1
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Wang B, Wang Y, Zhu Y, Guo L, Zeng H, Wu S, Wang L, Mu J, Shao X, Cheng N, Ying J, Tian Y, Xue L. Predictive factors for neoadjuvant combined immunotherapy in gastric adenocarcinoma: Focusing on the primitive enterocyte phenotype and PVR. Br J Cancer 2025:10.1038/s41416-025-03031-3. [PMID: 40341250 DOI: 10.1038/s41416-025-03031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Neoadjuvant combined immunotherapy has provided more treatment options for patients with gastric adenocarcinoma (GA). However, some GA patients, especially those with primitive enterocyte phenotype (GAPEP) show a poor response to immunotherapy, even with positive PD-L1 expression. METHOD We enrolled multiple cohorts from our center and utilized public data to identify the predictive factors and explore the immunosuppressive features of GAPEP by multi-omics methods. RESULTS Forty-seven patients with neoadjuvant combined immunotherapy were enrolled. After testing, we found PD-L1 combined positive score (CPS) ≥ 50 in biopsy tissues was significantly associated with major pathological response (MPR) (P = 0.04). RNA testing and immunohistochemical staining highlighted the cytotoxicity-associated markers (GZMA and PRF1) as the predictors to better response. Notably, GAPEP patients demonstrated resistance to therapy and exhibited worse survival outcomes. Our own and public bulk/single-cell transcriptomic analyses identified PVR as a predictor of treatment resistance and as an important immune suppressor, especially in GAPEP. Cell interaction analyses, multiple staining, and cell experiments verified the association between GAPEP and PVR. CONCLUSION Cytotoxic markers, especially GZMA and PRF1, could predict the benefit of neoadjuvant combined immunotherapy in GA than PD-L1 CPS, while PVR is a negative predictor, particularly for GAPEP patients.
Collapse
Affiliation(s)
- Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yinong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yongjian Zhu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Zeng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuai Wu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Long Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiali Mu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinxin Shao
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Na Cheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yantao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Wang S, Li C, Fan W, Chen T, Xu W, Hu X, Wu Z, Xiao Z, Lin G, Ma B, Cheng L. Neurotrophin-3/chitosan inhibits cuproptosis-related genes to enable functional recovery after spinal cord injury. Int J Biol Macromol 2025; 310:143403. [PMID: 40268016 DOI: 10.1016/j.ijbiomac.2025.143403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES This study investigated the regulatory mechanisms of cuproptosis-related genes (CRGs) in spinal cord injury (SCI) and explored the therapeutic potential of neurotrophin-3 (NT3)-loaded chitosan in promoting functional recovery. METHODS We conducted integrated bulk RNA-seq and single-cell RNA-seq (scRNA-seq) analyses of mouse spinal cord tissue at various time points after SCI. The key CRGs were identified using differential expression analysis, weighted gene co-expression network analysis, and machine learning. The therapeutic effects of NT3-loaded chitosan were evaluated using animal models and molecular docking analysis. RESULTS We identified four key CRGs (Atp7a, Cp, Loxl2, and Pde3b) and three key transcription factors (C/EBPα, Stat6, and Runx1) that were upregulated post-SCI, promoting cuproptosis and neuroinflammation. NT3-loaded chitosan treatment significantly inhibited CRG expression and enhanced functional recovery in the animal models. Molecular docking analysis demonstrated binding interactions between chitosan and key CRGs, suggesting a potential mechanism for their therapeutic effects. CONCLUSIONS Our findings highlight the critical role of CRGs in SCI progression and the potential of NT3-loaded chitosan as a therapeutic strategy for inhibiting cuproptosis and promoting functional recovery. Future studies should focus on validating these findings in larger cohorts and exploring the detailed mechanisms by which NT3-loaded chitosan modulates CRG expression.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Wenyong Fan
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Tao Chen
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhihui Xiao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China
| | - Gufa Lin
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China.
| | - Bei Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China; Shanghai Research Center for Spine and Spinal Cord Diseases, Tongji University School of Medicine, Shanghai 200065, China; Clinical Center for Brain and Spinal Cord Research, Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
4
|
Li Z, Yi H, Li Y, Yang J, Guo P, Han F. Identification and validation of a novel autophagy-related biomarker in obstructive sleep apnea syndrome. Sleep 2025; 48:zsae287. [PMID: 39665515 DOI: 10.1093/sleep/zsae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea syndrome is closely associated with tumor growth. Chronic intermittent hypoxia promotes autophagy and is related to malignant tumor development. However, the role of autophagy in obstructive sleep apnea syndrome progression remains unclear. METHODS obstructive sleep apnea syndrome datasets (GSE135917 and GSE38792) from Gene Expression Omnibus were analyzed to identify differentially expressed genes and autophagy-related differentially expressed genes. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analysis were conducted, and a protein-protein interaction network identified hub genes. Colorectal cancer datasets from The Cancer Genome Atlas were used for differential expression and survival analyses, along with gene set enrichment analysis and immune infiltration analysis. Chronic intermittent hypoxia-induced autophagy and oxidative stress were investigated in Sprague-Dawley rats using reactive oxygen species assays. Hub genes were validated in rats and obstructive sleep apnea syndrome patient samples. RESULTS Gene set enrichment analysis revealed significant differences in autophagy-related gene expression among obstructive sleep apnea syndrome patients. Hub genes ATG5, CASP1, MAPK8, EIF4G1, and TANK-binding kinase 1 were identified, with ATG5 and TANK-binding kinase 1 validated. Autophagy-related differentially expressed genes were predominantly upregulated in colorectal cancer tissues. TANK-binding kinase 1 expression in colorectal cancer patients was associated with enhanced sensitivity to immunotherapy and CD8 + T cell, macrophage, and regulatory T cell infiltration, potentially influencing the immune microenvironment. The animal experiments showed that chronic intermittent hypoxia increased reactive oxygen species levels, suggesting that chronic intermittent hypoxia plays a role in autophagy. TANK-binding kinase 1 expression was significantly higher in obstructive sleep apnea syndrome patients than in controls, and continuous positive airway pressure did not alter TANK-binding kinase 1 levels. CONCLUSIONS This study is the first to describe the potential contribution of TANK-binding kinase 1 to the development of obstructive sleep apnea syndrome and its potential as a novel biomarker and potential therapeutic target for obstructive sleep apnea syndrome.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Emergency Surgery, Peking University People's Hospital, Xicheng, Beijing, China
| | - Huijie Yi
- Department of Sleep Medicine, Peking University People's Hospital, Xicheng, Beijing, China
| | - Yuxi Li
- Department of Emergency Surgery, Peking University People's Hospital, Xicheng, Beijing, China
| | - Jie Yang
- Department of Emergency Surgery, Peking University People's Hospital, Xicheng, Beijing, China
| | - Peng Guo
- Department of Emergency Surgery, Peking University People's Hospital, Xicheng, Beijing, China
| | - Fang Han
- Department of Sleep Medicine, Peking University People's Hospital, Xicheng, Beijing, China
| |
Collapse
|
5
|
Jin Z. Comment on "Peripheral T Lymphocyte Predicts the Prognosis of Gastric Cancer Patients Undergoing Radical Gastrectomy: a Multicenter Retrospective Cohort Study" [Letter]. J Inflamm Res 2025; 18:4613-4614. [PMID: 40195956 PMCID: PMC11974999 DOI: 10.2147/jir.s523648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025] Open
Affiliation(s)
- Zhihui Jin
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, People’s Republic of China
- Department of Hematology and Oncology, Beilun People’s Hospital, Ningbo, People’s Republic of China
| |
Collapse
|
6
|
Zhang J, Zeng L, Song G, Peng G, Chen Z, Yuan Y, Chen T, Zhong T, Chen S, Luo Z, Xiao J, Liu L. A novel tertiary lymphoid structure-associated signature accurately predicts patient prognosis and facilitates the selection of personalized treatment strategies for HNSCC. Front Immunol 2025; 16:1551844. [PMID: 40181975 PMCID: PMC11965918 DOI: 10.3389/fimmu.2025.1551844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer and is characterized by its aggressive nature and variable prognosis and response to immunotherapy. Tertiary lymphoid structures (TLSs) play crucial roles in creating a favourable immune microenvironment to control tumour progression. However, the specific impact of these structures on HNSCC has not been thoroughly studied. Methods In this study, a comprehensive review of tertiary lymphoid structures was conducted by analysing 9 TLS-associated genes in a cohort of 871 HNSCC patients. Distinct TLS-related subgroups were identified through unsupervised clustering analysis, and the associated genes were explored. Prognostic genes were identified via univariate Cox and Boruta algorithms, and a novel TLS-related scoring system was developed via the GSVA algorithm. Results Our study revealed that patients with higher TLS-related scores had improved overall survival and were more likely to benefit from immunotherapy. Furthermore, we observed a significant negative correlation between sensitivity to traditional chemotherapeutic agents and the TLS-related signature score. Conclusions Our findings suggest that the TLS-related features of HNSCC patients hold promise as predictive indicators for immunotherapy efficacy and may offer novel insights for tailoring personalized treatment strategies in clinical practice.
Collapse
Affiliation(s)
- Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Zeng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Gaoge Peng
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhezheng Chen
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Yamin Yuan
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Taowu Chen
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Zhong
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Shixi Chen
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengzhou Luo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Jingang Xiao
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Lin Liu
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Gao XF, Zhang CG, Huang K, Zhao XL, Liu YQ, Wang ZK, Ren RR, Mai GH, Yang KR, Chen Y. An oral microbiota-based deep neural network model for risk stratification and prognosis prediction in gastric cancer. J Oral Microbiol 2025; 17:2451921. [PMID: 39840394 PMCID: PMC11749243 DOI: 10.1080/20002297.2025.2451921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
Background This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction. Methods Oral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of 111 GC patients. The identified bacterial markers were used to construct a Deep Neural Network (DNN) model, a Random Forest (RF) model, and a Support Vector Machine (SVM) model for predicting GC prognosis. Results GC patients with <3 years of survival showed a higher abundance of Aggregatibacter and diminished abundances of Filifactor and Moryella than those who survived ≥3 years. The Boruta algorithm unearthed Leptotrichia as another significant marker for GC prognosis. Consequently, a DNN model was constructed based on the relative abundances of these bacteria, predicting 3-year and 5-year survival in GC patients with Area Under Curve of 0.814 and 0.912, respectively. Notably, the DNN model outperformed the TNM staging system, SVM and RF models. The prognostic value of these bacterial markers was further reinforced by external validation. Conclusion The oral microbiota-based DNN model may advance GC prognosis. The biological functions of these oral bacterial markers warrant further investigation from the perspective of GC progression.
Collapse
Affiliation(s)
- Xue-Feng Gao
- Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Can-Gui Zhang
- Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kun Huang
- Department of Gastroenterology, Civil Aviation General Hospital, Beijing, China
| | - Xiao-Lin Zhao
- Department of Gastroenterology, Civil Aviation General Hospital, Beijing, China
| | - Ying-Qiao Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zi-Kai Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rong-Rong Ren
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Geng-Hui Mai
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Ren Yang
- Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Xiao H, Zhang P, Zhang S, Xiao H, Zhou H, Liu D, Wu Z, Luo J. Peripheral T Lymphocyte Predicts the Prognosis of Gastric Cancer Patients Undergoing Radical Gastrectomy: A Multicenter Retrospective Cohort Study. J Inflamm Res 2024; 17:10599-10612. [PMID: 39670156 PMCID: PMC11636249 DOI: 10.2147/jir.s494342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
Objective The aim of this study was to investigate the predictive value of peripheral lymphocyte subsets for prognosis of gastric cancer (GC) patients following radical gastrectomy. Methods Consecutive GC patients received curative resection and examined peripheral lymphocyte subsets in Hunan Cancer Hospital were enrolled as training cohort (n=231), and those from Wuhan Union Hospital and Wuhan Tongji Hospital were included as external validation cohort (n=159). The optimal cutoff values of lymphocyte subsets for overall survival (OS) in training cohort were determined by X-tile. The independent predictive factors for OS were identified using univariate and multivariate Cox regression analyses. Furthermore, the predictive value of lymphocyte subsets were evaluated in validation cohort. Results The optimal cutoff value of T lymphocytes for OS was 0.84×109/L in the training cohort. Decreased T lymphocyte (<0.84×109/L) were identified as an independent predictor for unfavorable prognosis both in the training and validation cohorts (HR:2.835, 95% CI:1.580-5.087, P<0.001; HR:2.470, 95% CI:1.069-5.711, P=0.034). In the entire cohort, stratified analyses revealed that lower T lymphocyte negatively affected the oncological outcomes in patients with stage II/III disease. A synergistic influence was confirmed in those with decreased T lymphocyte and not received adjuvant chemotherapy (AC). Further analyses revealed that AC significantly prolonged OS in stage II/III patients with decreased T lymphocyte, but not in those with relatively higher T lymphocyte. Conclusion Peripheral T lymphocyte numbers was a reliable predictor for OS in GC patients undergoing radical gastrectomy. Additionally, T lymphocyte might serve as an indicator for efficacy of AC in stage II/III GC patients.
Collapse
Affiliation(s)
- Hua Xiao
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Sheng Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Haifan Xiao
- Department of Cancer Prevention and Control, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Dian Liu
- Department of Lamphoma and Abdominal Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Zhengchun Wu
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Jia Luo
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
9
|
Fu M, Lin Y, Yang J, Cheng J, Lin L, Wang G, Long C, Xu S, Lu J, Li G, Yan J, Chen G, Zhuo S, Chen D. Multitask machine learning-based tumor-associated collagen signatures predict peritoneal recurrence and disease-free survival in gastric cancer. Gastric Cancer 2024; 27:1242-1257. [PMID: 39271552 DOI: 10.1007/s10120-024-01551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Accurate prediction of peritoneal recurrence for gastric cancer (GC) is crucial in clinic. The collagen alterations in tumor microenvironment affect the migration and treatment response of cancer cells. Herein, we proposed multitask machine learning-based tumor-associated collagen signatures (TACS), which are composed of quantitative collagen features derived from multiphoton imaging, to simultaneously predict peritoneal recurrence (TACSPR) and disease-free survival (TACSDFS). METHODS Among 713 consecutive patients, with 275 in training cohort, 222 patients in internal validation cohort, and 216 patients in external validation cohort, we developed and validated a multitask machine learning model for simultaneously predicting peritoneal recurrence (TACSPR) and disease-free survival (TACSDFS). The accuracy of the model for prediction of peritoneal recurrence and prognosis as well as its association with adjuvant chemotherapy were evaluated. RESULTS The TACSPR and TACSDFS were independently associated with peritoneal recurrence and disease-free survival in three cohorts, respectively (all P < 0.001). The TACSPR demonstrated a favorable performance for peritoneal recurrence in all three cohorts. In addition, the TACSDFS also showed a satisfactory accuracy for disease-free survival among included patients. For stage II and III diseases, adjuvant chemotherapy improved the survival of patients with low TACSPR and low TACSDFS, or high TACSPR and low TACSDFS, or low TACSPR and high TACSDFS, but had no impact on patients with high TACSPR and high TACSDFS. CONCLUSIONS The multitask machine learning model allows accurate prediction of peritoneal recurrence and survival for GC and could distinguish patients who might benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Meiting Fu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Guangzhou, 510515, People's Republic of China
- School of Science, Jimei University, Xiamen, 361021, People's Republic of China
| | - Yuyu Lin
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Junyao Yang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Liyan Lin
- Department of Pathology, Fujian Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People's Republic of China
| | - Guangxing Wang
- School of Science, Jimei University, Xiamen, 361021, People's Republic of China
| | - Chenyan Long
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shuoyu Xu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jianping Lu
- Department of Pathology, Fujian Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People's Republic of China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Gang Chen
- Department of Pathology, Fujian Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People's Republic of China
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, 361021, People's Republic of China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Dexin Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
10
|
Murakami K, Ganguly S. The Nectin family ligands, PVRL2 and PVR, in cancer immunology and immunotherapy. Front Immunol 2024; 15:1441730. [PMID: 39156900 PMCID: PMC11327090 DOI: 10.3389/fimmu.2024.1441730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
In recent years, immunotherapy has emerged as a crucial component of cancer treatment. However, its efficacy remains limited across various cancer types, highlighting unmet needs. Poliovirus receptor-related 2 (PVRL2) and Poliovirus receptor (PVR) are members of the Nectin and Nectin-like Molecules family, known for their role as cell-cell adhesion molecules. With the development of immunotherapy, their involvement in tumor immune mechanisms as immune checkpoint factors has garnered significant attention. PVRL2 and PVR are predominantly expressed on tumor cells and antigen-presenting cells, binding to PVRIG and TIGIT, respectively, which are primarily found on T and NK cells, thereby suppressing antitumor immunity. Notably, gynecological cancers such as ovarian and endometrial cancers exhibit high expression levels of PVRL2 and PVR, with similar trends observed in various other solid and hematologic tumors. Targeting these immune checkpoint pathways offers a promising therapeutic avenue, potentially in combination with existing treatments. However, the immunomodulatory mechanism involving these bindings, known as the DNAM-1 axis, is complex, underscoring the importance of understanding it for developing novel therapies. This article comprehensively reviews the immunomodulatory mechanisms centered on PVRL2 and PVR, elucidating their implications for various cancer types.
Collapse
Affiliation(s)
| | - Sudipto Ganguly
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Long G, Li Z, Gao Y, Zhang X, Cheng X, Daniel IE, Zhang L, Wang D, Li Z. Ferroptosis-related alternative splicing signatures as potential biomarkers for predicting prognosis and therapy response in gastric cancer. Heliyon 2024; 10:e34381. [PMID: 39816333 PMCID: PMC11734151 DOI: 10.1016/j.heliyon.2024.e34381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Ferroptosis is linked to various tumor biological traits, and alternative splicing (AS), a crucial step in mRNA processing, plays a role in the post-transcriptional regulation of ferroptosis-related genes (FRGs). A least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis was utilized to build a prognostic signature based on 12 AS events (p < 0.05), which was validated in gastric cancer (GC) patients. The high-risk group (n = 203) showed enrichment in cancer and metastasis pathways (p < 0.05). Significant differences existed between the high- and low-risk groups in terms of tumor microenvironment (TME) cell infiltration and immune activities (p < 0.05). The low-risk group (n = 203) was characterized by immune activation and improved prognosis (p < 0.001). Additionally, targeted treatment and immunotherapy were more likely to benefit the low-risk group (p < 0.05). Correlation analysis was performed to detect related splicing factors (SF) (Cor>0.4, FDR<0.05). Furthermore, our functional assay results suggested that high SF3A2 expression might increase ferroptosis resistance and promote cell proliferation. In conclusion, the FRAs model we built has an advantage in predicting GC prognosis. The model's demonstration of variations in the immune microenvironment and drug response could potentially inform decisions regarding treatment strategies.
Collapse
Affiliation(s)
- Gang Long
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Zhiyong Li
- Department of General Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yue Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Xu Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Xiyang Cheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Irankunda Eric Daniel
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Lisha Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Dawei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Zhengtian Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| |
Collapse
|
12
|
Feng T, Jie M, Deng K, Yang J, Jiang H. Targeted plasma proteomic analysis uncovers a high-performance biomarker panel for early diagnosis of gastric cancer. Clin Chim Acta 2024; 558:119675. [PMID: 38631604 DOI: 10.1016/j.cca.2024.119675] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Gastric cancer (GC) is characterized by high morbidity, high mortality and low early diagnosis rate. Early diagnosis plays a crucial role in radically treating GC. The aim of this study was to identify plasma biomarkers for GC and early GC diagnosis. METHODS We quantified 369 protein levels with plasma samples from discovery cohort (n = 88) and validation cohort (n = 50) via high-throughput proximity extension assay (PEA) utilizing the Olink-Explore-384-Cardiometabolic panel. The multi-protein signatures were derived from LASSO and Ridge regression models. RESULTS In the discovery cohort, 13 proteins (GDF15, ITIH3, BOC, DPP7, EGFR, AMY2A, CCDC80, CD163, GPNMB, LTBP2, CTSZ, CCL18 and NECTIN2) were identified to distinguish GC (Stage I-IV) and early GC (HGIN-I) groups from control group with AUC of 0.994 and AUC of 0.998, severally. The validation cohort yielded AUC of 0.930 and AUC of 0.818 for GC and early GC, respectively. CONCLUSIONS This study identified a multi-protein signature with the potential to benefit clinical GC diagnosis, especially for Asian and early GC patients, which may contribute to the development of a less-invasive, convenient, and efficient early screening tool, promoting early diagnosis and treatment of GC and ultimately improving patient survival.
Collapse
Affiliation(s)
- Tong Feng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Minwen Jie
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kai Deng
- Department of Gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinlin Yang
- Department of Gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
13
|
Wu J, Gao F, Meng R, Li H, Mao Z, Xiao Y, Pu Q, Du M, Zhang Z, Shao Q, Zheng R, Wang M. Single-cell and multi-omics analyses highlight cancer-associated fibroblasts-induced immune evasion and epithelial mesenchymal transition for smoking bladder cancer. Toxicology 2024; 504:153782. [PMID: 38493947 DOI: 10.1016/j.tox.2024.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Tobacco carcinogens are recognized as critical hazard factors for bladder tumorigenesis, affecting the prognosis of patients through aromatic amines components. However, the specific function of tobacco carcinogens and systematic assessment models in the prognosis of bladder cancer remains poorly elucidated. We retrieved bladder cancer specific tobacco carcinogens-related genes from Comparative Toxicogenomic Database, our Nanjing Bladder Cancer cohort and TCGA database. Gene×Gene interaction method was utilized to establish a prognostic signature. Integrative assessment of immunogenomics, tumor microenvironments and single-cell RNA-sequencing were performed to illustrate the internal relations of key events from different levels. Finally, we comprehensively identified 33 essential tobacco carcinogens-related genes to construct a novel prognostic signature, and found that high-risk patients were characterized by significantly worse overall survival (HR=2.25; Plog-rank < 0.01). Single-cell RNA-sequencing and multi-omics analysis demonstrated that cancer-associated fibroblasts mediated the crosstalk between epithelial-mesenchymal transition progression and immune evasion. Moreover, an adverse outcome pathway framework was established to facilitate our understanding to the tobacco carcinogens-triggered bladder tumorigenesis. Our study systematically provided immune microenvironmental alternations for smoking-induced adverse survival outcomes in bladder cancer. These findings facilitated the integrative multi-omics insights into risk assessment and toxic mechanisms of tobacco carcinogens.
Collapse
Affiliation(s)
- Jiajin Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Meng
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Huiqin Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenguang Mao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yanping Xiao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyi Pu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Shao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Rui Zheng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
14
|
Li Y, Jiang L, Chen Y, Li Y, Yuan J, Lu J, Zhang Z, Liu S, Feng X, Xiong J, Jiang Y, Zhang X, Li J, Shen L. Specific lineage transition of tumor-associated macrophages elicits immune evasion of ascitic tumor cells in gastric cancer with peritoneal metastasis. Gastric Cancer 2024; 27:519-538. [PMID: 38460015 PMCID: PMC11016508 DOI: 10.1007/s10120-024-01486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/23/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Gastric cancer with peritoneal metastasis (PM-GC), recognized as one of the deadliest cancers. However, whether and how the tumor cell-extrinsic tumor microenvironment (TME) is involved in the therapeutic failure remains unknown. Thus, this study systematically assessed the immunosuppressive tumor microenvironment in ascites from patients with PM-GC, and its contribution to dissemination and immune evasion of ascites-disseminated tumor cells (aDTCs). METHODS Sixty-three ascites and 43 peripheral blood (PB) samples from 51 patients with PM-GC were included in this study. aDTCs in ascites and circulating tumor cells (CTCs) in paired PB were immunophenotypically profiled. Using single-cell RNA transcriptional sequencing (scRNA-seq), crosstalk between aDTCs and the TME features of ascites was inspected. Further studies on the mechanism underlying aDTCs-immune cells crosstalk were performed on in vitro cultured aDTCs. RESULTS Immune cells in ascites interact with aDTCs, prompting their immune evasion. Specifically, we found that the tumor-associated macrophages (TAMs) in ascites underwent a continuum lineage transition from cathepsinhigh (CTShigh) to complement 1qhigh (C1Qhigh) TAM. CTShigh TAM initially attracted the metastatic tumor cells to ascites, thereafter, transitioning terminally to C1Qhigh TAM to trigger overproliferation and immune escape of aDTCs. Mechanistically, we demonstrated that C1Qhigh TAMs significantly enhanced the expression of PD-L1 and NECTIN2 on aDTCs, which was driven by the activation of the C1q-mediated complement pathway. CONCLUSIONS For the first time, we identified an immunosuppressive macrophage transition from CTShigh to C1Qhigh TAM in ascites from patients with PM-GC. This may contribute to developing potential TAM-targeted immunotherapies for PM-GC.
Collapse
Affiliation(s)
- Yilin Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lei Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanyan Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiajia Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jialin Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zizhen Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shengde Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xujiao Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | | | - Yan Jiang
- Singleron Biotechnologies, Nanjing, China
| | - Xiaotian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
15
|
Wu JW, Liu Y, Dai XJ, Liu HM, Zheng YC, Liu HM. CD155 as an emerging target in tumor immunotherapy. Int Immunopharmacol 2024; 131:111896. [PMID: 38518596 DOI: 10.1016/j.intimp.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
16
|
Pagliuca S, Ferraro F. Immune-driven clonal cell selection at the intersection among cancer, infections, autoimmunity and senescence. Semin Hematol 2024; 61:22-34. [PMID: 38341340 DOI: 10.1053/j.seminhematol.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Immune surveillance mechanisms play a crucial role in maintaining lifelong immune homeostasis in response to pathologic stimuli and aberrant cell states. However, their persistence, especially in the context of chronic antigenic exposure, can create a fertile ground for immune evasion. These escaping cell phenotypes, harboring a variety of genomic and transcriptomic aberrances, chiefly in human leukocyte antigen (HLA) and antigen presentation machinery genes, may survive and proliferate, featuring a scenario of clonal cell expansion with immune failure characteristics. While well characterized in solid and, to some extent, hematological malignancies, little is known about their occurrence and significance in other disease contexts. Historical literature highlights the role for escaping HLA-mediated recognition as a strategy adopted by virus to evade from the immune system, hinting at the potential for immune aberrant cell expansion in the context of chronic infections. Additionally, unmasked in idiopathic aplastic anemia as a mechanism able to rescue failing hematopoiesis, HLA clonal escape may operate in autoimmune disorders, particularly in tissues targeted by aberrant immune responses. Furthermore, senescent cell status emerging as immunogenic phenotypes stimulating T cell responses, may act as a bottleneck for the selection of such immune escaping clones, blurring the boundaries between neoplastic transformation, aging and inflammation. Here we provide a fresh overview and perspective on this immune-driven clonal cell expansion, linking pathophysiological features of neoplastic, autoimmune, infectious and senescence processes exposed to immune surveillance.
Collapse
Affiliation(s)
- Simona Pagliuca
- Hematology Department, Nancy University Hospital and UMR7365, IMoPA, University of Lorraine, Vandoeuvre-lès-Nancy, France.
| | - Francesca Ferraro
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
17
|
Zhang L, Wang J, Guo Y, Yue H, Zhang M. The construction, validation and promotion of the nomogram prognosis prediction model of UCEC, and the experimental verification of the expression and knockdown of the key gene GPX4. Heliyon 2024; 10:e24415. [PMID: 38312660 PMCID: PMC10835249 DOI: 10.1016/j.heliyon.2024.e24415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Background Adequate prognostic prediction of Uterine Corpus Endometrial Carcinoma (UCEC) is crucial for informing clinical decision-making. However, there is a scarcity of research on the utilization of a nomogram prognostic evaluation model that incorporates pyroptosis-related genes (PRGs) in UCEC. Methods By analyzing data from UCEC patients in the TCGA database, four PRGs associated with prognosis were identified. Subsequently, a "risk score" was developed using these four PRGs and LASSO. Ordinary and web-based dynamic nomogram prognosis prediction models were constructed. The discrimination, calibration, clinical benefit, and promotional value of the selected GPX4 were validated. The expression level of GPX4 in UCEC cell lines was subsequently verified. The effects of GPX4 knock-down on the malignant biological behavior of UCEC cells were assessed. Results Four key PRGs and a "risk score" were identified, with the "risk score" calculated as (-0.4323) * GPX4 + (0.2385) * GSDME + (0.0525) * NLRP2 + (-0.3299) * NOD2. The nomogram prognosis prediction model, incorporating the "risk score," "age," and "FIGO stage," demonstrated moderate predictive performance (AUC >0.7), good calibration, and clinical significance for 1, 3, and 5-year survival. The web-based dynamic nomogram demonstrated significant promotional value (https://shibaolu.shinyapps.io/DynamicNomogramForUCEC/). UCEC cells exhibited abnormally elevated expression of GPX4, and the knockdown of GPX4 effectively suppressed malignant biological activities, including proliferation and migration, while inducing apoptosis. The findings from tumorigenic experiments conducted on nude mice further validated the results obtained from cellular experiments. Conclusion Following validation, the nomogram prognosis prediction model, which relies on four pivotal PRGs, demonstrated a high degree of accuracy in forecasting the precise probability of prognosis for patients with UCEC. Additionally, the web-based dynamic nomogram exhibited considerable potential for promotion. Notably, the key gene GPX4 exhibited characteristics of a potential oncogene in UCEC, as it facilitated malignant biological behavior and impeded apoptosis.
Collapse
Affiliation(s)
- Lindong Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450052, China
| | - Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100000, China
| | - Yan Guo
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou, 450003, China
| | - Haodi Yue
- Department of Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou, 450003, China
| | - Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450052, China
| |
Collapse
|
18
|
Wang J, Ma Y, Lin H, Wang J, Cao B. Predictive biomarkers for immune-related adverse events in cancer patients treated with immune-checkpoint inhibitors. BMC Immunol 2024; 25:8. [PMID: 38267897 PMCID: PMC10809515 DOI: 10.1186/s12865-024-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE The objective of this study was to identify potential predictors of immune-related adverse events (irAEs) in cancer patients receiving immune checkpoint inhibitor therapy among serum indexes, case data, and liquid biopsy results. METHODS We retrospectively analyzed 418 patients treated with anti-programmed cell death 1(PD-1)/PD-1 ligand (PD-L1) inhibitors from January 2018 to May 2022 in our cancer center. We identified factors that correlated with the occurrence of irAEs and evaluated associations between irAEs and anti-PD-1/PD-L1 inhibitor responses. RESULTS The incidence of irAEs was 42.1%, and pneumonitis (9.1%), thyroid toxicity (9.1%), cardiotoxicity (8.1%), and dermatologic toxicity (6.9%) were the four most common irAEs. Multivariate logistic analysis identified female sex, antibiotic use, higher post-treatment neutrophil-to-lymphocyte ratio (NLR), and higher baseline circulating tumor cell (CTC) level, as predictive biomarkers for the occurrence of irAEs. A lower baseline prognostic nutritional index (PNI), body mass index (BMI) ≥ 25 kg/m2, and higher post-treatment lactate dehydrogenase (LDH) level were predictive factors for more severe irAEs (higher severity grade). Patients without irAEs had better overall survival than those with irAEs. Specifically, pneumonitis and cardiotoxicity were found to be significant predictors of poor prognosis in the irAE subgroup with different organ-related irAEs. Low-dose steroid (dexamethasone 10 mg) treatment had no significant effect on outcomes. CONCLUSIONS Gender, antibiotic use, post-treatment NLR, and baseline CTC level are potential predictive biomarkers of irAEs, while baseline PNI, BMI, and post-treatment LDH may predict the severity of irAEs. The predictive effect of irAE occurrence on survival benefit may depend on the type of irAE.
Collapse
Affiliation(s)
- Jingting Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, China
| | - Yan Ma
- Radiotherapy Department, Shijingshan Teaching Hospital of Capital Medical University Beijing, #24 Shijingshan Road, Shijingshan District, Beijing, 100040, China
| | - Haishan Lin
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, China
| | - Jing Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, China.
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, China.
| |
Collapse
|
19
|
Yang D, Huang J, Hu J, Zhang M, Xie H, Chen Y, Jin Y, Jiang Z, Wang Y, Zhu J, Lu X, Chen S, Weng Y, Chen G. Association of nutritional screening tools with 6-month outcomes in ischemic stroke patients: A retrospective study. Nutrition 2024; 117:112223. [PMID: 37913712 DOI: 10.1016/j.nut.2023.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Nutritional screening tools based on laboratory examinations are relatively objective and available indicators. However, few studies have investigated whether malnutrition severity might be associated with adverse outcomes at the platform recovery period of 6 mo and differentiated in acute ischemic stroke patients with or without intravenous thrombolysis. Therefore, we assessed the association between malnutrition and 6-mo outcomes in both intravenous thrombolysis and non-intravenous thrombolysis patients. METHODS We retrospectively recruited 138 acute ischemic stroke patients who received intravenous thrombolysis and 311 who did not. The Geriatric Nutritional Risk Index, prognostic nutritional index, and Controlling Nutritional Status were used to assess nutritional status. The concordance between the 3 malnutrition screening tools was investigated with the κ statistic. Subgroups analyses were conducted to assess the correlation between malnutrition and functional outcomes in intravenous thrombolysis and non-intravenous thrombolysis patients. RESULTS A total of 17 (6.44%) patients were suffering from malnutrition, as indicated by the Geriatric Nutritional Risk Index, prognostic nutritional index, and Controlling Nutritional Status jointly. Moderate-severe malnutrition evaluated by the Geriatric Nutritional Risk Index was significantly associated with poor functional outcome (odds ratio = 4.074; P = 0.003). Patients in the good functional outcome group (modified Rankin scale scores = 0 to 2) had a higher proportion of intravenous thrombolysis treatment (32.79% versus 21.25%; P = 0.043). Furthermore, subgroup analyses found no significant interactions between malnourished levels and intravenous thrombolysis treatment (P interaction > 0.05). CONCLUSION The Geriatric Nutritional Risk Index, over ≤24 h, compared with the prognostic nutritional index and Controlling Nutritional Status, provided timely signals to improve acute ischemic stroke patients' nutritional status. Also, nutritional status might not lead todifferent 6-mo outcomes, whether or not patients received intravenous thrombolysis treatment.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Hu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Minyue Zhang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haobo Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yilin Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yining Jin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zerui Jiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yanchu Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jinrong Zhu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xin Lu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Siqi Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
20
|
Lee SY, Jhun J, Woo JS, Lee KH, Hwang SH, Moon J, Park G, Choi SS, Kim SJ, Jung YJ, Song KY, Cho ML. Gut microbiome-derived butyrate inhibits the immunosuppressive factors PD-L1 and IL-10 in tumor-associated macrophages in gastric cancer. Gut Microbes 2024; 16:2300846. [PMID: 38197259 PMCID: PMC10793689 DOI: 10.1080/19490976.2023.2300846] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Early detection and surgical treatment are essential to achieve a good outcome in gastric cancer (GC). Stage IV and recurrent GC have a poor prognosis. Therefore, new treatments for GC are needed. We investigated the intestinal microbiome of GC patients and attempted to reverse the immunosuppression of the immune and cancer cells of GC patients through the modulation of microbiome metabolites. We evaluated the levels of programmed death-ligand 1 (PD-L1) and interleukin (IL)-10 in the peripheral blood immunocytes of GC patients. Cancer tissues were obtained from patients who underwent surgical resection of GC, and stained sections of cancer tissues were visualized via confocal microscopy. The intestinal microbiome was analyzed using stool samples of healthy individuals and GC patients. Patient-derived avatar model was developed by injecting peripheral blood mononuclear cells (PBMCs) from advanced GC (AGC) patients into NSG mice, followed by injection of AGS cells. PD-L1 and IL-10 had higher expression levels in immune cells of GC patients than in those of healthy controls. The levels of immunosuppressive factors were increased in the immune and tumor cells of tumor tissues of GC patients. The abundances of Faecalibacterium and Bifidobacterium in the intestinal flora were lower in GC patients than in healthy individuals. Butyrate, a representative microbiome metabolite, suppressed the expression levels of PD-L1 and IL-10 in immune cells. In addition, the PBMCs of AGC patients showed increased levels of immunosuppressive factors in the avatar mouse model. Butyrate inhibited tumor growth in mice. Restoration of the intestinal microbiome and its metabolic functions inhibit tumor growth and reverse the immunosuppression due to increased PD-L1 and IL-10 levels in PBMCs and tumor cells of GC patients.
Collapse
Affiliation(s)
- Seung Yoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Seok Woo
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun Hee Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun-Hee Hwang
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeonghyeon Moon
- Departments of Immunobiology and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Goeun Park
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - So Jung Kim
- Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Ju Jung
- Division of Gastrointestinal Surgery, Department of Surgery, Yeouido St. Mary’s Hospital, Seoul, Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
21
|
Wu H, Ma W, Jiang C, Li N, Xu X, Ding Y, Jiang H. Heterogeneity and Adjuvant Therapeutic Approaches in MSI-H/dMMR Resectable Gastric Cancer: Emerging Trends in Immunotherapy. Ann Surg Oncol 2023; 30:8572-8587. [PMID: 37667098 PMCID: PMC10625937 DOI: 10.1245/s10434-023-14103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
Gastric cancer (GC) remains one of the world's most common and fatal malignant tumors. With a refined understanding of molecular typing in recent years, microsatellite instability (MSI) has become a major molecular typing approach for gastric cancer. MSI is well recognized for its important role during the immunotherapy of advanced GC. However, its value remains unclear in resectable gastric cancer. The reported incidence of microsatellite instability-high (MSI-H)/deficient mismatch repair (dMMR) in resectable gastric cancer varies widely, with no consensus reached on the value of postoperative adjuvant therapy in patients with MSI-H/dMMR resectable GC. It has been established that MSI-H/dMMR tumor cells can elicit an endogenous immune antitumor response and ubiquitously express immune checkpoint ligands such as PD-1 or PD-L1. On the basis of these considerations, MSI-H/dMMR resectable GCs are responsive to adjuvant immunotherapy, although limited research has hitherto been conducted. In this review, we comprehensively describe the differences in geographic distribution and pathological stages in patients with MSI-H/dMMR with resectable gastric cancer and explore the value of adjuvant chemotherapy and immunotherapy on MSI-H/dMMR to provide a foothold for the individualized treatment of this patient population.
Collapse
Affiliation(s)
- Hui Wu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wenyuan Ma
- Zhejiang University School of Medicine, Hangzhou, China
| | - Congfa Jiang
- Department of Hematology and Oncology, Ningbo Forth Hospital, Ningbo, China
| | - Ning Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xin Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
22
|
Mortezaee K, Majidpoor J. Alternative immune checkpoints in immunoregulatory profile of cancer stem cells. Heliyon 2023; 9:e23171. [PMID: 38144305 PMCID: PMC10746460 DOI: 10.1016/j.heliyon.2023.e23171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Tumor-mediated bypass of immune checkpoint inhibitor (ICI) therapy with anti-programmed death-1 (PD-1), anti-programmed death-ligand 1 (PD-L1, also called B7-H1 or CD274) or anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is a challenge of current years in the area of cancer immunotherapy. Alternative immune checkpoints (AICs) are molecules beyond the common PD-1, PD-L1 or CTLA-4, and are upregulated in patients who show low/no ICI responses. These are members of B7 family including B7-H2 (ICOS-L), B7-H3 (CD276), B7-H4 (B7x), V-domain immunoglobulin suppressor of T cell activation (VISTA), B7-H6, HHLA2 (B7-H5/B7-H7) and catabolic enzymes like indoleamine 2,3-dioxygenase 1 (IDO1), and others that are also contributed to the regulation of tumor immune microenvironment (TIME). There is also strong evidence supporting the implication of AICs in regulation of cancer stemness and expanding the population of cancer stem cells (CSCs). CSCs display immunoregulatory capacity and represent multiple immune checkpoints either on their surface or inside. Besides, they are active promoters of resistance to the common ICIs. The aim of this review is to investigate interrelations between AICs with stemness and differentiation profile of cancer. The key message of this paper is that targeted checkpoints can be selected based on their impact on CSCs along with their effect on immune cells. Studies published so far mainly focused on immune cells as a target for anti-checkpoints. Ex vivo engineering of extracellular vesicles (EVs) equipped with CSC-targeted anti-checkpoint antibodies is without a doubt a key therapeutic target that can be under consideration in future research.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
23
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
24
|
Cao LL, Wu YK, Lin TX, Lin M, Chen YJ, Wang LQ, Wang JB, Lin JX, Lu J, Chen QY, Tu RH, Huang ZN, Lin JL, Zheng HL, Xie JW, Li P, Huang CM, Zheng CH. CDK5 promotes apoptosis and attenuates chemoresistance in gastric cancer via E2F1 signaling. Cancer Cell Int 2023; 23:286. [PMID: 37990321 PMCID: PMC10664659 DOI: 10.1186/s12935-023-03112-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Chemoresistance is a major clinical challenge that leads to tumor metastasis and poor clinical outcome. The mechanisms underlying gastric cancer resistance to chemotherapy are still unclear. METHODS We conducted bioinformatics analyses of publicly available patient datasets to establish an apoptotic phenotype and determine the key pathways and clinical significance. In vitro cell models, in vivo mouse models, and numerous molecular assays, including western blotting, qRT-PCR, immunohistochemical staining, and coimmunoprecipitation assays were used to clarify the role of factors related to apoptosis in gastric cancer in this study. Differences between datasets were analyzed using the Student's t-test and two-way ANOVA; survival rates were estimated based on Kaplan-Meier analysis; and univariate and multivariate Cox proportional hazards models were used to evaluate prognostic factors. RESULTS Bulk transcriptomic analysis of gastric cancer samples established an apoptotic phenotype. Proapoptotic tumors were enriched for DNA repair and immune inflammatory signaling and associated with improved prognosis and chemotherapeutic benefits. Functionally, cyclin-dependent kinase 5 (CDK5) promoted apoptosis of gastric cancer cells and sensitized cells and mice to oxaliplatin. Mechanistically, we demonstrate that CDK5 stabilizes DP1 through direct binding to DP1 and subsequent activation of E2F1 signaling. Clinicopathological analysis indicated that CDK5 depletion correlated with poor prognosis and chemoresistance in human gastric tumors. CONCLUSION Our findings reveal that CDK5 promotes cell apoptosis by stabilizing DP1 and activating E2F1 signaling, suggesting its potential role in the prognosis and therapeutic decisions for patients with gastric cancer.
Collapse
Affiliation(s)
- Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yu-Kai Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Tong-Xin Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yu-Jing Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ling-Qian Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ze-Ning Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ju-Li Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Hua-Long Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
25
|
Zhang H, Jiang X, Ren F, Gu Q, Yao J, Wang X, Zou S, Gan Y, Gu J, Xu Y, Wang Z, Liu S, Wang X, Wei B. Development and external validation of dual online tools for prognostic assessment in elderly patients with high-grade glioma: a comprehensive study using SEER and Chinese cohorts. Front Endocrinol (Lausanne) 2023; 14:1307256. [PMID: 38075045 PMCID: PMC10702965 DOI: 10.3389/fendo.2023.1307256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Background Elderly individuals diagnosed with high-grade gliomas frequently experience unfavorable outcomes. We aimed to design two web-based instruments for prognosis to predict overall survival (OS) and cancer-specific survival (CSS), assisting clinical decision-making. Methods We scrutinized data from the SEER database on 5,245 elderly patients diagnosed with high-grade glioma between 2000-2020, segmenting them into training (3,672) and validation (1,573) subsets. An additional external validation cohort was obtained from our institution. Prognostic determinants were pinpointed using Cox regression analyses, which facilitated the construction of the nomogram. The nomogram's predictive precision for OS and CSS was gauged using calibration and ROC curves, the C-index, and decision curve analysis (DCA). Based on risk scores, patients were stratified into high or low-risk categories, and survival disparities were explored. Results Using multivariate Cox regression, we identified several prognostic factors for overall survival (OS) and cancer-specific survival (CSS) in elderly patients with high-grade gliomas, including age, tumor location, size, surgical technique, and therapies. Two digital nomograms were formulated anchored on these determinants. For OS, the C-index values in the training, internal, and external validation cohorts were 0.734, 0.729, and 0.701, respectively. We also derived AUC values for 3-, 6-, and 12-month periods. For CSS, the C-index values for the training and validation groups were 0.733 and 0.727, with analogous AUC metrics. The efficacy and clinical relevance of the nomograms were corroborated via ROC curves, calibration plots, and DCA for both cohorts. Conclusion Our investigation pinpointed pivotal risk factors in elderly glioma patients, leading to the development of an instrumental prognostic nomogram for OS and CSS. This instrument offers invaluable insights to optimize treatment strategies.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinzhan Jiang
- Department of Neurobiology, Harbin Medical University, Harbin, China
| | - Fubin Ren
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Gu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahao Yao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuhuai Zou
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifan Gan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianheng Gu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongji Xu
- Department of Neurosurgery, Hulin People’s Hospital, Jixi, Heilongjiang, China
| | - Zhao Wang
- Department of Orthopaedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Shuang Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baojian Wei
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| |
Collapse
|
26
|
Guo Y, Bao Q, Hu P, Shi J. Nanomedicine-based co-delivery of a calcium channel inhibitor and a small molecule targeting CD47 for lung cancer immunotherapy. Nat Commun 2023; 14:7306. [PMID: 37951973 PMCID: PMC10640620 DOI: 10.1038/s41467-023-42972-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Pro-tumoral macrophages in lung tumors present a significant challenge in immunotherapy. Here, we introduce a pH-responsive nanomedicine approach for activating anti-tumoral macrophages and dendritic cells. Using a layered double hydroxide nanosheet carrier, we co-deliver a T-type calcium channel inhibitor (TTA-Q6) and a CD47 inhibitor (RRX-001) into lung tumors. In the tumor acidic environment, TTA-Q6 is released, disrupting cancer cell calcium uptake, causing endoplasmic reticulum stress and inducing calreticulin transfer to the cell surface. Surface calreticulin activates macrophages and triggers dendritic cell maturation, promoting effective antigen presentation and therefore activating antitumor T cells. Simultaneously, RRX-001 reduces CD47 protein levels, aiding in preventing immune escape by calreticulin-rich cancer cells. In lung tumor models in male mice, this combined approach shows anti-tumor effects and immunity against tumor re-exposure, highlighting its potential for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Yuedong Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050, Shanghai, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qunqun Bao
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200331, Shanghai, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050, Shanghai, P. R. China.
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200331, Shanghai, P. R. China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050, Shanghai, P. R. China.
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200331, Shanghai, P. R. China.
| |
Collapse
|
27
|
Li Z, Liu Y, Guo P, Wei Y. Construction and validation of a novel angiogenesis pattern to predict prognosis and immunotherapy efficacy in colorectal cancer. Aging (Albany NY) 2023; 15:12413-12450. [PMID: 37938164 PMCID: PMC10683615 DOI: 10.18632/aging.205189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Evidence suggests that the tumor microenvironment (TME) affects the tumor active response to immunotherapy. Tumor angiogenesis is closely related to the TME. Nonetheless, the effects of angiogenesis on the TME of colorectal cancer (CRC) remain unknown. METHODS We comprehensively assessed the angiogenesis patterns in CRC based on 36 angiogenesis-related genes (ARGs). Subsequently, we evaluated the prognostic values and therapeutic sensitivities of angiogenesis patterns using multiple methods. We then performed the machine learning algorithm and functional experiments to identify the prognostic key ARGs. Ultimately, the regulation of gut microbiota on the expression of ARGs was further investigated by using whole genome sequencing. RESULTS Two angiogenesis clusters were identified and angiogenesis cluster B was characterized by increased stromal and immunity activation with unfavorable odds of survival. Further, an ARG_score including 9 ARGs to predict recurrence-free survival (RFS) was established and its predominant predictive ability was confirmed. The low ARG_score patients were characterized by a high mutation burden, high microsatellite instability, and immune activation with better prognosis. Moreover, patients with high KLK10 expression were associated with a hot tumor immune microenvironment, poorer immune checkpoint blocking treatment, and shorter survival. The in vitro experiments also indicated that Fusobacterium nucleatum (F.n) infection significantly induced KLK10 expression in CRC. CONCLUSIONS The quantification of angiogenesis patterns could contribute to predict TME characteristics, prognosis, and individualized immunotherapy strategies. Furthermore, our findings suggest that F.n may influence CRC progression through ARGs, which could serve as a clinical biomarker and therapeutic target for F.n-infected CRC patients.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Emergency Surgery, Peking University People’s Hospital, Xicheng, Beijing 100044, China
| | - Yang Liu
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo Second Hospital, Ningbo, Zhejiang 315010, China
| | - Peng Guo
- Department of Emergency Surgery, Peking University People’s Hospital, Xicheng, Beijing 100044, China
- Department of Emergency Medicine, Peking University People’s Hospital, Xicheng, Beijing 100044, China
- Laboratory of Surgery Oncology, Peking University People’s Hospital, Xicheng, Beijing 100044, China
| | - Yunwei Wei
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo Second Hospital, Ningbo, Zhejiang 315010, China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, Zhejiang 315010, China
| |
Collapse
|
28
|
Chen X, Liu Q, Wu E, Ma Z, Tuo B, Terai S, Li T, Liu X. The role of HMGB1 in digestive cancer. Biomed Pharmacother 2023; 167:115575. [PMID: 37757495 DOI: 10.1016/j.biopha.2023.115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
High mobility group box protein B1 (HMGB1) belongs to the HMG family, is widely expressed in the nucleus of digestive mucosal epithelial cells, mesenchymal cells and immune cells, and binds to DNA to participate in genomic structural stability, mismatch repair and transcriptional regulation to maintain normal cellular activities. In the context of digestive inflammation and tumors, HMGB1 readily migrates into the extracellular matrix and binds to immune cell receptors to affect their function and differentiation, further promoting digestive tract tissue injury and tumor development. Notably, HMGB1 can also promote the antitumor immune response. Therefore, these seemingly opposing effects in tumors make targeted HMGB1 therapies important in digestive cancer. This review focuses on the role of HMGB1 in tumors and its effects on key pathways of digestive cancer and aims to provide new possibilities for targeted tumor therapy.
Collapse
Affiliation(s)
- Xiangqi Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Enqing Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Shuji Terai
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
29
|
Wang L, Li Z, Li Z, Ren Y, Qian L, Yu Y, Shi W, Xiong Y. Identification of A Novel Gene Signature Combining Ferroptosis- and Immunity-Related Genes for Prognostic Prediction, Immunotherapy and Potential Therapeutic Targets in Gastric Cancer. J Cancer 2023; 14:3457-3476. [PMID: 38021154 PMCID: PMC10647194 DOI: 10.7150/jca.87223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent cancers worldwide. Ferroptosis and the immune status of tumor tissue play vital roles in the initiation and progression of GC. However, the role and functional mechanisms of ferroptosis- and immunity-related genes (FIRGs) in GC pathogenesis and their correlations with GC prognosis have not been elucidated. We aim to establish a prognostic prediction model based on the FIRGs signature for GC patients. Differentially expressed genes were screened from the Cancer Genome Atlas (TCGA) GC cohorts. The least absolute shrinkage and selection operator (LASSO) regression was performed to establish a FIRGs-based risk model. This gene signature with 7 FIRGs was identified as an independent prognostic factor. A nomogram incorporating clinical parameters and the FIRG signature was constructed to individualize outcome predictions. Finally, we provided in vivo and in vitro evidence to verify the reliability of FIRG signature for GC prognosis, and validate the expression and function of FIRGs contributing to the development and progression of GC. Herein, our work represents great therapeutic and prognostic potentials for GC.
Collapse
Affiliation(s)
- Liwei Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Zi Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
30
|
Klekowski J, Zielińska D, Hofman A, Zajdel N, Gajdzis P, Chabowski M. Clinical Significance of Nectins in HCC and Other Solid Malignant Tumors: Implications for Prognosis and New Treatment Opportunities-A Systematic Review. Cancers (Basel) 2023; 15:3983. [PMID: 37568798 PMCID: PMC10416819 DOI: 10.3390/cancers15153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The nectin family comprises four proteins, nectin-1 to -4, which act as cell adhesion molecules. Nectins have various regulatory functions in the immune system and can be upregulated or decreased in different tumors. The literature research was conducted manually by the authors using the PubMed database by searching articles published before 2023 with the combination of several nectin-related keywords. A total of 43 studies were included in the main section of the review. Nectins-1-3 have different expressions in tumors. Both the loss of expression and overexpression could be negative prognostic factors. Nectin-4 is the best characterized and the most consistently overexpressed in various tumors, which generally correlates with a worse prognosis. New treatments based on targeting nectin-4 are currently being developed. Enfortumab vedotin is a potent antibody-drug conjugate approved for use in therapy against urothelial carcinoma. Few reports focus on hepatocellular carcinoma, which leaves room for further studies comparing the utility of nectins with commonly used markers.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Dorota Zielińska
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Adriana Hofman
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Natalia Zajdel
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Paweł Gajdzis
- Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Pathomorphology, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| |
Collapse
|
31
|
Ji H, Kong L, Wang Y, Hou Z, Kong W, Qi J, Jin Y. CD44 expression is correlated with osteosarcoma cell progression and immune infiltration and affects the Wnt/β-catenin signaling pathway. J Bone Oncol 2023; 41:100487. [PMID: 37287706 PMCID: PMC10242553 DOI: 10.1016/j.jbo.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
CD44 is associated with a variety of human diseases and plays a potential role in tumorigenesis, however, the mechanism of its role in osteosarcoma remains unclear. We analyzed the expression of CD44 in the Cancer Genome Atlas (TCGA) and genotype-tissue expression pan-cancer data and found that it was highly expressed in most tumors, including sarcoma. The expression of CD44 in osteosarcoma cell lines was higher than that in human osteoblast cell line in the results of the Western blot and Immunohistochemical staining assay. The results of colony formation assay and CCK 8 showed that CD44 improved the proliferation capacity of osteosarcoma cells, transwell assay and wound healing assay showed that CD44 improved the migration capacity of osteosarcoma cells. Further studies revealed that CD44 exerts its influence on the biological behavior of osteosarcoma cells through the Wnt/β-catenin signaling pathway. Since CD44 may be involved in the immune response, we analyzed the correlation between CD44 expression and immune cell infiltration in TCGA database using the previous cluster analyzer R software package, TIMER2.0 database and, GEPIA2 database, and found its involvement in the immune infiltration of osteosarcoma. Therefore, we believe that CD44 could be a potential target for the treatment of osteosarcoma patients and may be a candidate biomarker for immune infiltration-related prognosis.
Collapse
Affiliation(s)
- Hairu Ji
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Lingwei Kong
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Yu Wang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Zhiping Hou
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Wei Kong
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Jiemin Qi
- Department of Pathology, Chengde Medical University, Chengde 067000, China
| | - Yu Jin
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| |
Collapse
|
32
|
Hussein HAM, Thabet AAA, Mohamed TIA, Elnosary ME, Sobhy A, El-Adly AM, Wardany AA, Bakhiet EK, Afifi MM, Abdulraouf UM, Fathy S.M, Sayed NG, Zahran AM. Phenotypical changes of hematopoietic stem and progenitor cells in COVID-19 patients: Correlation with disease status. Cent Eur J Immunol 2023; 48:97-110. [PMID: 37692025 PMCID: PMC10485691 DOI: 10.5114/ceji.2023.129981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/12/2023] [Indexed: 09/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play a crucial role in the context of viral infections and their associated diseases. The link between HSCs and HPCs and disease status in COVID-19 patients is largely unknown. This study aimed to monitor the kinetics and contributions of HSCs and HPCs in severe and non-severe COVID-19 patients and to evaluate their diagnostic performance in differentiating between healthy and COVID-19 patients as well as severe and non-severe cases. Peripheral blood (PB) samples were collected from 48 COVID-19 patients, 16 recovered, and 27 healthy controls and subjected to deep flow cytometric analysis to determine HSCs and progenitor cells. Their diagnostic value and correlation with C-reactive protein (CRP), D-dimer, and ferritin levels were determined. The percentages of HSCs and common myeloid progenitors (CMPs) declined significantly, while the percentage of multipotent progenitors (MPPs) increased significantly in COVID-19 patients. There were no significant differences in the percentages of megakaryocyte-erythroid progenitors (MEPs) and granulocyte-macrophage progenitors (GMPs) between all groups. Severe COVID-19 patients had a significantly low percentage of HSCs, CMPs, and GMPs compared to non-severe cases. Contrarily, the levels of CRP, D-dimer, and ferritin increased significantly in severe COVID-19 patients. MPPs and CMPs showed excellent diagnostic performance in distinguishing COVID-19 patients from healthy controls and severe from non-severe COVID-19 patients, respectively. Collectively, our study indicated that hematopoietic stem and progenitor cells are significantly altered by COVID-19 and could be used as therapeutic targets and diagnostic biomarkers for severe COVID-19.
Collapse
Affiliation(s)
- Hosni A. M. Hussein
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ali A. A. Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Taha I. A. Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed E. Elnosary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Ahmed M. El-Adly
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ahmed A. Wardany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Elsayed K. Bakhiet
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Magdy M. Afifi
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Usama M. Abdulraouf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Samah . M. Fathy
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Noha G. Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
33
|
Meybodi SM, Farasati Far B, Pourmolaei A, Baradarbarjastehbaf F, Safaei M, Mohammadkhani N, Samadani AA. Immune checkpoint inhibitors promising role in cancer therapy: clinical evidence and immune-related adverse events. Med Oncol 2023; 40:243. [PMID: 37453930 DOI: 10.1007/s12032-023-02114-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The advent of immune checkpoint inhibitors (ICIs) has led to noteworthy progressions in the management of diverse cancer types, as evidenced by the pioneering "ipilimumab" medication authorized by US FDA in 2011. Importantly, ICIs agents have demonstrated encouraging potential in bringing about transformation across diverse forms of cancer by selectively targeting the immune checkpoint pathways that are exploited by cancerous cells for dodging the immune system, culminating in progressive and favorable health outcomes for patients. The primary mechanism of action (MOA) of ICIs involves blocking inhibitory immune checkpoints. There are three approved categories including Programmed Death (PD-1) inhibitors (cemiplimab, nivolumab, and pembrolizumab), Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (Ipilimumab), and Programmed Death-Ligand 1 (PDL-1) (Avelumab). Although ICIs promisingly increase therapeutic response and cancer survival rates, using ICIs has demonstrated some limitations including autoimmune reactions and toxicities, requiring close monitoring. The present review endeavors to explicate the underlying principles of the MOA and pharmacokinetics of the approved ICIs in the realm of cancer induction, including an appraisal of their level of practice-based evidence.
Collapse
Affiliation(s)
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Ali Pourmolaei
- Babol Noshirvani University of Technology, Shariati Ave, Babol, Mazandaran, Iran
| | - Farid Baradarbarjastehbaf
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Pécs, Pécs, Hungary
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, 99628, Famagusta, Turkey
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
34
|
Chen Q, Weng K, Lin M, Jiang M, Fang Y, Chung SSW, Huang X, Zhong Q, Liu Z, Huang Z, Lin J, Li P, El-Rifai W, Zaika A, Li H, Rustgi AK, Nakagawa H, Abrams JA, Wang TC, Lu C, Huang C, Que J. SOX9 Modulates the Transformation of Gastric Stem Cells Through Biased Symmetric Cell Division. Gastroenterology 2023; 164:1119-1136.e12. [PMID: 36740200 PMCID: PMC10200757 DOI: 10.1053/j.gastro.2023.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Transformation of stem/progenitor cells has been associated with tumorigenesis in multiple tissues, but stem cells in the stomach have been hard to localize. We therefore aimed to use a combination of several markers to better target oncogenes to gastric stem cells and understand their behavior in the initial stages of gastric tumorigenesis. METHODS Mouse models of gastric metaplasia and cancer by targeting stem/progenitor cells were generated and analyzed with techniques including reanalysis of single-cell RNA sequencing and immunostaining. Gastric cancer cell organoids were genetically manipulated with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) for functional studies. Cell division was determined by bromodeoxyuridine-chasing assay and the assessment of the orientation of the mitotic spindles. Gastric tissues from patients were examined by histopathology and immunostaining. RESULTS Oncogenic insults lead to expansion of SOX9+ progenitor cells in the mouse stomach. Genetic lineage tracing and organoid culture studies show that SOX9+ gastric epithelial cells overlap with SOX2+ progenitors and include stem cells that can self-renew and differentiate to generate all gastric epithelial cells. Moreover, oncogenic targeting of SOX9+SOX2+ cells leads to invasive gastric cancer in our novel mouse model (Sox2-CreERT;Sox9-loxp(66)-rtTA-T2A-Flpo-IRES-loxp(71);Kras(Frt-STOP-Frt-G12D);P53R172H), which combines Cre-loxp and Flippase-Frt genetic recombination systems. Sox9 deletion impedes the expansion of gastric progenitor cells and blocks neoplasia after Kras activation. Although Sox9 is not required for maintaining tissue homeostasis where asymmetric division predominates, loss of Sox9 in the setting of Kras activation leads to reduced symmetric cell division and effectively attenuates the Kras-dependent expansion of stem/progenitor cells. Similarly, Sox9 deletion in gastric cancer organoids reduces symmetric cell division, organoid number, and organoid size. In patients with gastric cancer, high levels of SOX9 are associated with recurrence and poor prognosis. CONCLUSION SOX9 marks gastric stem cells and modulates biased symmetric cell division, which appears to be required for the malignant transformation of gastric stem cells.
Collapse
Affiliation(s)
- Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Ming Jiang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yinshan Fang
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Sanny S W Chung
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Xiaobo Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Qing Zhong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhiyu Liu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Alexander Zaika
- Department of Surgery, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Haiyan Li
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Julian A Abrams
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
35
|
Chen Y, Lin X, Zou X, Qian Y, Liu Y, Wang R, Wang X, Yu X, Liu C, Cheng H. A novel immune checkpoint score system for prognostic evaluation in pancreatic adenocarcinoma. BMC Gastroenterol 2023; 23:113. [PMID: 37024802 PMCID: PMC10080823 DOI: 10.1186/s12876-023-02748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) remains a lethal malignancy making the detection of novel prognostic biomarkers urgent. Limited studies have investigated the predictive capability of immune checkpoints in PAAD. METHOD Gene expression data and correlative clinical information of PAAD cohort were obtained from public databases, including TCGA, ICGC, GTEX and GEO databases. Risk factors were screened and used to establish a risk score model through LASSO and Cox regression analyses. The prognostic ability of the risk score model was demonstrated. The association between risk score with immune cells infiltration, immune checkpoint genes expression, immunogenic cell death, somatic mutations and signaling pathways enrichment were analysed. scRNA-seq data were collected to confirmed the immune checkpoints expression in PAAD samples. The prognosis prediction ability of OX40/TNFRSF4 was identified. The mRNA and protein expression of OX40 in our clinical specimens were examined by RT-PCR and IHC method and its prognosis ability was verified. RESULTS First of all, the difference of immune microenvironment between pancreatic cancer and adjacent tissues was shown. A risk score system based on three immune checkpoints (OX40, TNFSF14 and KIR3DL1) was established. The risk score model was an independent prognostic factor and performed well regarding overall survival (OS) predictions among PAAD patients. A nomogram was established to facilitate the risk model application in clinical prognosis. Immune cells including naive B cells, CD8+ T cells and Tregs were negatively correlated with the risk score. The risk score was associated with expression of immune checkpoint genes, immunogenic cell death related genes and somatic mutations. Glycolysis processes, IL-2-STAT5, IL-6-STAT3, and mTORC1 signaling pathways were enriched in the high-risk score group. Furthermore, scRNA-seq data confirmed that TNFRSF4, TNFSF14 and KIR3DL1 were expressed on immune cells in PAAD samples. We then identified OX40 as an independent prognosis-related gene, and a higher OX40 expression was associated with increased survival rate and immune environment change. In 84 PAAD clinical specimens collected from our center, we confirmed that higher OX40 mRNA expression levels were related to a good prognosis. The protein expression of OX40 on tumor-infiltrating immune cells (TIICs), endothelial cells and tumor cells was verified in PAAD tissues by immunohistochemistry (IHC) method. CONCLUSIONS Overall, our findings strongly suggested that the three-immune checkpoints score system might be useful in the prognosis and design of personalized treatments for PAAD patients. Finally, we identified OX40 as an independent potential biomarker for PAAD prognosis prediction.
Collapse
Affiliation(s)
- Yusheng Chen
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yunzhen Qian
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yu Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - He Cheng
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, 270 DongAn Road, Xuhui, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
Vo D, Ghosh P, Sahoo D. Artificial intelligence-guided discovery of gastric cancer continuum. Gastric Cancer 2023; 26:286-297. [PMID: 36692601 PMCID: PMC9871434 DOI: 10.1007/s10120-022-01360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Detailed understanding of pre-, early and late neoplastic states in gastric cancer helps develop better models of risk of progression to gastric cancers (GCs) and medical treatment to intercept such progression. METHODS We built a Boolean implication network of gastric cancer and deployed machine learning algorithms to develop predictive models of known pre-neoplastic states, e.g., atrophic gastritis, intestinal metaplasia (IM) and low- to high-grade intestinal neoplasia (L/HGIN), and GC. Our approach exploits the presence of asymmetric Boolean implication relationships that are likely to be invariant across almost all gastric cancer datasets. Invariant asymmetric Boolean implication relationships can decipher fundamental time-series underlying the biological data. Pursuing this method, we developed a healthy mucosa → GC continuum model based on this approach. RESULTS Our model performed better against publicly available models for distinguishing healthy versus GC samples. Although not trained on IM and L/HGIN datasets, the model could identify the risk of progression to GC via the metaplasia → dysplasia → neoplasia cascade in patient samples. The model could rank all publicly available mouse models for their ability to best recapitulate the gene expression patterns during human GC initiation and progression. CONCLUSIONS A Boolean implication network enabled the identification of hitherto undefined continuum states during GC initiation. The developed model could now serve as a starting point for rationalizing candidate therapeutic targets to intercept GC progression.
Collapse
Affiliation(s)
- Daniella Vo
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA, 92093-0703, USA
| | - Pradipta Ghosh
- Moores Cancer Center, University of California San Diego, La Jolla, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, USA
- Department of Medicine, University of California San Diego, La Jolla, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA, 92093-0703, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, USA.
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, USA.
| |
Collapse
|
37
|
Zhu S, Al-Mathkour M, Cao L, Khalafi S, Chen Z, Poveda J, Peng D, Lu H, Soutto M, Hu T, McDonald OG, Zaika A, El-Rifai W. CDK1 bridges NF-κB and β-catenin signaling in response to H. pylori infection in gastric tumorigenesis. Cell Rep 2023; 42:112005. [PMID: 36681899 PMCID: PMC9973518 DOI: 10.1016/j.celrep.2023.112005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Infection with Helicobacter pylori (H. pylori) is the main risk factor for gastric cancer, a leading cause of cancer-related death worldwide. The oncogenic functions of cyclin-dependent kinase 1 (CDK1) are not fully understood in gastric tumorigenesis. Using public datasets, quantitative real-time PCR, western blot, and immunohistochemical (IHC) analyses, we detect high levels of CDK1 in human and mouse gastric tumors. H. pylori infection induces activation of nuclear factor κB (NF-κB) with a significant increase in CDK1 in in vitro and in vivo models (p < 0.01). We confirm active NF-κB binding sites on the CDK1 promoter sequence. CDK1 phosphorylates and inhibits GSK-3β activity through direct binding with subsequent accumulation and activation of β-catenin. CDK1 silencing or pharmacologic inhibition reverses these effects and impairs tumor organoids and spheroid formation. IHC analysis demonstrates a positive correlation between CDK1 and β-catenin. The results demonstrate a mechanistic link between infection, inflammation, and gastric tumorigenesis where CDK1 plays a critical role.
Collapse
Affiliation(s)
- Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marwah Al-Mathkour
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Longlong Cao
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shayan Khalafi
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Julio Poveda
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Tianling Hu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oliver G McDonald
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
38
|
Zhang Q, Wang C, Yang Y, Xu R, Li Z. LncRNA and its role in gastric cancer immunotherapy. Front Cell Dev Biol 2023; 11:1052942. [PMID: 36875764 PMCID: PMC9978521 DOI: 10.3389/fcell.2023.1052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Gastric cancer (GC) is a potential dominant disease in tumor immunotherapy checkpoint inhibitors, and adoptive cell therapy have brought great hope to GC patients. However, only some patients with GC can benefit from immunotherapy, and some patients develop drug resistance. More and more studies have shown that long non-coding RNAs (lncRNAs) may be important in GC immunotherapy's prognosis and drug resistance. Here, we summarize the differential expression of lncRNAs in GC and their impact on the curative effect of GC immunotherapy, discuss potential mechanisms of activity in GC immunotherapy resistance regulated by lncRNAs. This paper reviews the differential expression of lncRNA in GC and its effect on immunotherapy efficacy in GC. In terms of genomic stability, inhibitory immune checkpoint molecular expression, the cross-talk between lncRNA and immune-related characteristics of GC was summarized, including tumor mutation burden (TMB), microsatellite instability (MSI), and Programmed death 1 (PD-1). At the same time, this paper reviewed the mechanism of tumor-induced antigen presentation and upregulation of immunosuppressive factors, as well as the association between Fas system and lncRNA, immune microenvironment (TIME) and lncRNA, and summarized the functional role of lncRNA in tumor immune evasion and immunotherapy resistance.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Digestive endoscopy, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuanchi Wang
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, Guangdong, China.,China Science and Technology Development Center of Chinese Medicine, Beijing, China
| | - Yan Yang
- China Science and Technology Development Center of Chinese Medicine, Beijing, China
| | - Ruihan Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ziyun Li
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Identification of an Immune-Related Gene Signature Associated with Prognosis and Tumor Microenvironment in Esophageal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7413535. [PMID: 36588538 PMCID: PMC9803573 DOI: 10.1155/2022/7413535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Background Esophageal cancer (EC) is a common malignant tumor of the digestive system with high mortality and morbidity. Current evidence suggests that immune cells and molecules regulate the initiation and progression of EC. Accordingly, it is necessary to identify immune-related genes (IRGs) affecting the biological behaviors and microenvironmental characteristics of EC. Methods Bioinformatics methods, including differential expression analysis, Cox regression, and immune infiltration prediction, were conducted using R software to analyze the Gene Expression Omnibus (GEO) dataset. The Cancer Genome Atlas (TCGA) cohort was used to validate the prognostic signature. Patients were stratified into high- and low-risk groups for further analyses, including functional enrichment, immune infiltration, checkpoint relevance, clinicopathological characteristics, and therapeutic sensitivity analyses. Results A prognostic signature was established based on 21 IRGs (S100A7, S100A7A, LCN1, CR2, STAT4, GAST, ANGPTL5, TRAV39, F2RL2, PGLYRP3, KLRD1, TRIM36, PDGFA, SLPI, PCSK2, APLN, TICAM1, ITPR3, MAPK9, GATA4, and PLAU). Compared with high-risk patients, better overall survival rates and clinicopathological characteristics were found in low-risk patients. The areas under the curve of the two cohorts were 0.885 and 0.718, respectively. Higher proportions of resting CD4+ memory T lymphocytes, M2 macrophages, and resting dendritic cells and lower proportions of follicular helper T lymphocytes, plasma cells, and neutrophils were found in the high-risk tumors. Moreover, the high-risk group showed higher expression of CD44 and TNFSF4, lower expression of PDCD1 and CD40, and higher TIDE scores, suggesting they may respond poorly to immunotherapy. High-risk patients responded better to chemotherapeutic agents such as docetaxel, doxorubicin, and gemcitabine. Furthermore, IRGs associated with tumor progression, including PDGFA, ITPR3, SLPI, TICAM1, and GATA4, were identified. Conclusion Our immune-related signature yielded reliable value in evaluating the prognosis, microenvironmental characteristics, and therapeutic sensitivity of EC and may help with the precise treatment of this patient population.
Collapse
|
40
|
Mortezaee K, Majidpoor J, Najafi S. VISTA immune regulatory effects in bypassing cancer immunotherapy: Updated. Life Sci 2022; 310:121083. [DOI: 10.1016/j.lfs.2022.121083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
|
41
|
Zhao K, Wei B, Zhang Y, Shi W, Zhang G, Wang Z. M6A regulator-mediated immune infiltration and methylation modification in hepatocellular carcinoma microenvironment and immunotherapy. Front Pharmacol 2022; 13:1052177. [PMID: 36438800 PMCID: PMC9685318 DOI: 10.3389/fphar.2022.1052177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/28/2022] [Indexed: 02/06/2024] Open
Abstract
Introduction: Tremendous evidence indicates that N6-methyladenosine (m6A) epigenetic modification and m6A-related enzymes constitute a complex network, which jointly regulates prevailing pathological processes and various signaling pathways in humankind. Currently, the role of the m6A-mediated molecular regulatory network in hepatocellular carcinoma (HCC) remains elusive. Methods: We recruited expression and pathological files of 368 HCC patients from The Cancer Genome Atlas cohort. Four public datasets serve as external authentication sets for nearest template prediction (NTP) validation. The correlation between 35 regulators and their prognostic value was compared. Gene set variation analysis (GSVA) was used to explore the latent mechanism. Four independent algorithms (ssGSEA, xCell, MCP-counter, and TIMER) were used to calculate the ratio of tumor cells and non-tumor cells to evaluate the tumor immune microenvironment. The m6Ascore model was established by principal component analysis (PCA). Prediction of immunotherapy and potential drugs was performed using TIDE and SubMap. Results: A total of 35 m6A regulators were widely associated, most of which were risk factors for HCC patients. The m6A phenotypic-cluster revealed differences in regulator transcriptional level, gene mutation frequency, functional pathways, and immune cell infiltration abundance under distinct m6A patterns. As expected, the m6A gene cluster confirmed the aforementioned results. The m6Ascore model further found that patients in the high-m6Ascore group were associated with lower tumor purity, higher enrichment of immune and stromal cells, upregulation of metabolic pathways, lower expression of m6A regulators, and favorable outcomes. Low-m6Ascore patients were associated with adverse outcomes. Notably, low-m6Ascore patients might be more sensitive to anti-PD-L1 therapy. Conclusion: This study found that a classification model based on the m6A manner could predict HCC prognosis and response to immunotherapy for HCC patients, which might improve prognosis and contribute to clinical individualized decision-making.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Wei
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingxuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenkai Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guokun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengfeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Ratnatunga CN, Tungatt K, Proietti C, Halstrom S, Holt MR, Lutzky VP, Price P, Doolan DL, Bell SC, Field MA, Kupz A, Thomson RM, Miles JJ. Characterizing and correcting immune dysfunction in non-tuberculous mycobacterial disease. Front Immunol 2022; 13:1047781. [PMID: 36439147 PMCID: PMC9686449 DOI: 10.3389/fimmu.2022.1047781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/25/2022] [Indexed: 10/29/2023] Open
Abstract
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is a chronic, progressive, and growing worldwide health burden associated with mounting morbidity, mortality, and economic costs. Improvements in NTM-PD management are urgently needed, which requires a better understanding of fundamental immunopathology. Here, we examine temporal dynamics of the immune compartment during NTM-PD caused by Mycobacterium avium complex (MAC) and Mycobactereoides abscessus complex (MABS). We show that active MAC infection is characterized by elevated T cell immunoglobulin and mucin-domain containing-3 expression across multiple T cell subsets. In contrast, active MABS infection was characterized by increased expression of cytotoxic T-lymphocyte-associated protein 4. Patients who failed therapy closely mirrored the healthy individual immune phenotype, with circulating immune network appearing to 'ignore' infection in the lung. Interestingly, immune biosignatures were identified that could inform disease stage and infecting species with high accuracy. Additionally, programmed cell death protein 1 blockade rescued antigen-specific IFN-γ secretion in all disease stages except persistent infection, suggesting the potential to redeploy checkpoint blockade inhibitors for NTM-PD. Collectively, our results provide new insight into species-specific 'immune chatter' occurring during NTM-PD and provide new targets, processes and pathways for diagnostics, prognostics, and treatments needed for this emerging and difficult to treat disease.
Collapse
Affiliation(s)
- Champa N. Ratnatunga
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Queensland Institute of Medical Research (QIMR) Berghofer, Brisbane, QLD, Australia
- Faculty of Medicine, University of Peradeniya, Kandy, Sri Lanka
| | - Katie Tungatt
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Carla Proietti
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Sam Halstrom
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Michael R. Holt
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital Foundation, Brisbane, QLD, Australia
| | - Viviana P. Lutzky
- Queensland Institute of Medical Research (QIMR) Berghofer, Brisbane, QLD, Australia
| | - Patricia Price
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Denise L. Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Scott C. Bell
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Rachel M. Thomson
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Division of Infection and Immunity, University Hospital Wales, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Queensland Institute of Medical Research (QIMR) Berghofer, Brisbane, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Division of Infection and Immunity, University Hospital Wales, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
43
|
Integrative tumour mutation burden with CD39 and PD-L1 for the prediction of response to PD-L1 blockade and adjuvant chemotherapy in muscle-invasive bladder cancer patients. Br J Cancer 2022; 127:1718-1725. [PMID: 35999267 PMCID: PMC9596489 DOI: 10.1038/s41416-022-01943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND CD39, a rate-limiting enzyme to convert extracellular ATP (eATP) to adenosine, has been reported to be a key modulator of immune response, but its correlation with therapeutic sensitivity remains obscure. We conducted this study to determine whether the integration of CD39 and traditional biomarkers could improve the prediction of responsiveness to PD-L1 blockade and platinum-based chemotherapy. METHODS We retrospectively enrolled a total of 760 patients from IMvigor210 trial, TCGA database and Zhongshan Hospital in this study. We constructed the CPT scoring system based on CD39, PD-L1 and tumour mutation burden (TMB) and validated its efficacy in predicting therapeutic responsiveness in MIBC patients. Kaplan-Meier survival and Cox regression analyses were applied to assess clinical outcomes of patients. RESULTS The CPT scoring system could predict the response to PD-L1 blockade and platinum-based chemotherapy. The CPT score was positively correlated with APOBEC mutational signature and SNV neoantigens enrichment, antigen presentation, and TCR signalling. High CPT score also indicated the inflamed immune phenotype and basal/squamous molecular subtype. CONCLUSIONS CD39 expression is closely correlated with the immunogenic contexture of MIBC. Integrating CD39 with PD-L1 and TMB could stratify the sensitivity of patients with MIBC to PD-L1 blockade and platinum-based chemotherapy.
Collapse
|
44
|
Wang H, Yin X, Fang T, Lou S, Han B, Gao J, Wang Y, Zhang D, Wang X, Lu Z, Wu J, Zhang J, Wang Y, Zhang Y, Xue Y. Development and Validation of an Age-Related Gastric Cancer-Specific Immune Index. J Inflamm Res 2022; 15:6393-6407. [DOI: 10.2147/jir.s388792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
|
45
|
Hou W, Kong L, Hou Z, Ji H. CD44 is a prognostic biomarker and correlated with immune infiltrates in gastric cancer. BMC Med Genomics 2022; 15:225. [PMCID: PMC9620622 DOI: 10.1186/s12920-022-01383-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Gastric carcinoma is the most common malignant tumour of the human digestive system worldwide. CD44 serves as a marker for several tumour stem cells, including gastric cancer. However, the prognostic value of CD44 and its correlation with immune infiltration in gastric cancer remain unclear. Methods The relative expression level of CD44 RNA in gastric cancer was analysed in the TCGA and GEPIA2 databases and validated in the GEO database. Differences in CD44 between gastric cancer cell lines and normal cells were detected by real-time PCR, and the HPA database was used to analyse the differential expression of CD44 protein in gastric cancer and normal tissues. The effect of CD44 on the proliferation and migration of gastric cancer cells was detected by CCK8 and transwell assays. UALCAN was used to analyse the relationship between CD44 expression and clinical parameters, and the Kaplan‒Meier Plotter was used to evaluate the prognostic value, including overall survival (OS), progression-free survival (PFS) and post-progression survival (PPS). The CD44 gene and protein interaction network was constructed by using the Linked Omics, GeneMANIA, STRING and DisGeNET databases. GO and KEGG analyses and GSEA of CD44 were performed by using R language. The correlation between CD44 and immune infiltration was explored by using the TIMER, CIBERSORT and GEPIA databases. Results CD44 is highly expressed in gastric cancer compared with normal tissues. Inhibition of proliferation and migration of gastric cancer cells after CD44 knockdown was observed. The UALCAN database showed that CD44 was independent of sex in gastric cancer but correlated with cancer stage and lymph node metastasis. Kaplan‒Meier Plotter online analysis showed that OS, PFS and PPS were prolonged in the CD44 low-expression group. GO and KEGG analyses and GSEA results showed that CD44 was mainly located in the endoplasmic reticulum and the extracellular matrix containing collagen, which was mainly involved in protein digestion and absorption. TIMER, CIBERSORT and GEPIA showed that CD44 was associated with infiltrating immune cells and thereby affected survival prognosis. Conclusion CD44 is highly expressed in gastric cancer and is an independent prognostic factor associated with immune invasion, which can be used as a candidate prognostic biomarker to determine the prognosis associated with gastric immune invasion.
Collapse
Affiliation(s)
- Weiyan Hou
- grid.413851.a0000 0000 8977 8425College of Basic Medicine, Chengde Medical University, Chengde, China
| | - Lingwei Kong
- grid.413851.a0000 0000 8977 8425Department of Orthopaedics, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zhiping Hou
- grid.413851.a0000 0000 8977 8425Department of Pathology, Chengde Medical University, Shangerdaohezi Avenue, Chengde, 067000 Hebei China
| | - Hairu Ji
- grid.413851.a0000 0000 8977 8425Department of Pathology, Chengde Medical University, Shangerdaohezi Avenue, Chengde, 067000 Hebei China
| |
Collapse
|
46
|
Zhang D, Liu J, Zheng M, Meng C, Liao J. Prognostic and clinicopathological significance of CD155 expression in cancer patients: a meta-analysis. World J Surg Oncol 2022; 20:351. [DOI: 10.1186/s12957-022-02813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/16/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
It has been previously reported that CD155 is often over-expressed in a variety of cancer types. In fact, it is known to be involved in cancer development, and its role in cancer has been widely established. However, clinical and mechanistic studies involving CD155 yielded conflicting results. Thus, the present study aimed to evaluate overall prognostic value of CD155 in cancer patients, using a comprehensive analysis.
Methods
Online databases were searched, data was collected, and clinical value of CD155 was evaluated by combining hazard ratios (HRs) or odds ratios (ORs).
Results
The present study involved meta-analysis of 26 previous studies that involved 4325 cancer patients. These studies were obtained from 25 research articles. The results of the study revealed that increased CD155 expression was significantly associated with reduced OS in patients with cancer as compared to low CD155 expression (pooled HR = 1.772, 95% CI = 1.441–2.178, P < 0.001). Furthermore, subgroup analysis demonstrated that the level of CD155 expression was significantly associated with OS in patients with digestive system cancer (pooled HR = 1.570, 95% CI = 1.120–2.201, P = 0.009), hepatobiliary pancreatic cancer (pooled HR = 1.677, 95% CI = 1.037–2.712, P = 0.035), digestive tract cancer (pooled HR = 1.512, 95% CI = 1.016–2.250, P = 0.042), breast cancer (pooled HR = 2.137, 95% CI = 1.448–3.154, P < 0.001), lung cancer (pooled HR = 1.706, 95% CI = 1.193–2.440, P = 0.003), head and neck cancer (pooled HR = 1.470, 95% CI = 1.160–1.862, P = 0.001). Additionally, a significant correlation was observed between enhanced CD155 expression and advanced tumor stage (pooled OR = 1.697, 95% CI = 1.217–2.366, P = 0.002), LN metastasis (pooled OR = 1.953, 95% CI = 1.253–3.046, P = 0.003), and distant metastasis (pooled OR = 2.253, 95% CI = 1.235–4.110, P = 0.008).
Conclusion
Altogether, the results of the present study revealed that CD155 acted as an independent marker of prognosis in cancer patients, and it could provide a new and strong direction for cancer treatment.
Collapse
|
47
|
Pagliuca S, Gurnari C, Rubio MT, Visconte V, Lenz TL. Individual HLA heterogeneity and its implications for cellular immune evasion in cancer and beyond. Front Immunol 2022; 13:944872. [PMID: 36131910 PMCID: PMC9483928 DOI: 10.3389/fimmu.2022.944872] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
Structural and functional variability of human leukocyte antigen (HLA) is the foundation for competent adaptive immune responses against pathogen and tumor antigens as it assures the breadth of the presented immune-peptidome, theoretically sustaining an efficient and diverse T cell response. This variability is presumably the result of the continuous selection by pathogens, which over the course of evolution shaped the adaptive immune system favoring the assortment of a hyper-polymorphic HLA system able to elaborate efficient immune responses. Any genetic alteration affecting this diversity may lead to pathological processes, perturbing antigen presentation capabilities, T-cell reactivity and, to some extent, natural killer cell functionality. A highly variable germline HLA genotype can convey immunogenetic protection against infections, be associated with tumor surveillance or influence response to anti-neoplastic treatments. In contrast, somatic aberrations of HLA loci, rearranging the original germline configuration, theoretically decreasing its variability, can facilitate mechanisms of immune escape that promote tumor growth and immune resistance. The purpose of the present review is to provide a unified and up-to-date overview of the pathophysiological consequences related to the perturbations of the genomic heterogeneity of HLA complexes and their impact on human diseases, with a special focus on cancer.
Collapse
Affiliation(s)
- Simona Pagliuca
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH, United States
- Service d’hématologie Clinique, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365 IMoPa, Biopole de l’Université de Loarraine, Vandoeuvre les Nancy, France
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marie Thérèse Rubio
- Service d’hématologie Clinique, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365 IMoPa, Biopole de l’Université de Loarraine, Vandoeuvre les Nancy, France
| | - Valeria Visconte
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH, United States
| | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
48
|
Liu C, Tao Y, Lin H, Lou X, Wu S, Chen L. Classification of stomach adenocarcinoma based on fatty acid metabolism-related genes frofiling. Front Mol Biosci 2022; 9:962435. [PMID: 36090054 PMCID: PMC9461144 DOI: 10.3389/fmolb.2022.962435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fatty acid metabolism (FAM)-related genes play a key role in the development of stomach adenocarcinoma (STAD). Although immunotherapy has led to a paradigm shift in STAD treatment, the overall response rate of immunotherapy for STAD is low due to heterogeneity of the tumor immune microenvironment (TIME). How FAM-related genes affect TIME in STAD remains unclear.Methods: The univariate Cox regression analysis was performed to screen prognostic FAM-related genes using transcriptomic profiles of the Cancer Genome Atlas (TCGA)-STAD cohort. Next, the consensus clustering analysis was performed to divide the STAD cohort into two groups based on the 13 identified prognostic genes. Then, gene set enrichment analysis (GSEA) was carried out to identify enriched pathways in the two groups. Furthermore, we developed a prognostic signature model based on 7 selected prognostic genes, which was validated to be capable in predicting the overall survival (OS) of STAD patients using the univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analyses. Finally, the “Estimation of STromal and Immune cells in MAlignant Tumours using Expression data” (ESTIMATE) algorithm was used to evaluate the stromal, immune, and ESTIMATE scores, and tumor purity of each STAD sample.Results: A total of 13 FAM-related genes were identified to be significantly associated with OS in STAD patients. Two molecular subtypes, which we named Group 1 and Group 2, were identified based on these FAM-related prognostic genes using the consensus clustering analysis. We showed that Group 2 was significantly correlated with poor prognosis and displayed higher programmed cell death ligand 1 (PD-L1) expressions and distinct immune cell infiltration patterns. Furthermore, using GSEA, we showed that apoptosis and HCM signaling pathways were significantly enriched in Group 2. We constructed a prognostic signature model using 7 selected FAM-related prognostic genes, which was proven to be effective for prediction of STAD (HR = 1.717, 95% CI = 1.105–1.240, p < 0.001). After classifying the patients into the high- and low-risk groups based on our model, we found that patients in the high-risk group tend to have more advanced T stages and higher tumor grades, as well as higher immune scores. We also found that the risk scores were positively correlated with the infiltration of certain immune cells, including resting dendritic cells (DCs), and M2 macrophages. We also demonstrated that elevated expression of gamma-glutamyltransferase 5 (GGT5) is significantly associated with worse OS and disease-free survival (DFS), more advanced T stage and higher tumor grade, and increased immune cell infiltration, suggesting that STAD patients with high GGT5 expression in the tumor tissues might have a better response to immunotherapy.Conclusion: FAM-related genes play critical roles in STAD prognosis by shaping the TIME. These genes can regulate the infiltration of various immune cells and thus are potential therapeutic targets worthy of further investigation. Furthermore, GGT5 was a promising marker for predicting immunotherapeutic response in STAD patients.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Yongjun Tao
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Huajian Lin
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Xiqiang Lou
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Simin Wu
- Department of Tumor Rehabilitation Center, Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
| | - Liping Chen
- Research Center of Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Liping Chen,
| |
Collapse
|
49
|
Wang Z, Liang X, Zhang H, Wang Z, Zhang X, Dai Z, Liu Z, Zhang J, Luo P, Li J, Cheng Q. Identification of a Hypoxia-Angiogenesis lncRNA Signature Participating in Immunosuppression in Gastric Cancer. J Immunol Res 2022; 2022:5209607. [PMID: 36052279 PMCID: PMC9427269 DOI: 10.1155/2022/5209607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Hypoxia and angiogenesis are the leading causes of tumor progression, and their strong correlation has been discovered in many cancers. However, their collective function's prognostic and biological roles were not reported in gastric cancer. Hence, we aimed to investigate the effects of hypoxia and angiogenesis on gastric cancer via sequencing data. This study used weighted gene coexpression network analysis and random forest regression to build a hypoxia-angiogenesis-related model (HARM) via the TCGA-STAD lncRNA data. It estimated the HARM's correlation with clinical features and its accuracy for survival prediction. Sequential functional analyses were conducted to investigate its biological role, and we next sought the immune landscape status and immunological function variation by ESTIMATE score calculation and GSVA, respectively. Seven different algorithms were conducted to assess the immunocyte infiltration, and TIDE score and immune checkpoint levels were compared between the high- and low-HARM groups. As a result, we found that HARM predicted patient survival with high accuracy and was correlated with higher stages of gastric cancer. Various cancer-associated pathways and macrophage-related regulations were upregulated in the high-HRAM group. The high-HARM group harbored higher immune levels, and M2 macrophages and cancer-associated fibroblasts were particularly highly unfiltered. Furthermore, globally upregulated immune checkpoints and higher TIDE scores were observed in the high-HARM group. Finally, we filtered eight drugs with lower IC50 in the high-HARM group as potential drugs for the HARM-targeted therapy. We believe this study opens up novel perspectives into the interaction between hypoxia-angiogenesis and immunosuppression and will provide novel insights for gastric cancer immunotherapy.
Collapse
Affiliation(s)
- Zicheng Wang
- Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Jiarong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
50
|
Sukri A, Hanafiah A, Kosai NR. The Roles of Immune Cells in Gastric Cancer: Anti-Cancer or Pro-Cancer? Cancers (Basel) 2022; 14:cancers14163922. [PMID: 36010915 PMCID: PMC9406374 DOI: 10.3390/cancers14163922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Gastric cancer is still one of the leading causes of death caused by cancer in developing countries. The emerging role of immunotherapy in cancer treatment has led to more research to elucidate the roles of essential immune cells in gastric cancer prognosis. We reviewed the roles of immune cells including T cells, B cells, dendritic cells, macrophages and natural killer cells in gastric cancer. Although the studies conducted on the roles of immune cells in gastric cancer pathogenesis produced conflicting results, understanding the roles of immune cells in gastric cancer will help us to harness them for application in immunotherapy for better prognosis and management of gastric cancer patients. Abstract Despite the fact that the incidence of gastric cancer has declined over the last decade, it is still the world’s leading cause of cancer-related death. The diagnosis of early gastric cancer is difficult, as symptoms of this cancer only manifest at a late stage of cancer progression. Thus, the prognosis of gastric cancer is poor, and the current treatment for improving patients’ outcomes involves the application of surgery and chemotherapy. Immunotherapy is one of the most recent therapies for gastric cancer, whereby the immune system of the host is programmed to combat cancer cells, and the therapy differs based upon the patient’s immune system. However, an understanding of the role of immune cells, namely the cell-mediated immune response and the humoral immune response, is pertinent for applications of immunotherapy. The roles of immune cells in the prognosis of gastric cancer have yielded conflicting results. This review discusses the roles of immune cells in gastric cancer pathogenesis, specifically, T cells, B cells, macrophages, natural killer cells, and dendritic cells, as well as the evidence presented thus far. Understanding how cancer cells interact with immune cells is of paramount importance in designing treatment options for gastric cancer immunotherapy.
Collapse
Affiliation(s)
- Asif Sukri
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Shah Alam 43200, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence:
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|