|
Hardin LT, Xiao N. miRNAs: The Key Regulator of COVID-19 Disease. Int J Cell Biol 2022; 2022:1645366. [PMID: 36345541 PMCID: PMC9637033 DOI: 10.1155/2022/1645366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2024] Open
Abstract
As many parts of the world continue to fight the innumerable waves of COVID-19 infection, SARS-CoV-2 continues to sculpt its antigenic determinants to enhance its virulence and evolvability. Several vaccines were developed and used around the world, and oral antiviral medications are being developed against SARS-CoV-2. However, studies showed that the virus is mutating in line with the antibody's neutralization escape; thus, new therapeutic alternatives are solicited. We hereby review the key role that miRNAs can play as epigenetic mediators of the cross-talk between SARS-CoV-2 and the host cells. The limitations resulting from the "virus intelligence" to escape and antagonize the host miRNAs as well as the possible mechanisms that could be used in the viral evasion strategies are discussed. Lastly, we suggest new therapeutic approaches based on viral miRNAs.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| | - Nan Xiao
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| |
Collapse
|
39
|
Bendall EE, Callear A, Getz A, Goforth K, Edwards D, Monto AS, Martin ET, Lauring AS. Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.12.511991. [PMID: 36263068 PMCID: PMC9580385 DOI: 10.1101/2022.10.12.511991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transmission bottlenecks limit the spread of novel mutations and reduce the efficiency of natural selection along a transmission chain. Many viruses exhibit tight bottlenecks, and studies of early SARS-CoV-2 lineages identified a bottleneck of 1-3 infectious virions. While increased force of infection, host receptor binding, or immune evasion may influence bottleneck size, the relationship between transmissibility and the transmission bottleneck is unclear. Here, we compare the transmission bottleneck of non-variant-of-concern (non-VOC) SARS-CoV-2 lineages to those of the Alpha, Delta, and Omicron variants. We sequenced viruses from 168 individuals in 65 multiply infected households in duplicate to high depth of coverage. In 110 specimens collected close to the time of transmission, within-host diversity was extremely low. At a 2% frequency threshold, 51% had no intrahost single nucleotide variants (iSNV), and 42% had 1-2 iSNV. In 64 possible transmission pairs with detectable iSNV, we identified a bottleneck of 1 infectious virion (95% CI 1-1) for Alpha, Delta, and Omicron lineages and 2 (95% CI 2-2) in non-VOC lineages. The latter was driven by a single iSNV shared in one non-VOC household. The tight transmission bottleneck in SARS-CoV-2 is due to low genetic diversity at the time of transmission, a relationship that may be more pronounced in rapidly transmissible variants. The tight bottlenecks identified here will limit the development of highly mutated VOC in typical transmission chains, adding to the evidence that selection over prolonged infections in immunocompromised patients may drive their evolution.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Callear
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Getz
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Kendra Goforth
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Drew Edwards
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Arnold S. Monto
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Kumar A, Sharma A, Vijay Tirpude N, Padwad Y, Sharma S, Kumar S. Perspective Chapter: Emerging SARS-CoV-2 Variants of Concern (VOCs) and Their Impact on Transmission Rate, Disease Severity and Breakthrough Infections. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2, like all RNA viruses, evolves over time, and genetic mutations have been linked to increased replication fitness and evolvability. SARS-CoV-2 spreads quickly between countries, resulting in new mutations. SARS-CoV-2 genome sequencing reveals that variants emerge through point mutations, insertions, and deletions. Concerns have been raised about the ability of currently approved vaccines to protect against emerging variants. Viral spike protein is a component of many approved vaccine candidates, and mutations in the S-protein may affect transmission dynamics and the risk of immune escape, resulting this pandemic last-longer in populations. Understanding the evolution of the SARS-CoV-2 virus, as well as its potential relationship with transmissibility, infectivity, and disease severity, may help us predict the consequences of future pandemics. SARS-CoV-2 genome studies have identified a few mutations that could potentially alter the transmissibility and pathogenicity of the SARS-CoV-2 virus. At the moment, it is worth mentioning that a few variants have increased the transmissibility of SARS-CoV-2. The Alpha, Beta, Gamma, Delta, Delta+, and omicron variants are designated as variants of concern (VOCs) by the World Health Organisation and have been linked with an increased risk to the community in terms of transmission, hospitalisation, and mortality. This chapter thoroughly discusses the impact of SARS-CoV-2 mutations, mainly VOCs, on public health by mining many published articles.
Collapse
|
41
|
Asghar A, Imran HM, Bano N, Maalik S, Mushtaq S, Hussain A, Varjani S, Aleya L, Iqbal HMN, Bilal M. SARS-COV-2/COVID-19: scenario, epidemiology, adaptive mutations, and environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69117-69136. [PMID: 35947257 PMCID: PMC9363873 DOI: 10.1007/s11356-022-22333-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The coronavirus pandemic of 2019 has already exerted an enormous impact. For over a year, the worldwide pandemic has ravaged the whole globe, with approximately 250 million verified human infection cases and a mortality rate surpassing 4 million. While the genetic makeup of the related pathogen (SARS-CoV-2) was identified, many unknown facets remain a mystery, comprising the virus's origin and evolutionary trend. There were many rumors that SARS-CoV-2 was human-borne and its evolution was predicted many years ago, but scientific investigation proved them wrong and concluded that bats might be the origin of SARS-CoV-2 and pangolins act as intermediary species to transmit the virus from bats to humans. Airborne droplets were found to be the leading cause of human-to-human transmission of this virus, but later studies showed that contaminated surfaces and other environmental factors are also involved in its transmission. The evolution of different SARS-CoV-2 variants worsens the condition and has become a challenge to overcome this pandemic. The emergence of COVID-19 is still a mystery, and scientists are unable to explain the exact origin of SARS-CoV-2. This review sheds light on the possible origin of SARS-CoV-2, its transmission, and the key factors that worsen the situation.
Collapse
Affiliation(s)
- Asma Asghar
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Hafiz Muhammad Imran
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Naheed Bano
- Department of Fisheries & Aquaculture, MNS-University of Agriculture, Multan, Pakistan
| | - Sadia Maalik
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
42
|
Colson P, Gautret P, Delerce J, Chaudet H, Pontarotti P, Forterre P, Tola R, Bedotto M, Delorme L, Bader W, Levasseur A, Lagier J, Million M, Yahi N, Fantini J, La Scola B, Fournier P, Raoult D. The emergence, spread and vanishing of a French SARS-CoV-2 variant exemplifies the fate of RNA virus epidemics and obeys the Mistigri rule. J Med Virol 2022; 95:e28102. [PMID: 36031728 PMCID: PMC9539255 DOI: 10.1002/jmv.28102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
The nature and dynamics of mutations associated with the emergence, spread, and vanishing of SARS-CoV-2 variants causing successive waves are complex. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 2020. Here, we analyzed and classified into subvariants and lineages 7453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1 ± 1.4 months, during which 4.1 ± 2.6 mutations accumulated. Growth rate was 0.079 ± 0.045, varying from 0.010 to 0.173. Most of the lineages exhibited a bell-shaped distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in SARS-CoV-2 of mink and in the Alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Philippe Gautret
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME)Aix‐Marseille UniversityMarseilleFrance
| | | | - Hervé Chaudet
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME)Aix‐Marseille UniversityMarseilleFrance,French Armed Forces Center for Epidemiology and Public Health (CESPA), Camp de Sainte MartheMarseilleFrance
| | - Pierre Pontarotti
- IHU Méditerranée InfectionMarseilleFrance,Centre national de la recherche scientifique (CNRS)MarseilleFrance
| | - Patrick Forterre
- Département de MicrobiologieInstitut PasteurParisFrance,Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Raphael Tola
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | | | - Léa Delorme
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Vecteurs—Infections Tropicales et Méditerranéennes (VITROME)Aix‐Marseille UniversityMarseilleFrance,French Armed Forces Center for Epidemiology and Public Health (CESPA), Camp de Sainte MartheMarseilleFrance
| | - Wahiba Bader
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Anthony Levasseur
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Jean‐Christophe Lagier
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Matthieu Million
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Nouara Yahi
- INSERM UMR_S 1072Aix‐Marseille UniversitéMarseilleFrance
| | | | - Bernard La Scola
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Pierre‐Edouard Fournier
- IHU Méditerranée InfectionMarseilleFrance,Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| | - Didier Raoult
- IHU Méditerranée InfectionMarseilleFrance,Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI)Aix‐Marseille UniversityMarseilleFrance
| |
Collapse
|
43
|
Attwood SW, Hill SC, Aanensen DM, Connor TR, Pybus OG. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat Rev Genet 2022; 23:547-562. [PMID: 35459859 PMCID: PMC9028907 DOI: 10.1038/s41576-022-00483-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 01/05/2023]
Abstract
Determining the transmissibility, prevalence and patterns of movement of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is central to our understanding of the impact of the pandemic and to the design of effective control strategies. Phylogenies (evolutionary trees) have provided key insights into the international spread of SARS-CoV-2 and enabled investigation of individual outbreaks and transmission chains in specific settings. Phylodynamic approaches combine evolutionary, demographic and epidemiological concepts and have helped track virus genetic changes, identify emerging variants and inform public health strategy. Here, we review and synthesize studies that illustrate how phylogenetic and phylodynamic techniques were applied during the first year of the pandemic, and summarize their contributions to our understanding of SARS-CoV-2 transmission and control.
Collapse
Affiliation(s)
- Stephen W Attwood
- Department of Zoology, University of Oxford, Oxford, UK.
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK.
| | - Sarah C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas R Connor
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
44
|
Sun Y, Wang M, Lin W, Dong W, Xu J. Massive-scale genomic analysis reveals SARS-CoV-2 mutation characteristics and evolutionary trends. MLIFE 2022; 1:311-322. [PMID: 37732331 PMCID: PMC9538474 DOI: 10.1002/mlf2.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic resulted in significant societal costs. Hence, an in-depth understanding of SARS-CoV-2 virus mutation and its evolution will help determine the direction of the COVID-19 pandemic. In this study, we identified 296,728 de novo mutations in more than 2,800,000 high-quality SARS-CoV-2 genomes. All possible factors affecting the mutation frequency of SARS-CoV-2 in human hosts were analyzed, including zinc finger antiviral proteins, sequence context, amino acid change, and translation efficiency. As a result, we proposed that when adenine (A) and tyrosine (T) bases are in the context of AM (M stands for adenine or cytosine) or TA motif, A or T base has lower mutation frequency. Furthermore, we hypothesized that translation efficiency can affect the mutation frequency of the third position of the codon by the selection, which explains why SARS-CoV-2 prefers AT3 codons usage. In addition, we found a host-specific asymmetric dinucleotide mutation frequency in the SARS-CoV-2 genome, which provides a new basis for determining the origin of the SARS-CoV-2. Finally, we summarize all possible factors affecting mutation frequency and provide insights into the mutation characteristics and evolutionary trends of SARS-CoV-2.
Collapse
Affiliation(s)
- Yamin Sun
- Research Institute of Public HealthNankai UniversityTianjinChina
| | - Min Wang
- TEDA Institute of Biological Sciences and BiotechnologyNankai UniversityTianjinChina
- Engineering and Research Center for Microbial Functional Genomics and Detection, Ministry of EducationNankai UniversityTianjinChina
| | - Wenchao Lin
- Engineering and Research Center for Microbial Functional Genomics and Detection, Ministry of EducationNankai UniversityTianjinChina
| | - Wei Dong
- Engineering and Research Center for Microbial Functional Genomics and Detection, Ministry of EducationNankai UniversityTianjinChina
| | - Jianguo Xu
- Research Institute of Public HealthNankai UniversityTianjinChina
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and PreventionNational Institute for Communicable Disease Control and PreventionBeijingChina
- Research Units of Discovery of Unknown Bacteria and FunctionChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
45
|
Chan ER, Jones LD, Linger M, Kovach JD, Torres-Teran MM, Wertz A, Donskey CJ, Zimmerman PA. COVID-19 infection and transmission includes complex sequence diversity. PLoS Genet 2022; 18:e1010200. [PMID: 36074769 PMCID: PMC9455841 DOI: 10.1371/journal.pgen.1010200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022] Open
Abstract
SARS-CoV-2 whole genome sequencing has played an important role in documenting the emergence of polymorphisms in the viral genome and its continuing evolution during the COVID-19 pandemic. Here we present data from over 360 patients to characterize the complex sequence diversity of individual infections identified during multiple variant surges (e.g., Alpha and Delta). Across our survey, we observed significantly increasing SARS-CoV-2 sequence diversity during the pandemic and frequent occurrence of multiple biallelic sequence polymorphisms in all infections. This sequence polymorphism shows that SARS-CoV-2 infections are heterogeneous mixtures. Convention for reporting microbial pathogens guides investigators to report a majority consensus sequence. In our study, we found that this approach would under-report sequence variation in all samples tested. As we find that this sequence heterogeneity is efficiently transmitted from donors to recipients, our findings illustrate that infection complexity must be monitored and reported more completely to understand SARS-CoV-2 infection and transmission dynamics. Many of the nucleotide changes that would not be reported in a majority consensus sequence have now been observed as lineage defining SNPs in Omicron BA.1 and/or BA.2 variants. This suggests that minority alleles in earlier SARS-CoV-2 infections may play an important role in the continuing evolution of new variants of concern.
Collapse
Affiliation(s)
- Ernest R. Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lucas D. Jones
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marlin Linger
- The Center for Global Health & Diseases, Pathology Department, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeffrey D. Kovach
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Center for Global Health & Diseases, Pathology Department, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Maria M. Torres-Teran
- Pathology Department, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Audric Wertz
- Biology Department, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Curtis J. Donskey
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- The Center for Global Health & Diseases, Pathology Department, Case Western Reserve University, Cleveland, Ohio, United States of America
- Master of Public Health Program, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
46
|
Singh AK, Laskar R, Banerjee A, Mondal RK, Gupta B, Deb S, Dutta S, Patra S, Ghosh T, Sarkar S, Ghosh S, Bhattacharya S, Roy D, Chakraborty A, Chowdhury M, Mahaptra S, Paul A, Mazumder A, Chowdhury A, Chatterjee SS, Sarkar A, Ray R, Pal K, Jana A, Barik G, Ganguly S, Chatterjee M, Majhi D, Bandopadhyay B, Das S, Maitra A, Biswas NK. Contrasting Distribution of SARS-CoV-2 Lineages across Multiple Rounds of Pandemic Waves in West Bengal, the Gateway of East and North-East States of India. Microbiol Spectr 2022; 10:e0091422. [PMID: 35852336 PMCID: PMC9430150 DOI: 10.1128/spectrum.00914-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
The evolution of viral variants and their impact on viral transmission have been an area of considerable importance in this pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed the viral variants in different phases of the pandemic in West Bengal, a state in India that is important geographically, and compared the variants with other states like Delhi, Maharashtra, and Karnataka, located in other regions of the country. We have identified 57 pango-lineages in 3,198 SARS-CoV-2 genomes, alteration in their distribution, as well as contrasting profiles of amino acid mutational dynamics across different waves in different states. The evolving characteristics of Delta (B.1.617.2) sublineages and alterations in hydrophobicity profiles of the viral proteins caused by these mutations were also studied. Additionally, implications of predictive host miRNA binding/unbinding to emerging spike or nucleocapsid mutations were highlighted. Our results throw considerable light on interesting aspects of the viral genomic variation and provide valuable information for improved understanding of wave-defining mutations in unfolding the pandemic. IMPORTANCE Multiple waves of infection were observed in many states in India during the coronavirus disease 2019 (COVID19) pandemic. Fine-scale evolution of major SARS-CoV-2 lineages and sublineages during four wave-window categories: Pre-Wave 1, Wave 1, Pre-Wave 2, and Wave 2 in four major states of India: Delhi (North), Maharashtra (West), Karnataka (South), and West Bengal (East) was studied using large-scale virus genome sequencing data. Our comprehensive analysis reveals contrasting molecular profiles of the wave-defining mutations and their implications in host miRNA binding/unbinding of the lineages in the major states of India.
Collapse
Affiliation(s)
- Animesh K. Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Anindita Banerjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Bishal Gupta
- School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sonia Deb
- School of Tropical Medicine, Kolkata, West Bengal, India
| | - Shreelekha Dutta
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Subrata Patra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Trinath Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sumanta Sarkar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Shekhar Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Debojyoti Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Meghna Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Surajit Mahaptra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Antara Paul
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Anup Mazumder
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | | | | | - Raja Ray
- Institute of Post-Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Kuhu Pal
- College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Angshuman Jana
- Bankura Sammilani Medical College, Bankura, West Bengal, India
| | - Goutam Barik
- Medical College and Hospital, Kolkata, West Bengal, India
| | - Swagata Ganguly
- Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| | | | - Dipankar Majhi
- Department of Health and Family Welfare, Government of West Bengal, Kolkata, West Bengal, India
| | | | - Saumitra Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Nidhan K. Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
47
|
Differential persistence of neutralizing antibody against SARS-CoV-2 in post immunized Bangladeshi population. Sci Rep 2022; 12:14681. [PMID: 36038600 PMCID: PMC9421641 DOI: 10.1038/s41598-022-18302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Development of effective vaccines have been immensely welcomed by the world to prevent the transmission of SARS-CoV-2. However, the duration and clinical implications of antibody-mediated natural immunity in SARS-CoV-2 have not been adequately elucidated alongside some other immune system transforming factors. In a cohort study, we measured NAb titer following the 2nd immunization dosage of the CoviShield (AZD1222) vaccine. The enzyme-linked immunoassay was used to look for SARS-CoV-2—specific NAb. We measured NAb at 30 days after the 2nd dosage of immunization and > 96% titer was detected in 42.9% of subjects, but only 5.1% of subjects retained the same level after 180 days. The median NAb titer dropped significantly, from 92% at 30 days to 58% at 180 days (p < 0.001). Besides, there were significant differences observed in NAb titer after 180 days by age, sex, COVID-19 infection, tobacco use, and asthma patients. However, SARS-CoV-2 infection along with two dosages of immunization upheld NAb titer (p < 0.001) even at the end of the study period.
Collapse
|
48
|
Ahmed SS, Al-Mamun A, Hossain SI, Akter F, Ahammad I, Chowdhury ZM, Salimullah M. Virtual screening reveals liquiritigenin as a broad-spectrum inhibitor of SARS-CoV-2 variants of concern: an in silico study. J Biomol Struct Dyn 2022:1-19. [PMID: 35971968 DOI: 10.1080/07391102.2022.2111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The SARS-CoV-2 has severely impacted the lives of people worldwide. Global concern is on the rise due to a large number of unexpected mutations in the viral genome, resulting in new variants. Nature-based bioactive phytochemicals hold great promise as inhibitors against pathogenic viruses. The current study was aimed at evaluating some bioactive antiviral phytochemicals against SARS-CoV-2 variants of concern. A total of 46 phytochemicals were screened against the pathogenic spike protein of Alpha, Beta, Delta, Gamma, and Omicron variants. In addition to molecular docking, screening for favorable pharmacokinetic and pharmacodynamic properties such as absorption, distribution, metabolism, excretion, and toxicity was undertaken. For each of the aforementioned five SARS-CoV-2 variants of concern, a 100 ns molecular dynamics simulation was run to assess the stability of the complexes between their respective spike protein receptor-binding domain and the best-selected compound. From our current investigation, the natural compound liquiritigenin turned out to be the most promising potential lead compound against almost all the variants. These findings could pave the way for the development of effective medications against SARS-CoV-2 variants. However, in vivo trials in future studies are necessary for further validation of our results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Abdullah Al-Mamun
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Shah Imran Hossain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Farzana Akter
- Department of Botany, University of Dhaka, Dhaka, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| |
Collapse
|
49
|
Hu Y, Buehler MJ. Nanomechanical analysis of SARS-CoV-2 variants and predictions of infectiousness and lethality. SOFT MATTER 2022; 18:5833-5842. [PMID: 35899933 PMCID: PMC9364333 DOI: 10.1039/d1sm01181b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
As variants of the pathogen that causes COVID-19 spread around the world, estimates of infectiousness and lethality of newly emerging strains are important. Here we report a predictive model that associates molecular motions and vibrational patterns of the virus spike protein with infectiousness and lethality. The key finding is that most SARS-CoV-2 variants are predicted to be more infectious and less lethal compared to the original spike protein. However, lineage B.1.351 (Beta variant) is predicted to be less infectious and more lethal, and lineage B.1.1.7 (Alpha variant) is predicted to have both higher infectivity and lethality, showing the potential of the virus to mutate towards different performance regimes. The relatively more recent lineage B.1.617.2 (Delta variant), although contains a few key spike mutations other than D614G, behaves quite similar to the single D614G mutation in both vibrational and predicted epidemiological aspects, which might explain its rapid circulation given the prevalence of D614G. This work may provide a tool to estimate the epidemiological effects of new variants, and offer a pathway to screen mutations against high threat levels. Moreover, the nanomechanical approach, as a novel tool to predict virus-cell interactions, may further open up the door towards better understanding other viruses.
Collapse
Affiliation(s)
- Yiwen Hu
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
50
|
Tai JH, Sun HY, Tseng YC, Li G, Chang SY, Yeh SH, Chen PJ, Chaw SM, Wang HY. Contrasting patterns in the early stage of SARS-CoV-2 evolution between humans and minks. Mol Biol Evol 2022; 39:6658056. [PMID: 35934827 PMCID: PMC9384665 DOI: 10.1093/molbev/msac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to synonymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino acid changes. Mutations in the spike protein were concentrated within its receptor binding domain and receptor binding motif. An excess of high frequency derived variants produced by genetic hitchhiking was found during the middle (June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency spectra of early SARS-CoV-2 in humans only show an excess of low frequency mutations, consistent with the recent outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies the virus may not be pre-adapted to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, the lack of positive selection signal during the early pandemic in humans deserves further investigation.
Collapse
Affiliation(s)
- Jui Hung Tai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Hsiao Yu Sun
- Taipei Municipal Zhongshan Girls High School, Taipei 10490, Taiwan
| | - Yi Cheng Tseng
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guanghao Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sui Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shiou Hwei Yeh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Pei Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Shu Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hurng Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|