1
|
Zhang Y, Li B, Wang T, Duan N, Zheng J, Li H, Zhang F, Fang X. Efficient hydrogenation of ketones over the diaminophosphino manganese complex. Dalton Trans 2024; 53:16475-16479. [PMID: 39324845 DOI: 10.1039/d4dt02297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Herein, we synthesized new manganese(I) complexes coordinated with the tetradentate ligand PNNP. The complexes show higher activity and excellent substituent tolerance in contrast to their manganese counterparts and are applicable in the hydrogenation of a wide range of aromatic, aliphatic and heterocyclic ketones to their corresponding alcohols.
Collapse
Affiliation(s)
- Yu Zhang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Bin Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Tao Wang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Ning Duan
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Jianwei Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao Li
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Fengjun Zhang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Xiaolong Fang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| |
Collapse
|
2
|
Wen Y, Feng Y, Wei J, Zhang T, Cai C, Sun J, Qian X, Zhao Y. Photovoltaic-driven stable electrosynthesis of H 2O 2 in simulated seawater and its disinfection application. Chem Sci 2024:d4sc05909c. [PMID: 39479170 PMCID: PMC11514145 DOI: 10.1039/d4sc05909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Electrosynthesis of H2O2 through O2 reduction in seawater provides bright sight on the H2O2 industry, which is a prospective alternative to the intensively constructed anthraquinone process. In this work, a photovoltaic-driven flow cell system is built for the electrosynthesis of H2O2 in simulated seawater using N-doped carbon catalysts. The N-doped carbon catalysts with multiple N-doped carbon defects can achieve a record-high H2O2 production rate of 34.7 mol gcatalyst -1 h-1 under an industrially relevant current density of 500 mA cm-2 and a long-term stability over 200 h in simulated seawater (0.5 M NaCl). When driven by the photovoltaic system, a H2O2 solution of ∼1.0 wt% in 0.5 M NaCl is also obtained at about 700 mA cm-2. The obtained solution is applied for disinfection of mouse wounds, with a removal rate of 100% for Escherichia coli and negligible toxicity to living organisms. It provides bright prospects for large-scale on-site H2O2 production and on-demand disinfection.
Collapse
Affiliation(s)
- Yichan Wen
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ting Zhang
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chengcheng Cai
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jiyi Sun
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xufang Qian
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
3
|
Wang T, Pan X, He M, Kang L, Ma W. In Situ Construction of Hollow Coral-Like Porous S-Doped g-C 3N 4/ZnIn 2S 4 S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403771. [PMID: 38961647 PMCID: PMC11434114 DOI: 10.1002/advs.202403771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Indexed: 07/05/2024]
Abstract
The rational design of visible-light-responsive catalysts is crucial for converting solar energy into hydrogen energy to promote sustainable energy development. In this work, a C─S─C bond is introduced into g-C3N4 (CN) through S doping. With the help of the flexible C─S─C bond under specific stimuli, a hollow coral-like porous structure of S-doped g-C3N4 (S-CN) is synthesized for the first time. And an S-doped g-C3N4/ZnIn2S4 (S-CN/ZIS) heterojunction catalyst is in situ synthesized based on S-CN. S0.5-CN/ZIS exhibits excellent photocatalytic hydrogen evolution (PHE) efficiency (19.25 mmol g-1 h-1), which is 2.7 times higher than that of the g-C3N4/ZnIn2S4 (CN/ZIS) catalyst (8.46 mmol g-1 h-1), with a high surface quantum efficiency (AQE) of 34.43% at 420 nm. Experiments and theoretical calculations demonstrate that the excellent photocatalytic performance is attributed to the larger specific surface area and porosity, enhanced interfacial electric field (IEF) effect, and appropriate hydrogen adsorption Gibbs free energy (ΔGH*). The synergistic effect of S doping and S-scheme heterojunction contributes to the above advancement. This study provides new insights and theoretical basis for the design of CN-based photocatalysts.
Collapse
Affiliation(s)
- Tianyu Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Xuanlin Pan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun East Road, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Zhongguancun East Road, Haidian District, Beijing, 100049, China
| | - Minyi He
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun East Road, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Zhongguancun East Road, Haidian District, Beijing, 100049, China
| | - Lei Kang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Wangjing Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun East Road, Haidian District, Beijing, 100190, China
| |
Collapse
|
4
|
Zhao F, Yang K, Liu Y, Li J, Li C, Xu X, He Y. Developing a Multifunctional Cathode for Photoassisted Lithium-Sulfur Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402978. [PMID: 39030867 PMCID: PMC11425247 DOI: 10.1002/advs.202402978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Integration of solar cell and secondary battery cannot only promote solar energy application but also improve the electrochemical performance of battery. Lithium-sulfur battery (LSB) is an ideal candidate for photoassisted batteries owing to its high theoretical capacity. Unfortunately, the researches related the combination of solar energy and LSB are relatively lacking. Herein, a freestanding photoelectrode is developed for photoassisted lithium-sulfur battery (PALSB) by constructing a heterogeneous structured Au@N-TiO2 on carbon cloths (Au@N-TiO2/CC), which combines multiple advantages. The Au@N-TiO2/CC photoelectrode can produce the photoelectrons to facilitate sulfur reduction during discharge process, while generating holes to accelerate sulfur evolution during charge process, improving the kinetics of electrochemical reactions. Meanwhile, Au@N-TiO2/CC can work as an electrocatalyst to promote the conversion of intermediate polysulfides during charge/discharge process, mitigating induced side reactions. Benefiting from the synergistic effect of electrocatalysis and photocatalysis, PALSB assembled with an Au@N-TiO2/CC photoelectrode obtains ultrahigh specific capacity, excellent rate performance, and outstanding cycling performance. What is more, the Au@N-TiO2/CC assembled PALSB can be directly charged under light illumination. This work not only expands the application of solar energy but also provides a new insight to develop advanced LSBs.
Collapse
Affiliation(s)
- Fei Zhao
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Ke Yang
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Yuxin Liu
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Juan Li
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Chan Li
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Xinwu Xu
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Yibo He
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| |
Collapse
|
5
|
Jiang H, Peng Z, Lv X, Liu Y, Li X, Deng Y. Hybrid chain reaction nanoscaffold-based functional nucleic acid nanomaterial cascaded with rolling circle amplification for signal enhanced miRNA let-7a detection. Mikrochim Acta 2024; 191:533. [PMID: 39134753 DOI: 10.1007/s00604-024-06617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
A novel functional nucleic acid (FNA) nanomaterial based on hybrid chain reaction (HCR) nanoscaffolds is proposed to solve the problem of time superposition and repeated primer design in sensitive miRND detection using cascade amplification technique. Rolling circle amplification (RCA) was cascaded with the prepared FNA nanomaterials for miRNA let-7a (as a model target) sensitive detection by lateral flow assay (LFA). Under the optimal conditions, the proposed RCA-FNA-LFA assay demonstrated the specificity and accuracy for miRNA let-7a detection with a detection limit of 1.07 pM, which increased sensitivity by nearly 20 times compared with that of RCA -LFA assay. It is worth noting that the non-target-dependent self-assembly process of HCR nanoscaffolds does not take up the whole detection time, thus, less time is taken than that of the conventional cascaded method. Moreover, the proposed assay does not need to consider the system compatibility between two kinds of isothermal amplification techniques. As for detection of different miRNAs, only the homologous arm of the padlock probe of RCA needs to be changed, while the FNA nanomaterial does not need any change, which greatly simplifies the primer design of the cascaded amplification techniques. With further development, the proposed RCA-FNA-LFA assay might achieve more sensitive and faster results to better satisfy the requirements of clinical diagnosis combing with more sensitive labels or small strip reader.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhao Peng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Dufresnes C, Ghielmi S, Halpern B, Martínez-Freiría F, Mebert K, Jelić D, Crnobrnja-Isailović J, Gippner S, Jablonski D, Joger U, Laddaga L, Petrovan S, Tomović L, Vörös J, İğci N, Kariş M, Zinenko O, Ursenbacher S. Phylogenomic insights into the diversity and evolution of Palearctic vipers. Mol Phylogenet Evol 2024; 197:108095. [PMID: 38729384 DOI: 10.1016/j.ympev.2024.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Despite decades of molecular research, phylogenetic relationships in Palearctic vipers (genus Vipera) still essentially rely on a few loci, such as mitochondrial barcoding genes. Here we examined the diversity and evolution of Vipera with ddRAD-seq data from 33 representative species and subspecies. Phylogenomic analyses of ∼ 1.1 Mb recovered nine major clades corresponding to known species/species complexes which are generally consistent with the mitochondrial phylogeny, albeit with a few deep discrepancies that highlight past hybridization events. The most spectacular case is the Italian-endemic V. walser, which is grouped with the alpine genetic diversity of V. berus in the nuclear tree despite carrying a divergent mitogenome related to the Caucasian V. kaznakovi complex. Clustering analyses of SNPs suggest potential admixture between diverged Iberian taxa (V. aspis zinnikeri and V. seoanei), and confirm that the Anatolian V. pontica corresponds to occasional hybrids between V. (ammodytes) meridionalis and V. kaznakovi. Finally, all analyzed lineages of the V. berus complex (including V. walser and V. barani) form vast areas of admixture and may be delimited as subspecies. Our study sets grounds for future taxonomic and phylogeographic surveys on Palearctic vipers, a group of prime interest for toxinological, ecological, biogeographic and conservation research.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Laboratory for Amphibian Systematics and Evolutionary Research, College of Biology & the Environment, Nanjing Forestry University, Nanjing, China; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris, France.
| | | | - Bálint Halpern
- MME Birdlife Hungary, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, Hungary; HUN-REN - ELTE - MTM Integrative Ecology Research Group, Budapest, Hungary
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Konrad Mebert
- Global Biology, 5242 Birr, Switzerland; Institute of Development, Ecology, Conservation and Cooperation, 00144 Rome, Italy
| | - Dusan Jelić
- Croatian Institute for Biodiversity, BIOTA Ltd, 10000 Zagreb, Croatia
| | - Jelka Crnobrnja-Isailović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; Department of Evolutionary Biology, Institute for Biological Research « S. Stanković », University of Belgrade - National Institute for Republic of Serbia, 11108 Belgrade, Serbia
| | - Sven Gippner
- Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ulrich Joger
- State Museum of Natural History, Braunschweig, Germany
| | - Lorenzo Laddaga
- Società di Scienze Naturali del Verbano Cusio Ossola, Museo di Scienze Naturali, Collegio Mellerio Rosmini, Domodossola, Italy
| | - Silviu Petrovan
- Conservation Science Group, Department of Zoology, University of Cambridge, UK
| | - Ljiljana Tomović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Judit Vörös
- Department of Zoology, Hungarian Natural History Museum, 1088 Budapest, Hungary
| | - Naşit İğci
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Nevşehir Haci Bektaş Veli University, 50300 Nevşehir, Türkiye
| | - Mert Kariş
- Laboratory Technology Program, Acıgöl Vocational School of Technical Sciences, Nevşehir Haci Bektaş Veli University, 50300 Nevşehir, Türkiye
| | | | - Sylvain Ursenbacher
- info fauna - Karch, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; Balaton Limnological Research Institute, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
| |
Collapse
|
7
|
Smirnov IV, Biriukov KO, Shvydkiy NV, Perekalin DS, Afanasyev OI, Chusov D. Air-Stable Arene Manganese Complexes as Catalysts for the Syngas-Assisted Direct Reductive Amination, Cyanation of Aldehyde, and CO 2 Fixation by Epoxide with High Functional Groups Tolerance. J Org Chem 2024; 89:10338-10343. [PMID: 38943599 DOI: 10.1021/acs.joc.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Manganese complexes [(arene)Mn(CO)3]+ were prepared in one step from arenes and Mn(CO)5Br. They were found to be efficient catalysts in the carbonyl cyanation with TMSCN, CO2 fixation by epoxides, and direct reductive amination in the presence of syngas. The amination reaction tolerated various reducible functional groups. The synergy of carbon monoxide and hydrogen in syngas provides high efficiency of the catalytic system. The developed protocols do not require an inert atmosphere, and the catalysts can be handled in air.
Collapse
Affiliation(s)
- Ivan V Smirnov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Klim O Biriukov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
| | - Nikita V Shvydkiy
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
| | - Dmitry S Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, INEOS, Moscow 119334, Russia
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
8
|
Pan W, Niu H, Luo S, Chen L, Wu ZS. Intelligent Reconfiguration-Promoted Cellular Internalization of Core-Shell DNA Nanoprobe Equipped with Successive Dual Stimuli-Responsive Protective Satellites for Amplification Fluorescence Imaging of Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311388. [PMID: 38282377 DOI: 10.1002/smll.202311388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Although DNA probes have attracted increasing interest for precise tumor cell identification by imaging intracellular biomarkers, the requirement of commercial transfection reagents, limited targeting ligands, and/or non-biocompatible inorganic nanostructures has hampered the clinic translation. To circumvent these shortcomings, a reconfigurable ES-NC (Na+-dependent DNAzyme (E)-based substrate (S) cleavage core/shell DNA nanocluster (NC)) entirely from DNA strands is assembled for precise imaging of cancerous cells in a successive dual-stimuli-responsive manner. This nanoprobe is composed of a strung DNA tetrahedral satellites-based protective (DTP) shell, parallelly aligned target-responsive sensing (PTS) interlayer, and hydrophobic cholesterol-packed innermost layer (HCI core). Tetrahedral axial rotation-activated reconfiguration of DTP shell promotes the exposure of interior hydrophobic moieties, enabling cholesterol-mediated cellular internalization without auxiliary elements. Within cells, over-expressed glutathione triggers the disassembly of the DTP protective shell (first stimulus), facilitating target-stimulated signal transduction/amplification process (second stimuli). Target miRNA-21 is detected down to 10.6 fM without interference from coexisting miRNAs. Compared with transfection reagent-mediated counterpart, ES-NC displays a higher imaging ability, resists nuclease degradation, and has no detectable damage to healthy cells. The blind test demonstrates that the ES-NC is suitable for the identification of cancerous cells from healthy cells, indicating a promising tool for early diagnosis and prediction of cancer.
Collapse
Affiliation(s)
- Wenhao Pan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
9
|
Yan Y, Wang H, Bi X, Zhao Y, Wu M. Efficient electrocatalytic reduction of CO 2 to CO enhanced by the synergistic effect of N,P on carbon aerogel. Chem Commun (Camb) 2024; 60:6439-6442. [PMID: 38832367 DOI: 10.1039/d4cc01537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A metal-free catalyst, N,P-codoped carbon aerogel, was used to realize the high efficiency reduction of CO2 to CO. Therein, the pyridinic N acts as the active center to activate and reduce CO2 and the atom of P acts as the "transition atom" of the proton to reduce the free energy barrier from *CO2 to *COOH.
Collapse
Affiliation(s)
- Yifan Yan
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Hongzhi Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xinze Bi
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yuezhu Zhao
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Mingbo Wu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
10
|
Dey K, de Ruiter G. Chemoselective Hydrogenation of α,β-Unsaturated Ketones Catalyzed by a Manganese(I) Hydride Complex. Org Lett 2024; 26:4173-4177. [PMID: 38738936 PMCID: PMC11129310 DOI: 10.1021/acs.orglett.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Here, we report the chemoselective hydrogenation of α,β-unsaturated ketones catalyzed by a well-defined Mn(I) PCNHCP pincer complex [(PCNHCP)Mn(CO)2H] (1). The reaction is compatible with a wide variety of functional groups that include halides, esters, amides, nitriles, nitro, alkynes, and alkenes, and for most substrates occurs readily at ambient hydrogen pressure (1-2 bar). Mechanistic studies and deuterium labeling experiments reveal a non-cooperative mechanism, which is further discussed in this report.
Collapse
Affiliation(s)
- Kartick Dey
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
11
|
Zhang J, Chen M, Xiao J, Han H, Zhao J, Zhang L, Wang F, Liu ZQ. A Recyclable Electrochemical Reduction of Aldehydes and Ketones to Alcohols Using Water as the Hydrogen Source and Solvent. J Org Chem 2024; 89:7065-7075. [PMID: 38666304 DOI: 10.1021/acs.joc.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
There are several challenging problems such as the usage of combustible and hazardous hydrogen sources and severe environmental pollution in the conventional reduction of aldehydes/ketones to alcohols. We report here a practical, safe, and green electrochemical reduction, which solves these problems to a large extent. Through an undivided cell, Zn(+) and Sn(-) as the electrode, tetrabutylammonium chloride (TBAC) as the electrolyte, water as the solvent and hydrogen source, a wide range of aldehydes and ketones are converted into the corresponding alcohols in mild conditions. Furthermore, the electrolytes and water can be recycled, and reductive deuteration can be achieved by simply using D2O as the solvent. Finally, the reduction can be smoothly scaled up to a kilogram level.
Collapse
Affiliation(s)
- Jiatai Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongliang Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lanlan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
12
|
Lourenço DL, Fernandes AC. Reduction of sulfoxides catalyzed by the commercially available manganese complex MnBr(CO) 5. Org Biomol Chem 2024; 22:3746-3751. [PMID: 38652042 DOI: 10.1039/d4ob00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A new methodology for the reduction of a wide variety of aliphatic and aromatic sulfoxides catalyzed by the air-stable, cheap and commercially available manganese catalyst MnBr(CO)5 with excellent yields is reported in this work. The catalytic system MnBr(CO)5/PhSiH3 is highly chemoselective, allowing the effective reduction of the SO bond in the presence of different functional groups.
Collapse
Affiliation(s)
- Daniel L Lourenço
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Ana C Fernandes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
13
|
Ruan J, Lei YJ, Fan Y, Borras MC, Luo Z, Yan Z, Johannessen B, Gu Q, Konstantinov K, Pang WK, Sun W, Wang JZ, Liu HK, Lai WH, Wang YX, Dou SX. Linearly Interlinked Fe-N x-Fe Single Atoms Catalyze High-Rate Sodium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312207. [PMID: 38329004 DOI: 10.1002/adma.202312207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Linearly interlinked single atoms offer unprecedented physiochemical properties, but their synthesis for practical applications still poses significant challenges. Herein, linearly interlinked iron single-atom catalysts that are loaded onto interconnected carbon channels as cathodic sulfur hosts for room-temperature sodium-sulfur batteries are presented. The interlinked iron single-atom exhibits unique metallic iron bonds that facilitate the transfer of electrons to the sulfur cathode, thereby accelerating the reaction kinetics. Additionally, the columnated and interlinked carbon channels ensure rapid Na+ diffusion kinetics to support high-rate battery reactions. By combining the iron atomic chains and the topological carbon channels, the resulting sulfur cathodes demonstrate effective high-rate conversion performance while maintaining excellent stability. Remarkably, even after 5000 cycles at a current density of 10 A g-1, the Na-S battery retains a capacity of 325 mAh g-1. This work can open a new avenue in the design of catalysts and carbon ionic channels, paving the way to achieve sustainable and high-performance energy devices.
Collapse
Affiliation(s)
- Jiufeng Ruan
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, New South Wales, 2500, Australia
| | - Yao-Jie Lei
- Centre for Clean Energy Technology, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Yameng Fan
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, New South Wales, 2500, Australia
| | - Marcela Chaki Borras
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, New South Wales, 2500, Australia
| | - Zhouxin Luo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zichao Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Bernt Johannessen
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Qinfen Gu
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, New South Wales, 2500, Australia
| | - Wei Kong Pang
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, New South Wales, 2500, Australia
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jia-Zhao Wang
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, New South Wales, 2500, Australia
| | - Hua-Kun Liu
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, New South Wales, 2500, Australia
| | - Yun-Xiao Wang
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, New South Wales, 2500, Australia
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shi-Xue Dou
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
14
|
Gulyaeva ES, Buhaibeh R, Boundor M, Azouzi K, Willot J, Bastin S, Duhayon C, Lugan N, Filippov OA, Sortais JB, Valyaev DA, Canac Y. Impact of the Methylene Bridge Substitution in Chelating NHC-Phosphine Mn(I) Catalyst for Ketone Hydrogenation. Chemistry 2024; 30:e202304201. [PMID: 38314964 DOI: 10.1002/chem.202304201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Systematic modification of the chelating NHC-phosphine ligand (NHC = N-heterocyclic carbene) in highly efficient ketone hydrogenation Mn(I) catalyst fac-[(Ph2PCH2NHC)Mn(CO)3Br] has been performed and the catalytic activity of the resulting complexes was evaluated using acetophenone as a benchmark substrate. While the variation of phosphine and NHC moieties led to inferior results than for a parent system, the incorporation of a phenyl substituent into the ligand methylene bridge improved catalytic performance by ca. 3 times providing maximal TON values in the range of 15000-20000. Mechanistic investigation combining experimental and computational studies allowed to rationalize this beneficial effect as an enhanced stabilization of reaction intermediates including anionic hydride species fac-[(Ph2PC(Ph)NHC)Mn(CO)3H]- playing a crucial role in the hydrogenation process. These results highlight the interest of such carbon bridge substitution strategy being rarely employed in the design of chemically non-innocent ligands.
Collapse
Affiliation(s)
- Ekaterina S Gulyaeva
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia
| | - Ruqaya Buhaibeh
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Mohamed Boundor
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Karim Azouzi
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jérémy Willot
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Stéphanie Bastin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia
| | - Jean-Baptiste Sortais
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 5, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| |
Collapse
|
15
|
Vardaki MZ, Gregoriou VG, Chochos CL. Biomedical applications, perspectives and tag design concepts in the cell - silent Raman window. RSC Chem Biol 2024; 5:273-292. [PMID: 38576725 PMCID: PMC10989507 DOI: 10.1039/d3cb00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
Spectroscopic studies increasingly employ Raman tags exhibiting a signal in the cell - silent region of the Raman spectrum (1800-2800 cm-1), where bands arising from biological molecules are inherently absent. Raman tags bearing functional groups which contain a triple bond, such as alkyne and nitrile or a carbon-deuterium bond, have a distinct vibrational frequency in this region. Due to the lack of spectral background and cell-associated bands in the specific area, the implementation of those tags can help overcome the inherently poor signal-to-noise ratio and presence of overlapping Raman bands in measurements of biological samples. The cell - silent Raman tags allow for bioorthogonal imaging of biomolecules with improved chemical contrast and they have found application in analyte detection and monitoring, biomarker profiling and live cell imaging. This review focuses on the potential of the cell - silent Raman region, reporting on the tags employed for biomedical applications using variants of Raman spectroscopy.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Vasilis G Gregoriou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| | - Christos L Chochos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| |
Collapse
|
16
|
Ma Y, Zhao X, Tian P, Xu K, Luo J, Li H, Yuan M, Liu X, Zhong Y, Wei P, Song J, Wen L, Lu C. Laser-Ignited Lipid Peroxidation Nanoamplifiers for Strengthening Tumor Photodynamic Therapy Through Aggravating Ferroptotic Propagation and Sustainable High Immunogenicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306402. [PMID: 37992239 DOI: 10.1002/smll.202306402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Photodynamic therapy (PDT) is extensively investigated for tumor therapy in the clinic. However, the efficacy of PDT is severely limited by the tissue penetrability of light, short effective half-life and radius of reactive oxygen species (ROS), and the weak immunostimulatory effect. In this study, a glutathione (GSH)-activatable nano-photosensitizer is developed to load with arachidonic acid (AA) and camouflage by erythrocyte membrane, which serves as a laser-ignited lipid peroxidation nanoamplifier (MAR). The photosensitive effect of MAR is recovered accompanied by the degradation in the tumor microenvironment and triggers the peroxidation of AA upon laser excitation. Interestingly, it aggravates the propagation of ferroptosis among cancer cells by driving the continuous lipid peroxidation chain reactions with the participation of the degradation products, ferrous ions (Fe2+), and AA. Consequently, even the deep-seated tumor cells without illumination also undergo ferroptosis owing to the propagation of ferroptotic signal. Moreover, the residual tumor cells undergoing ferroptosis still maintain high immunogenicity after PDT, thus continuously triggering sufficient tumor-associated antigens (TAAs) release to remarkably promote the anti-tumor immune response. Therefore, this study will provide a novel "all-in-one" nano-photosensitizer that not only amplifies the damaging effect and expands the effective range of PDT but also improves the immunostimulatory effect after PDT.
Collapse
Affiliation(s)
- Yunong Ma
- Medical College, Guangxi University, Nanning, 530004, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Xi Zhao
- Medical College, Guangxi University, Nanning, 530004, China
| | - Peilin Tian
- Medical College, Guangxi University, Nanning, 530004, China
| | - Kexin Xu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical College, Guangxi University, Nanning, 530004, China
| | - Honghui Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Mingqing Yuan
- Medical College, Guangxi University, Nanning, 530004, China
| | - Xu Liu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Yanping Zhong
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Pingzhen Wei
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| |
Collapse
|
17
|
An JX, Han ZY, Qin YT, Li CX, He JL, Zhang XZ. Bacteria-Based Backpacks to Enhance Adoptive Macrophage Transfer against Solid Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305384. [PMID: 37672674 DOI: 10.1002/adma.202305384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Indexed: 09/08/2023]
Abstract
Adoptive cell therapy has emerged as a promising approach for cancer treatment. However, the transfer of macrophages exhibits limited efficacy against solid tumors due to the dynamic cellular phenotypic shift from antitumor to protumor states within the immunosuppressive tumor microenvironment. In this study, a strategy of attaching bacteria to macrophages (Mø@bac) is reported that endows adoptively infused macrophages with durable stimulation by leveraging the intrinsic immunogenicity of bacteria. These attached bacteria, referred to as backpacks, are encapsulated with adhesive nanocoatings and can sustainably control the cellular phenotypes in vivo. Moreover, Mø@bac can repolarize endogenous tumor-associated macrophages, leading to a more robust immune response and thus reducing the tumor progression in a murine 4T1 cancer model without any side effects. This study utilizing bacteria as cellular backpacks opens a new avenue for the development of cell therapies.
Collapse
Affiliation(s)
- Jia-Xin An
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - You-Teng Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jin-Lian He
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
18
|
Meneguzzo P, Ajello A, Consolati MD, Ceccato E, Vita A, Sala A, Santonastaso P. Effects of the COVID-19 pandemic on youth mental health: a cross-sectional study on eating disorder patients and their unaffected siblings. Child Adolesc Psychiatry Ment Health 2024; 18:6. [PMID: 38184616 PMCID: PMC10771694 DOI: 10.1186/s13034-023-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Adolescence has emerged as a particularly vulnerable phase during the COVID-19 pandemic, with eating disorders (EDs) representing a prominent psychopathological challenge linked to the restrictions imposed by the pandemic. Emerging evidence suggests that not only individuals with EDs but also their healthy siblings (HS) may experience unique psychological effects in this context. However, the existing literature on this topic remains limited. This study seeks to examine and compare the effects of the pandemic on adolescents and adults, with a specific focus on the impact of containment measures, disruptions in daily routines, and alterations in life trajectories, for both individuals with EDs and their HS. METHODS We enrolled 273 individuals, including those diagnosed with EDs and their HS. Among the participants, 120 were under the age of 19. Multiple self-report questionnaires were administered to assess the psychological impact of 1 year of the COVID-19 pandemic. These assessments covered a range of psychological constructs, including posttraumatic symptoms, general psychopathology, and eating-related concerns. RESULTS Notably, adolescent patients with EDs demonstrated the highest psychopathological scores within our sample. They were the sole subgroup to surpass clinical cutoffs, exhibiting more pronounced issues concerning eating-related concerns and general psychological well-being. Our findings also shed light on the unique experiences of HS during the pandemic. CONCLUSION Our findings highlight the specific psychological burden endured by adolescents with EDs throughout the COVID-19 pandemic, emphasizing the vulnerability of this demographic. Moreover, the experiences of HS, often overlooked in the literature, warrant increased attention in future health programs and interventions.
Collapse
Affiliation(s)
- Paolo Meneguzzo
- Department of Neuroscience, University of Padova, Via Giustiniani 2, 35128, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| | - Alessio Ajello
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Mauro Domenico Consolati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Enrico Ceccato
- Mental Health Department, Vicenza Eating Disorders Center, Azienda ULSS8 "Berica", Vicenza, Italy
| | - Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandra Sala
- Mental Health Department, Vicenza Eating Disorders Center, Azienda ULSS8 "Berica", Vicenza, Italy
| | - Paolo Santonastaso
- Department of Neuroscience, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| |
Collapse
|
19
|
de Jong-Bolm D, Sadeghi M, Bogaciu CA, Bao G, Klaehn G, Hoff M, Mittelmeier L, Basmanav FB, Opazo F, Noé F, Rizzoli SO. Protein nanobarcodes enable single-step multiplexed fluorescence imaging. PLoS Biol 2023; 21:e3002427. [PMID: 38079451 PMCID: PMC10735187 DOI: 10.1371/journal.pbio.3002427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Multiplexed cellular imaging typically relies on the sequential application of detection probes, as antibodies or DNA barcodes, which is complex and time-consuming. To address this, we developed here protein nanobarcodes, composed of combinations of epitopes recognized by specific sets of nanobodies. The nanobarcodes are read in a single imaging step, relying on nanobodies conjugated to distinct fluorophores, which enables a precise analysis of large numbers of protein combinations. Fluorescence images from nanobarcodes were used as input images for a deep neural network, which was able to identify proteins with high precision. We thus present an efficient and straightforward protein identification method, which is applicable to relatively complex biological assays. We demonstrate this by a multicell competition assay, in which we successfully used our nanobarcoded proteins together with neurexin and neuroligin isoforms, thereby testing the preferred binding combinations of multiple isoforms, in parallel.
Collapse
Affiliation(s)
- Daniëlle de Jong-Bolm
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Mohsen Sadeghi
- Department of Mathematics and Computer Science, Free University of Berlin, Berlin, Germany
| | - Cristian A. Bogaciu
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Guobin Bao
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Gabriele Klaehn
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Merle Hoff
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Lucas Mittelmeier
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - F. Buket Basmanav
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
- Campus Laboratory for Advanced Imaging, Microscopy and Spectroscopy, University of Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Free University of Berlin, Berlin, Germany
- Department of Physics, Free University of Technology, Berlin, Germany
- Department of Chemistry, Rice University, Houston, Texas, United States of America
- Microsoft Research AI4Science, Berlin, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| |
Collapse
|
20
|
Hashemi A, Bougueroua S, Gaigeot MP, Pidko EA. HiREX: High-Throughput Reactivity Exploration for Extended Databases of Transition-Metal Catalysts. J Chem Inf Model 2023; 63:6081-6094. [PMID: 37738303 PMCID: PMC10565810 DOI: 10.1021/acs.jcim.3c00660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/24/2023]
Abstract
A method is introduced for the automated analysis of reactivity exploration for extended in silico databases of transition-metal catalysts. The proposed workflow is designed to tackle two key challenges for bias-free mechanistic explorations on large databases of catalysts: (1) automated exploration of the chemical space around each catalyst with unique structural and chemical features and (2) automated analysis of the resulting large chemical data sets. To address these challenges, we have extended the application of our previously developed ReNeGate method for bias-free reactivity exploration and implemented an automated analysis procedure to identify the classes of reactivity patterns within specific catalyst groups. Our procedure applied to an extended series of representative Mn(I) pincer complexes revealed correlations between structural and reactive features, pointing to new channels for catalyst transformation under the reaction conditions. Such an automated high-throughput virtual screening of systematically generated hypothetical catalyst data sets opens new opportunities for the design of high-performance catalysts as well as an accelerated method for expert bias-free high-throughput in silico reactivity exploration.
Collapse
Affiliation(s)
- Ali Hashemi
- Inorganic
Systems Engineering, Department of Chemical Engineering, Faculty of
Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sana Bougueroua
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement
(LAMBE) UMR8587, Paris-Saclay, Univ Evry,
CY Cergy Paris Université, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Marie-Pierre Gaigeot
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement
(LAMBE) UMR8587, Paris-Saclay, Univ Evry,
CY Cergy Paris Université, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering, Department of Chemical Engineering, Faculty of
Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
21
|
Wang X, Qian Y, Wang S, Wang M, Sun K, Cheng Z, Shao Y, Zhang S, Tang C, Chu C, Xue F, Tao L, Lu M, Bai J. Accumulative Rolling Mg/PLLA Composite Membrane with Lamellar Heterostructure for Enhanced Bacteria Inhibition and Rapid Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301638. [PMID: 37345962 DOI: 10.1002/smll.202301638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Developing composite materials with optimized mechanics, degradation, and bioactivity for bone regeneration has long been a crucial mission. Herein, a multifunctional Mg/Poly-l-lactic acid (Mg/PLLA) composite membrane based on the "materials plain" concept through the accumulative rolling (AR) method is proposed. Results show that at a rolling ratio of 75%, the comprehensive mechanical properties of the membrane in the rolling direction are self-reinforced significantly (elongation at break ≈53.2%, tensile strength ≈104.0 MPa, Young's modulus ≈2.13 GPa). This enhancement is attributed to the directional arrangement and increased crystallization of PLLA molecular chains, as demonstrated by SAXS and DSC results. Furthermore, the AR composite membrane presents a lamellar heterostructure, which not only avoids the accumulation of Mg microparticles (MgMPs) but also regulates the degradation rate. Through the contribution of bioactive MgMPs and their photothermal effect synergistically, the membrane effectively eliminates bacterial infection and accelerates vascularized bone regeneration both in vitro and in vivo. Notably, the membrane exhibits outstanding rat skull bone regeneration performance in only 4 weeks, surpassing most literature reports. In short, this work develops a composite membrane with a "one stone, four birds" effect, opening an efficient avenue toward high-performance orthopedic materials.
Collapse
Affiliation(s)
- Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Yuxin Qian
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Shuang Wang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Mingxi Wang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Ke Sun
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Zhaojun Cheng
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Shixuan Zhang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Chunbo Tang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Li Tao
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Mengmeng Lu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| |
Collapse
|
22
|
Wang Z, Yang N, Hou Y, Li Y, Yin C, Yang E, Cao H, Hu G, Xue J, Yang J, Liao Z, Wang W, Sun D, Fan C, Zheng L. L-Arginine-Loaded Gold Nanocages Ameliorate Myocardial Ischemia/Reperfusion Injury by Promoting Nitric Oxide Production and Maintaining Mitochondrial Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302123. [PMID: 37449329 PMCID: PMC10502842 DOI: 10.1002/advs.202302123] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Reperfusion therapy is vital to patient survival after a heart attack but can cause myocardial ischemia/reperfusion injury (MI/RI). Nitric oxide (NO) can ameliorate MI/RI and is a key molecule for drug development. However, reactive oxygen species (ROS) can easily oxidize NO to peroxynitrite, which causes secondary cardiomyocyte damage. Herein, L-arginine-loaded selenium-coated gold nanocages (AAS) are designed, synthesized, and modified with PCM (WLSEAGPVVTVRALRGTGSW) to obtain AASP, which targets cardiomyocytes, exhibits increased cellular uptake, and improves photoacoustic imaging in vitro and in vivo. AASP significantly inhibits oxygen glucose deprivation/reoxygenation (OGD/R)-induced H9C2 cell cytotoxicity and apoptosis. Mechanistic investigation revealed that AASP improves mitochondrial membrane potential (MMP), restores ATP synthase activity, blocks ROS generation, and prevents NO oxidation, and NO blocks ROS release by regulating the closing of the mitochondrial permeability transition pore (mPTP). AASP administration in vivo improves myocardial function, inhibits myocardial apoptosis and fibrosis, and ultimately attenuates MI/RI in rats by maintaining mitochondrial function and regulating NO signaling. AASP shows good safety and biocompatibility in vivo. This findings confirm the rational design of AASP, which can provide effective treatment for MI/RI.
Collapse
Affiliation(s)
- Zekun Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Nana Yang
- School of Bioscience and TechnologyWeifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular DiseasesWeifang Medical UniversityWeifang261053China
| | - Yajun Hou
- Department of NeurologySecond Affiliated HospitalShandong First Medical University & Shandong Academy of Medical SciencesTaianShandong271000China
| | - Yuqing Li
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Chenyang Yin
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Endong Yang
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Huanhuan Cao
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191China
| | - Gaofei Hu
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191China
| | - Jing Xue
- Department of NeurologyChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Jialei Yang
- Department of NeurologyChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Ziyu Liao
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Weiyun Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Dongdong Sun
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Cundong Fan
- Department of NeurologySecond Affiliated HospitalShandong First Medical University & Shandong Academy of Medical SciencesTaianShandong271000China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191China
- Department of NeurologyChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| |
Collapse
|
23
|
Both NF, Spannenberg A, Jiao H, Junge K, Beller M. Bis(N-Heterocyclic Carbene) Manganese(I) Complexes: Efficient and Simple Hydrogenation Catalysts. Angew Chem Int Ed Engl 2023; 62:e202307987. [PMID: 37395302 DOI: 10.1002/anie.202307987] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
The use of bis(NHC) manganese(I) complexes 3 as catalysts for the hydrogenation of esters was investigated. For that purpose, a series of complexes has been synthesized via an improved two step procedure utilizing bis(NHC)-BEt3 adducts. By applying complexes 3 with KHBEt3 as additive, various aromatic and aliphatic esters were hydrogenated successfully at mild temperatures and low catalyst loadings, highlighting the efficiency of the novel catalytic system. The versatility of the developed catalytic system was further demonstrated by the hydrogenation of other substrate classes like ketones, nitriles, N-heteroarenes and alkenes. Mechanistic experiments and DFT calculations indicate an inner sphere mechanism with the loss of one CO ligand and reveal the role of BEt3 as cocatalyst.
Collapse
Affiliation(s)
- Niklas F Both
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
24
|
Oliemuller LK, Moore CE, Thomas CM. Synthesis, Characterization, and Reactivity of a (PPP) Pincer-Ligated Manganese Carbonyl Complex: Polarity Reversal Imparted by the Electrophilic Nature of a Planar Mn-P(NR 2) 2 Fragment. Inorg Chem 2023; 62:13997-14009. [PMID: 37585359 DOI: 10.1021/acs.inorgchem.3c01988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The bonding interactions of a synthesized pincer-ligated manganese dicarbonyl complex featuring an N-heterocyclic phosphenium (NHP+) central moiety are explored. The pincer ligand [PPP]Cl was coordinated to a manganese center using Mn(CO)5Br and 254 nm light to afford the chlorophosphine complex (PPClP)Mn(CO)2Br (2) as a mixture of halide exchange products and stereoisomers. The target dicarbonyl species (PPP)Mn(CO)2 (3) was prepared by treatment of 2 with 2 equiv of the reductant KC8. Computational investigations and analysis of structural parameters were used to elucidate multiple bonding interactions between the Mn center and the PNHP atom in 3. The generation of a product of formal H2 addition, (PPHP)Mn(CO)2H (4), was achieved through the dehydrogenation of NH3BH3, affording a 2:1 mixture of 4syn:4anti stereoisomers. The nucleophilic nature of the Mn center and the electrophilic nature of the PNHP moiety were demonstrated through hydride addition and protonation of 3 to produce K(THF)2[(PPHP)Mn(CO)2] (6) and (PPClP)Mn(CO)2H (5), respectively. The observed reactivity suggests that 3 is best described as a Mn-I/NHP+ complex, in contrast to pincer-ligated dicarbonyl manganese analogues typically assigned as MnI species.
Collapse
Affiliation(s)
- Leah K Oliemuller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Behera RR, Saha R, Kumar AA, Sethi S, Jana NC, Bagh B. Hydrosilylation of Terminal Alkynes Catalyzed by an Air-Stable Manganese-NHC Complex. J Org Chem 2023. [PMID: 37317486 DOI: 10.1021/acs.joc.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, catalysis with base metal manganese has received a significant amount of interest. Catalysis with manganese complexes having N-heterocyclic carbenes (NHCs) is relatively underdeveloped in comparison to the extensively investigated manganese catalysts possessing pincer ligands (particularly phosphine-based ligands). Herein, we describe the synthesis of two imidazolium salts decorated with picolyl arms (L1 and L2) as NHC precursors. Facile coordination of L1 and L2 with MnBr(CO)5 in the presence of a base resulted in the formation manganese(I)-NHC complexes (1 and 2) as an air-stable solid in good isolated yield. Single-crystal X-ray analysis revealed the structure of the cationic complexes [Mn(CO)3(NHC)][PF6] with tridentate N,C,N binding of the NHC ligand in a facile fashion. Along with a few known manganese(I) complexes, these Mn(I)-NHC complexes 1 and 2 were tested for the hydrosilylation of terminal alkynes. Complex 1 was proved to be an effective catalyst for the hydrosilylation of terminal alkynes with good selectivity toward the less thermodynamically stable β-(Z)-vinylsilanes. This method provided good regioselectivity (anti-Markovnikov addition) and stereoselectivity (β-(Z)-product). Experimental evidence suggested that the present hydrosilylation pathway involved an organometallic mechanism with manganese(I)-silyl species as a possible reactive intermediate.
Collapse
Affiliation(s)
- Rakesh R Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Alamsaty Ashis Kumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
26
|
Baweja S, Gabler T, Lönnecke P, Hey-Hawkins E. Metal phosphine aldehyde complexes and their application in Cu-free Sonogashira and Suzuki-Miyaura cross-coupling reactions. Dalton Trans 2023; 52:6494-6500. [PMID: 37096400 DOI: 10.1039/d3dt00507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Transition metal coordination chemistry and catalysis are rife with phosphine ligands. One of the rather less studied members of the phosphine ligand family are phosphine aldehydes. We have synthesised 3-(diphenylphosphino)propanal (PCHO) with a slight modification of the known procedure and studied its complexation behaviour with palladium(II) and platinum(II). The catalytic activity of the palladium(II) phosphine aldehyde complexes was investigated in Cu-free Sonogashira and Suzuki-Miyaura cross-coupling reactions. Furthermore, the homogeneous nature of the catalytically active species was confirmed.
Collapse
Affiliation(s)
- Saral Baweja
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| | - Tom Gabler
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| |
Collapse
|
27
|
Kostera S, Weber S, Blaha I, Peruzzini M, Kirchner K, Gonsalvi L. Base- and Additive-Free Carbon Dioxide Hydroboration to Methoxyboranes Catalyzed by Non-Pincer-Type Mn(I) Complexes. ACS Catal 2023; 13:5236-5244. [PMID: 37123593 PMCID: PMC10127281 DOI: 10.1021/acscatal.3c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Indexed: 04/03/2023]
Abstract
Well-defined, bench stable Mn(I) non-pincer-type complexes were tested as earth-abundant transition metal catalysts for the selective reduction of CO2 to boryl-protected MeOH in the presence of pinacolborane (HBpin). Essentially, quantitative yields were obtained under mild reaction conditions (1 bar CO2, 60 °C), without the need of any base or additives, in the presence of the alkylcarbonyl Mn(I) bis(phosphine) complexes fac-[Mn(CH2CH2CH3)(dippe)(CO)3] [Mn1, dippe = 1,2-bis(diisopropylphosphino)ethane] and [Mn(dippe)(CO)2{(μ-H)2(Bpin)}] (Mn4), that is obtained by reaction of the bench-stable precatalyst Mn1 with HBpin via elimination of butanal. Preliminary mechanistic details were obtained by a combination of NMR experiments and monitoring of the catalytic reactions.
Collapse
|
28
|
Papa V, Fessler J, Zaccaria F, Hervochon J, Dam P, Kubis C, Spannenberg A, Wei Z, Jiao H, Zuccaccia C, Macchioni A, Junge K, Beller M. Efficient Hydrogenation of N-Heterocycles Catalyzed by NNP-Manganese(I) Pincer Complexes at Ambient Temperature. Chemistry 2023; 29:e202202774. [PMID: 36193859 PMCID: PMC10100126 DOI: 10.1002/chem.202202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Manganese-catalyzed hydrogenation reactions have aroused widespread interest in recent years. Among the catalytic systems described, especially PNP- and NNP-Mn pincer catalysts have been reported for the hydrogenation of aldehydes, ketones, nitriles, aldimines and esters. Furthermore, NNP-Mn pincer compounds are efficient catalysts for the hydrogenolysis of less reactive amides, ureas, carbonates, and carbamates. Herein, the synthesis and application of specific imidazolylaminophosphine ligands and the corresponding Mn pincer complexes are described. These new catalysts have been characterized and studied by a combination of experimental and theoretical investigations, and their catalytic activities have been tested in several hydrogenation reactions with good to excellent performance. Especially, the reduction of N-heterocycles can be performed under very mild conditions.
Collapse
Affiliation(s)
- Veronica Papa
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
- Istituto italiano di tecnologiaVia Morego 3016163GenovaItaly
| | - Johannes Fessler
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Francesco Zaccaria
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia06123PerugiaItaly
| | - Julien Hervochon
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Phong Dam
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Christoph Kubis
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
- Institute of Molecular ScienceKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceShanxi University030006TaiyuanP. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia06123PerugiaItaly
| | - Alceo Macchioni
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia06123PerugiaItaly
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| |
Collapse
|
29
|
Manganese(I)-Catalyzed Asymmetric (Transfer) Hydrogenation of Ketones: An Insight into the Effect of Chiral PNN and NN ligands. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Lim CW, Lee SC. Genome-wide identification and expression analysis of Raf-like kinase gene family in pepper ( Capsicum annuum L.). PLANT SIGNALING & BEHAVIOR 2022; 17:2064647. [PMID: 35435138 PMCID: PMC9037509 DOI: 10.1080/15592324.2022.2064647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
As highly conserved signaling pathway modules, mitogen-activated protein kinase (MAPK) cascades play vital roles in a diverse range of stress and hormonal responses in plants. Among the established components of MAPK cascades, Raf-like MAPK kinase kinases (MAPKKKs) are associated with abscisic acid (ABA) signaling and osmotic stress responses. However, despite the availability of a pepper reference genome, few of the Raf-like kinases in pepper plants have been functionally characterized. In this study, we isolated 47 putative Raf-like kinase genes from the pepper genome based on in silico analysis, which were classified into two major categories, namely, groups B and C (further sub-grouped into B1-B4 and C1-C7, respectively) and named sequentially as CaRaf1 to CaRaf47. Subcellular localization prediction analysis revealed that most of the group B CaRaf-like kinases are probably nuclear-localized, whereas a majority of group C members targeted into the cytoplasm. Transcriptional regulation of the 47 CaRaf genes in response to treatment with ABA, drought, NaCl, and mannitol was quantitatively analyzed by reverse-transcription PCR analysis. This revealed a significant induction of subgroup B3, C2, C3, and C5 members, indicating that these genes may be functionally associated with the response to osmotic stress, mediated via both ABA-dependent and -independent pathways. The findings of this study can accordingly serve as a basis for the identification of CaRaf genes associated with the regulation of ABA signaling and osmotic stress response and thus contribute to enhancing our understanding of the biological functions of CaRaf kinases in the responses of plants to different abiotic stresses.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, South Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, South Korea
| |
Collapse
|
31
|
Hashemi A, Bougueroua S, Gaigeot MP, Pidko EA. ReNeGate: A Reaction Network Graph-Theoretical Tool for Automated Mechanistic Studies in Computational Homogeneous Catalysis. J Chem Theory Comput 2022; 18:7470-7482. [PMID: 36321652 DOI: 10.1021/acs.jctc.2c00404] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exploration of the chemical reaction space of chemical transformations in multicomponent mixtures is one of the main challenges in contemporary computational chemistry. To remove expert bias from mechanistic studies and to discover new chemistries, an automated graph-theoretical methodology is proposed, which puts forward a network formalism of homogeneous catalysis reactions and utilizes a network analysis tool for mechanistic studies. The method can be used for analyzing trajectories with single and multiple catalytic species and can provide unique conformers of catalysts including multinuclear catalyst clusters along with other catalytic mixture components. The presented three-step approach has the integrated ability to handle multicomponent catalytic systems of arbitrary complexity (mixtures of reactants, catalyst precursors, ligands, additives, and solvents). It is not limited to predefined chemical rules, does not require prealignment of reaction mixture components consistent with a reaction coordinate, and is not agnostic to the chemical nature of transformations. Conformer exploration, reactive event identification, and reaction network analysis are the main steps taken for identifying the pathways in catalytic systems given the starting precatalytic reaction mixture as the input. Such a methodology allows us to efficiently explore catalytic systems in realistic conditions for either previously observed or completely unknown reactive events in the context of a network representing different intermediates. Our workflow for the catalytic reaction space exploration exclusively focuses on the identification of thermodynamically feasible conversion channels, representative of the (secondary) catalyst deactivation or inhibition paths, which are usually most difficult to anticipate based solely on expert chemical knowledge. Thus, the expert bias is sought to be removed at all steps, and the chemical intuition is limited to the choice of the thermodynamic constraint imposed by the applicable experimental conditions in terms of threshold energy values for allowed transformations. The capabilities of the proposed methodology have been tested by exploring the reactivity of Mn complexes relevant for catalytic hydrogenation chemistry to verify previously postulated activation mechanisms and unravel unexpected reaction channels relevant to rare deactivation events.
Collapse
Affiliation(s)
- Ali Hashemi
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sana Bougueroua
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) UMR8587, Universite Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Marie-Pierre Gaigeot
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) UMR8587, Universite Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
32
|
Shen P, Löhning M. Insights into osteoarthritis development from single-cell RNA sequencing of subchondral bone. RMD Open 2022; 8:rmdopen-2022-002617. [PMID: 36598005 PMCID: PMC9748989 DOI: 10.1136/rmdopen-2022-002617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ping Shen
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany,Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Stem Cell and Biotherapy Engineering Research Center of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Max Löhning
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany,Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
33
|
Nautiyal R, Tavar D, Suryavanshi U, Singh G, Singh A, Vinu A, Mane GP. Advanced nanomaterials for highly efficient CO 2 photoreduction and photocatalytic hydrogen evolution. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:866-894. [PMID: 36506822 PMCID: PMC9733696 DOI: 10.1080/14686996.2022.2149036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
At present, CO2 photoreduction to value-added chemicals/fuels and photocatalytic hydrogen generation by water splitting are the most promising reactions to fix two main issues simultaneously, rising CO2 levels and never-lasting energy demand. CO2, a major contributor to greenhouse gases (GHGs) with about 65% of the total emission, is known to cause adverse effects like global temperature change, ocean acidification, greenhouse effects, etc. The idea of CO2 capture and its conversion to hydrocarbons can control the further rise of CO2 levels and help in producing alternative fuels that have several further applications. On the other hand, hydrogen being a zero-emission fuel is considered as a clean and sustainable form of energy that holds great promise for various industrial applications. The current review focuses on the discussion of the recent progress made in designing efficient photocatalytic materials for CO2 photoreduction and hydrogen evolution reaction (HER). The scope of the current study is limited to the TiO2 and non-TiO2 based advanced nanomaterials (i.e. metal chalcogenides, MOFs, carbon nitrides, single-atom catalysts, and low-dimensional nanomaterials). In detail, the influence of important factors that affect the performance of these photocatalysts towards CO2 photoreduction and HER is reviewed. Special attention is also given in this review to provide a brief account of CO2 adsorption modes on the catalyst surface and its subsequent reduction pathways/product selectivity. Finally, the review is concluded with additional outlooks regarding upcoming research on promising nanomaterials and reactor design strategies for increasing the efficiency of the photoreactions.
Collapse
Affiliation(s)
- Rashmi Nautiyal
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be) University, Mumbai, India
| | - Deepika Tavar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Center for Advanced Radiation Shielding and Geopolymeric Material, CSIR– Advanced Material and Processes Research Institute, Bhopal, India
| | - Ulka Suryavanshi
- Rayat Shikshan Sanstha’s, Karmveer Bhaurao Patil College, Vashi, Navi Mumbai, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Archana Singh
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Center for Advanced Radiation Shielding and Geopolymeric Material, CSIR– Advanced Material and Processes Research Institute, Bhopal, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Gurudas P. Mane
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
34
|
Shabade AB, Sharma DM, Bajpai P, Gonnade RG, Vanka K, Punji B. Room temperature chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds by using a well-defined mixed donor Mn(i) pincer catalyst. Chem Sci 2022; 13:13764-13773. [PMID: 36544725 PMCID: PMC9710210 DOI: 10.1039/d2sc05274a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds in α,β-unsaturated ketones, aldehydes and imines is accomplished at room temperature (27 °C) using a well-defined Mn(i) catalyst and 5.0 bar H2. Amongst the three mixed-donor Mn(i) complexes developed, κ3-(R2PN3NPyz)Mn(CO)2Br (R = Ph, iPr, t Bu); the t Bu-substituted complex ( tBu2PN3NPyz)Mn(CO)2Br shows exceptional chemoselective catalytic reduction of unsaturated bonds. This hydrogenation protocol tolerates a range of highly susceptible functionalities, such as halides (-F, -Cl, -Br, and -I), alkoxy and hydroxy, including hydrogen-sensitive moieties like acetyl, nitrile, nitro, epoxide, and unconjugated alkenyl and alkynyl groups. Additionally, the disclosed method applies to indole, pyrrole, furan, thiophene, and pyridine-containing unsaturated ketones leading to the corresponding saturated ketones. The C[double bond, length as m-dash]C bond is chemoselectively hydrogenated in α,β-unsaturated ketones, while the aldehyde's C[double bond, length as m-dash]O bond and imine's C[double bond, length as m-dash]N bond are preferentially reduced over the C[double bond, length as m-dash]C bond. A detailed mechanistic study highlighted the non-innocent behavior of the ligand in the ( tBu2PN3NPyz)Mn(i) complex and indicated a metal-ligand cooperative catalytic pathway. The molecular hydrogen (H2) acts as a hydride source, whereas MeOH provides a proton for hydrogenation. DFT energy calculations supported the facile progress of most catalytic steps, involving a crucial turnover-limiting H2 activation.
Collapse
Affiliation(s)
- Anand B. Shabade
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Dipesh M. Sharma
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Priyam Bajpai
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Physical and Material Chemistry Division, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Centre for Material Characterization, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Physical and Material Chemistry Division, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Benudhar Punji
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| |
Collapse
|
35
|
Padilla R, Ni Z, Mihrin D, Wugt Larsen R, Nielsen M. Catalytic Base‐Free Transfer Hydrogenation of Biomass Derived Furanic Aldehydes with Bioalcohols and PNP Pincer Complexes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Rosa Padilla
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| | - Zhenwei Ni
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| | - Dmytro Mihrin
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| | - René Wugt Larsen
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| | - Martin Nielsen
- Department of Chemistry Technical University of Denmark Kemitorvet 207 Building 206 Denmark
| |
Collapse
|
36
|
Carrasco-Amador JP, Canito-Lobo JL, Castaño-Liberal A, Rodríguez-Rego JM, Matamoros-Pacheco M. Actions to reduce carbon footprint in materials to healthcare buildings. Heliyon 2022; 8:e11281. [PMCID: PMC9637702 DOI: 10.1016/j.heliyon.2022.e11281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Building sector is a major contributor to the emissions of pollutant gases, which are responsible for health-damaging effects of climate change. To quantify and reduce these emissions. This comparative study is presented between two buildings that could have a sanitary or any other type of use. Both buildings have similar characteristics, except for their structures, one made of metal and the other of concrete. The design, structural calculation and three-dimensional dimensioning were performed using Building Information Modeling (BIM). The budget and the product carbon footprint study were also carried out, to calculate the level of emissions of each building. The study determined higher emissions for the metal-structured building, with 621.234 tCO2/tmaterial compared to 446.707 tCO2/tmaterial for the concrete building. To reduce these emissions, measures related to the replacement of the previously selected materials, by other materials with lower emission rates and identical functionality were presented, such as the replacement of metal building roof polyurethane, or the composition of cement for the concrete building. Both actions represented a reduction of 84.61% CO2 emissions for metal envelope building and 31.765% for the concrete structure. The results of this work will help to select more sustainable materials to use in the renovation of existing buildings, or in the construction of new buildings. For example, health-related buildings, currently in high demand, given the current pandemic situation caused by COVID-19.
Collapse
|
37
|
Ribeiro Gouveia L, Ison EA. Well-Defined ENENES Re and Mn Complexes and Their Application in Catalysis: The Role of Potassium tert-Butoxide. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liana Ribeiro Gouveia
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Elon A. Ison
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
38
|
Stichauer R, Duvinage D, Langer R, Vogt M. Manganese(I) Tricarbonyl Complexes with Bidentate Pyridine-Based Actor Ligands: Reversible Binding of CO 2 and Benzaldehyde via Cooperative C–C and Mn–O Bond Formation at Ambient Temperature. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rasmus Stichauer
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. NW2, 28359 Bremen, Germany
| | - Daniel Duvinage
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. NW2, 28359 Bremen, Germany
| | - Robert Langer
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany
| | - Matthias Vogt
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. NW2, 28359 Bremen, Germany
- Institut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany
| |
Collapse
|
39
|
Ramachandran PV, Alawaed AA, Hamann HJ. TiCl 4-Catalyzed Hydroboration of Ketones with Ammonia Borane. J Org Chem 2022; 87:13259-13269. [PMID: 36094411 DOI: 10.1021/acs.joc.2c01744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigation of a variety of Lewis acids for the hydroboration-hydrolysis (reduction) of ketones with amine-boranes has revealed that catalytic (10 mol %) titanium tetrachloride (TiCl4) in diethyl ether at room temperature immensely accelerates the reaction of ammonia borane. The product alcohols are produced in good to excellent yields within 30 min, even with ketones which typically requires 24 h or longer to reduce under uncatalyzed conditions. Several potentially reactive functionalities are tolerated, and substituted cycloalkanones are reduced diastereoselectively to the thermodynamic product. A deuterium labeling study and 11B NMR analysis of the reaction have been performed to verify the proposed hydroboration mechanism.
Collapse
Affiliation(s)
| | - Abdulkhaliq A Alawaed
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Henry J Hamann
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
40
|
Yang W, Chernyshov IY, Weber M, Pidko EA, Filonenko GA. Switching between Hydrogenation and Olefin Transposition Catalysis via Silencing NH Cooperativity in Mn(I) Pincer Complexes. ACS Catal 2022; 12:10818-10825. [PMID: 36082051 PMCID: PMC9442580 DOI: 10.1021/acscatal.2c02963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Indexed: 11/30/2022]
Abstract
![]()
While Mn-catalyzed (de)hydrogenation of carbonyl derivatives
has
been well established, the reactivity of Mn hydrides with olefins
remains very rare. Herein, we report a Mn(I) pincer complex that effectively
promotes site-controlled transposition of olefins. This reactivity
is shown to emerge once the N–H functionality within the Mn/NH
bifunctional complex is suppressed by alkylation. While detrimental
for carbonyl (de)hydrogenation, such masking of the cooperative N–H
functionality allows for the highly efficient conversion of a wide
range of allylarenes to higher-value 1-propenybenzenes in near-quantitative
yield with excellent stereoselectivities. The reactivity toward a
single positional isomerization was also retained for long-chain alkenes,
resulting in the highly regioselective formation of 2-alkenes, which
are less thermodynamically stable compared to other possible isomerization
products. The detailed mechanistic analysis of the reaction between
the activated Mn catalyst and olefins points to catalysis operating
via a metal–alkyl mechanism—one of the three conventional
transposition mechanisms previously unknown in Mn complexes.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ivan Yu. Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Evgeny A. Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A. Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
41
|
Császár Z, Kovács R, Fonyó M, Simon J, Bényei A, Lendvay G, Bakos J, Farkas G. Testing the role of the backbone length using bidentate and tridentate ligands in manganese-catalyzed asymmetric hydrogenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Chaube MA, Trattnig N, Lee D, Belkhadir Y, Pfrengle F. Synthesis of Fungal Cell Wall Oligosaccharides and Their Ability to Trigger Plant Immune Responses. European J Org Chem 2022; 2022:e202200313. [PMID: 36035813 PMCID: PMC9401017 DOI: 10.1002/ejoc.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and β-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) β-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.
Collapse
Affiliation(s)
- Manishkumar A. Chaube
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Nino Trattnig
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| | - Du‐Hwa Lee
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Fabian Pfrengle
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
43
|
Mujahed S, Hey‐Hawkins E, Gelman D. A High‐Valent Ru‐PCP Pincer Catalyst for Hydrogenation of Carbonyl and Carboxyl Compounds under Molecular Hydrogen. Chemistry 2022; 28:e202201098. [DOI: 10.1002/chem.202201098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shrouq Mujahed
- Institute of Chemistry Edmond J. Safra Campus The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Evamarie Hey‐Hawkins
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Dmitri Gelman
- Institute of Chemistry Edmond J. Safra Campus The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
44
|
Sarki N, Narani A, Naik G, Tripathi D, Jain SL, Natte K. Biowaste carbon supported manganese nanoparticles as an active catalyst for the selective hydrogenation of bio-based aldehydes. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Margoni M, Pagani E, Meani A, Storelli L, Mesaros S, Drulovic J, Barkhof F, Vrenken H, Strijbis E, Gallo A, Bisecco A, Pareto D, Sastre-Garriga J, Ciccarelli O, Yiannakas M, Palace J, Preziosa P, Rocca MA, Filippi M. Exploring in vivo multiple sclerosis brain microstructural damage through T1w/T2w ratio: a multicentre study. J Neurol Neurosurg Psychiatry 2022; 93:741-752. [PMID: 35580993 DOI: 10.1136/jnnp-2022-328908] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate white matter and grey matter T1-weighted (w)/T2w ratio (T1w/T2w ratio) in healthy controls and patients with multiple sclerosis, and its association with clinical disability. METHODS In this cross-sectional study, 270 healthy controls and 434 patients with multiple sclerosis were retrospectively selected from 7 European sites. T1w/T2w ratio was obtained from brain T2w and T1w scans after intensity calibration using eyes and temporal muscle. RESULTS In healthy controls, T1w/T2w ratio increased until 50-60 years both in white and grey matter. Compared with healthy controls, T1w/T2w ratio was significantly lower in white matter lesions of all multiple sclerosis phenotypes, and in normal-appearing white matter and cortex of patients with relapsing-remitting and secondary progressive multiple sclerosis (p≤0.026), but it was significantly higher in the striatum and pallidum of patients with relapsing-remitting, secondary progressive and primary progressive multiple sclerosis (p≤0.042). In relapse-onset multiple sclerosis, T1w/T2w ratio was significantly lower in white matter lesions and normal-appearing white matter already at Expanded Disability Status Scale (EDSS) <3.0 and in the cortex only for EDSS ≥3.0 (p≤0.023). Conversely, T1w/T2w ratio was significantly higher in the striatum and pallidum for EDSS ≥4.0 (p≤0.005). In primary progressive multiple sclerosis, striatum and pallidum showed significantly higher T1w/T2w ratio beyond EDSS=6.0 (p≤0.001). In multiple sclerosis, longer disease duration, higher EDSS, higher brain lesional volume and lower normalised brain volume were associated with lower lesional and cortical T1w/T2w ratio and a higher T1w/T2w ratio in the striatum and pallidum (β from -1.168 to 0.286, p≤0.040). CONCLUSIONS T1w/T2w ratio may represent a clinically relevant marker sensitive to demyelination, neurodegeneration and iron accumulation occurring at the different multiple sclerosis phases.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarlota Mesaros
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Jelena Drulovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Frederik Barkhof
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Hugo Vrenken
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva Strijbis
- MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Marios Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
46
|
Sarki N, Kumar R, Singh B, Ray A, Naik G, Natte K, Narani A. Lignin Residue-Derived Carbon-Supported Nanoscale Iron Catalyst for the Selective Hydrogenation of Nitroarenes and Aromatic Aldehydes. ACS OMEGA 2022; 7:19804-19815. [PMID: 35721941 PMCID: PMC9202032 DOI: 10.1021/acsomega.2c01566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 05/05/2023]
Abstract
Heterogeneous iron-based catalysts governing selectivity for the reduction of nitroarenes and aldehydes have received tremendous attention in the arena of catalysis, but relatively less success has been achieved. Herein, we report a green strategy for the facile synthesis of a lignin residue-derived carbon-supported magnetic iron (γ-Fe2O3/LRC-700) nanocatalyst. This active nanocatalyst exhibits excellent activity and selectivity for the hydrogenation of nitroarenes to anilines, including pharmaceuticals (e.g., flutamide and nimesulide). Challenging and reducible functionalities such as halogens (e.g., chloro, iodo, and fluoro) and ketone, ester, and amide groups were tolerated. Moreover, biomass-derived aldehyde (e.g., furfural) and other aromatic aldehydes were also effective for the hydrogenation process, often useful in biomedical sciences and other important areas. Before and after the reaction, the γ-Fe2O3/LRC-700 nanocatalyst was thoroughly characterized by X-ray diffraction (XRD), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, and thermogravimetric analysis (TGA). Additionally, the γ-Fe2O3/LRC-700 nanocatalyst is stable and easily separated using an external magnet and recycled up to five cycles with no substantial drop in the activity. Eventually, sustainable and green credentials for the hydrogenation reactions of 4-nitrobenzamide to 4-aminobenzamide and benzaldehyde to benzyl alcohol were assessed with the help of the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Naina Sarki
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Raju Kumar
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Baint Singh
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Anjan Ray
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ganesh Naik
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Kishore Natte
- Department
of Chemistry, Indian Institute of Technology
(IIT) Hyderabad, Kandi 502285, Sangareddy District, Telangana, India
- ,
| | - Anand Narani
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- ,
| |
Collapse
|
47
|
Photoelectrochemical oxidation assisted air purifiers; perspective as potential tools to control indoor SARS-CoV-2 Exposure. APPLIED SURFACE SCIENCE ADVANCES 2022; 9:100236. [PMCID: PMC8939627 DOI: 10.1016/j.apsadv.2022.100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus diseases 2019 (COVID-19), a viral infection pandemic, arises due to easy human-to-human transmission of severe acute respiratory syndrome coronavirus (SARS-CoV-2). The SARS-CoV-2 causes severe respiratory disorders and other life-threatening diseases (during/post-infection) such as black mold disease, diabetes, cardiovascular, and neurological disorders/diseases. COVID-19 infection emerged challenging to control as SARS-CoV-2 transmits through respiratory droplets (> 10 µm size range), aerosols (< 5 µm), airborne, and particulate matter (PM1.0 PM2.5 and PM10.0). SARS-CoV-2 is more infective in indoor premises due to aerodynamics where droplets, aerosols, and PM1.0/2.5/10.0 float for a longer time and distance leading to a higher probability of it entering upper and lower respiratory tracts. To avoid human-to-human transmission, it is essential to trap and destroy SARS-CoV-2 from the air and provide virus-free air that will significantly reduce indoor viral exposure concerns. In this process, an efficient nano-enable photoelectrochemical oxidation (PECO, a destructive approach to neutralize bio-organism) assisted air purification is undoubtedly a good technological choice. This technical perspective explores the role of PECO-assisted Air-Purifiers (i.e., Molekule as a focus example for proof-of-concept) to trap and destroy indoor microorganisms (bacteria and viruses including Coronaviruses), molds, and allergens, and other indoor air pollutants, such as volatile organic compounds (VOCs) and PM1.0/2.5/10.0. It is observed through various standard and non-standard tests that stimuli-responsive nanomaterials coated filter technology traps and destroys microbial particles. Due to technological advancements according to premises requirements and high-performance desired outcomes, Molekule air purifiers, Air Pro Air -Rx, Air Mini, and Air Mini+, have received Food and Drug Administration (FDA) clearance as a Class II medical device for the destruction of bacteria and viruses.
Collapse
|
48
|
Liu X, Xie Y, Hu Z, Lin HJ, Chen CT, Dong L, Zhang Y, Wang Q, Luo SH. Tuning the structural stability and spin-glass behavior in α-MnO 2 nanotubes by Sn ion doping. Phys Chem Chem Phys 2022; 24:12300-12310. [PMID: 35545001 DOI: 10.1039/d1cp05459g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of α-Mn1-xSnxO2 was synthesized by a simple hydrothermal method to shed light on the effect of substitution. Powder X-ray diffraction and scanning electron microscopy indicated that the particle size, crystal structure and morphology of the samples did not change with an increase of the Sn content. Sn, Mn, O and K elements were all uniformly distributed in the particles, which was observed using energy-dispersive X-ray spectroscopy. However, thermogravimetric analysis showed that the structural stability increased, and an increase of the Mn oxidation state from 3.8+ to nearly 4.0+ was observed by X-ray absorption spectroscopy. Besides, 119Sn Mössbauer spectroscopy revealed that the Sn ions are all 4+ and incorporate into the lattice by replacing the Mn ions. The DC and AC magnetic susceptibility measurements down to 2 K exhibited a spin-glass phenomenon, and the freezing temperature, Tf, decreased from 44 K to 30.5 K with increasing Sn content. This indicates that increased disorder by nonmagnetic substitution results in the enhancement of the frustration in the lattice. Meanwhile, with doping of Sn4+ ions, the Curie-Weiss temperature increased, indicating enhanced antiferromagnetic interaction. Although the mixed valence of Mn3+ and Mn4+ almost disappeared, the reduction of charge disorder did not lead to the magnetic ordering in the sample. Since the Sn4+ ions are diamagnetic and have the same magnetic effect as cation vacancies in the lattice, so it is reasonable to believe that the spin-glass transition in α-MnO2 results from the cation vacancies rather than the mixture of Mn3+ and Mn4+.
Collapse
Affiliation(s)
- Xin Liu
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China. .,School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004, China
| | - Yang Xie
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China. .,School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Zhiwei Hu
- Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Str.40, 01187 Dresden, Germany.
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Liang Dong
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China. .,School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Yahui Zhang
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China. .,School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004, China
| | - Qing Wang
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China. .,School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004, China
| | - Shao-Hua Luo
- School of Materials Science and Engineering, Northeastern University, 110819, Shenyang, China. .,School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.,Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004, China
| |
Collapse
|
49
|
Hao LH, Hieu DTT, Luan LQ, Phuong HT, Dinh V, Tuyen LA, Hong PTT, Van Man T, Tap TD. Electron and gamma irradiation‐induced effects in poly(ethylene‐co‐tetrafluoroethylene) films. J Appl Polym Sci 2022. [DOI: 10.1002/app.52620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lam Hoang Hao
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Viet Nam National University Ho Chi Minh City Vietnam
| | - Dinh Tran Trong Hieu
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Viet Nam National University Ho Chi Minh City Vietnam
- Physics Laboratory, Le Thanh Ton High School Ho Chi Minh City Vietnam
| | - Le Quang Luan
- Biotechnology Center of Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Huynh Truc Phuong
- Viet Nam National University Ho Chi Minh City Vietnam
- Faculty of Physics and Engineering Physics University of Science Ho Chi Minh City Vietnam
| | - Van‐Phuc Dinh
- Institute of Fundamental and Applied Sciences Duy Tan University Ho Chi Minh City Vietnam
| | - Luu Anh Tuyen
- Center for Nuclear Techniques Viet Nam Atomic Energy Institute Ho Chi Minh City Vietnam
| | - Pham Thi Thu Hong
- Research and Development Center for Radiation Technology (VINAGAMMA) Ho Chi Minh City Vietnam
| | - Tran Van Man
- Viet Nam National University Ho Chi Minh City Vietnam
- Applied Physical Chemistry Laboratory, Department of Physical Chemistry University of Science Ho Chi Minh City Vietnam
| | - Tran Duy Tap
- Faculty of Materials Science and Technology University of Science Ho Chi Minh City Vietnam
- Viet Nam National University Ho Chi Minh City Vietnam
| |
Collapse
|
50
|
Yin J, Zhao L, Xu X, Li D, Qiu H, Cao X. Evaluation of long-term carbon sequestration of biochar in soil with biogeochemical field model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153576. [PMID: 35104525 DOI: 10.1016/j.scitotenv.2022.153576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Return of biomass-derived biochar (BC) into soil has been considered as one of the carbon sequestration (CS) methods. It is important to evaluate the long-term biochar CS potential by integrating the complex physical interferences and biochemical reactions in real soil. This study incorporated biochar into a biogeochemical field model and established a daily-resolution simulator to assess 5-, 50-, 500-year CS potential upon Soil-Biochar-Plant interaction. Through the scenario simulation of burying 7.5-75 t/ha BC-C in a 50 cm-depth rainfed cropland soil with corn planted, we found biochar could retain 483-557 kg C/t BC-C after 500 years' natural decomposition, although soil pedoturbation and plant erosion accelerated its mineralization. Moreover, biochar provided labile-C to compensate microbial decomposition and modified long-term soil climate, resulting in a decrease in soil organic carbon degradation of 44-265 kg C/t BC-C. Furthermore, biochar promoted plant photosynthetic performance by offering exogenous nutrients, equivalent to capturing 66-1039 kg C/t BC-C over 50 years. But biochar limited endogenous nutrient release and inhibited plant growth after exogenous nutrients exhausted, so total CS decreases yearly after reaching an upper limit (1030-1722 kg C/t BC-C). A total of 651-725 kg C/t BC-C could be sequestered after 500 years. And biochar is more potential in infertile and arid soils. Overall, this study indicates the necessity of taking the biogeochemical reactions into consideration to assess biochar long-term CS, and it further demonstrates biochar soil implementation is a prospective carbon-negative strategy.
Collapse
Affiliation(s)
- Jianxiang Yin
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|