1
|
Lu J, Ma H, Wang Q, Song Z, Wang J. Chemotherapy-mediated lncRNA-induced immune cell plasticity in cancer immunopathogenesis. Int Immunopharmacol 2024; 141:112967. [PMID: 39181018 DOI: 10.1016/j.intimp.2024.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Tumor cells engage with the immune system in a complex manner, utilizing evasion and adaptability mechanisms. The development of cancer and resistance to treatment relies on the ability of immune cells to adjust their phenotype and function in response to cues from the tumor microenvironment, known as immunological cell plasticity. This study delves into the role of long non-coding RNAs (lncRNAs) in enhancing immune cell flexibility in cancer, focusing on their regulatory actions in the tumor microenvironment and potential therapeutic implications. Through a comprehensive review of existing literature, the study analyzes the impact of lncRNAs on macrophages, T-cells, and MDSCs, as well as the influence of cytokines and growth factors like TNF, IL-6, HGF, and TGFβ on immunological cell plasticity and tumor immunoediting. LncRNAs exert a strong influence on immune cell plasticity through mechanisms such as transcriptional regulation, post-transcriptional modifications, and chromatin remodeling. These RNA molecules intricately modulate gene expression networks, acting as scaffolding, decoys, guides, and sponges. Moreover, both direct cell-cell interactions and soluble chemicals in the tumor microenvironment contribute to enhancing immune cell activation and survival. Understanding the influence of lncRNAs on immune cell flexibility sheds light on the biological pathways of immune evasion and cancer progression. Targeting long non-coding RNAs holds promise for amplifying anti-tumor immunity and overcoming drug resistance in cancer treatment. However, further research is necessary to determine the therapeutic potential of manipulating lncRNAs in the tumor microenvironment.
Collapse
Affiliation(s)
- Jingyuan Lu
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Qian Wang
- Division of Hematology and Solid Tumor Oncology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Zhiheng Song
- Plasma Applied Physics Lab, C&J Nyheim Plasma Institute, Drexel University, 200 Federal St, Suite 500, Camden, NJ 08103.
| | - Jinli Wang
- School of Medicine, Department of Epidemiology and Biochemistry and Molecular & Cellular Biology, Georgetown University, 3700 O ST NW, Washington, DC 20057.
| |
Collapse
|
2
|
Barreca M, Dugo M, Galbardi B, Győrffy B, Valagussa P, Besozzi D, Viale G, Bianchini G, Gianni L, Callari M. Development and validation of a gene expression-based Breast Cancer Purity Score. NPJ Precis Oncol 2024; 8:242. [PMID: 39448787 PMCID: PMC11502849 DOI: 10.1038/s41698-024-00730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of malignant cells in clinical specimens, or tumour purity, is affected by both intrinsic biological factors and extrinsic sampling bias. Molecular characterization of large clinical cohorts is typically performed on bulk samples; data analysis and interpretation can be biased by tumour purity variability. Transcription-based strategies to estimate tumour purity have been proposed, but no breast cancer specific method is available yet. We interrogated over 6000 expression profiles from 10 breast cancer datasets to develop and validate a 9-gene Breast Cancer Purity Score (BCPS). BCPS outperformed existing methods for estimating tumour content. Adjusting transcriptomic profiles using the BCPS reduces sampling bias and aids data interpretation. BCPS-estimated tumour purity improved prognostication in luminal breast cancer, correlated with pathologic complete response in on-treatment biopsies from triple-negative breast cancer patients undergoing neoadjuvant treatment and effectively stratified the risk of relapse in HER2+ residual disease post-neoadjuvant treatment.
Collapse
Affiliation(s)
- Marco Barreca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- Fondazione Michelangelo, Milan, Italy
| | | | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, H-1094, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, H-7624, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, H-1117, Budapest, Hungary
| | | | - Daniela Besozzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging (B4) Research Centre, Milan, Italy
| | | | - Giampaolo Bianchini
- IRCCS San Raffaele Hospital, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | | | | |
Collapse
|
3
|
Xu L, Peng F, Luo Q, Ding Y, Yuan F, Zheng L, He W, Zhang SS, Fu X, Liu J, Mutlu AS, Wang S, Nehring RB, Li X, Tang Q, Li C, Lv X, Dobrolecki LE, Zhang W, Han D, Zhao N, Jaehnig E, Wang J, Wu W, Graham DA, Li Y, Chen R, Peng W, Chen Y, Catic A, Zhang Z, Zhang B, Mustoe AM, Koong AC, Miles G, Lewis MT, Wang MC, Rosenberg SM, O'Malley BW, Westbrook TF, Xu H, Zhang XHF, Osborne CK, Li JB, Ellis MJ, Rimawi MF, Rosen JM, Chen X. IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer. Cell 2024:S0092-8674(24)01090-0. [PMID: 39419025 DOI: 10.1016/j.cell.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53-/- TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1high immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.
Collapse
Affiliation(s)
- Longyong Xu
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Luo
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yao Ding
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liting Zheng
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Xin Fu
- Department of Pathology, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Jin Liu
- Department of Pathology, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Ayse Sena Mutlu
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shuyue Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ralf Bernd Nehring
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xingyu Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Catherine Li
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangdong Lv
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dong Han
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Zhao
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Jaehnig
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingyi Wang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiche Wu
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Davis A Graham
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Chen
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhibin Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George Miles
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Susan M Rosenberg
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas F Westbrook
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - C Kent Osborne
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Ellis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mothaffar F Rimawi
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Huang Y, Cao Y, Hu X, Lan X, Chen H, Tang S, Li L, Cheng Y, Gong X, Wang W, Jiang F, Yin T, Wang X, Zhang J. Early Identification of Pathologic Complete Response to Neoadjuvant Chemotherapy Using Multiphase DCE-MRI by Siamese Network in Breast Cancer: A Longitudinal Multicenter Study. J Magn Reson Imaging 2024; 60:1325-1337. [PMID: 38109316 DOI: 10.1002/jmri.29188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Siamese network (SN) using longitudinal DCE-MRI for pathologic complete response (pCR) identification lack a unified approach to phases selection. PURPOSE To identify pCR in early-stage NAC, using SN with longitudinal DCE-MRI and introducing IPS for phases selection. STUDY TYPE Multicenter, longitudinal. POPULATION Center A: 162 female patients (50.63 ± 8.41 years) divided 7:3 into training and internal validation cohorts. Center B: 61 female patients (50.08 ± 7.82 years) were used as an external validation cohort. FIELD STRENGTH/SEQUENCE Center A: single vendor 3.0 T with a compressed-sensing volume interpolated breath-hold examination sequence. Center B: single vendor 1.5 T with volume interpolated breath-hold examination sequence. ASSESSMENT Patients underwent DCE-MRI before and after two NAC cycles, with tumor regions of interest (ROI) manually delineated. Histopathology was the reference for pCR identification. Models developed included a clinical one, four SN models based on IPS-selected phases, and integrated models combining clinical and SN features. STATISTICAL TESTS Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). The DeLong test was used to compare AUCs. Net reclassification improvement and integrated discrimination improvement (IDI) tests were employed for performance comparison. P < 0.05 was considered significant. RESULTS In internal and external validation cohorts, the clinical model showed AUCs of 0.760 and 0.718. SN and integrated models, with increasing phases via IPS, achieved AUCs ranging from 0.813 to 0.951 and 0.818 to 0.922. Notably, SN-3 and integrated-3 and integrated-4 outperformed the clinical model. However, input phases beyond 20% did not significantly enhance performance (IDI test: SN-4 vs. SN-3, P = 0.314 and 0.630; integrated-4 vs. integrated-3, P = 0.785 and 0.709). DATA CONCLUSION The longitudinal multiphase DCE-MRI based on the SN demonstrates promise for identifying pCR in breast cancer. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Yao Huang
- School of Medicine, Chongqing University, Chongqing, China
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Ying Cao
- School of Medicine, Chongqing University, Chongqing, China
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Huifang Chen
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Sun Tang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Lan Li
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Yue Cheng
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Xueqin Gong
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Wei Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Fujie Jiang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Ting Yin
- MR Collaborations, Siemens Healthineers Ltd., Chengdu, China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing, China
| |
Collapse
|
5
|
Zeng L, Zhu Y, Cui X, Chi J, Uddin A, Zhou Z, Song X, Dai M, Cristofanilli M, Kalinsky K, Wan Y. Tuning Immune-Cold Tumor by Suppressing USP10/B7-H4 Proteolytic Axis Reinvigorates Therapeutic Efficacy of ADCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400757. [PMID: 39206932 PMCID: PMC11516061 DOI: 10.1002/advs.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Tuning immune-cold tumor hot has largely attracted attention to improve cancer treatment, including immunotherapy and antibody-drug conjugates (ADCs). Utilizing multiomic analyses and experimental validation, this work identifies a pivotal role for the USP10/B7-H4 proteolytic axis in mediating the interplay between tumor immune responses and ADC efficacy, particularly for sacituzumab govitecan (SG) in treating triple negative breast cancers (TNBCs). Mechanistically, the inhibition of autocrine motility factor receptor (AMFR)-mediated ubiquitylation of B7-H4 by the deubiquitinase USP10 leads to the stabilization of B7-H4, which suppresses tumor immune activity and reduces SG treatment effectiveness. Pharmacological inhibition of USP10 promotes the degradation of B7-H4, enhancing tumor immunogenicity and consequently improving the tumor-killing efficacy of SG. In preclinical TNBC models, suppression of USP10/B7-H4 proteolytic axis is effective in increasing SG killing efficacy and reducing tumor growth, especially for the tumors with the USP10high/B7-H7high signature. Collectively, these findings uncover a novel strategy for targeting the immunosuppressive molecule B7-H4 for cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
| | - Xin Cui
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
| | - Junlong Chi
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
- DGP graduate programNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Amad Uddin
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
| | - Zhuan Zhou
- Department of SurgeryUT Southwestern Medical CenterDallasTX75390USA
| | - Xinxin Song
- Department of SurgeryUT Southwestern Medical CenterDallasTX75390USA
| | - Mingji Dai
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
- Department of ChemistryCollege of Arts and ScienceEmory UniversityAtlantaGA30322USA
| | | | - Kevin Kalinsky
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
- Department of Hematology and Medical OncologyEmory University School of MedicineAtlantaGA30322USA
| | - Yong Wan
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
- Department of Hematology and Medical OncologyEmory University School of MedicineAtlantaGA30322USA
| |
Collapse
|
6
|
Principe N, Phung AL, Stevens KLP, Elaskalani O, Wylie B, Tilsed CM, Sheikh F, Orozco Morales ML, Kidman J, Marcq E, Fisher SA, Nowak AK, McDonnell AM, Lesterhuis WJ, Chee J. Anti-metabolite chemotherapy increases LAG-3 expressing tumor-infiltrating lymphocytes which can be targeted by combination immune checkpoint blockade. J Immunother Cancer 2024; 12:e008568. [PMID: 39343508 PMCID: PMC11440230 DOI: 10.1136/jitc-2023-008568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Antibodies that target immune checkpoints such as cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein/ligand 1 (PD-1/PD-L1) are approved for treatment of multiple cancer types. Chemotherapy is often administered with immune checkpoint blockade (ICB) therapies that target CTLA-4 and/or PD-(L)1. ICB targeting other immune checkpoints such as lymphocyte activating gene-3 (LAG-3) has the potential to improve antitumor responses when combined with chemotherapy. Response to anti-PD-1 ICB is dependent on progenitor exhausted CD8+ T cells (TPEX) in the tumor, but it is unclear how chemotherapy alters TPEX proportions and phenotype. METHODS Here we investigated whether sequential chemotherapy altered TPEX frequency and immune checkpoint expression in multiple murine tumor models. RESULTS Two doses of two different anti-metabolite chemotherapies increased tumor infiltrating CD4+, and CD8+ TPEX expressing LAG-3 in multiple mouse models, which was not restricted to tumor antigen specific CD8+ T cells. To determine if LAG-3+tumor infiltrating lymphocytes (TILs) could be targeted to improve tumor control, we administered anti-LAG-3 and anti-PD-1 ICB after two doses of chemotherapy and found combination therapy generated robust antitumor responses compared with each agent alone. Both anti-LAG-3 and anti-PD-1 ICB with chemotherapy were required for the complete tumor regression observed. CONCLUSIONS Changes in immune checkpoint expression on TILs during chemotherapy administration informs selection of ICB therapies to combine with.
Collapse
Affiliation(s)
- Nicola Principe
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Amber-Lee Phung
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
| | - Kofi L P Stevens
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
| | - Omar Elaskalani
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Ben Wylie
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Caitlin M Tilsed
- Perelman School of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fezaan Sheikh
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - M Lizeth Orozco Morales
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Joel Kidman
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerpen, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Scott A Fisher
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Anna K Nowak
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | - Jonathan Chee
- Institute for Respiratory Health, National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Wang S, Xu S, Li J, Wang N, Zheng Y, Wang Z. XIAOPI formula inhibits chemoresistance and metastasis of triple-negative breast cancer by suppressing extracellular vesicle/CXCL1-induced TAM/PD-L1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156039. [PMID: 39303510 DOI: 10.1016/j.phymed.2024.156039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is challenged by the low chemotherapy response and poor prognosis. Emerging evidence suggests that cytotoxic chemotherapy may lead to the pro-metastatic tumor microenvironment (TME) by eliciting pro-tumor extracellular vesicles (EVs) from cancer cells. However, the precise mechanisms and therapeutic approaches remain inadequately understood. PURPOSE This study aims to determine whether XIAOPI formula (Chinese name XIAOPI San, XPS), a nationally sanctioned medication for mammary hyperplasia, can chemosensitize TNBC by remodeling the TME via modulating EV signaling, and exploring its underlying mechanisms. METHODS Multiple methodologies, such as EV isolation, transmission electron microscope, flow cytometry, dual-luciferase reporter assays, co-immunoprecipitation and in vivo breast cancer xenograft, were employed to elucidate the effect and molecular mechanisms of XPS on paclitaxel-induced EV signaling (EV-dead) of TNBC. RESULTS XPS, at non-toxic concentrations, synergized with PTX to inhibit the invasion and chemoresistance of TNBC cells co-cultured with macrophages. Compared to EV-dead, XPS co-treatment-elicited EVs (EV-deadXPS) exhibited a decreased capacity to promote the invasion, chemoresistance and cancer stem cell subpopulation of the co-cultured TNBC cells. Mechanistically, XPS administration led to a reduction in CXCL1 cargo in EV-dead, and thereby attenuated its activation effect on macrophage polarization into M2 phenotype through the transcriptional downregulation of PD-L1 expression. Furthermore, XPS effectively reduced the number of EV-dead from TNBC cells by inhibiting CXCL1-mediated intraluminal vesicle (ILV) biogenesis in multivesicular bodies (MVBs). Moreover, molecular explorations revealed that XPS impaired ILV biogenesis by disrupting the RAB31/FLOT2 complex via suppressing the CXCL1/Myc signaling. Importantly, XPS significantly chemosensitized paclitaxel to inhibit TNBC growth and metastasis in vivo by suppressing EV-deadCXCL1-induced PD-L1 activation and M2 polarization of macrophages. CONCLUSION This pioneering study not only sheds novel light on EV-deadCXCL1 as a potential therapeutic target to suppress TNBC chemoresistance and metastasis, but also provides XPS as a promising adjuvant formula to chemosensitize TNBC by remodeling EV-deadCXCL1-mediated immunosuppressive TME.
Collapse
Affiliation(s)
- Shengqi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Shang Xu
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jing Li
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yifeng Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhiyu Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
8
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
9
|
Sugawara K, Fukuda T, Murakami C, Oka D, Yoshii T, Amori G, Ishibashi K, Kobayashi Y, Hara H, Kanda H, Motoi N. Impacts of tumor microenvironment during neoadjuvant chemotherapy in patients with esophageal squamous cell carcinoma. Cancer Sci 2024; 115:2819-2830. [PMID: 38693726 PMCID: PMC11309932 DOI: 10.1111/cas.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
With the advent of immune checkpoint inhibitors (ICIs), a better understanding of tumor microenvironment (TME) is becoming crucial in managing esophageal squamous cell carcinoma (ESCC) patients. We investigated the survival impact of TME status and changes in patients with ESCC who underwent neoadjuvant chemotherapy (NAC) followed by surgery (n = 264). We examined immunohistochemical status (CD4+, CD8+, CD20+, Foxp3+, HLA class-1+, CD204+, and programmed death ligand-1 [PD-L1+]) on 264 pre-NAC and 204 paired post-NAC specimens. Patients were classified by their pre- and post-NAC immune cell status and their changes following NAC. Our findings showed that pre-NAC TME status was not significantly associated with survival outcomes. In contrast, post-NAC TME status, such as low level of T cells, CD4+ T cells, and high PD-L1 combined positive score (CPS), were significantly associated with poor overall survival (OS). Notably, TME changes through NAC exerted significant survival impacts; patients with consistently low levels of T cells, low levels of CD4+ T cells, or high levels of PD-L1 (CPS) had very poor OS (3-year OS: 35.5%, 40.2%, and 33.3%, respectively). Tumor microenvironment changes of consistently low T cells, low CD4+ T cells, and high PD-L1 were independent predictors of poor OS in multivariate Cox hazards analyses, while factors indicating post-NAC status (T cells, CD4+, and PD-L1 [CPS]) alone were not. Therefore, we suggest that the consistently low T/high PD-L1 group could benefit from additional therapies, such as ICIs, and the importance of stratification by the TME, which has recently been recognized.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Department of Gastroenterological SurgerySaitama Cancer CenterSaitamaJapan
| | - Takashi Fukuda
- Department of Gastroenterological SurgerySaitama Cancer CenterSaitamaJapan
| | - Chiaki Murakami
- Department of PathologySaitama Cancer CenterSaitamaJapan
- Department of PathologySaitama Medical Center, Saitama Medical UniversitySaitamaJapan
| | - Daiji Oka
- Department of Gastroenterological SurgerySaitama Cancer CenterSaitamaJapan
| | - Takako Yoshii
- Department of GastroenterologySaitama Cancer CenterSaitamaJapan
| | - Gulanbar Amori
- Department of PathologySaitama Cancer CenterSaitamaJapan
- Division of PathologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyCancer Institute Hospital of JFCR, Japanese Foundation for Cancer ResearchTokyoJapan
| | | | | | - Hiroki Hara
- Department of GastroenterologySaitama Cancer CenterSaitamaJapan
| | - Hiroaki Kanda
- Department of PathologySaitama Cancer CenterSaitamaJapan
| | - Noriko Motoi
- Department of PathologySaitama Cancer CenterSaitamaJapan
- Center for Cancer Genomic MedicineSaitama Cancer CenterSaitamaJapan
| |
Collapse
|
10
|
Chen X, Zhao W, Huang Y, Luo S, Tang X, Yi Q. Association of GATA3 expression in triple-positive breast cancer with overall survival and immune cell infiltration. Sci Rep 2024; 14:17795. [PMID: 39090342 PMCID: PMC11294334 DOI: 10.1038/s41598-024-68788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Breast cancer remains a leading cause of cancer-related mortality among women, with triple-positive breast cancer (TPBC) being a particularly aggressive subtype. GATA binding protein 3 (GATA3) plays a crucial role in the luminal differentiation of breast epithelium and T-cell differentiation. However, the relationship between GATA3 and immune infiltration in TPBC remains unclear. This study collected and analyzed TPBC data from The Cancer Genome Atlas (TCGA), METABRIC, and GSE123845 databases. Univariate and multivariate Cox regression analyses, along with Kaplan-Meier survival analyses, were employed to assess the prognostic value of GATA3 and other clinical features. Subsequently, Gene Set Enrichment Analysis (GSEA) was conducted to explore the potential biological functions and regulatory mechanisms of GATA3 in TPBC. Additionally, ssGSEA analysis revealed the connection between GATA3 and immune infiltration. And the effects of neoadjuvant chemotherapy and immunotherapy on GATA3 expression were also explored. Finally, clinical samples were used to detect the relationship between GATA3 expression and tumor infiltrating lymphocyte (TIL) levels. Our results demonstrated that GATA3 was significantly overexpressed in TPBC tissues compared to normal tissues (P < 0.05). A positive correlation between GATA3 mRNA and protein levels was observed (R = 0.55, P < 0.05). Notably, high GATA3 expression was associated with poor overall survival (HR = 1.24, 95% confidence interval (CI) 1.25-11.76, P < 0.05). GSEA indicated significant enrichment of immune-related gene sets in low GATA3 expression groups. Furthermore, pathologic complete response (pCR) patients exhibited significantly lower GATA3 expression compared to residual disease (RD) patients. Mutation analysis revealed higher PIK3CA and TP53 mutation rates in high GATA3 expression groups. Finally, clinical validation data showed that the degree of TILs was significantly higher in the low GATA3 expression group. In conclusion, this study suggests that high GATA3 expression may be associated with poor prognosis and may reduce immune infiltration in TPBC.
Collapse
Affiliation(s)
- Xiuwen Chen
- Department of Pathology and Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Weilin Zhao
- Department of Pathology and Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Yugang Huang
- Department of Pathology and Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Senyuan Luo
- Department of Pathology and Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xianbin Tang
- Department of Pathology and Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| | - Qiong Yi
- Department of Pathology and Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
11
|
Kim JY, Park K, Park WY, Ahn JS, Im YH, Lee JE, Kim SW, Nam SJ, Yu J, Park YH. Prognostic value of structural variants in early breast cancer patients. NPJ Breast Cancer 2024; 10:64. [PMID: 39068172 PMCID: PMC11283467 DOI: 10.1038/s41523-024-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Genomic analysis of structural variants(SVs) in breast cancer (BC) patients has been conducted, but the relationship between genomic alterations and BC prognosis remains unclear. We performed RNA sequencing of 297 early BC fresh-frozen tissues. We identified SVs using three tools (STAR.Arriba, STAR.fusion, and STAR.SEQR) with the COSMIC and Mitelman databases as guide references. We found a median of five to eight fusions per sample. In BC intrinsic subtypes, normal subtype had the fewest fusions (median: 1, interquartile range [IQR]: 0, 3) followed by luminal A (median: 5.5, IQR: 2.75, 10.25), luminal B (median: 9, IQR: 6, 16.5), HER2-enriched (median: 9, IQR: 6, 16.5) and basal (median 10, IQR: 6, 15.5) subtypes (p < 0.05). Intrachromosomal fusion was more frequent observed rather than interchromosomal fusion. In location, chromosome 17 had the most fusions followed by chromosome 1 and 11. When samples were divided into high and low fusion groups based on a cut-off value of 11 fusions, five-year event-free survival (5Y-EFS) was 68.1% in the high fusion group (n = 72) and 80.1% in the low fusion group (n = 125) (p = 0.024) while 75.6% among all patients (95% confidence interval: 0.699, 0.819). Among BC subtype, TNBCs with more fusions had shorter EFS compared to those with fewer fusions (5Y-EFS rate: 65.1% vs. 85.7%; p = 0.013) but no EFS differences were observed in other BC subtypes. ESTIMATE ImmuneScore was also associated with the number of fusions in TNBC (p < 0.005) and TNBCs with high ImmuneScore had better 5Y-EFS compared to those with low ImmuneScore (p = 0.041). In conclusion, diverse fusions were observed by BC subtype, and the number of fusions was associated with BC survival outcome and immune status in TNBC.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Won Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jonghan Yu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
González-Woge M, Contreras-Espinosa L, García-Gordillo JA, Aguilar-Villanueva S, Bargallo-Rocha E, Cabrera-Galeana P, Vasquez-Mata T, Cervantes-López X, Vargas-Lías DS, Montiel-Manríquez R, Bautista-Hinojosa L, Rebollar-Vega R, Castro-Hernández C, Álvarez-Gómez RM, De La Rosa-Velázquez IA, Díaz-Chávez J, Jiménez-Trejo F, Arriaga-Canon C, Herrera LA. The Expression Profiles of lncRNAs Are Associated with Neoadjuvant Chemotherapy Resistance in Locally Advanced, Luminal B-Type Breast Cancer. Int J Mol Sci 2024; 25:8077. [PMID: 39125649 PMCID: PMC11311431 DOI: 10.3390/ijms25158077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
lncRNAs are noncoding transcripts with tissue and cancer specificity. Particularly, in breast cancer, lncRNAs exhibit subtype-specific expression; they are particularly upregulated in luminal tumors. However, no gene signature-based laboratory tests have been developed for luminal breast cancer identification or the differential diagnosis of luminal tumors, since no luminal A- or B-specific genes have been identified. Particularly, luminal B patients are of clinical interest, since they have the most variable response to neoadjuvant treatment; thus, it is necessary to develop diagnostic and predictive biomarkers for these patients to optimize treatment decision-making and improve treatment quality. In this study, we analyzed the lncRNA expression profiles of breast cancer cell lines and patient tumor samples from RNA-Seq data to identify an lncRNA signature specific for luminal phenotypes. We identified an lncRNA signature consisting of LINC01016, GATA3-AS1, MAPT-IT1, and DSCAM-AS1 that exhibits luminal subtype-specific expression; among these lncRNAs, GATA3-AS1 is associated with the presence of residual disease (Wilcoxon test, p < 0.05), which is related to neoadjuvant chemotherapy resistance in luminal B breast cancer patients. Furthermore, analysis of GATA3-AS1 expression using RNA in situ hybridization (RNA ISH) demonstrated that this lncRNA is detectable in histological slides. Similar to estrogen receptors and Ki67, both commonly detected biomarkers, GATA3-AS1 proves to be a suitable predictive biomarker for clinical application in breast cancer laboratory tests.
Collapse
Affiliation(s)
- Miguel González-Woge
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C. P. 04510, Mexico;
| | - José Antonio García-Gordillo
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C. P. 14080, Mexico; (J.A.G.-G.); (P.C.-G.)
| | - Sergio Aguilar-Villanueva
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (S.A.-V.); (E.B.-R.); (D.S.V.-L.)
| | - Enrique Bargallo-Rocha
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (S.A.-V.); (E.B.-R.); (D.S.V.-L.)
| | - Paula Cabrera-Galeana
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C. P. 14080, Mexico; (J.A.G.-G.); (P.C.-G.)
| | - Tania Vasquez-Mata
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Ximena Cervantes-López
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Diana Sofía Vargas-Lías
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (S.A.-V.); (E.B.-R.); (D.S.V.-L.)
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Luis Bautista-Hinojosa
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C. P. 04510, Mexico;
| | - Rosa Rebollar-Vega
- Genomics Laboratory, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Tlalpan, Mexico City C. P. 14080, Mexico;
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico;
| | | | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey C. P. 64710, Mexico
| | - Francisco Jiménez-Trejo
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C, Coyoacán, Mexico City C. P. 04530, Mexico;
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey C. P. 64710, Mexico
| | - Luis Alonso Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey C. P. 64710, Mexico
| |
Collapse
|
13
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
14
|
Rodríguez-Bejarano OH, Parra-López C, Patarroyo MA. A review concerning the breast cancer-related tumour microenvironment. Crit Rev Oncol Hematol 2024; 199:104389. [PMID: 38734280 DOI: 10.1016/j.critrevonc.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is currently the most common malignant tumour in women and one of the leading causes of their death around the world. New and increasingly personalised diagnostic and therapeutic tools have been introduced over the last few decades, along with significant advances regarding the study and knowledge related to BC. The tumour microenvironment (TME) refers to the tumour cell-associated cellular and molecular environment which can influence conditions affecting tumour development and progression. The TME is composed of immune cells, stromal cells, extracellular matrix (ECM) and signalling molecules secreted by these different cell types. Ever deeper understanding of TME composition changes during tumour development and progression will enable new and more innovative therapeutic strategies to become developed for targeting tumours during specific stages of its evolution. This review summarises the role of BC-related TME components and their influence on tumour progression and the development of resistance to therapy. In addition, an account on the modifications in BC-related TME components associated with therapy is given, and the completed or ongoing clinical trials related to this topic are presented.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
15
|
Wang S, Li J, Xu S, Wang N, Pan B, Yang B, Zheng Y, Zhang J, Peng F, Peng C, Wang Z. Baohuoside I chemosensitises breast cancer to paclitaxel by suppressing extracellular vesicle/CXCL1 signal released from apoptotic cells. J Extracell Vesicles 2024; 13:e12493. [PMID: 39051750 PMCID: PMC11270583 DOI: 10.1002/jev2.12493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and chemotherapy is the cornerstone treatment for TNBC. Regrettably, emerging findings suggest that chemotherapy facilitates pro-metastatic changes in the tumour microenvironment. Extracellular vesicles (EVs) have been highly implicated in cancer drug resistance and metastasis. However, the effects of the EVs released from dying cancer cells on TNBC prognosis and corresponding therapeutic strategies have been poorly investigated. This study demonstrated that paclitaxel chemotherapy elicited CXCL1-enriched EVs from apoptotic TNBC cells (EV-Apo). EV-Apo promoted the chemoresistance and invasion of co-cultured TNBC cells by polarizing M2 macrophages through activating PD-L1 signalling. However, baohuoside I (BHS) remarkably sensitized the co-cultured TNBC cells to paclitaxel chemotherapy via modulating EV-Apo signalling. Mechanistically, BHS remarkably decreased C-X-C motif chemokine ligand 1 (CXCL1) cargo within EV-Apo and therefore attenuated macrophage M2 polarization by suppressing PD-L1 activation. Additionally, BHS decreased EV-Apo release by diminishing the biogenesis of intraluminal vesicles (ILVs) within multivesicular bodies (MVBs) of TNBC cells. Furthermore, BHS bound to the LEU104 residue of flotillin 2 (FLOT2) and interrupted its interaction with RAS oncogene family member 31 (RAB31), leading to the blockage of RAB31-FLOT2 complex-driven ILV biogenesis. Importantly, BHS remarkably chemosensitised paclitaxel to inhibit TNBC metastasis in vivo by suppressing EV-ApoCXCL1-induced PD-L1 activation and M2 polarization of tumour-associated macrophages (TAMs). This pioneering study sheds light on EV-ApoCXCL1 as a novel therapeutic target to chemosensitise TNBC, and presents BHS as a promising chemotherapy adjuvant to improve TNBC chemosensitivity and prognosis by disturbing EV-ApoCXCL1 biogenesis.
Collapse
Affiliation(s)
- Shengqi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengduUniversity of Traditional Chinese MedicineChengduSichuanChina
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical SciencesGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Jing Li
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
| | - Shang Xu
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
- The Research Center for Integrative Medicine, School of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Bo Pan
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
| | - Bowen Yang
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yifeng Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Juping Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Fu Peng
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceWest China School of Pharmacy, Sichuan UniversityChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengduUniversity of Traditional Chinese MedicineChengduSichuanChina
| | - Zhiyu Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital ofChinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer Medicine, Disciplineof Integrated Chinese and Western MedicineThe Second Clinical College ofGuangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical SciencesGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
16
|
Sinevici N, Edmonds CE, Dontchos BN, Wang G, Lehman CD, Isakoff S, Mahmood U. A prospective study of HER3 expression pre and post neoadjuvant therapy of different breast cancer subtypes: implications for HER3 imaging therapy guidance. Breast Cancer Res 2024; 26:107. [PMID: 38951909 PMCID: PMC11218108 DOI: 10.1186/s13058-024-01859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
PURPOSE HER3, a member of the EGFR receptor family, plays a central role in driving oncogenic cell proliferation in breast cancer. Novel HER3 therapeutics are showing promising results while recently developed HER3 PET imaging modalities aid in predicting and assessing early treatment response. However, baseline HER3 expression, as well as changes in expression while on neoadjuvant therapy, have not been well-characterized. We conducted a prospective clinical study, pre- and post-neoadjuvant/systemic therapy, in patients with newly diagnosed breast cancer to determine HER3 expression, and to identify possible resistance mechanisms maintained through the HER3 receptor. EXPERIMENTAL DESIGN The study was conducted between May 25, 2018 and October 12, 2019. Thirty-four patients with newly diagnosed breast cancer of any subtype (ER ± , PR ± , HER2 ±) were enrolled in the study. Two core biopsy specimens were obtained from each patient at the time of diagnosis. Four patients underwent a second research biopsy following initiation of neoadjuvant/systemic therapy or systemic therapy which we define as neoadjuvant therapy. Molecular characterization of HER3 and downstream signaling nodes of the PI3K/AKT and MAPK pathways pre- and post-initiation of therapy was performed. Transcriptional validation of finings was performed in an external dataset (GSE122630). RESULTS Variable baseline HER3 expression was found in newly diagnosed breast cancer and correlated positively with pAKT across subtypes (r = 0.45). In patients receiving neoadjuvant/systemic therapy, changes in HER3 expression were variable. In a hormone receptor-positive (ER +/PR +/HER2-) patient, there was a statistically significant increase in HER3 expression post neoadjuvant therapy, while there was no significant change in HER3 expression in a ER +/PR +/HER2+ patient. However, both of these patients showed increased downstream signaling in the PI3K/AKT pathway. One subject with ER +/PR -/HER2- breast cancer and another subject with ER +/PR +/HER2 + breast cancer showed decreased HER3 expression. Transcriptomic findings, revealed an immune suppressive environment in patients with decreased HER3 expression post therapy. CONCLUSION This study demonstrates variable HER3 expression across breast cancer subtypes. HER3 expression can be assessed early, post-neoadjuvant therapy, providing valuable insight into cancer biology and potentially serving as a prognostic biomarker. Clinical translation of neoadjuvant therapy assessment can be achieved using HER3 PET imaging, offering real-time information on tumor biology and guiding personalized treatment for breast cancer patients.
Collapse
Affiliation(s)
- Nicoleta Sinevici
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Christine E Edmonds
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Brian N Dontchos
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Gary Wang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Constance D Lehman
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA
| | - Steven Isakoff
- Department of Hematology and Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Boston, MA, USA.
| |
Collapse
|
17
|
Fu Y, Zhu X, Ren L, Wan J, Wang H. Syringeable Near-Infrared Light-Activated In Situ Immunogenic Hydrogel Boosts the Cancer-Immunity Cycle to Enhance Anticancer Immunity. ACS NANO 2024; 18:14877-14892. [PMID: 38809421 DOI: 10.1021/acsnano.3c08425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Effective anticancer immunity depends on properly activating multiple stepwise events in the cancer-immunity cycle. An immunologically "cold" tumor microenvironment (TME) engenders immune evasion and refractoriness to conventional checkpoint blockade immunotherapy. Here, we combine nanoparticle formulations and an in situ formed hydrogel scaffold to treat accessible tumors locally and to stimulate systemic immunity against metastatic tumor lesions. The nanoparticles encapsulate poly(ε-caprolactone)-derived cytotoxic chemotherapy and adjuvant of Toll-like receptor 7/8 through a reactive oxygen species (ROS)-cleavable linker that can be self-activated by the coassembled neighboring photosensitizer following near-infrared (NIR) laser irradiation. Further development results in syringeable, NIR light-responsive, and immunogenic hydrogel (iGEL) that can be implanted peritumorally and deposited into the tumor surgical bed. Upon NIR laser irradiation, the generated ROS induces iGEL degradation and bond cleavage in the polymer-drug conjugates, triggering the immunogenic cell death cascade in cancer cells and spontaneously releasing encapsulated agents to rewire the cancer-immunity cycle. Notably, upon application in multiple preclinical models of melanoma and triple-negative breast cancer, which are aggressive and refractory to conventional immunotherapy, iGEL induces durable remission of established tumors, extends postsurgical tumor-free survival, and inhibits metastatic burden. The result of this study is a locally administrable immunogenic hydrogel for triggering host systemic immunity to improve immunotherapeutic efficacy with minimal off-target side effects.
Collapse
Affiliation(s)
- Yang Fu
- The First Affiliated Hospital; NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
| | - Xiaoxiao Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310016, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
| | - Jianqin Wan
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province 250117, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province 250117, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, P. R. China
| |
Collapse
|
18
|
Zhang M, Li X, Zhou P, Zhang P, Wang G, Lin X. Prediction value study of breast cancer tumor infiltrating lymphocyte levels based on ultrasound imaging radiomics. Front Oncol 2024; 14:1411261. [PMID: 38903726 PMCID: PMC11187250 DOI: 10.3389/fonc.2024.1411261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Objective Construct models based on grayscale ultrasound and radiomics and compare the efficacy of different models in preoperatively predicting the level of tumor-infiltrating lymphocytes in breast cancer. Materials and methods This study retrospectively collected clinical data and preoperative ultrasound images from 185 breast cancer patients confirmed by surgical pathology. Patients were randomly divided into a training set (n=111) and a testing set (n=74) using a 6:4 ratio. Based on a 10% threshold for tumor-infiltrating lymphocytes (TIL) levels, patients were classified into low-level and high-level groups. Radiomic features were extracted and selected using the training set. The evaluation included assessing the relationship between TIL levels and both radiomic features and grayscale ultrasound features. Subsequently, grayscale ultrasound models, radiomic models, and nomograms combining radiomics score (Rad-score) and grayscale ultrasound features were established. The predictive performance of different models was evaluated through receiver operating characteristic (ROC) analysis. Calibration curves assessed the fit of the nomograms, and decision curve analysis (DCA) evaluated the clinical effectiveness of the models. Results Univariate analyses and multivariate logistic regression analyses revealed that indistinct margin (P<0.001, Odds Ratio [OR]=0.214, 95% Confidence Interval [CI]: 0.103-1.026), posterior acoustic enhancement (P=0.027, OR=2.585, 95% CI: 1.116-5.987), and ipsilateral axillary lymph node enlargement (P=0.001, OR=4.214, 95% CI: 1.798-9.875) were independent predictive factors for high levels of TIL in breast cancer. In comparison to grayscale ultrasound model (Training set: Area under curve [AUC] 0.795; Testing set: AUC 0.720) and radiomics model (Training set: AUC 0.803; Testing set: AUC 0.759), the nomogram demonstrated superior discriminative ability on both the training (AUC 0.884) and testing (AUC 0.820) datasets. Calibration curves indicated high consistency between the nomogram model's predicted probability of breast cancer TIL levels and the actual occurrence probability. DCA revealed that the radiomics model and the nomogram model achieved higher clinical net benefits compared to the grayscale ultrasound model. Conclusion The nomogram based on preoperative ultrasound radiomics features exhibits robust predictive capacity for the non-invasive evaluation of breast cancer TIL levels, potentially providing a significant basis for individualized treatment decisions in breast cancer.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xuanyu Li
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Pin Zhou
- Department of Pathology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Panpan Zhang
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Gang Wang
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Xianfang Lin
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Ultrasound, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| |
Collapse
|
19
|
Rayson VC, Harris MA, Savas P, Hun ML, Virassamy B, Salgado R, Loi S. The anti-cancer immune response in breast cancer: current and emerging biomarkers and treatments. Trends Cancer 2024; 10:490-506. [PMID: 38521654 DOI: 10.1016/j.trecan.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast cancers (TNBCs) exhibit heightened T cell infiltration, contributing to an enhanced response to immune checkpoint blockade (ICB) compared with other subtypes. An immune-rich immune microenvironment correlates with improved prognosis in early and advanced TNBC. Combination chemotherapy and ICB is now the standard of care in early- and late-stage TNBC. Although programmed death ligand-1 (PD-L1) positivity predicts ICB response in advanced stages, its role in early-stage disease remains uncertain. Despite neoadjuvant ICB becoming common in early-stage TNBC, the necessity of adjuvant ICB after surgery remains unclear. Understanding the molecular basis of the immune response in breast cancer is vital for precise biomarkers for ICB and effective combination therapy strategies.
Collapse
Affiliation(s)
- Victoria C Rayson
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael L Hun
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sherene Loi
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Song J, Wu Y, Chen Z, Zhai D, Zhang C, Chen S. Clinical significance of KRT7 in bladder cancer prognosis. Int J Biol Markers 2024; 39:158-167. [PMID: 38321777 DOI: 10.1177/03936155231224798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND Typically, the overexpressed keratin 7 (KRT7) is considered a validated therapeutic target and prognosis marker in bladder cancer. However, the crucial roles of KRT7 in the clinical prognosis and immune microenvironment in bladder cancer remain unclear. METHODS Initially, the expression levels of KRT7 in public databases were analyzed that is,Tumor Immune Estimation Resource (TIMER) 2.0 and Gene Expression Profiling Interactive Analysis (GEPIA). Further, the clinical tissue samples from patients (n = 10 pairs) were collected to confirm the expression trends of KRT7 and detected by immunohistochemistry (IHC) analysis. Meanwhile, the relationship between KRT7 and the prognosis of bladder cancer patients was analyzed by Kaplan-Meier plotter estimation and Cox regression analysis. Finally, TIMER 2.0 and IHC staining analyses were performed to calculate the infiltration abundances of three kinds of immune cells in eligible bladder tumor samples. RESULTS The TIMER 2.0 and GEPIA datasets suggested the differences in the expression levels of KRT7 in tumors, in which KRT7 was significantly upregulated in bladder cancer. The KRT7 expression was closely associated with patients' gender, tumor histologic subtypes, T status, and American Joint Committee on Cancer stages. Notably, the increased KRT7 indicated poor overall survival and disease-free survival rates. Moreover, KRT7 expression could be responsible for immune infiltration in the cancer microenvironment of the bladder. Finally, the high expression level of KRT7 increased the presence of regulatory T cells (Tregs) but reduced the infiltration of CD8+ T and natural killer cells. CONCLUSION KRT7 as a biomarker potentiated the prediction of bladder cancer prognosis and the immune microenvironment.
Collapse
Affiliation(s)
- Jun Song
- Department of Urology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, PR China
| | - Ye Wu
- Department of Urology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, PR China
| | - Zhongming Chen
- Department of Urology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, PR China
| | - Dong Zhai
- Department of Urology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, PR China
| | - Chunpei Zhang
- Department of Surgery, Sanya People's Hospital, Sanya, Hainan, PR China
| | - Shizhan Chen
- Department of Surgery, Sanya People's Hospital, Sanya, Hainan, PR China
| |
Collapse
|
21
|
Wang K, Zerdes I, Johansson HJ, Sarhan D, Sun Y, Kanellis DC, Sifakis EG, Mezheyeuski A, Liu X, Loman N, Hedenfalk I, Bergh J, Bartek J, Hatschek T, Lehtiö J, Matikas A, Foukakis T. Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer. Nat Commun 2024; 15:3837. [PMID: 38714665 PMCID: PMC11076527 DOI: 10.1038/s41467-024-47932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/12/2024] [Indexed: 05/10/2024] Open
Abstract
Although metabolic reprogramming within tumor cells and tumor microenvironment (TME) is well described in breast cancer, little is known about how the interplay of immune state and cancer metabolism evolves during treatment. Here, we characterize the immunometabolic profiles of tumor tissue samples longitudinally collected from individuals with breast cancer before, during and after neoadjuvant chemotherapy (NAC) using proteomics, genomics and histopathology. We show that the pre-, on-treatment and dynamic changes of the immune state, tumor metabolic proteins and tumor cell gene expression profiling-based metabolic phenotype are associated with treatment response. Single-cell/nucleus RNA sequencing revealed distinct tumor and immune cell states in metabolism between cold and hot tumors. Potential drivers of NAC based on above analyses were validated in vitro. In summary, the study shows that the interaction of tumor-intrinsic metabolic states and TME is associated with treatment outcome, supporting the concept of targeting tumor metabolism for immunoregulation.
Collapse
Affiliation(s)
- Kang Wang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Henrik J Johansson
- Department of Oncology-Pathology, Karolinska Institutet, and Science for Life Laboratory, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yizhe Sun
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Dimitris C Kanellis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Xingrong Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Loman
- Department of Hematology, Oncology and Radiation Physics, Lund University Hospital, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Danish Cancer Institute, DK-2100, Copenhagen, Denmark
| | - Thomas Hatschek
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, and Science for Life Laboratory, Stockholm, Sweden
- Division of Pathology, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
| |
Collapse
|
22
|
Rustamadji P, Wiyarta E, Pramono M, Maulanisa SC. Response to Neoadjuvant Chemotherapy in Invasive Breast Cancer Predicted by CD4+, CD8+, and FOXP3+ Tumor-Infiltrating Lymphocytes. Asian Pac J Cancer Prev 2024; 25:1607-1613. [PMID: 38809632 PMCID: PMC11318808 DOI: 10.31557/apjcp.2024.25.5.1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Response to neoadjuvant chemotherapy (NC) in individuals with invasive breast cancer (IBC) must be monitored, and biomarkers are needed. NC can activate an anti-tumour immune response in its microenvironment, known as Tumor-infiltrating Lymphocytes (TIL). TIL components believed to have great potential as predictors are CD4+, CD8+, and FOXP3+ TIL. This study aims to explore TIL components that can potentially be predictive biomarkers of NC pathological responses. METHODS A sample size of 40 were analyzed based on the relationship between CD4+, CD8+, and FOXP3+ TIL expression with the Miller-Payne (MP) grading system. Age, tumour grade, PR, ER, Ki-67, and HER2 were also evaluated. CD4+, CD8+, and FOXP3+ TIL expressions were analayzed by IHC staining, while other data were collected from archives. Data was analyzed using univariate and multivariate analysis. RESULTS Univariate analysis showed a significant relationship between CD4+ TIL and MP (p<0.001), CD8+ and MP (p=0.004), and FOXP3 with MP (p<0.001). The simultaneous integration of the three biomarkers in one model was not good enough to be a predictive model. Therefore, an exploratory analysis was conducted by testing several alternative models that combined two of the three existing biomarkers. It turned out that CD4+ TIL in model 2 (CD4+CD8+) and FOXP3+ TIL in model 4 (CD8+FOXP3+) showed significant coefficient values. Moreover, all of the threshold coefficients in model 4 are significant. CONCLUSION This study shows that CD4+, CD8+, and FOXP3+ TIL have promising potential as predictive biomarkers. In particular, FOXP3+ is dominant in predictive models of pathological response in patients with IBC.
Collapse
MESH Headings
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Female
- Forkhead Transcription Factors/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Neoadjuvant Therapy/methods
- Middle Aged
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Biomarkers, Tumor/metabolism
- Prognosis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Adult
- Follow-Up Studies
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Tumor Microenvironment/immunology
- Neoplasm Invasiveness
- Aged
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/metabolism
Collapse
Affiliation(s)
- Primariadewi Rustamadji
- Department of Anatomic Pathology, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia.
| | | | | | | |
Collapse
|
23
|
Liu Y, Peng B, Chen Z, Shen Y, Zhang J, Yuan X. Pan-cancer transcriptional atlas of minimal residual disease links DUSP1 to chemotherapy persistence. Exp Hematol Oncol 2024; 13:42. [PMID: 38627863 PMCID: PMC11020193 DOI: 10.1186/s40164-024-00509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/20/2024] Open
Abstract
Chemotherapy is a commonly effective treatment for most types of cancer. However, many patients experience a relapse due to minimal residual disease (MRD) after chemotherapy. Previous studies have analyzed the changes induced by chemotherapy for specific types of cancer, but our study is the first to comprehensively analyze MRD across various types of cancer. We included both bulk and single-cell RNA sequencing datasets. We compared the expression of the entire genome and calculated scores for canonical pathway signatures and immune infiltrates before and after chemotherapy across different types of cancer. Our findings revealed that DUSP1 was the most significantly and widely enriched gene in pan-cancer MRD. DUSP1 was found to be essential for MRD formation and played a role in T cell-fibroblast communications and the cytotoxic function of CD4 + T cells. Overall, our analysis provides a comprehensive understanding of the changes caused by chemotherapy and identifies potential targets for preventing and eliminating MRD, which could lead to long-term survival benefits for patients.
Collapse
Affiliation(s)
- Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bi Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yimin Shen
- Laboratory for Bioinformatics, Fondation Jean Dausset - CEPH, Paris, France
| | - Jingmin Zhang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Inayatullah M, Mahesh A, Turnbull AK, Dixon JM, Natrajan R, Tiwari VK. Basal-epithelial subpopulations underlie and predict chemotherapy resistance in triple-negative breast cancer. EMBO Mol Med 2024; 16:823-853. [PMID: 38480932 PMCID: PMC11018633 DOI: 10.1038/s44321-024-00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.
Collapse
Affiliation(s)
- Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arun Mahesh
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arran K Turnbull
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Vijay K Tiwari
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
25
|
Derouane F, Desgres M, Moroni C, Ambroise J, Berlière M, Van Bockstal MR, Galant C, van Marcke C, Vara-Messler M, Hutten SJ, Jonkers J, Mourao L, Scheele CLGJ, Duhoux FP, Corbet C. Metabolic adaptation towards glycolysis supports resistance to neoadjuvant chemotherapy in early triple negative breast cancers. Breast Cancer Res 2024; 26:29. [PMID: 38374113 PMCID: PMC10875828 DOI: 10.1186/s13058-024-01788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) is the standard of care for patients with early-stage triple negative breast cancers (TNBC). However, more than half of TNBC patients do not achieve a pathological complete response (pCR) after NAC, and residual cancer burden (RCB) is associated with dismal long-term prognosis. Understanding the mechanisms underlying differential treatment outcomes is therefore critical to limit RCB and improve NAC efficiency. METHODS Human TNBC cell lines and patient-derived organoids were used in combination with real-time metabolic assays to evaluate the effect of NAC (paclitaxel and epirubicin) on tumor cell metabolism, in particular glycolysis. Diagnostic biopsies (pre-NAC) from patients with early TNBC were analyzed by bulk RNA-sequencing to evaluate the predictive value of a glycolysis-related gene signature. RESULTS Paclitaxel induced a consistent metabolic switch to glycolysis, correlated with a reduced mitochondrial oxidative metabolism, in TNBC cells. In pre-NAC diagnostic biopsies from TNBC patients, glycolysis was found to be upregulated in non-responders. Furthermore, glycolysis inhibition greatly improved response to NAC in TNBC organoid models. CONCLUSIONS Our study pinpoints a metabolic adaptation to glycolysis as a mechanism driving resistance to NAC in TNBC. Our data pave the way for the use of glycolysis-related genes as predictive biomarkers for NAC response, as well as the development of inhibitors to overcome this glycolysis-driven resistance to NAC in human TNBC patients.
Collapse
Affiliation(s)
- Françoise Derouane
- Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Manon Desgres
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium
| | - Camilla Moroni
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium
| | - Jérôme Ambroise
- Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, 1200, Brussels, Belgium
| | - Martine Berlière
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Pole of Gynecology (GYNE), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 52, 1200, Brussels, Belgium
| | - Mieke R Van Bockstal
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Christine Galant
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Pole of Morphology (MORF), Institut de Recherche Expérimentale Et Clinique (IREC), UCLouvain, Avenue Mounier 52, 1200, Brussels, Belgium
| | - Cédric van Marcke
- Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Marianela Vara-Messler
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium
- Sanofi Belgium, 9052, Zwijnaarde, Belgium
| | - Stefan J Hutten
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Larissa Mourao
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Louvain, Belgium
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Louvain, Belgium
| | - Francois P Duhoux
- Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium.
| |
Collapse
|
26
|
Skubleny D, Spratlin J, Ghosh S, Greiner R, Schiller DE, Rayat GR. Individual Survival Distributions Generated by Multi-Task Logistic Regression Yield a New Perspective on Molecular and Clinical Prognostic Factors in Gastric Adenocarcinoma. Cancers (Basel) 2024; 16:786. [PMID: 38398176 PMCID: PMC10887062 DOI: 10.3390/cancers16040786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Recent advances in our understanding of gastric cancer biology have prompted a shift towards more personalized therapy. However, results are based on population-based survival analyses, which evaluate the average survival effects of entire treatment groups or single prognostic variables. This study uses a personalized survival modelling approach called individual survival distributions (ISDs) with the multi-task logistic regression (MTLR) model to provide novel insight into personalized survival in gastric adenocarcinoma. We performed a pooled analysis using 1043 patients from a previously characterized database annotated with molecular subtypes from the Cancer Genome Atlas, Asian Cancer Research Group, and tumour microenvironment (TME) score. The MTLR model achieved a 5-fold cross-validated concordance index of 72.1 ± 3.3%. This model found that the TME score and chemotherapy had similar survival effects over the entire study time. The TME score provided the greatest survival benefit beyond a 5-year follow-up. Stage III and Stage IV disease contributed the greatest negative effect on survival. The MTLR model weights were significantly correlated with the Cox model coefficients (Pearson coefficient = 0.86, p < 0.0001). We illustrate how ISDs can accurately predict the survival time for each patient, which is especially relevant in cases of molecular subtype heterogeneity. This study provides evidence that the TME score is principally associated with long-term survival in gastric adenocarcinoma. Additional external validation and investigation into the clinical utility of this ISD model in gastric cancer is an area of future research.
Collapse
Affiliation(s)
- Daniel Skubleny
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.S.); (G.R.R.)
| | - Jennifer Spratlin
- Department of Oncology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (J.S.); (S.G.)
| | - Sunita Ghosh
- Department of Oncology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (J.S.); (S.G.)
- Department of Mathematical and Statistical Sciences, Faculty of Science, College of Natural and Applied Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Russell Greiner
- Department of Computing Science, Faculty of Science, College of Natural and Applied Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Alberta Machine Intelligence Institute, Edmonton, AB T5J 3B1, Canada
| | - Daniel E. Schiller
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.S.); (G.R.R.)
| | - Gina R. Rayat
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (D.E.S.); (G.R.R.)
| |
Collapse
|
27
|
Zhou L, Du K, Dai Y, Zeng Y, Luo Y, Ren M, Pan W, Liu Y, Zhang L, Zhu R, Feng D, Tian F, Gu C. Metabolic reprogramming based on RNA sequencing of gemcitabine-resistant cells reveals the FASN gene as a therapeutic for bladder cancer. J Transl Med 2024; 22:55. [PMID: 38218866 PMCID: PMC10787972 DOI: 10.1186/s12967-024-04867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
Bladder cancer (BLCA) is the most frequent malignant tumor of the genitourinary system. Postoperative chemotherapy drug perfusion and chemotherapy are important means for the treatment of BLCA. However, once drug resistance occurs, BLCA develops rapidly after recurrence. BLCA cells rely on unique metabolic rewriting to maintain their growth and proliferation. However, the relationship between the metabolic pattern changes and drug resistance in BLCA is unclear. At present, this problem lacks systematic research. In our research, we identified and analyzed resistance- and metabolism-related differentially expressed genes (RM-DEGs) based on RNA sequencing of a gemcitabine-resistant BLCA cell line and metabolic-related genes (MRGs). Then, we established a drug resistance- and metabolism-related model (RM-RM) through regression analysis to predict the overall survival of BLCA. We also confirmed that RM-RM had a significant correlation with tumor metabolism, gene mutations, tumor microenvironment, and adverse drug reactions. Patients with a high drug resistance- and metabolism-related risk score (RM-RS) showed more active lipid synthesis than those with a low RM-RS. Further in vitro and in vivo studies were implemented using Fatty Acid Synthase (FASN), a representative gene, which promotes gemcitabine resistance, and its inhibitor (TVB-3166) that can reverse this resistance effect.
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kaixuan Du
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiheng Dai
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youmiao Zeng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongbo Luo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengda Ren
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbang Pan
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanhao Liu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lailai Zhang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ronghui Zhu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dapeng Feng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyan Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chaohui Gu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
28
|
Liu CC, Wolf M, Ortego R, Grencewicz D, Sadler T, Eng C. Characterization of immunomodulating agents from Staphylococcus aureus for priming immunotherapy in triple-negative breast cancers. Sci Rep 2024; 14:756. [PMID: 38191648 PMCID: PMC10774339 DOI: 10.1038/s41598-024-51361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Immunotherapy, specifically immune checkpoint blockade (ICB), has revolutionized the treatment paradigm of triple-negative breast cancers (TNBCs). However, a subset of TNBCs devoid of tumor-infiltrating T cells (TILs) or PD-L1 expression generally has a poor response to immunotherapy. In this study, we aimed to sensitize TNBCs to ICB by harnessing the immunomodulating potential of S. aureus, a breast-resident bacterium. We show that intratumoral injection of spent culture media from S. aureus recruits TILs and suppresses tumor growth in a preclinical TNBC model. We further demonstrate that α-hemolysin (HLA), an S. aureus-produced molecule, increases the levels of CD8+ T cells and PD-L1 expression in tumors, delays tumor growth, and triggers tumor necrosis. Mechanistically, while tumor cells treated with HLA display Gasdermin E (GSDME) cleavage and a cellular phenotype resembling pyroptosis, splenic T cells incubated with HLA lead to selective expansion of CD8+ T cells. Notably, intratumoral HLA injection prior to ICB augments the therapeutic efficacy compared to ICB alone. This study uncovers novel immunomodulatory properties of HLA and suggests that intratumoral administration of HLA could be a potential priming strategy to expand the population of TNBC patients who may respond to ICB.
Collapse
Affiliation(s)
- Chin-Chih Liu
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Matthew Wolf
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Ruth Ortego
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Dennis Grencewicz
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Tammy Sadler
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Charis Eng
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
29
|
Li K, Chen J, Hu Y, Wang YZ, Shen Y, Chen G, Peng W, Fang Z, Xia B, Chen X, Song K, Wang Y, Zou D, Wang YC, Han Y, Feng X, Yuan J, Guo S, Meng X, Feng C, Chen Y, Yang J, Fan J, Wang J, Ai J, Ma D, Sun C. Neoadjuvant chemotherapy plus camrelizumab for locally advanced cervical cancer (NACI study): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2024; 25:76-85. [PMID: 38048802 DOI: 10.1016/s1470-2045(23)00531-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Locally advanced cervical cancer constitutes around 37% of cervical cancer cases globally and has a poor prognosis due to limited therapeutic options. Immune checkpoint inhibitors in the neoadjuvant setting could address these challenges. We aimed to investigate the efficacy and safety of neoadjuvant chemo-immunotherapy for locally advanced cervical cancer. METHODS In this single-arm, phase 2 trial, which was done across eight tertiary hospitals in China, we enrolled patients aged 18-70 years with untreated cervical cancer (IB3, IIA2, or IIB/IIIC1r with a tumour diameter ≥4 cm [International Federation of Gynecology and Obstetrics, 2018]) and an Eastern Cooperative Oncology Group performance status of 0 or 1. Eligible patients underwent one cycle of priming doublet chemotherapy (75-80 mg/m2 cisplatin, intravenously, plus 260 mg/m2 nab-paclitaxel, intravenously), followed by two cycles of a combination of chemotherapy (cisplatin plus nab-paclitaxel) on day 1 with camrelizumab (200 mg, intravenously) on day 2, with a 3-week interval between treatment cycles. Patients with stable disease or progressive disease received concurrent chemoradiotherapy, and patients with a complete response or partial response proceeded to radical surgery. The primary endpoint was the objective response rate, by independent central reviewer according to Response Evaluation Criteria in Solid Tumours, version 1.1. Activity and safety were analysed in patients who received at least one dose of camrelizumab. This study is registered with ClinicalTrials.gov, NCT04516616, and is ongoing. FINDINGS Between Dec 1, 2020, and Feb 10, 2023, 85 patients were enrolled and all received at least one dose of camrelizumab. Median age was 51 years (IQR 46-57) and no data on race or ethnicity were collected. At data cutoff (April 30, 2023), median follow-up was 11·0 months (IQR 6·0-14·5). An objective response was noted in 83 (98% [95% CI 92-100]) patients, including 16 (19%) patients who had a complete response and 67 (79%) who had a partial response. The most common grade 3-4 treatment-related adverse events during neoadjuvant chemo-immunotherapy were lymphopenia (21 [25%] of 85), neutropenia (ten [12%]), and leukopenia (seven [8%]). No serious adverse events or treatment-related deaths occurred. INTERPRETATION Neoadjuvant chemo-immunotherapy showed promising antitumour activity and a manageable adverse event profile in patients with locally advanced cervical cancer. The combination of neoadjuvant chemo-immunotherapy with radical surgery holds potential as a novel therapeutic approach for locally advanced cervical cancer. FUNDING National Key Technology Research and Development Program of China and the National Clinical Research Center of Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Zhou Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital (Southwest Hospital), Army Medical University, Chongqing, China; Department of Obstetrics and Gynecology, 958th Hospital of the Chinese People's Liberation Army, Army Medical University, Chongqing, China
| | - Yuanming Shen
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenju Peng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bairong Xia
- Anhui Provincial Cancer Hospital, Anhui, China
| | - Xiaojun Chen
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kun Song
- Qilu Hospital of Shandong University, Jinan, China
| | - Yingmei Wang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Dongling Zou
- Chongqing University Cancer Hospital, Chongqing, China
| | - Yan-Chun Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingyan Han
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaiqingying Guo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Meng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenzhao Feng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Chen
- Department of Obstetrics and Gynecology, 958th Hospital of the Chinese People's Liberation Army, Army Medical University, Chongqing, China
| | - Jie Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junpeng Fan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Libbrecht S, Vankerckhoven A, de Wijs K, Baert T, Thirion G, Vandenbrande K, Van Gorp T, Timmerman D, Coosemans A, Lagae L. A Microfluidics Approach for Ovarian Cancer Immune Monitoring in an Outpatient Setting. Cells 2023; 13:7. [PMID: 38201211 PMCID: PMC10778191 DOI: 10.3390/cells13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Among cancer diagnoses in women, ovarian cancer has the fifth-highest mortality rate. Current treatments are unsatisfactory, and new therapies are highly needed. Immunotherapies show great promise but have not reached their full potential in ovarian cancer patients. Implementation of an immune readout could offer better guidance and development of immunotherapies. However, immune profiling is often performed using a flow cytometer, which is bulky, complex, and expensive. This equipment is centralized and operated by highly trained personnel, making it cumbersome and time-consuming. We aim to develop a disposable microfluidic chip capable of performing an immune readout with the sensitivity needed to guide diagnostic decision making as close as possible to the patient. As a proof of concept of the fluidics module of this concept, acquisition of a limited immune panel based on CD45, CD8, programmed cell death protein 1 (PD1), and a live/dead marker was compared to a conventional flow cytometer (BD FACSymphony). Based on a dataset of peripheral blood mononuclear cells of 15 patients with ovarian cancer across different stages of treatment, we obtained a 99% correlation coefficient for the detection of CD8+PD1+ T cells relative to the total amount of CD45+ white blood cells. Upon further system development comprising further miniaturization of optics, this microfluidics chip could enable immune monitoring in an outpatient setting, facilitating rapid acquisition of data without the need for highly trained staff.
Collapse
Affiliation(s)
- Sarah Libbrecht
- Life Science Technologies, imec, B-3001 Leuven, Belgium; (S.L.)
| | - Ann Vankerckhoven
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Koen de Wijs
- Life Science Technologies, imec, B-3001 Leuven, Belgium; (S.L.)
| | - Thaïs Baert
- Department of Gynecology and Obstetrics, UZ Leuven, B-3000 Leuven, Belgium
- Department of Oncology, Gynecological Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Gitte Thirion
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Katja Vandenbrande
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Toon Van Gorp
- Department of Gynecology and Obstetrics, UZ Leuven, B-3000 Leuven, Belgium
- Department of Oncology, Gynecological Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Dirk Timmerman
- Department of Gynecology and Obstetrics, UZ Leuven, B-3000 Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, B-3000 Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Liesbet Lagae
- Life Science Technologies, imec, B-3001 Leuven, Belgium; (S.L.)
- Physics Department, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
31
|
Challa K, Paysan D, Leiser D, Sauder N, Weber DC, Shivashankar GV. Imaging and AI based chromatin biomarkers for diagnosis and therapy evaluation from liquid biopsies. NPJ Precis Oncol 2023; 7:135. [PMID: 38092866 PMCID: PMC10719365 DOI: 10.1038/s41698-023-00484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Multiple genomic and proteomic studies have suggested that peripheral blood mononuclear cells (PBMCs) respond to tumor secretomes and thus could provide possible avenues for tumor prognosis and treatment evaluation. We hypothesized that the chromatin organization of PBMCs obtained from liquid biopsies, which integrates secretome signals with gene expression programs, provides efficient biomarkers to characterize tumor signals and the efficacy of proton therapy in tumor patients. Here, we show that chromatin imaging of PBMCs combined with machine learning methods provides such robust and predictive chromatin biomarkers. We show that such chromatin biomarkers enable the classification of 10 healthy and 10 pan-tumor patients. Furthermore, we extended our pipeline to assess the tumor types and states of 30 tumor patients undergoing (proton) radiation therapy. We show that our pipeline can thereby accurately distinguish between three tumor groups with up to 89% accuracy and enables the monitoring of the treatment effects. Collectively, we show the potential of chromatin biomarkers for cancer diagnostics and therapy evaluation.
Collapse
Affiliation(s)
- Kiran Challa
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
| | - Daniel Paysan
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul-Scherrer Institute, Villigen, Switzerland
| | - Nadia Sauder
- Center for Proton Therapy, Paul-Scherrer Institute, Villigen, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul-Scherrer Institute, Villigen, Switzerland.
- Department of Radio-Oncology, University Hospital Zurich, Zurich, Switzerland.
- Department of Radio-Oncology, University of Bern, Bern, Switzerland.
| | - G V Shivashankar
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Chen SY, Duan XT, Li HF, Peng L, Wang ZQ, Xu GQ, Hua YJ, Zou X, You R, Ouyang YF, Liu YP, Gu CM, Yang Q, Jiang R, Zhang MX, Lin M, Xie YL, Lin C, Ding X, Xie RQ, Duan CY, Zhang WJ, Huang PY, Chen MY. Efficacy of sequential chemoradiotherapy combined with toripalimab in de novo metastatic nasopharyngeal carcinoma: A phase II trial. Cell Rep Med 2023; 4:101279. [PMID: 37951218 PMCID: PMC10694661 DOI: 10.1016/j.xcrm.2023.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
Locoregional radiotherapy added to chemotherapy has significantly improved survival in de novo metastatic nasopharyngeal carcinoma (mNPC). However, only 54% of de novo mNPC patients who received sequential chemoradiotherapy have complete or partial response 3 months after radiotherapy. This Simon's optimal two-stage design phase II study (NCT04398056) investigates whether PD-1 inhibitor could improve tumor control in combination with chemoradiation. The primary endpoint is objective response rate (ORR) at 3 months after radiotherapy. Twenty-two patients with primary mNPC are enrolled. The ORR at 3 months after radiotherapy is 81.8% (22.7% complete response, n = 5; 59.1% partial response, n = 13), and the disease control rate is 81.8%. The 3-year progression-free survival (PFS) rate is 44.9% (95% confidence interval 26.4%-76.3%). Fifteen patients (68.2%) experienced grade 3-4 adverse events. Patients with high baseline plasma Epstein-Barr virus DNA copy number (>104 cps/mL) show worse PFS. Addition of toripalimab to sequential chemoradiotherapy suggests promising tumor response in patients with primary mNPC.
Collapse
Affiliation(s)
- Si-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Xiao-Tong Duan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Hui-Feng Li
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Lan Peng
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Zhi-Qiang Wang
- Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| | - Gui-Qiong Xu
- Department of Head and Neck Carcinoma and Radiotherapy, Zhongshan City People's Hospital, Zhongshan 528400, Guangdong, China
| | - Yi-Jun Hua
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Xiong Zou
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Rui You
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Yan-Feng Ouyang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - You-Ping Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; Nasopharyngeal Cancer Center, NanChang Hospital, Sun Yat-sen University (The First Hospital of Nanchang), Nanchang 330000, Jiangxi, China
| | - Chen-Mei Gu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Qi Yang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Rou Jiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Meng-Xia Zhang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Mei Lin
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Yu-Long Xie
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Chao Lin
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Xi Ding
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Ruo-Qi Xie
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Chong-Yang Duan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Wei-Jing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Pei-Yu Huang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, Guangdong, China; Nasopharyngeal Cancer Center, NanChang Hospital, Sun Yat-sen University (The First Hospital of Nanchang), Nanchang 330000, Jiangxi, China.
| |
Collapse
|
33
|
Di Roio A, Hubert M, Besson L, Bossennec M, Rodriguez C, Grinberg-Bleyer Y, Lalle G, Moudombi L, Schneider R, Degletagne C, Treilleux I, Campbell DJ, Metzger S, Duhen T, Trédan O, Caux C, Ménétrier-Caux C. MDR1-EXPRESSING CD4 + T CELLS WITH TH1.17 FEATURES RESIST TO NEOADJUVANT CHEMOTHERAPY AND ARE ASSOCIATED WITH BREAST CANCER CLINICAL RESPONSE. J Immunother Cancer 2023; 11:e007733. [PMID: 37940345 PMCID: PMC10632904 DOI: 10.1136/jitc-2023-007733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Multidrug resistance-1 (MDR1) transporter limits the intracellular accumulation of chemotherapies (paclitaxel, anthracyclines) used in breast cancer (BC) treatment. In addition to tumor cells, MDR1 is expressed on immune cell subsets in which it confers chemoresistance. Among human T cells, MDR1 is expressed by most CD8+ T cells, and a subset of CD4+ T helper (Th) cells. Here we explored the expression, function and regulation of MDR1 on CD4+ T cells and investigated the role of this population in response to neoadjuvant chemotherapy (NAC) in BC. METHODS Phenotypic and functional characteristics of MDR1+ CD4 Th cells were assessed on blood from healthy donors and patients with BC by flow cytometry. These features were extended to CD4+ Th cells from untreated breast tumor by flow cytometry and RNA-sequencing (RNA-seq). We performed in vitro polarization assays to decipher MDR1 regulation on CD4 Th cells. We evaluated in vitro the impact of chemotherapy agents on MDR1+ CD4+ Th cells. We analyzed the impact of NAC treatment on MDR1+ CD4+ Th cells from blood and tumors and their association with treatment efficacy in two independent BC cohorts and in a public RNA-seq data set of BC tumor biopsies before and after NAC. Finally, we performed single cell (sc) RNAseq of blood CD4+ memory T cells from NAC-treated patients and combined them with an scRNAseq public data set. RESULTS MDR1+ CD4 Th cells were strongly enriched in Th1.17 polyfunctional cells but also in Th17 cells, both in blood and untreated breast tumor tissues. Mechanistically, Tumor growth factor (TGF)-β1 was required for MDR1 induction during in vitro Th17 or Th1.17 polarization. MDR1 expression conferred a selective advantage to Th1.17 and Th17 cells following paclitaxel treatment in vitro and in vivo in NAC-treated patients. scRNAseq demonstrated MDR1 association with tumor Th1.17 and Th with features of cytotoxic cells. Enrichment in MDR1+ CD4+ Th1.17 and Th17 cells, in blood and tumors positively correlated with pathological response. Absence of early modulation of Th1.17 and Th17 in NAC-resistant patients, argue for its use as a biomarker for chemotherapy regimen adjustment. CONCLUSION MDR1 favored the enrichment of Th1.17 and Th17 in blood and tumor after NAC that correlated to clinical response.
Collapse
Affiliation(s)
- Anthony Di Roio
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Margaux Hubert
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Laurie Besson
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Marion Bossennec
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Céline Rodriguez
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | | | - Guilhem Lalle
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Lyvia Moudombi
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Raphael Schneider
- Plateforme Gilles Thomas, Centre de Recherche en cancérologie de Lyon, Lyon, France
| | - Cyril Degletagne
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Isabelle Treilleux
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
- BioPathology Department, Centre Léon Bérard, Lyon, Rhône-Alpes, France
| | - Daniel J Campbell
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Séverine Metzger
- Clinical Research Platform, DRCI, Centre Léon Bérard, Lyon, Rhône-Alpes, France
| | - Thomas Duhen
- Earle A Chiles Research Institute, Portland, Oregon, USA
| | | | - Christophe Caux
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | | |
Collapse
|
34
|
Wang L, Liu J, Chen F, Li G, Wang J, Chan DSH, Wong CY, Wang W, Leung CH. A Switch-On Affinity-Based Iridium(III) Conjugate Probe for Imaging Mitochondrial Glutathione S-Transferase in Breast Cancer Cells. Bioconjug Chem 2023; 34:1727-1737. [PMID: 37750807 DOI: 10.1021/acs.bioconjchem.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Glutathione S-transferase is heterogeneously expressed in breast cancer cells and is therefore emerging as a potential diagnostic biomarker for studying the heterogeneity of breast cancers. However, available fluorescent probes for GSTs depend heavily on GSTs-catalyzed glutathione (GSH) nucleophilic substitution reactions, making them susceptible to interference by the high concentration of nucleophilic species in the cellular environment. Moreover, the functions of subcellular GSTs are generally overlooked due to the lack of suitable luminescence probes. Herein, we report a highly selective affinity-based luminescence probe 1 for GST in breast cancer cells through tethering a GST inhibitor, ethacrynic acid, to an iridium(III) complex. Compared to activity-based probes which require the use of GSH, this probe could image GST-pi in the mitochondria by directly adducting to GST-pi (or potentially GST-pi/GS) in living cells. Probe 1 possesses desirable photophysical properties including a lifetime of 911 ns, a Stokes shift of 343 nm, and high photostability. The "turn on" luminescence mode of the probe enables highly selective detection of the GST with a limit of detection of 1.01 μM, while its long emission lifetime allows sensitive detection in organic dye-spiked autofluorescence samples by a time-resolved mode. The probe was further applied to specifically and quantitatively visualize MDA-MB-231 cells via specific binding to mitochondrial GST, and could differentiate breast cell lines based on their expression levels of GST. To the best of our knowledge, this probe is the first affinity-based iridium(III) imaging probe for the subcellular GST. Our work provides a valuable tool for unmasking the diverse roles of a subcellular GST in living systems, as well as for studying the heterogeneity of breast cancers.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jingqi Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jing Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | | | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, 999078, China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, 999078, China
| |
Collapse
|
35
|
Wu R, Oshi M, Asaoka M, Yan L, Benesch MG, Khoury T, Nagahashi M, Miyoshi Y, Endo I, Ishikawa T, Takabe K. Intratumoral Tumor Infiltrating Lymphocytes (TILs) are Associated With Cell Proliferation and Better Survival But Not Always With Chemotherapy Response in Breast Cancer. Ann Surg 2023; 278:587-597. [PMID: 37318852 PMCID: PMC10481934 DOI: 10.1097/sla.0000000000005954] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To investigate the clinical relevance of intratumoral tumor infiltrating lymphocytes (TILs) in breast cancer as measured by computational deconvolution of bulk tumor transcriptomes. SUMMARY BACKGROUND DATA Commonly assessed TILs, located in tumor stroma without direct contact with cancer cells (stromal TILs), correlate with breast cancer treatment response and survival. The clinical relevance of intratumoral TILs has been less studied partly due to their rarity; however, they may have nonnegligible effects given their direct contact with cancer cells. METHODS In all, 5870 breast cancer patients from TCGA, METABRIC, GSE96058, GSE25066, GSE163882, GSE123845, and GSE20271 cohorts were analyzed and validated. RESULTS The intratumoral TIL score was established by the sum of all types of lymphocytes using the xCell algorithm. This score was the highest in triple-negative breast cancer (TNBC) and the lowest in the ER-positive/HER2-negative subtype. It correlated with cytolytic activity and infiltrations of dendritic cells, macrophages, and monocytes, and uniformly enriched immune-related gene sets regardless of subtype. Intratumoral TIL-high tumors correlated with higher mutation rates and significant cell proliferation on biological, pathological, and molecular analyses only in the ER-positive/HER2-negative subtype. It was significantly associated with pathological complete response after anthracycline- and taxane-based neoadjuvant chemotherapy in about half of the cohorts, regardless of the subtype. Intratumoral TIL-high tumors correlated with better overall survival in HER2-positive and TNBC subtypes consistently in 3 cohorts. CONCLUSIONS Intratumoral TILs estimated by transcriptome computation were associated with increased immune response and cell proliferation in ER-positive/HER2-negative and better survival in HER2-positive and TNBC subtypes, but not always with pathological complete response after neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Mariko Asaoka
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Matthew G.K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Masayuki Nagahashi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
36
|
Barrera C, Corredor G, Viswanathan VS, Ding R, Toro P, Fu P, Buzzy C, Lu C, Velu P, Zens P, Berezowska S, Belete M, Balli D, Chang H, Baxi V, Syrigos K, Rimm DL, Velcheti V, Schalper K, Romero E, Madabhushi A. Deep computational image analysis of immune cell niches reveals treatment-specific outcome associations in lung cancer. NPJ Precis Oncol 2023; 7:52. [PMID: 37264091 PMCID: PMC10235089 DOI: 10.1038/s41698-023-00403-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/19/2023] [Indexed: 06/03/2023] Open
Abstract
The tumor immune composition influences prognosis and treatment sensitivity in lung cancer. The presence of effective adaptive immune responses is associated with increased clinical benefit after immune checkpoint blockers. Conversely, immunotherapy resistance can occur as a consequence of local T-cell exhaustion/dysfunction and upregulation of immunosuppressive signals and regulatory cells. Consequently, merely measuring the amount of tumor-infiltrating lymphocytes (TILs) may not accurately reflect the complexity of tumor-immune interactions and T-cell functional states and may not be valuable as a treatment-specific biomarker. In this work, we investigate an immune-related biomarker (PhenoTIL) and its value in associating with treatment-specific outcomes in non-small cell lung cancer (NSCLC). PhenoTIL is a novel computational pathology approach that uses machine learning to capture spatial interplay and infer functional features of immune cell niches associated with tumor rejection and patient outcomes. PhenoTIL's advantage is the computational characterization of the tumor immune microenvironment extracted from H&E-stained preparations. Association with clinical outcome and major non-small cell lung cancer (NSCLC) histology variants was studied in baseline tumor specimens from 1,774 lung cancer patients treated with immunotherapy and/or chemotherapy, including the clinical trial Checkmate 057 (NCT01673867).
Collapse
Affiliation(s)
- Cristian Barrera
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, GA, USA
| | - Germán Corredor
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, GA, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Ruiwen Ding
- Case Western Reserve University, School of Engineering, Cleveland, OH, USA
| | | | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Christina Buzzy
- Case Western Reserve University, School of Engineering, Cleveland, OH, USA
| | - Cheng Lu
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, GA, USA
| | - Priya Velu
- Weill Cornell Medical College, New York, NY, USA
| | - Philipp Zens
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Sabina Berezowska
- Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | - Han Chang
- Bristol Myers Squibb, New York, NY, USA
| | | | - Konstantinos Syrigos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - David L Rimm
- School of Medicine, Yale University, New Haven, CT, USA
| | | | - Kurt Schalper
- School of Medicine, Yale University, New Haven, CT, USA
| | - Eduardo Romero
- Universidad Nacional de Colombia, Facultad de Medicina, Bogotá, Colombia
| | - Anant Madabhushi
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, GA, USA.
- VA Medical Center, Atlanta, OH, USA.
| |
Collapse
|
37
|
Wang G, Yao Y, Huang H, Zhou J, Ni C. Multiomics technologies for comprehensive tumor microenvironment analysis in triple-negative breast cancer under neoadjuvant chemotherapy. Front Oncol 2023; 13:1131259. [PMID: 37284197 PMCID: PMC10239824 DOI: 10.3389/fonc.2023.1131259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes and is characterized by abundant infiltrating immune cells within the microenvironment. As standard care, chemotherapy remains the fundamental neoadjuvant treatment in TNBC, and there is increasing evidence that supplementation with immune checkpoint inhibitors may potentiate the therapeutic efficiency of neoadjuvant chemotherapy (NAC). However, 20-60% of TNBC patients still have residual tumor burden after NAC and require additional chemotherapy; therefore, it is critical to understand the dynamic change in the tumor microenvironment (TME) during treatment to help improve the rate of complete pathological response and long-term prognosis. Traditional methods, including immunohistochemistry, bulk tumor sequencing, and flow cytometry, have been applied to elucidate the TME of breast cancer, but the low resolution and throughput may overlook key information. With the development of diverse high-throughput technologies, recent reports have provided new insights into TME alterations during NAC in four fields, including tissue imaging, cytometry, next-generation sequencing, and spatial omics. In this review, we discuss the traditional methods and the latest advances in high-throughput techniques to decipher the TME of TNBC and the prospect of translating these techniques to clinical practice.
Collapse
Affiliation(s)
- Gang Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yao Yao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Emens LA, Loi S. Immunotherapy Approaches for Breast Cancer Patients in 2023. Cold Spring Harb Perspect Med 2023; 13:13/4/a041332. [PMID: 37011999 PMCID: PMC10071416 DOI: 10.1101/cshperspect.a041332] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Immunotherapy, particularly agents targeting the immunoregulatory PD-1/PD-L1 axis, harnesses the power of the immune system to treat cancer, with unique potential for a durable treatment effect due to immunologic memory. The PD-1 inhibitor pembrolizumab combined with neoadjuvant chemotherapy followed by adjuvant pembrolizumab improves event-free survival and is a new standard of care for high-risk, early-stage triple-negative breast cancer (TNBC), regardless of tumor PD-L1 expression. For metastatic TNBC, pembrolizumab combined with chemotherapy is a new standard of care for the first-line therapy of PD-L1+ metastatic TNBC, with improvement in overall survival. The PD-L1 inhibitor atezolizumab combined with nab-paclitaxel is also approved outside the United States for the first-line treatment of metastatic PD-L1+ TNBC. Current research focuses on refining the use of immunotherapy in TNBC by defining informative predictive biomarkers, developing immunotherapy in early and advanced HER2-driven and luminal breast cancers, and overcoming primary and secondary resistance to immunotherapy through unique immune-based strategies.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Medicine, University of Pittsburgh/UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232, USA
- Ankyra Therapeutics, Boston, Massachusetts 02116, USA
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| |
Collapse
|
39
|
Rodríguez IJ, Bernal-Estévez DA, Llano-León M, Bonilla CE, Parra-López CA. Neoadjuvant chemotherapy modulates exhaustion of T cells in breast cancer patients. PLoS One 2023; 18:e0280851. [PMID: 36763585 PMCID: PMC9916600 DOI: 10.1371/journal.pone.0280851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer is the leading cause of cancer deaths in women worldwide. It has been observed that the incidence of breast cancer increases linearly with age after 45, which suggest a link between cancer, aging, and senescence. A growing body of evidence indicates that the immunosuppressive tumor network in breast cancer patients can lead to T-cell exhaustion and senescence. Cytotoxic chemotherapy is a common treatment for many cancers, and it is hypothesized that its efficacy may be related to immune activation. However, the effects of neoadjuvant chemotherapy on T-cell dysfunction in breast cancer patients are not fully understood. This study aimed to evaluate the impact of neoadjuvant chemotherapy on the expression of exhaustion and senescence markers in T cells in women with breast cancer. Our results showed that T cells from breast cancer patients have a reduced ability to respond to stimulation in-vitro and an increased expression of senescence and exhaustion-associated markers, such as TIM-3, LAG3, and CD57. Furthermore, we found that neoadjuvant chemotherapy has an immunomodulatory effect and reduces the expression of exhaustion markers. Our observations of the immune phenotype of T cells during neoadjuvant chemotherapy treatment highlight its ability to stimulate the immune system against cancer. Therefore, monitoring the response of T cells during chemotherapy may enable early prediction of clinical response.
Collapse
Affiliation(s)
- Ivon Johanna Rodríguez
- Departamento de Microbiología, Laboratorio de Inmunología y Medicina Traslacional, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Movimiento Corporal Humano, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - David A. Bernal-Estévez
- Immunology and Clinical Oncology Research Group (GIIOC), Fundación Salud de los Andes, Bogotá, Colombia
| | - Manuela Llano-León
- Departamento de Microbiología, Laboratorio de Inmunología y Medicina Traslacional, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Carlos Alberto Parra-López
- Departamento de Microbiología, Laboratorio de Inmunología y Medicina Traslacional, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
40
|
Yazaki S, Salgado R, Shimoi T, Yoshida M, Shiino S, Kaneda T, Kojima Y, Sumiyoshi-Okuma H, Nishikawa T, Sudo K, Noguchi E, Murata T, Takayama S, Suto A, Ohe Y, Yonemori K. Impact of adjuvant chemotherapy and radiotherapy on tumour-infiltrating lymphocytes and PD-L1 expression in metastatic breast cancer. Br J Cancer 2023; 128:568-575. [PMID: 36522476 PMCID: PMC9938235 DOI: 10.1038/s41416-022-02072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chemotherapy and radiotherapy were postulated to induce an inflamed tumour microenvironment. We aimed to evaluate the effects of adjuvant chemotherapy/radiotherapy on tumour-infiltrating lymphocytes (TILs) and programmed death-ligand 1 (PD-L1) expression in metastatic breast cancer. METHODS We identified paired primary and metastatic tumours in 85 patients with breast cancer. Stromal TILs were assessed according to international guidelines. PD-L1 expression was evaluated using the VENTANA SP142 assay. RESULTS TILs were significantly lower in metastatic tumours than in primary tumours (12.2 vs. 8.3%, p = 0.049). PD-L1 positivity was similar between primary and metastatic tumours (21.2 vs. 14.1%, p = 0.23). TILs were significantly lower in patients who received adjuvant chemotherapy than in those who did not (-9.07 vs. 1.19%, p = 0.01). However, radiotherapy had no significant effect on TILs (p = 0.44). Decreased TILs predicted worse post-recurrence survival (hazard ratio, 2.94; 95% confidence interval [CI]: 1.41-6.13, p = 0.003), while increased TILs was associated with a better prognosis (HR, 0.12; 95% CI: 0.02-0.08, p = 0.04). CONCLUSIONS TILs decreased in metastatic tumours, particularly in patients who relapsed after adjuvant chemotherapy. Changes in TILs from primary to metastatic sites could be a prognostic factor after recurrence.
Collapse
Affiliation(s)
- Shu Yazaki
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Cancer Medicine, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Masayuki Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoya Kaneda
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Emi Noguchi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takeshi Murata
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shin Takayama
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Cancer Medicine, Jikei University Graduate School of Medicine, Tokyo, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
41
|
Soliman H, Hogue D, Han H, Mooney B, Costa R, Lee MC, Niell B, Williams A, Chau A, Falcon S, Soyano A, Armaghani A, Khakpour N, Weinfurtner RJ, Hoover S, Kiluk J, Laronga C, Rosa M, Khong H, Czerniecki B. Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: a phase 2 trial. Nat Med 2023; 29:450-457. [PMID: 36759673 DOI: 10.1038/s41591-023-02210-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/06/2023] [Indexed: 02/11/2023]
Abstract
Talimogene laherparepvec (T-VEC) is an oncolytic virus hypothesized to enhance triple-negative breast cancer (TNBC) responses to neoadjuvant chemotherapy (NAC). This article describes the phase 2 trial of T-VEC plus NAC (ClinicalTrials.gov ID: NCT02779855 ). Patients with stage 2-3 TNBC received five intratumoral T-VEC injections with paclitaxel followed by doxorubicin and cyclophosphamide and surgery to assess residual cancer burden index (RCB). The primary end point was RCB0 rate. Secondary end points were RCB0-1 rate, recurrence rate, toxicity and immune correlates. Thirty-seven patients were evaluated. Common T-VEC toxicities were fevers, chills, headache, fatigue and injection site pain. NAC toxicities were as expected. Four thromboembolic events occurred. The primary end point was met with an estimated RCB0 rate = 45.9% and RCB0-1 descriptive rate = 65%. The 2-year disease-free rate is equal to 89% with no recurrences in RCB0-1 patients. Immune activation during treatment correlated with response. T-VEC plus NAC in TNBC may increase RCB0-1 rates. These results support continued investigation of T-VEC plus NAC for TNBC.
Collapse
Affiliation(s)
- Hatem Soliman
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Deanna Hogue
- Clinical Trials Office, Moffitt Cancer Center, Tampa, FL, USA
| | - Hyo Han
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Blaise Mooney
- Department of Radiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ricardo Costa
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Marie C Lee
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Bethany Niell
- Department of Radiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Angela Williams
- Department of Radiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Alec Chau
- Department of Radiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Shannon Falcon
- Department of Radiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Aixa Soyano
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Avan Armaghani
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Nazanin Khakpour
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Susan Hoover
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - John Kiluk
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Christine Laronga
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Marilin Rosa
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Hung Khong
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Brian Czerniecki
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
42
|
Fasching PA, Hein A, Kolberg HC, Häberle L, Uhrig S, Rübner M, Belleville E, Hack CC, Fehm TN, Janni W, Hartmann A, Erber R, Theuser AK, Brucker SY, Hartkopf AD, Untch M. Pembrolizumab in combination with nab-paclitaxel for the treatment of patients with early-stage triple-negative breast cancer - A single-arm phase II trial (NeoImmunoboost, AGO-B-041). Eur J Cancer 2023; 184:1-9. [PMID: 36871424 DOI: 10.1016/j.ejca.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Pembrolizumab is approved for the neoadjuvant/adjuvant treatment of early triple-negative breast cancer (TNBC) patients in combination with chemotherapy. The Keynote-522 trial used platinum chemotherapy. As neoadjuvant nab-paclitaxel (nP) is also highly effective in triple-negative breast cancer patients, this study investigates the response to nP-containing neoadjuvant chemotherapy in combination with pembrolizumab. PATIENTS AND METHODS NeoImmunoboost (AGO-B-041/NCT03289819) is a multicenter, prospective single-arm phase II trial. Patients were treated with 12 weekly cycles of nP followed by four three-weekly cycles of epirubicin/cyclophosphamide. Pembrolizumab was given three-weekly in combination with these chemotherapies. The study was planned for 50 patients. After 25 patients, the study was amended to include a pre-chemotherapy single application of pembrolizumab. The primary aim was pathological complete response (pCR), and the secondary aims were safety and quality of life. RESULTS Of 50 included patients, 33 (66.0%; 95%confidence interval: 51.2%-78.8%) had a (ypT0/is ypN0) pCR. The pCR rate in the per-protocol population (n = 39) was 71.8% (95%confidence interval: 55.1%-85.0%). The most common adverse events of any grade were fatigue (58.5%), peripheral sensory neuropathy (54.7%) and neutropenia (52.8%). The pCR rate in the cohort of 27 patients with a pre-chemotherapy pembrolizumab dose was 59.3%, and 73.9% in the 23 patients without pre-chemotherapy dose. CONCLUSIONS pCR rates after NACT with nP and anthracycline combined with pembrolizumab are encouraging. With acceptable side-effect profiles, this treatment might be a reasonable alternative to platinum-containing chemotherapy in cases of contraindications. However, without data from randomised trials and long-term follow up, platinum/anthracycline/taxane-based chemotherapy remains the standard combination chemotherapy for pembrolizumab.
Collapse
Affiliation(s)
- Peter A Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Germany.
| | - Alexander Hein
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | | | - Lothar Häberle
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Germany; Biostatistics Unit, Department of Gynecology and Obstetrics, Erlangen University Hospital, Erlangen, Germany
| | - Sabrina Uhrig
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | - Matthias Rübner
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | | | - Carolin C Hack
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Germany
| | - Wolfang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Arndt Hartmann
- Erlangen University Hospital, Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | - Ramona Erber
- Erlangen University Hospital, Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | | | - Sara Y Brucker
- Department of Obstetrics and Gynecology, University of Tuebingen, Tuebingen, Germany
| | - Andreas D Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Germany
| |
Collapse
|
43
|
Tietscher S, Wagner J, Anzeneder T, Langwieder C, Rees M, Sobottka B, de Souza N, Bodenmiller B. A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer. Nat Commun 2023; 14:98. [PMID: 36609566 PMCID: PMC9822999 DOI: 10.1038/s41467-022-35238-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/24/2022] [Indexed: 01/09/2023] Open
Abstract
Immune checkpoint therapy in breast cancer remains restricted to triple negative patients, and long-term clinical benefit is rare. The primary aim of immune checkpoint blockade is to prevent or reverse exhausted T cell states, but T cell exhaustion in breast tumors is not well understood. Here, we use single-cell transcriptomics combined with imaging mass cytometry to systematically study immune environments of human breast tumors that either do or do not contain exhausted T cells, with a focus on luminal subtypes. We find that the presence of a PD-1high exhaustion-like T cell phenotype is associated with an inflammatory immune environment with a characteristic cytotoxic profile, increased myeloid cell activation, evidence for elevated immunomodulatory, chemotactic, and cytokine signaling, and accumulation of natural killer T cells. Tumors harboring exhausted-like T cells show increased expression of MHC-I on tumor cells and of CXCL13 on T cells, as well as altered spatial organization with more immature rather than mature tertiary lymphoid structures. Our data reveal fundamental differences between immune environments with and without exhausted T cells within luminal breast cancer, and show that expression of PD-1 and CXCL13 on T cells, and MHC-I - but not PD-L1 - on tumor cells are strong distinguishing features between these environments.
Collapse
Affiliation(s)
- Sandra Tietscher
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Johanna Wagner
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | | | | | | | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.,Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland. .,Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Wang H, Sheng X, Yan T, Xu Y, Wang Y, Lin Y, Zhang J, Ye Y, Xu S, Zhou L, Yin W, Lu J. Neo-peripheral adaptive immune score predicts neoadjuvant chemotherapy for locally advanced breast cancer. Breast Cancer Res Treat 2023; 197:343-354. [PMID: 36409395 DOI: 10.1007/s10549-022-06791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Whether peripheral immune cell subsets can predict pathological complete response (pCR) in breast cancer patients remains to be elucidated. We aimed to dissect the relationship between peripheral immune cell subsets and pCR. METHODS Two hundred and twenty-six eligible patients from two prospective clinical trials (SHPD001 and SHPD002) in China were randomly divided into a training cohort and a validation cohort. The breast cancer subtypes in this study included hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative (n = 95), HER2-positive (n = 100), and triple negative (n = 31) breast cancer. We defined the "Neo-Peripheral Adaptive Immune Score" for neoadjuvant chemotherapy (neoPAI Score) based on the percentages of CD4 + T cells, CD8 + T cells, B cells, and the CD4 + /CD8 + ratio in peripheral blood. We also evaluated the ability of the neoPAI Score derived from tumor-infiltrating immune cells (TIICs) to predict survival by employing The Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) database. RESULTS In the training cohort, multivariate analysis showed that HR status [odds ratio (OR) 0.325; 95% confidence interval (CI) 0.135-0.761; P = 0.010], HER2 status (OR 2.657; 95% CI 1.266-5.730; P = 0.011), Ki67 index (OR 3.191; 95% CI 1.509-6.956; P = 0.003), histological grade (OR 2.297; 95% CI 1.031-5.290; P = 0.045) and neoPAI Score (OR 4.451; 95% CI 1.608-13.068; P = 0.005) were independent predictors of pCR. In the validation cohort, histological grade (OR 3.779; 95% CI 3.793-1.136 × 103; P = 0.008) and neoPAI Score (OR 90.828; 95% CI 3.827-9.843 × 103; P = 0.019) were independent predictors of pCR. The Immune Model that integrated the neoPAI Score was more accurate in predicting pCR than the Clinical Model that exclusively contained clinicopathological parameters in both cohorts. In TCGA-BRCA database, the neoPAI Score constructed from TIICs can predict the progression-free interval (P = 0.048) of breast cancer. CONCLUSION The neoPAI Score defined by the percentages of peripheral immune cell subsets could be used as a potential biomarker for neoadjuvant chemotherapy efficacy.
Collapse
Affiliation(s)
- Huiling Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Tingting Yan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yaqian Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.,Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jie Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yumei Ye
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
45
|
van Wilpe S, Sultan S, Gorris MAJ, Somford DM, Kusters-Vandevelde HVN, Koornstra RHT, Gerritsen WR, Simons M, van der Heijden AG, de Vries IJM, Mehra N. Intratumoral T cell depletion following neoadjuvant chemotherapy in patients with muscle-invasive bladder cancer is associated with poor clinical outcome. Cancer Immunol Immunother 2023; 72:137-149. [PMID: 35771253 PMCID: PMC9813168 DOI: 10.1007/s00262-022-03234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Whereas neoadjuvant cisplatin-based chemotherapy (NAC) followed by a radical cystectomy remains the standard treatment for patients with muscle-invasive bladder cancer (MIBC), increasing evidence suggests that checkpoint inhibitors, either alone or in combination with chemotherapy, are effective in the (neo)adjuvant setting. The major aim of this study was to improve our understanding of the immune-modulating effects of NAC in MIBC. METHODS Tumor tissue of 81 patients was used, including 60 patients treated with NAC and 21 patients undergoing upfront cystectomy. Multiplex immunohistochemistry was performed to assess CD3+, CD3+CD8+, CD3+CD8-FoxP3-, CD3+FoxP3+, and CD20+ cells. Patients were classified into a favorable or unfavorable outcome group based on the development of a recurrence within a year. RESULTS The density of intratumoral CD3+ T cells decreased following NAC in patients with a recurrence at one year, while it remained stable in patients without a recurrence (median fold change 0.6 [95CI 0.3; 1.0] versus 1.0 [95CI 0.6; 2.2]). This decrease was mainly attributable to a decrease in CD3+CD8-FoxP3- and CD3+FoxP3+ T cells and was not observed in patients with an early recurrence after upfront cystectomy. Additionally, in cystectomy tissue of patients treated with NAC, median CD3+ and CD3+CD8+ T cell densities were significantly lower in patients with versus patients without a recurrence (CD3: 261. cells/mm2 [95CI 22.4; 467.2]; CD8: 189.6 cells/mm2 [95CI 2.0;462.0]). CONCLUSION T cell density decreases following NAC in MIBC patients with poor clinical outcome. Further research is needed to investigate whether this decrease in T cell density affects the efficacy of subsequent checkpoint inhibitors. PRéCIS: The major aim of this study was to improve our understanding of the immune-modulating effects of NAC in patients with MIBC. We reveal a decline in intratumoral CD3+ T cell density following NAC in patients with an early recurrence.
Collapse
Affiliation(s)
- Sandra van Wilpe
- Department of Medical Oncology, The Radboud University Medical Center, Nijmegen, The Netherlands ,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shabaz Sultan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands ,Oncode Institute, Nijmegen, The Netherlands
| | - Diederik M. Somford
- Department of Urology, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands
| | | | | | - Winald R. Gerritsen
- Department of Medical Oncology, The Radboud University Medical Center, Nijmegen, The Netherlands ,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel Simons
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antoine G. van der Heijden
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, The Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
46
|
Provenzano E, Shaaban AM. Pathology of neoadjuvant therapy and immunotherapy testing for breast cancer. Histopathology 2023; 82:170-188. [PMID: 36482270 DOI: 10.1111/his.14771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022]
Abstract
Neoadjuvant chemotherapy (NACT) has become the standard of care for high-risk breast cancer, including triple-negative (TNBC) and HER2-positive disease. As a result, handling and reporting of breast specimens post-NACT is part of routine practice, and it is important for pathologists to recognise the changes in tumour cells, tumour-associated stroma and background breast tissue induced by NACT. Familiarity with characteristic stromal features enables identification of the pre-treatment tumour site and allows confident diagnosis of pathological complete response (pCR) which is important for decisions concerning adjuvant therapy. Neoadjuvant endocrine therapy (NAET) is used less frequently than NACT; however, the SARS-COVID-19 pandemic has changed practice, with increased use as bridging therapy if surgery is delayed. NAET also induces characteristic changes in the tumour and stroma. Changes in the tumour microenvironment following NACT and NAET are also described. Immunotherapy is approved for use in advanced TNBC, and there are several trials exploring its role in early TNBC in the neoadjuvant setting. The current biomarker to determine eligibility for treatment with immune checkpoint inhibitors is programmed death ligand-1 (PD-L1) immunohistochemistry; however, this is complicated by lack of standardisation with different drugs linked to tests using different antibodies with different scoring systems. The situation in the neoadjuvant setting is further complicated by improved pCR rates for PD-L1-positive tumours in both immune therapy and placebo arms. Alternative biomarkers are urgently needed to identify which patients will derive benefit from immunotherapy and key candidates are discussed.
Collapse
Affiliation(s)
- Elena Provenzano
- Department of Histopathology, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Abeer M Shaaban
- Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, UK
| |
Collapse
|
47
|
Barnestein R, Galland L, Kalfeist L, Ghiringhelli F, Ladoire S, Limagne E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology 2022; 11:2120676. [PMID: 36117524 PMCID: PMC9481153 DOI: 10.1080/2162402x.2022.2120676] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
With the rapid clinical development of immune checkpoint inhibitors (ICIs), the standard of care in cancer management has evolved rapidly. However, immunotherapy is not currently beneficial for all patients. In addition to intrinsic tumor factors, other etiologies of resistance to ICIs arise from the complex interplay between cancer and its microenvironment. Recognition of the essential role of the tumor microenvironment (TME) in cancer progression has led to a shift from a tumor-cell-centered view of cancer development, to the concept of a complex tumor ecosystem that supports tumor growth and metastatic dissemination. The expansion of immunosuppressive cells represents a cardinal strategy deployed by tumor cells to escape detection and elimination by the immune system. Regulatory T lymphocytes (Treg), myeloid-derived suppressor cells (MDSCs), and type-2 tumor-associated macrophages (TAM2) are major components of these inhibitory cellular networks, with the ability to suppress innate and adaptive anticancer immunity. They therefore represent major impediments to anticancer therapies, particularly immune-based interventions. Recent work has provided evidence that, beyond their direct cytotoxic effects on cancer cells, several conventional chemotherapeutic (CT) drugs and agents used in targeted therapies (TT) can promote the elimination or inactivation of suppressive immune cells, resulting in enhanced antitumor immunity. In this review, we will analyze findings pertaining to this concept, discuss the possible molecular bases underlying the selective targeting of these immunosuppressive cells by antineoplastic agents (CT and/or TT), and consider current challenges and future prospects related to the integration of these molecules into more efficient anticancer strategies, in the era of immunotherapy.
Collapse
Affiliation(s)
- Robby Barnestein
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
| | - Loïck Galland
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
| | - Laura Kalfeist
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - François Ghiringhelli
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Sylvain Ladoire
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Emeric Limagne
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| |
Collapse
|
48
|
Shahbandi A, Chiu FY, Ungerleider NA, Kvadas R, Mheidly Z, Sun MJS, Tian D, Waizman DA, Anderson AY, Machado HL, Pursell ZF, Rao SG, Jackson JG. Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80. NATURE CANCER 2022; 3:1513-1533. [PMID: 36482233 PMCID: PMC9923777 DOI: 10.1038/s43018-022-00466-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/14/2022] [Indexed: 04/16/2023]
Abstract
Breast cancer cells must avoid intrinsic and extrinsic cell death to relapse following chemotherapy. Entering senescence enables survival from mitotic catastrophe, apoptosis and nutrient deprivation, but mechanisms of immune evasion are poorly understood. Here we show that breast tumors surviving chemotherapy activate complex programs of immune modulation. Characterization of residual disease revealed distinct tumor cell populations. The first population was characterized by interferon response genes, typified by Cd274, whose expression required chemotherapy to enhance chromatin accessibility, enabling recruitment of IRF1 transcription factor. A second population was characterized by p53 signaling, typified by CD80 expression. Treating mammary tumors with chemotherapy followed by targeting the PD-L1 and/or CD80 axes resulted in marked accumulation of T cells and improved response; however, even combination strategies failed to fully eradicate tumors in the majority of cases. Our findings reveal the challenge of eliminating residual disease populated by senescent cells expressing redundant immune inhibitory pathways and highlight the need for rational immune targeting strategies.
Collapse
Affiliation(s)
- Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Nathan A Ungerleider
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Raegan Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Di Tian
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Daniel A Waizman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ashlyn Y Anderson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Sonia G Rao
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
49
|
Zhu Y, Tzoras E, Matikas A, Bergh J, Valachis A, Zerdes I, Foukakis T. Expression patterns and prognostic implications of tumor-infiltrating lymphocytes dynamics in early breast cancer patients receiving neoadjuvant therapy: A systematic review and meta-analysis. Front Oncol 2022; 12:999843. [PMID: 36531050 PMCID: PMC9749788 DOI: 10.3389/fonc.2022.999843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 08/06/2023] Open
Abstract
PURPOSE High levels of tumor-infiltrating lymphocytes (TILs) are associated with better outcomes in early breast cancer and higher pathological response rates to neoadjuvant chemotherapy especially in the triple-negative (TNBC) and HER2+ subtypes. However, the dynamic changes in TILs levels after neoadjuvant treatment (NAT) are less studied. This systematic review and meta-analysis aimed to investigate the patterns and role of TILs dynamics change in early breast cancer patients receiving NAT. METHODS Medline, Embase, Web of Science Core Collection and PubMed Central databases were searched for eligible studies. Data were extracted independently by two researchers and discordances were resolved by a third. Pooled TILs rates pre- & post-treatment (overall and per subtype), pooled rates of ΔTILs and direction of change after NAT as well as correlation of ΔTILs with survival outcomes were generated in the outcome analysis. RESULTS Of 2116 identified entries, 34 studies fulfilled the criteria and provided adequate data for the outcomes of interest. A decreased level of TILs was observed after NAT in paired samples across all subtypes. The effect of NAT on TILs was most prominent in TNBC subtype with a substantial change, either increase or decrease, in 79.3% (95% CI 61.7-92.6%) of the patients as well as in HER2+ disease (14.4% increased vs 46.2% decreased). An increase in ΔTILs in TNBC was associated with better disease-free/relapse-free survival in pooled analysis (univariate HR = 0.59, 95% CI: 0.37-0.95, p = 0.03). CONCLUSION This meta-analysis illustrates the TILs dynamics during NAT for breast cancer and indicates prognostic implications of ΔTILs in TNBC. The potential clinical utility of the longitudinal assessment of TILs during neoadjuvant therapy warrants further validation.
Collapse
Affiliation(s)
- Yajing Zhu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Evangelos Tzoras
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Antonios Valachis
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
50
|
Zeng Q, Saghafinia S, Chryplewicz A, Fournier N, Christe L, Xie YQ, Guillot J, Yucel S, Li P, Galván JA, Karamitopoulou E, Zlobec I, Ataca D, Gallean F, Zhang P, Rodriguez-Calero JA, Rubin M, Tichet M, Homicsko K, Hanahan D. Aberrant hyperexpression of the RNA binding protein FMRP in tumors mediates immune evasion. Science 2022; 378:eabl7207. [DOI: 10.1126/science.abl7207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many human cancers manifest the capability to circumvent attack by the adaptive immune system. In this work, we identified a component of immune evasion that involves frequent up-regulation of fragile X mental retardation protein (FMRP) in solid tumors. FMRP represses immune attack, as revealed by cancer cells engineered to lack its expression. FMRP-deficient tumors were infiltrated by activated T cells that impaired tumor growth and enhanced survival in mice. Mechanistically, FMRP’s immunosuppression was multifactorial, involving repression of the chemoattractant C-C motif chemokine ligand 7 (CCL7) concomitant with up-regulation of three immunomodulators—interleukin-33 (IL-33), tumor-secreted protein S (PROS1), and extracellular vesicles. Gene signatures associate FMRP’s cancer network with poor prognosis and response to therapy in cancer patients. Collectively, FMRP is implicated as a regulator that orchestrates a multifaceted barrier to antitumor immune responses.
Collapse
Affiliation(s)
- Qiqun Zeng
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- Opna Bio SA, Biopole, 1066 Epalinges, Lausanne, Switzerland
| | - Sadegh Saghafinia
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- Opna Bio SA, Biopole, 1066 Epalinges, Lausanne, Switzerland
| | - Agnieszka Chryplewicz
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Nadine Fournier
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Lucine Christe
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Yu-Qing Xie
- Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jeremy Guillot
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Simge Yucel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Pumin Li
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1011 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - José A. Galván
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | | | - Inti Zlobec
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Dalya Ataca
- Opna Bio SA, Biopole, 1066 Epalinges, Lausanne, Switzerland
| | | | - Peng Zhang
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | | | - Mark Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Mélanie Tichet
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1011 Lausanne, Switzerland
- Lausanne Branch, Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Krisztian Homicsko
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1011 Lausanne, Switzerland
- Lausanne Branch, Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), 1011 Lausanne, Switzerland
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- Agora Cancer Research Center, 1011 Lausanne, Switzerland
- Lausanne Branch, Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), 1011 Lausanne, Switzerland
| |
Collapse
|