1
|
Chan DTC, Winter L, Bjerg J, Krsmanovic S, Baldwin GS, Bernstein HC. Fine-Tuning Genetic Circuits via Host Context and RBS Modulation. ACS Synth Biol 2025. [PMID: 39754601 DOI: 10.1021/acssynbio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants. Characterization of performance metrics in terms of toggle switch output and host growth dynamics unveils a spectrum of performance profiles from our circuit library. We find that changes in host context cause large shifts in overall performance, while modulating ribosome binding sites leads to more incremental changes. We find that a combined ribosome binding site and host context modulation approach can be used to fine-tune the properties of a toggle switch according to user-defined specifications, such as toward greater signaling strength, inducer sensitivity, or both. Other auxiliary properties, such as inducer tolerance, are also exclusively accessed through changes in the host context. We demonstrate here that exploration of the chassis-design space can offer significant value, reconceptualizing the chassis organism as an important part in the synthetic biologist's toolbox with important implications for the field of synthetic biology.
Collapse
Affiliation(s)
- Dennis Tin Chat Chan
- Faculty of Biosciences, Fisheries and Economics, UiT─The Arctic University of Norway, 9019 Tromsø, Norway
| | - Lena Winter
- Faculty of Biosciences, Fisheries and Economics, UiT─The Arctic University of Norway, 9019 Tromsø, Norway
| | - Johan Bjerg
- Faculty of Biosciences, Fisheries and Economics, UiT─The Arctic University of Norway, 9019 Tromsø, Norway
| | - Stina Krsmanovic
- Faculty of Biosciences, Fisheries and Economics, UiT─The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S Baldwin
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, South Kensington, London SW7 2AZ, U.K
| | - Hans C Bernstein
- Faculty of Biosciences, Fisheries and Economics, UiT─The Arctic University of Norway, 9019 Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT─The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
2
|
Wu J, Bureik M, Marchisio MA. Efficient sex hormone biosensors in Saccharomyces cerevisiae cells to evaluate human aromatase activity and inhibition. Sci Rep 2025; 15:737. [PMID: 39753751 PMCID: PMC11698725 DOI: 10.1038/s41598-024-85022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Yeast sex-hormone whole-cell biosensors are analytical tools characterized by long-time storage and low production cost. We engineered compact β-estradiol biosensors in S. cerevisiae cells by leveraging short (20-nt long) operators bound by the fusion protein LexA-ER-VP64-where ER is the human estrogen receptor and VP64 a strong viral activation domain. Our best biosensors showed high accuracy since their recovery concentration ranged between 97.13% and 104.69%. As a novelty, we built on top of them testosterone biosensors that exploit the conversion of testosterone into β-estradiol by the human aromatase enzyme-expressed in S. cerevisiae together with its co-factor CPR. We used our engineered yeast strains to evaluate aromatase activity through fluorescence measurements without the need for protein purification. Besides, we set up an aromatase-inhibitors evaluation assay to measure the IC50 (half-maximal inhibitory concentration) of candidate inhibitory compounds and developed a screening assay for enzymes that metabolize β-estradiol that demands only to measure fluorescence. These two assays allow the screening of a large number of chemicals and proteins in a fast and economic fashion. We think that our work will facilitate considerably high throughput screening for the discovery of new drugs and unknown metabolic processes.
Collapse
Affiliation(s)
- Jie Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
- School of Life Science and Health, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
3
|
Leech G, Melcher L, Chiu M, Nugent M, Juliano S, Burton L, Kang J, Kim SJ, Roy S, Farhadi L, Ross JL, Das M, Rust MJ, Robertson-Anderson RM. Programming scheduled self-assembly of circadian materials. Nat Commun 2025; 16:176. [PMID: 39747896 PMCID: PMC11696221 DOI: 10.1038/s41467-024-55645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation of materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids. The resulting material self-assembles with programmable kinetics, producing macroscopic changes in material properties, via molecular assembly of KaiB-KaiC complexes. We show that colloid crosslinking depends strictly on the phosphorylation state of KaiC, with kinetics that are synced with KaiB-KaiC complexing. Our microscopic image analyses and computational models indicate that the stability of colloidal super-structures depends sensitively on the number of Kai complexes per colloid connection. Consistent with our model predictions, a high concentration stabilizes the material against dissolution after a robust self-assembly phase, while a low concentration allows for oscillatory material structure. This work introduces the concept of harnessing biological timers to control synthetic materials; and, more generally, opens the door to using protein-based reaction networks to endow synthetic systems with life-like functional properties.
Collapse
Affiliation(s)
- Gregor Leech
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA
| | - Lauren Melcher
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Michelle Chiu
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Maya Nugent
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA
| | - Shirlaine Juliano
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA
| | - Lily Burton
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Janet Kang
- Department of Molecular Genetics and Cell Biology and Department of Physics, University of Chicago, Chicago, IL, USA
| | - Soo Ji Kim
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Sourav Roy
- Department of Physics, Syracuse University, Syracuse, NY, USA
| | - Leila Farhadi
- Department of Physics, Syracuse University, Syracuse, NY, USA
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, NY, USA
| | - Moumita Das
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology and Department of Physics, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
4
|
Ye X, Qin K, Fernie AR, Zhang Y. Prospects for synthetic biology in 21 st Century agriculture. J Genet Genomics 2024:S1673-8527(24)00369-2. [PMID: 39742963 DOI: 10.1016/j.jgg.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges. Here we highlight recent advancements and applications of plant synthetic biology in agriculture, focusing on key areas such as photosynthetic efficiency, nitrogen fixation, drought tolerance, pathogen resistance, nutrient use efficiency, biofortification, climate resilience, microbiology engineering, synthetic plant genomes, and the integration of artificial intelligence (AI) with synthetic biology. These innovations aim to maximize resource use efficiency, reduce reliance on external inputs, and mitigate environmental impacts associated with conventional agricultural practices. Despite challenges related to regulatory approval and public acceptance, the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems, contributing to global food security and environmental sustainability. Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility.
Collapse
Affiliation(s)
- Xingyan Ye
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kezhen Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Chamas A, Svensson CM, Maneira C, Sporniak M, Figge MT, Lackner G. Engineering Adhesion of the Probiotic Strain Escherichia coli Nissle to the Fungal Pathogen Candida albicans. ACS Synth Biol 2024; 13:4027-4039. [PMID: 39265099 DOI: 10.1021/acssynbio.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Engineering live biotherapeutic products against fungal pathogens such as Candida albicans has been suggested as a means to tackle the increasing threat of fungal infections and the development of resistance to classical antifungal treatments. One important challenge in the design of live therapeutics is to control their localization inside the human body. The specific binding capability to target organisms or tissues would greatly increase their effectiveness by increasing the local concentration of effector molecules at the site of infection. In this study, we utilized surface display of carbohydrate binding domains to enable the probiotic E. coli Nissle 1917 to adhere specifically to the pathogenic yeast Candida albicans. Binding was quantified using a newly developed method based on the automated analysis of microscopic images. In addition to a rationally selected chitin binding domain, a synthetic peptide of identical length but distinct sequence also conferred binding. Efficient binding was specific to fungal hyphae, the invasive form of C. albicans, while the yeast form, as well as abiotic cellulose and PET particles, was only weakly recognized.
Collapse
Affiliation(s)
- Alexandre Chamas
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Carla Maneira
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| | - Marta Sporniak
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
6
|
Fagunwa OE, Ashiru-Oredope D, Gilmore BF, Doherty S, Oyama LB, Huws SA. Climate change as a challenge for pharmaceutical storage and tackling antimicrobial resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177367. [PMID: 39500447 DOI: 10.1016/j.scitotenv.2024.177367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
The rise of antimicrobial resistance (AMR) remains a pressing global health challenge. Infections that were once easily treatable with first-line antimicrobials are becoming increasingly difficult to manage. This shift directly threatens the wellness of humans, animals, plants, and the environment. While the AMR crisis can be attributed to a myriad of factors, including lack of infection prevention and control measures, over-prescription of antimicrobials, patient non-compliance, and the misuse of antimicrobials, one aspect that has garnered less attention is the role of storage conditions of these medicines. The way medications, particularly antimicrobials, are transported and stored until the point of use can influence their efficacy and, subsequently, may impact the development of resistant microbial strains. This review delves deeper into the often-overlooked domain of climate change (CC) and antimicrobial storage practices and the potential effects. Inappropriate storage conditions, such as exposure to extreme temperatures, humidity or light, can degrade the potency of antimicrobials. When these compromised medicines are administered to patients or animals alike, they may not effectively eradicate the targeted pathogens, leading to partial survival of the pathogens. These surviving pathogens, having been exposed to sub-lethal doses, are more likely to evolve and develop resistance mechanisms. The review discusses the mechanism underlying this and underscores the implications of antimicrobial storage practices in relation to two of the most pressing global health challenges: AMR and CC. The review also presents specific case studies and highlights the importance of monitoring storage practices and supply chain surveillance. Furthermore, the importance of deploying genomic tools to understand the potential impact of storage conditions on the development of AMR is discussed, and antimicrobial storage highlighted as a crucial part of comprehensive strategies in the fight against AMR.
Collapse
Affiliation(s)
- Omololu E Fagunwa
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| | | | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Simon Doherty
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Linda B Oyama
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Sharon A Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| |
Collapse
|
7
|
Zhao S, Su X, Xu C, Gao X, Lu S. Microbial adaptation and genetic modifications for enhanced remediation in low-permeability soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177916. [PMID: 39647202 DOI: 10.1016/j.scitotenv.2024.177916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Low-permeability soils, characterized by fine texture and high clay content, pose significant challenges to traditional soil remediation techniques due to limited hydraulic conductivity, restricted nutrient flow, and reduced oxygen availability. These unique properties enable low-permeability soils to function as natural barriers in environmental protection; however, they also trap contaminants, making traditional remediation efforts challenging. This review synthesizes current knowledge on microbial adaptation and genetic engineering approaches that enhance the effectiveness of bioremediation in such environments. Key microbial adaptations, including anaerobic metabolism, extracellular enzyme production, and stress response mechanisms, allow individual microbes to adapt in low-permeability soils. Additionally, community-level strategies like microhabitat creation, biofilm formation, and functional redundancy further support microbial resilience. Advancements in genetic engineering now enable the modification of microbial traits-such as soil adhesion, nutrient utilization, and stress tolerance-to enhance bioremediation efficacy. Synthetic biology techniques further allow for the design of tailored microbial consortia that work cooperatively to degrade contaminants in complex soil matrices. This review highlights the integration of microbial and genetic engineering strategies, offering a comprehensive overview that informs current practices and guides future research in low-permeability soil remediation.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Xinjia Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chen Xu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xu Gao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Songyan Lu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
8
|
Nazir A, Hussain FHN, Raza A. Advancing microbiota therapeutics: the role of synthetic biology in engineering microbial communities for precision medicine. Front Bioeng Biotechnol 2024; 12:1511149. [PMID: 39698189 PMCID: PMC11652149 DOI: 10.3389/fbioe.2024.1511149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Over recent years, studies on microbiota research and synthetic biology have explored novel approaches microbial manipulation for therapeutic purposes. However, fragmented information is available on this aspect with key insights scattered across various disciplines such as molecular biology, genetics, bioengineering, and medicine. This review aims to the transformative potential of synthetic biology in advancing microbiome research and therapies, with significant implications for healthcare, agriculture, and environmental sustainability. By merging computer science, engineering, and biology, synthetic biology allows for precise design and modification of biological systems via cutting edge technologies like CRISPR/Cas9 gene editing, metabolic engineering, and synthetic oligonucleotide synthesis, thus paving the way for targeted treatments such as personalized probiotics and engineered microorganisms. The review will also highlight the vital role of gut microbiota in disorders caused by its dysbiosis and suggesting microbiota-based therapies and innovations such as biosensors for real-time gut health monitoring, non-invasive diagnostic tools, and automated bio foundries for better outcomes. Moreover, challenges including genetic stability, environmental safety, and robust regulatory frameworks will be discussed to understand the importance of ongoing research to ensure safe and effective microbiome interventions.
Collapse
Affiliation(s)
- Asiya Nazir
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | | |
Collapse
|
9
|
Baghdasaryan O, Contreras-Llano LE, Khan S, Wang A, Hu CMJ, Tan C. Fabrication of cyborg bacterial cells as living cell-material hybrids using intracellular hydrogelation. Nat Protoc 2024; 19:3613-3639. [PMID: 39174659 DOI: 10.1038/s41596-024-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/11/2024] [Indexed: 08/24/2024]
Abstract
The production of living therapeutics, cell-based delivery of drugs and gene-editing tools and the manufacturing of bio-commodities all share a common concept: they use either a synthetic or a living cell chassis to achieve their primary engineering or therapeutic goal. Live-cell chassis face limitations inherent to their auto-replicative nature and the complexity of the cellular context. This limitation highlights the need for a new chassis combining the engineering simplicity of synthetic materials and the functionalities of natural cells. Here, we describe a protocol to assemble a synthetic polymeric network inside bacterial cells, rendering them incapable of cell division and allowing them to resist environmental stressors such as high pH, hydrogen peroxide and cell-wall-targeting antibiotics that would otherwise kill unmodified bacteria. This cellular bioengineering protocol details how bacteria can be transformed into single-lifespan devices that are resistant to environmental stressors and possess programable functionality. We designate the modified bacteria as cyborg bacterial cells. This protocol expands the synthetic biology toolset, conferring precise control over living cells and creating a versatile cell chassis for biotechnology, biomedical engineering and living therapeutics. The protocol, including the preparation of gelation reagents and chassis strain, can be completed in 4 d. The implementation of the protocol requires expertise in microbiology techniques, hydrogel chemistry, fluorescence microscopy and flow cytometry. Further functionalization of the cyborg bacterial cells and adaptation of the protocol requires skills ranging from synthetic genetic circuit engineering to hydrogel polymerization chemistries.
Collapse
Affiliation(s)
| | - Luis E Contreras-Llano
- Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Shahid Khan
- Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Aijun Wang
- Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan.
| | - Cheemeng Tan
- Biomedical Engineering, University of California Davis, Davis, CA, USA.
| |
Collapse
|
10
|
Stohr AM, Ma D, Chen W, Blenner M. Engineering conditional protein-protein interactions for dynamic cellular control. Biotechnol Adv 2024; 77:108457. [PMID: 39343083 DOI: 10.1016/j.biotechadv.2024.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Conditional protein-protein interactions enable dynamic regulation of cellular activity and are an attractive approach to probe native protein interactions, improve metabolic engineering of microbial factories, and develop smart therapeutics. Conditional protein-protein interactions have been engineered to respond to various chemical, light, and nucleic acid-based stimuli. These interactions have been applied to assemble protein fragments, build protein scaffolds, and spatially organize proteins in many microbial and higher-order hosts. To foster the development of novel conditional protein-protein interactions that respond to new inputs or can be utilized in alternative settings, we provide an overview of the process of designing new engineered protein interactions while showcasing many recently developed computational tools that may accelerate protein engineering in this space.
Collapse
Affiliation(s)
- Anthony M Stohr
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Derron Ma
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
11
|
Deng B, Lin S, Wang Y, Zhang M, Shen Y, Zhou P, Shen A, Wang L, Ding F, Liu J. Hyaluronic Acid-Nanocoated Bacteria Generate an Anti-Inflammatory Tissue-Repair Effect in Impaired Gut and Extraintestinal Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412783. [PMID: 39568244 DOI: 10.1002/adma.202412783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Indexed: 11/22/2024]
Abstract
Diverse extraintestinal diseases are characterized by localized inflammatory responses and tissue damage, accompanied with intestinal inflammation and injury. Here, a dual-functionality and dual-location intervention strategy is reported, which is the use of hyaluronic acid-nanocoated Clostridium butyricum to generate an anti-inflammatory tissue-repair effect in the impaired gut and extraintestinal organs. Nanocoated bacteria attenuate intestinal mucosal inflammation and recover gut barrier integrity by leveraging the immunosuppressive nature of hyaluronic acid and the butyrate-producing ability of Clostridium butyricum. Nanocoated bacteria also alleviate the interstitial inflammation and pathological damage of extraintestinal organs via remodeling microbial metabolites and decreasing microbial translocation. In murine models of acute kidney injury and chronic kidney disease, oral delivery of nanocoated bacteria demonstrates the potency to restore renal function and eliminate renal fibrosis. This work proposes a type of next-generation living therapeutics for treating extraintestinal diseases.
Collapse
Affiliation(s)
- Bo Deng
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Wang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuqi Shen
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Peihui Zhou
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Aiwen Shen
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
12
|
Göpfrich K, Platten M, Frischknecht F, Fackler OT. Bottom-up synthetic immunology. NATURE NANOTECHNOLOGY 2024; 19:1587-1596. [PMID: 39187581 DOI: 10.1038/s41565-024-01744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/02/2024] [Indexed: 08/28/2024]
Abstract
Infectious diseases and cancer evade immune surveillance using similar mechanisms. Targeting immune mechanisms using common strategies thus represents a promising avenue to improve prevention and treatment. Synthetic immunology can provide such strategies by applying engineering principles from synthetic biology to immunology. Synthetic biologists engineer cells by top-down genetic manipulation or bottom-up assembly from nanoscale building blocks. Recent successes in treating advanced tumours and diseases using genetically engineered immune cells highlight the power of the top-down synthetic immunology approach. However, genetic immune engineering is mostly limited to ex vivo applications and is subject to complex counter-regulation inherent to immune functions. Bottom-up synthetic biology can harness the rich nanotechnology toolbox to engineer molecular and cellular systems from scratch and equip them with desired functions. These are beginning to be tailored to perform targeted immune functions and should hence allow intervention strategies by rational design. In this Perspective we conceptualize bottom-up synthetic immunology as a new frontier field that uses nanotechnology for crucial innovations in therapy and the prevention of infectious diseases and cancer.
Collapse
Affiliation(s)
- Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany.
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, Department of Infectious Diseases, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Oliver T Fackler
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
- Integrative Virology, Center of Integrative Infectious Disease Research, Department of Infectious Diseases, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
14
|
Wei Y, Qu L, Ji X. Synthesis of Natural Products Using Engineered Plants and Microorganisms. Molecules 2024; 29:5054. [PMID: 39519694 PMCID: PMC11547197 DOI: 10.3390/molecules29215054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Microorganisms and plants, particularly medicinal herbs, are abundant sources of diverse natural products, many of which are bioactive molecules with significant pharmaceutical or health benefits, and include artemisinin [...].
Collapse
Affiliation(s)
- Yongjun Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaojun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Baker F, Harman J, Jordan T, Walton B, Ajamu-Johnson A, Alashqar R, Bhikot S, Struhl G, Langridge PD. An in vivo screen for proteolytic switch domains that can mediate Notch activation by force. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602225. [PMID: 39026694 PMCID: PMC11257581 DOI: 10.1101/2024.07.10.602225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Notch proteins are single pass transmembrane receptors activated by sequential extracellular and intramembrane cleavages that release their cytosolic domains to function as transcription factors in the nucleus. Upon binding, Delta/Serrate/LAG-2 (DSL) ligands activate Notch by exerting a "pulling" force across the intercellular ligand/receptor bridge. This pulling force is generated by Epsin-mediated endocytosis of ligand into the signal-sending cell, and results in the extracellular cleavage of the force-sensing Negative Regulatory Region (NRR) of the receptor by an ADAM10 protease [Kuzbanian (Kuz) in Drosophila ]. Here, we have used chimeric Notch and DSL proteins to screen for other domains that can function as ligand-dependent proteolytic switches in place of the NRR in the developing Drosophila wing. While many of the tested domains are either refractory to cleavage or constitutively cleaved, we identify several that mediate Notch activation in response to ligand. These NRR analogues derive from widely divergent source proteins and have strikingly different predicted structures. Yet, almost all depend on force exerted by Epsin-mediated ligand endocytosis and cleavage catalyzed by Kuz. We posit that the sequence space of protein domains that can serve as force-sensing proteolytic switches in Notch activation is unexpectedly large, a conclusion that has implications for the mechanism of target recognition by Kuz/ADAM10 proteases and is consistent with a more general role for force dependent ADAM10 proteolysis in other cell contact-dependent signaling mechanisms. Our results also validate the screen for increasing the repertoire of proteolytic switches available for synthetic Notch (synNotch) therapies and tissue engineering.
Collapse
|
16
|
Seo Y, Zhou A, Nguyen TH, Wei N. Yeast Surface-Displayed Quenchbody as a Novel Whole-Cell Biosensor for One-Step Detection of Influenza A (H1N1) Virus. ACS Synth Biol 2024; 13:2926-2937. [PMID: 39256183 DOI: 10.1021/acssynbio.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Timely surveillance of airborne pathogens is essential to preventing the spread of infectious diseases and safeguard human health. Methods for sensitive, efficient, and cost-effective detection of airborne viruses are needed. With advances in synthetic biology, whole-cell biosensors have emerged as promising platforms for environmental monitoring and medical diagnostics. However, the current design paradigm of whole-cell biosensors is mostly based on intracellular detection of analytes that can transport across the cell membrane, which presents a critical challenge for viral pathogens and large biomolecules. To address this challenge, we developed a new type of whole-cell biosensor by expressing and displaying VHH-based quenchbody (Q-body) on the surface of the yeast Saccharomyces cerevisiae for simple one-step detection of influenza A (H1N1) virus. Seventeen VHH antibody fragments targeting the hemagglutinin protein H1N1-HA were displayed on the yeast cells and screened for the H1N1-HA binding affinity. The functionally displayed VHHs were selected to create surface-displayed Q-body biosensors. The surface-displayed Q-body exhibiting the highest quenching and dequenching efficiency was identified. The biosensor quantitatively detected H1N1-HA in a range from 0.5 to 16 μg/mL, with a half-maximal concentration of 2.60 μg/mL. The biosensor exhibited high specificity for H1N1-HA over other hemagglutinin proteins from various influenza A virus subtypes. Moreover, the biosensor succeeded in detecting the H1N1 virus at concentrations from 2.4 × 104 to 1.5 × 107 PFU/mL. The results from this study demonstrated a new whole-cell biosensor design that circumvents the need for transport of analytes into biosensor cells, enabling efficient detection of the target virus particles.
Collapse
Affiliation(s)
- Yoonjoo Seo
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Buecherl L, Myers CJ, Fontanarrosa P. Evaluating the Contribution of Model Complexity in Predicting Robustness in Synthetic Genetic Circuits. ACS Synth Biol 2024; 13:2742-2752. [PMID: 39264040 DOI: 10.1021/acssynbio.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The design-build-test-learn workflow is pivotal in synthetic biology as it seeks to broaden access to diverse levels of expertise and enhance circuit complexity through recent advancements in automation. The design of complex circuits depends on developing precise models and parameter values for predicting the circuit performance and noise resilience. However, obtaining characterized parameters under diverse experimental conditions is a significant challenge, often requiring substantial time, funding, and expertise. This work compares five computational models of three different genetic circuit implementations of the same logic function to evaluate their relative predictive capabilities. The primary focus is on determining whether simpler models can yield conclusions similar to those of more complex ones and whether certain models offer greater analytical benefits. These models explore the influence of noise, parametrization, and model complexity on predictions of synthetic circuit performance through simulation. The findings suggest that when developing a new circuit without characterized parts or an existing design, any model can effectively predict the optimal implementation by facilitating qualitative comparison of designs' failure probabilities (e.g., higher or lower). However, when characterized parts are available and accurate quantitative differences in failure probabilities are desired, employing a more precise model with characterized parts becomes necessary, albeit requiring additional effort.
Collapse
Affiliation(s)
- Lukas Buecherl
- Department of Biomedical Engineering, University of Colorado, Boulder Colorado 80309, United States
| | - Chris J Myers
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder Colorado 80309, United States
| | - Pedro Fontanarrosa
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder Colorado 80309, United States
| |
Collapse
|
18
|
Guo Y, Xia Y, Liang Z, Yang S, Guo S, Sun L, Huo YX. Plasmid-Stabilizing Strains for Antibiotic-Free Chemical Fermentation. ACS Synth Biol 2024; 13:2820-2832. [PMID: 39120497 DOI: 10.1021/acssynbio.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Plasmid-mediated antibiotic-free fermentation holds significant industrial potential. However, the requirements for host elements and energy during plasmid inheritance often cause cell burden, leading to plasmid loss and reduced production. The stable maintenance of plasmids is primarily achieved through a complex mechanism, making it challenging to rationally design plasmid-stabilizing strains and characterize the associated genetic factors. In this study, we introduced a fluorescence-based high-throughput method and successfully screened plasmid-stabilizing strains from the genomic fragment-deletion strains of Escherichia coli MG1655 and Bacillus subtilis 168. The application of EcΔ50 in antibiotic-free fermentation increased the alanine titer 2.9 times. The enhanced plasmid stability in EcΔ50 was attributed to the coordinated deletion of genes involved in plasmid segregation and replication control, leading to improved plasmid maintenance and increased plasmid copy number. The increased plasmid stability of BsΔ44 was due to the deletion of the phage SPP1 surface receptor gene yueB, resulting in minimized sporulation, improved plasmid segregational stability and host adaptation. Antibiotic-free fermentation results showed that strain BsΔyueB exhibited a 61.99% higher acetoin titer compared to strain Bs168, reaching 3.96 g/L. When used for the fermentation of the downstream product, 2,3-butanediol, strain BsΔyueB achieved an 80.63% higher titer than Bs168, reaching 14.94 g/L using rich carbon and nitrogen feedstocks. Overall, our work provided a plasmid-stabilizing chassis for E. coli and B. subtilis, highlighting their potential for antibiotic-free fermentation of valuable products and metabolic engineering applications.
Collapse
Affiliation(s)
- Yingjie Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Yan Xia
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Zeyu Liang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Shenyan Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Hebei, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Hebei, China
| |
Collapse
|
19
|
Weibel N, Curcio M, Schreiber A, Arriaga G, Mausy M, Mehdy J, Brüllmann L, Meyer A, Roth L, Flury T, Pecina V, Starlinger K, Dernič J, Jungfer K, Ackle F, Earp J, Hausmann M, Jinek M, Rogler G, Antunes Westmann C. Engineering a Novel Probiotic Toolkit in Escherichia coli Nissle 1917 for Sensing and Mitigating Gut Inflammatory Diseases. ACS Synth Biol 2024; 13:2376-2390. [PMID: 39115381 PMCID: PMC11334186 DOI: 10.1021/acssynbio.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation with no cure and limited treatment options that often have systemic side effects. In this study, we developed a target-specific system to potentially treat IBD by engineering the probiotic bacterium Escherichia coli Nissle 1917 (EcN). Our modular system comprises three components: a transcription factor-based sensor (NorR) capable of detecting the inflammation biomarker nitric oxide (NO), a type 1 hemolysin secretion system, and a therapeutic cargo consisting of a library of humanized anti-TNFα nanobodies. Despite a reduction in sensitivity, our system demonstrated a concentration-dependent response to NO, successfully secreting functional nanobodies with binding affinities comparable to the commonly used drug Adalimumab, as confirmed by enzyme-linked immunosorbent assay and in vitro assays. This newly validated nanobody library expands EcN therapeutic capabilities. The adopted secretion system, also characterized for the first time in EcN, can be further adapted as a platform for screening and purifying proteins of interest. Additionally, we provided a mathematical framework to assess critical parameters in engineering probiotic systems, including the production and diffusion of relevant molecules, bacterial colonization rates, and particle interactions. This integrated approach expands the synthetic biology toolbox for EcN-based therapies, providing novel parts, circuits, and a model for tunable responses at inflammatory hotspots.
Collapse
Affiliation(s)
- Nathalie Weibel
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Martina Curcio
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Atilla Schreiber
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Gabriel Arriaga
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Marine Mausy
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jana Mehdy
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lea Brüllmann
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andreas Meyer
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Len Roth
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Tamara Flury
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Valerie Pecina
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Kim Starlinger
- University
of Zürich, Campus Irchel Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jan Dernič
- Institute
of Pharmacology and Toxicology, University
of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| | - Kenny Jungfer
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Ackle
- Institute
of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, CH-8006 Zürich, Switzerland
| | - Jennifer Earp
- Institute
of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, CH-8006 Zürich, Switzerland
| | - Martin Hausmann
- Department
of Gastroenterology and Hepatology, University
Hospital Zürich and Zürich University, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Martin Jinek
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gerhard Rogler
- Department
of Gastroenterology and Hepatology, University
Hospital Zürich and Zürich University, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cauã Antunes Westmann
- Department
of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Swiss
Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Mu Z, Zeng Y, Liu S, Ge W, Yang S, Ji C, Jia X, Li G. Target-Triggered Aggregation of Modified E. coli for Diagnosis of Ovarian Cancer. Anal Chem 2024; 96:12767-12775. [PMID: 39044392 DOI: 10.1021/acs.analchem.4c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Bacteria inherently possess the capability of quorum sensing in response to the environment. In this work, we have proposed a strategy to confer bacteria with the ability to recognize targets with quorum-sensing behavior. Meanwhile, we have successfully achieved artificial control over the target-triggered aggregation of Escherichia coli (E. coli) by modifying the bacteria surface in a new way. Furthermore, by making use of green fluorescent protein (GFP) expressed by E. coli as the output signal, the aggregation of modified E. coli can be observed with the naked eye. Therefore, via the detection of the target, MUC1, an ovarian cancer biomarker, a simple and conveniently operated method to diagnose ovarian cancer is developed in this work. Experimental results show that the developed low-background and enzyme-free amplification method enables the highly sensitive detection of MUC1, achieving a remarkable limit of detection (LOD) of 5.47 fM and a linear detection range spanning from 1 pM to 50 nM and 50 nM to 100 nM, respectively. Clinical samples from healthy donors and patients can give distant assay results, showing great potential for clinical applications of this method.
Collapse
Affiliation(s)
- Zheying Mu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yujing Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Siyu Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, PR China
| | - Weikang Ge
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Shiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, PR China
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, PR China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, PR China
- Nanjing Key Laboratory of Female Fertility Preservation and Restoration, Nanjing 210004, PR China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
21
|
Desai N, Pande S, Salave S, Singh TRR, Vora LK. Antitoxin nanoparticles: design considerations, functional mechanisms, and applications in toxin neutralization. Drug Discov Today 2024; 29:104060. [PMID: 38866357 DOI: 10.1016/j.drudis.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The application of nanotechnology has significantly advanced the development of novel platforms that enhance disease treatment and diagnosis. A key innovation in this field is the creation of antitoxin nanoparticles (ATNs), designed to address toxin exposure. These precision-engineered nanosystems have unique physicochemical properties and selective binding capabilities, allowing them to effectively capture and neutralize toxins from various biological, chemical, and environmental sources. In this review, we thoroughly examine their therapeutic and diagnostic potential for managing toxin-related challenges. We also explore recent advancements and offer critical insights into the design and clinical implementation of ATNs.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | | | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
22
|
Matuszyńska A, Ebenhöh O, Zurbriggen MD, Ducat DC, Axmann IM. A new era of synthetic biology-microbial community design. Synth Biol (Oxf) 2024; 9:ysae011. [PMID: 39086602 PMCID: PMC11290361 DOI: 10.1093/synbio/ysae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Synthetic biology conceptualizes biological complexity as a network of biological parts, devices, and systems with predetermined functionalities and has had a revolutionary impact on fundamental and applied research. With the unprecedented ability to synthesize and transfer any DNA and RNA across organisms, the scope of synthetic biology is expanding and being recreated in previously unimaginable ways. The field has matured to a level where highly complex networks, such as artificial communities of synthetic organisms, can be constructed. In parallel, computational biology became an integral part of biological studies, with computational models aiding the unravelling of the escalating complexity and emerging properties of biological phenomena. However, there is still a vast untapped potential for the complete integration of modelling into the synthetic design process, presenting exciting opportunities for scientific advancements. Here, we first highlight the most recent advances in computer-aided design of microbial communities. Next, we propose that such a design can benefit from an organism-free modular modelling approach that places its emphasis on modules of organismal function towards the design of multispecies communities. We argue for a shift in perspective from single organism-centred approaches to emphasizing the functional contributions of organisms within the community. By assembling synthetic biological systems using modular computational models with mathematical descriptions of parts and circuits, we can tailor organisms to fulfil specific functional roles within the community. This approach aligns with synthetic biology strategies and presents exciting possibilities for the design of artificial communities. Graphical Abstract.
Collapse
Affiliation(s)
- Anna Matuszyńska
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen 52074, Germany
- Cluster of Excellence on Plant Sciences, CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Oliver Ebenhöh
- Cluster of Excellence on Plant Sciences, CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Matias D Zurbriggen
- Cluster of Excellence on Plant Sciences, CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, United States
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Ilka M Axmann
- Cluster of Excellence on Plant Sciences, CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
23
|
Hassard F, Curtis TP, Dotro GC, Golyshin P, Gutierrez T, Heaven S, Horsfall L, Jefferson B, Jones DL, Krasnogor N, Kumar V, Lea-Smith DJ, Le Corre Pidou K, Liu Y, Lyu T, McCarthy RR, McKew B, Smith C, Yakunin A, Yang Z, Zhang Y, Coulon F. Scaling-up Engineering Biology for Enhanced Environmental Solutions. ACS Synth Biol 2024; 13:1586-1588. [PMID: 38903005 PMCID: PMC11197081 DOI: 10.1021/acssynbio.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 06/22/2024]
Affiliation(s)
| | | | | | | | | | - Sonia Heaven
- University of Southampton, Southampton SO16 7QF, U.K.
| | | | | | | | | | - Vinod Kumar
- Cranfield University, Bedford MK43 0AL, U.K.
| | | | | | - Yongqiang Liu
- University of Southampton, Southampton SO16 7QF, U.K.
| | - Tao Lyu
- Cranfield University, Bedford MK43 0AL, U.K.
| | | | - Boyd McKew
- University of Essex, Colchester, Essex CO4 3SQ, U.K.
| | - Cindy Smith
- University of Glasgow, Glasgow G12 8LT, U.K.
| | | | - Zhugen Yang
- Cranfield University, Bedford MK43 0AL, U.K.
| | - Yue Zhang
- University of Southampton, Southampton SO16 7QF, U.K.
| | | |
Collapse
|
24
|
Lei L, Pan W, Shou X, Shao Y, Ye S, Zhang J, Kolliputi N, Shi L. Nanomaterials-assisted gene editing and synthetic biology for optimizing the treatment of pulmonary diseases. J Nanobiotechnology 2024; 22:343. [PMID: 38890749 PMCID: PMC11186260 DOI: 10.1186/s12951-024-02627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
The use of nanomaterials in gene editing and synthetic biology has emerged as a pivotal strategy in the pursuit of refined treatment methodologies for pulmonary disorders. This review discusses the utilization of nanomaterial-assisted gene editing tools and synthetic biology techniques to promote the development of more precise and efficient treatments for pulmonary diseases. First, we briefly outline the characterization of the respiratory system and succinctly describe the principal applications of diverse nanomaterials in lung ailment treatment. Second, we elaborate on gene-editing tools, their configurations, and assorted delivery methods, while delving into the present state of nanomaterial-facilitated gene-editing interventions for a spectrum of pulmonary diseases. Subsequently, we briefly expound on synthetic biology and its deployment in biomedicine, focusing on research advances in the diagnosis and treatment of pulmonary conditions against the backdrop of the coronavirus disease 2019 pandemic. Finally, we summarize the extant lacunae in current research and delineate prospects for advancement in this domain. This holistic approach augments the development of pioneering solutions in lung disease treatment, thereby endowing patients with more efficacious and personalized therapeutic alternatives.
Collapse
Affiliation(s)
- Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Wenjie Pan
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xin Shou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Shuxuan Ye
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liyun Shi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
25
|
Shah OS, Nasrazadani A, Foldi J, Atkinson JM, Kleer CG, McAuliffe PF, Johnston TJ, Stallaert W, da Silva EM, Selenica P, Dopeso H, Pareja F, Mandelker D, Weigelt B, Reis-Filho JS, Bhargava R, Lucas PC, Lee AV, Oesterreich S. Spatial molecular profiling of mixed invasive ductal-lobular breast cancers reveals heterogeneity in intrinsic molecular subtypes, oncogenic signatures, and mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.557013. [PMID: 38915645 PMCID: PMC11195088 DOI: 10.1101/2023.09.09.557013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mixed invasive ductal and lobular carcinoma (MDLC) is a rare histologic subtype of breast cancer displaying both E-cadherin positive ductal and E-cadherin negative lobular morphologies within the same tumor, posing challenges with regard to anticipated clinical management. It remains unclear whether these distinct morphologies also have distinct biology and risk of recurrence. Our spatially-resolved transcriptomic, genomic, and single-cell profiling revealed clinically significant differences between ductal and lobular tumor regions including distinct intrinsic subtype heterogeneity (e.g., MDLC with TNBC/basal ductal and ER+/luminal lobular regions), distinct enrichment of senescence/dormancy and oncogenic (ER and MYC) signatures, genetic and epigenetic CDH1 inactivation in lobular, but not ductal regions, and single-cell ductal and lobular sub-populations with unique oncogenic signatures further highlighting intra-regional heterogeneity. Altogether, we demonstrated that the intra-tumoral morphological/histological heterogeneity within MDLC is underpinned by intrinsic subtype and oncogenic heterogeneity which may result in prognostic uncertainty and therapeutic dilemma. Significance MDLC displays both ductal and lobular tumor regions. Our multi-omic profiling approach revealed that these morphologically distinct tumor regions harbor distinct intrinsic subtypes and oncogenic features that may cause prognostic uncertainty and therapeutic dilemma. Thus histopathological/molecular profiling of individual tumor regions may guide clinical decision making and benefit patients with MDLC, particularly in the advanced setting where there is increased reliance on next generation sequencing.
Collapse
|
26
|
Sun J, Yang R, Li Q, Zhu R, Jiang Y, Zang L, Zhang Z, Tong W, Zhao H, Li T, Li H, Qi D, Li G, Chen X, Dai Z, Liu Z. Living Synthelectronics: A New Era for Bioelectronics Powered by Synthetic Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400110. [PMID: 38494761 DOI: 10.1002/adma.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Bioelectronics, which converges biology and electronics, has attracted great attention due to their vital applications in human-machine interfaces. While traditional bioelectronic devices utilize nonliving organic and/or inorganic materials to achieve flexibility and stretchability, a biological mismatch is often encountered because human tissues are characterized not only by softness and stretchability but also by biodynamic and adaptive properties. Recently, a notable paradigm shift has emerged in bioelectronics, where living cells, and even viruses, modified via gene editing within synthetic biology, are used as core components in a new hybrid electronics paradigm. These devices are defined as "living synthelectronics," and they offer enhanced potential for interfacing with human tissues at informational and substance exchange levels. In this Perspective, the recent advances in living synthelectronics are summarized. First, opportunities brought to electronics by synthetic biology are briefly introduced. Then, strategic approaches to designing and making electronic devices using living cells/viruses as the building blocks, sensing components, or power sources are reviewed. Finally, the challenges faced by living synthelectronics are raised. It is believed that this paradigm shift will significantly contribute to the real integration of bioelectronics with human tissues.
Collapse
Affiliation(s)
- Jing Sun
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruofan Yang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Runtao Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ying Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lei Zang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhibo Zhang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Tong
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Zhao
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tengfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hanfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanglin Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuojun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Standard Robots Co.,Ltd,Room 405, Building D, Huafeng International Robot Fusen Industrial Park, Hangcheng Avenue, Guxing Community, Xixiang Street, Baoan District, Shenzhen, 518055, China
| |
Collapse
|
27
|
Hooe SL, Green CM, Susumu K, Stewart MH, Breger JC, Medintz IL. Optimizing the conversion of phosphoenolpyruvate to lactate by enzymatic channeling with mixed nanoparticle display. CELL REPORTS METHODS 2024; 4:100764. [PMID: 38714198 PMCID: PMC11133815 DOI: 10.1016/j.crmeth.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Kimihiro Susumu
- Optical Sciences Division Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Michael H Stewart
- Optical Sciences Division Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
28
|
Fares MM, Radaydeh SK, Jabani ZH. IPN based hydrogels for in-vivo wound dressings; catalytic wound healing dynamics and isothermal adsorption models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112901. [PMID: 38552571 DOI: 10.1016/j.jphotobiol.2024.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
Interpenetrating network (IPN) methacrylated chitosan or methacrylated flaxseed gum based hydrogels have been utilized to make outstanding in-vivo wound dressings. The photopolymerization process was accomplished in presence of Eosin-Y photoinitiator with average exposure time of 13-14 s for gelation. Spectroscopic structural investigations of 1H NMR. ATR-FTIR, TGA, and AFM techniques were used. In-vitro hemolysis test provided evidence of no cytotoxicity in both hydrogels observed. The in-vivo wound dressings were monitored for five mice coated with each hydrogel and another uncoated five mice for control (self-healing). All measurements were performed in quintuplicate (n = 5) and expressed as mean ± SD values. In wound healing dynamics, our data confirmed that wound healing pass through two stages; hemostasis and inflammation for stage 1, and proliferation and remodeling for stage 2. It also provided evidence of 1st order kinetics with descending rate of healing. Consequently, catalytic role of hydrogels in wound healing was checked via half-life (δ) and negative change of activation energy values (ΔEa). Various isothermal adsorption models demonstrated spontaneous and high binding affinities of hydrogels. It also confirmed the two-stage healing process in presence of hydrogels. Conclusively, the outstanding properties of the two hydrogels suggest their potential applications in treating venous ulcers and diabetic wound healing dressings.
Collapse
Affiliation(s)
- Mohammad M Fares
- Department of Chemistry, Faculty of Science & Arts, Jordan University of Science & Technology, P.O. Box 3030, 22110 Irbid, Jordan.
| | - Samah K Radaydeh
- Department of Chemistry, Faculty of Science & Arts, Jordan University of Science & Technology, P.O. Box 3030, 22110 Irbid, Jordan
| | - Zaid H Jabani
- Department of Chemistry, Faculty of Science & Arts, Jordan University of Science & Technology, P.O. Box 3030, 22110 Irbid, Jordan
| |
Collapse
|
29
|
Lee MS, Lee JA, Biondo JR, Lux JE, Raig RM, Berger PN, Bernhards CB, Kuhn DL, Gupta MK, Lux MW. Cell-Free Protein Expression in Polymer Materials. ACS Synth Biol 2024; 13:1152-1164. [PMID: 38467017 PMCID: PMC11036507 DOI: 10.1021/acssynbio.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
While synthetic biology has advanced complex capabilities such as sensing and molecular synthesis in aqueous solutions, important applications may also be pursued for biological systems in solid materials. Harsh processing conditions used to produce many synthetic materials such as plastics make the incorporation of biological functionality challenging. One technology that shows promise in circumventing these issues is cell-free protein synthesis (CFPS), where core cellular functionality is reconstituted outside the cell. CFPS enables genetic functions to be implemented without the complications of membrane transport or concerns over the cellular viability or release of genetically modified organisms. Here, we demonstrate that dried CFPS reactions have remarkable tolerance to heat and organic solvent exposure during the casting processes for polymer materials. We demonstrate the utility of this observation by creating plastics that have spatially patterned genetic functionality, produce antimicrobials in situ, and perform sensing reactions. The resulting materials unlock the potential to deliver DNA-programmable biofunctionality in a ubiquitous class of synthetic materials.
Collapse
Affiliation(s)
- Marilyn S. Lee
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Jennifer A. Lee
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Defense
Threat Reduction Agency, 2800 Bush River Road, Gunpowder, Maryland 21010, United States
| | - John R. Biondo
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Excet
Inc., 6225 Brandon Avenue,
Suite 360, Springfield, Virginia 22150, United States
| | - Jeffrey E. Lux
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES
Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
| | - Rebecca M. Raig
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES
Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
| | - Pierce N. Berger
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Casey B. Bernhards
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Danielle L. Kuhn
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Maneesh K. Gupta
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
30
|
Pandey S, Gupta S. Exploring laccase: a sustainable enzymatic solution for the paper recycling domain. Arch Microbiol 2024; 206:211. [PMID: 38602547 DOI: 10.1007/s00203-024-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The global advocacy of resource conservation and waste management emphasizes the significance of sustainable practices, particularly in sectors such as paper manufacturing and recycling. Currently, conventional chemical methods are predominant for paper production, necessitating the use of substantial amount of toxic chemicals. This chemical-intensive approach compromises the recycled fiber quality, generates hazardous effluent causing serious ecological threats which triggers regulatory complexities for the mills. To address these challenges modern research suggests adopting sustainable eco-friendly practices such as employing enzymes. This review aims to explore the applicability of 'laccase' enzyme for paper recycling, investigating its properties and contribution to improved recycling practices. By delving into the potential application of laccase integration into the papermaking process, this article sheds light on the limitations inherent in traditional methods surmounted within both research and translational landscapes. Culture and process optimization studies, supporting the technological improvements and the future prospects have been documented.
Collapse
Affiliation(s)
- Sheetal Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India.
| |
Collapse
|
31
|
Leech G, Melcher L, Chiu M, Nugent M, Burton L, Kang J, Kim SJ, Roy S, Farhadi L, Ross JL, Das M, Rust MJ, Robertson-Anderson RM. Timed material self-assembly controlled by circadian clock proteins. ARXIV 2024:arXiv:2303.00779v2. [PMID: 36911279 PMCID: PMC10002811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation to materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids. The resulting material self-assembles with programmable kinetics, producing macroscopic changes in material properties, via molecular assembly of KaiB-KaiC complexes. We show that colloid crosslinking depends strictly on the phosphorylation state of KaiC, with kinetics that are synced with KaiB-KaiC complexing. Our microscopic image analyses and computational models indicate that the stability of colloidal super-structures depends sensitively on the number of Kai complexes per colloid connection. Consistent with our model predictions, a high concentration stabilizes the material against dissolution after a robust self-assembly phase, while a low concentration allows circadian oscillation of material structure. This work introduces the concept of harnessing biological timers to control synthetic materials; and, more generally, opens the door to using protein-based reaction networks to endow synthetic systems with life-like functional properties.
Collapse
Affiliation(s)
- Gregor Leech
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, United States
| | - Lauren Melcher
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Michelle Chiu
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois 60637, United States
| | - Maya Nugent
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, United States
| | - Lily Burton
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois 60637, United States
| | - Janet Kang
- Department of Molecular Genetics and Cell Biology and Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Soo Ji Kim
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois 60637, United States
| | - Sourav Roy
- Department of Physics, Syracuse University, Syracuse, New York 13244, United States
| | - Leila Farhadi
- Department of Physics, Syracuse University, Syracuse, New York 13244, United States
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, New York 13244, United States
| | - Moumita Das
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology and Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, United States
| |
Collapse
|
32
|
Lavecchia A, Fosso B, Engelen AH, Borin S, Manzari C, Picardi E, Pesole G, Placido A. Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism. MICROBIOME 2024; 12:47. [PMID: 38454513 PMCID: PMC10919026 DOI: 10.1186/s40168-023-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Aschwin H Engelen
- Center of Marine Sciences (CCMar), University of Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Antonio Placido
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy.
| |
Collapse
|
33
|
Pan D, Hu J, Wang B, Xia X, Cheng Y, Wang C, Lu Y. Biomimetic Wearable Sensors: Emerging Combination of Intelligence and Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303264. [PMID: 38044298 PMCID: PMC10837381 DOI: 10.1002/advs.202303264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Owing to the advancement of interdisciplinary concepts, for example, wearable electronics, bioelectronics, and intelligent sensing, during the microelectronics industrial revolution, nowadays, extensively mature wearable sensing devices have become new favorites in the noninvasive human healthcare industry. The combination of wearable sensing devices with bionics is driving frontier developments in various fields, such as personalized medical monitoring and flexible electronics, due to the superior biocompatibilities and diverse sensing mechanisms. It is noticed that the integration of desired functions into wearable device materials can be realized by grafting biomimetic intelligence. Therefore, herein, the mechanism by which biomimetic materials satisfy and further enhance system functionality is reviewed. Next, wearable artificial sensory systems that integrate biomimetic sensing into portable sensing devices are introduced, which have received significant attention from the industry owing to their novel sensing approaches and portabilities. To address the limitations encountered by important signal and data units in biomimetic wearable sensing systems, two paths forward are identified and current challenges and opportunities are presented in this field. In summary, this review provides a further comprehensive understanding of the development of biomimetic wearable sensing devices from both breadth and depth perspectives, offering valuable guidance for future research and application expansion of these devices.
Collapse
Affiliation(s)
- Donglei Pan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Bin Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Xuanjie Xia
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Yifan Cheng
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng‐Hua Wang
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
34
|
Khandibharad S, Singh S. Synthetic biology for combating leishmaniasis. Front Microbiol 2024; 15:1338749. [PMID: 38362504 PMCID: PMC10867266 DOI: 10.3389/fmicb.2024.1338749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the Leishmania genus. Despite the efforts to control and treat the disease, it still remains a major public health problem in many countries. Synthetic biology is a rapidly evolving interdisciplinary field that combines biology, engineering, and computer science to design and construct novel biological systems. In recent years, synthetic biology approaches have shown great promise for developing new and effective strategies to combat leishmaniasis. In this perspective, we summarize the recent advances in the use of synthetic biology for the development of vaccines, diagnostic tools, and novel therapeutics for leishmaniasis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, Pune, India
| |
Collapse
|
35
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
36
|
Stock M, Gorochowski TE. Open-endedness in synthetic biology: A route to continual innovation for biological design. SCIENCE ADVANCES 2024; 10:eadi3621. [PMID: 38241375 DOI: 10.1126/sciadv.adi3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Design in synthetic biology is typically goal oriented, aiming to repurpose or optimize existing biological functions, augmenting biology with new-to-nature capabilities, or creating life-like systems from scratch. While the field has seen many advances, bottlenecks in the complexity of the systems built are emerging and designs that function in the lab often fail when used in real-world contexts. Here, we propose an open-ended approach to biological design, with the novelty of designed biology being at least as important as how well it fulfils its goal. Rather than solely focusing on optimization toward a single best design, designing with novelty in mind may allow us to move beyond the diminishing returns we see in performance for most engineered biology. Research from the artificial life community has demonstrated that embracing novelty can automatically generate innovative and unexpected solutions to challenging problems beyond local optima. Synthetic biology offers the ideal playground to explore more creative approaches to biological design.
Collapse
Affiliation(s)
- Michiel Stock
- KERMIT & Biobix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- BrisEngBio, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
37
|
Zhang B, Cao J. Improving and Streamlining Gene Editing in Yarrowia lipolytica via Integration of Engineered Cas9 Protein. J Fungi (Basel) 2024; 10:63. [PMID: 38248972 PMCID: PMC10817246 DOI: 10.3390/jof10010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The oleaginous yeast Yarrowia lipolytica is a prominent subject of biorefinery research due to its exceptional performance in oil production, exogenous protein secretion, and utilization of various inexpensive carbon sources. Many CRISPR/Cas9 genome-editing systems have been developed for Y. lipolytica to meet the high demand for metabolic engineering studies. However, these systems often necessitate an additional outgrowth step to achieve high gene editing efficiency. In this study, we introduced the eSpCas9 protein, derived from the Streptococcus pyogenes Cas9(SpCas9) protein, into the Y. lipolytica genome to enhance gene editing efficiency and fidelity, and subsequently explored the optimal expression level of eSpCas9 gene by utilizing different promoters and selecting various growth periods for yeast transformation. The results demonstrated that the integrated eSpCas9 gene editing system significantly enhanced gene editing efficiency, increasing from 16.61% to 86.09% on TRP1 and from 33.61% to 95.19% on LIP2, all without the need for a time-consuming outgrowth step. Furthermore, growth curves and dilution assays indicated that the consistent expression of eSpCas9 protein slightly suppressed the growth of Y. lipolytica, revealing that strong inducible promoters may be a potential avenue for future research. This work simplifies the gene editing process in Y. lipolytica, thus advancing its potential as a natural product synthesis chassis and providing valuable insights for other comparable microorganisms.
Collapse
Affiliation(s)
- Baixi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jiacan Cao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
38
|
Asensio‐Calavia A, Ceballos‐Munuera Á, Méndez‐Pérez A, Álvarez B, Fernández LÁ. A tuneable genetic switch for tight control of tac promoters in Escherichia coli boosts expression of synthetic injectisomes. Microb Biotechnol 2024; 17:e14328. [PMID: 37608576 PMCID: PMC10832536 DOI: 10.1111/1751-7915.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Biosafety of engineered bacteria as living therapeutics requires a tight regulation to control the specific delivery of protein effectors, maintaining minimum leakiness in the uninduced (OFF) state and efficient expression in the induced (ON) state. Here, we report a three repressors (3R) genetic circuit that tightly regulates the expression of multiple tac promoters (Ptac) integrated in the chromosome of E. coli and drives the expression of a complex type III secretion system injectisome for therapeutic protein delivery. The 3R genetic switch is based on the tetracycline repressor (TetR), the non-inducible lambda repressor cI (ind-) and a mutant lac repressor (LacIW220F ) with higher activity. The 3R switch was optimized with different protein translation and degradation signals that control the levels of LacIW220F . We demonstrate the ability of an optimized switch to fully repress the strong leakiness of the Ptac promoters in the OFF state while triggering their efficient activation in the ON state with anhydrotetracycline (aTc), an inducer suitable for in vivo use. The implementation of the optimized 3R switch in the engineered synthetic injector E. coli (SIEC) strain boosts expression of injectisomes upon aTc induction, while maintaining a silent OFF state that preserves normal growth in the absence of the inducer. Since Ptac is a commonly used promoter, the 3R switch may have multiple applications for tight control of protein expression in E. coli. In addition, the modularity of the 3R switch may enable its tuning for the control of Ptac promoters with different inducers.
Collapse
Affiliation(s)
- Alejandro Asensio‐Calavia
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| | - Álvaro Ceballos‐Munuera
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
- Programa de Doctorado en Biociencias MolecularesUniversidad Autónoma de Madrid (UAM)MadridSpain
| | - Almudena Méndez‐Pérez
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
- Programa de Doctorado en Biociencias MolecularesUniversidad Autónoma de Madrid (UAM)MadridSpain
| | - Beatriz Álvarez
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| |
Collapse
|
39
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Current achievements, strategies, obstacles, and overcoming the challenges of the protein engineering in Pichia pastoris expression system. World J Microbiol Biotechnol 2023; 40:39. [PMID: 38062216 DOI: 10.1007/s11274-023-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
40
|
Arbel-Groissman M, Menuhin-Gruman I, Naki D, Bergman S, Tuller T. Fighting the battle against evolution: designing genetically modified organisms for evolutionary stability. Trends Biotechnol 2023; 41:1518-1531. [PMID: 37442714 DOI: 10.1016/j.tibtech.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has made significant progress in many areas, but a major challenge that has received limited attention is the evolutionary stability of synthetic constructs made of heterologous genes. The expression of these constructs in microorganisms, that is, production of proteins that are not necessary for the organism, is a metabolic burden, leading to a decrease in relative fitness and make the synthetic constructs unstable over time. This is a significant concern for the synthetic biology community, particularly when it comes to bringing this technology out of the laboratory. In this review, we discuss the issue of evolutionary stability in synthetic biology and review the available tools to address this challenge.
Collapse
Affiliation(s)
- Matan Arbel-Groissman
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
41
|
Wang M, Du L. Media representations of synthetic biology in China. Trends Biotechnol 2023; 41:1459-1462. [PMID: 37393134 DOI: 10.1016/j.tibtech.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Media representations of emerging biotechnologies in the media can influence public attitudes and have the potential to impact on policy decisions and law-making. We discuss the unbalanced portrayal of synthetic biology in Chinese news media and how it might affect the perceptions of the public, the scientific community, and decision-makers.
Collapse
Affiliation(s)
- Meng Wang
- Faculty of Law, University of Macau, Macau, China; Professor, Visiting Scholar at Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Li Du
- Faculty of Law, University of Macau, Macau, China; Professor, Visiting Scholar at Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
42
|
Zilberzwige-Tal S, Fontanarrosa P, Bychenko D, Dorfan Y, Gazit E, Myers CJ. Investigating and Modeling the Factors That Affect Genetic Circuit Performance. ACS Synth Biol 2023; 12:3189-3204. [PMID: 37916512 PMCID: PMC10661042 DOI: 10.1021/acssynbio.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 11/03/2023]
Abstract
Over the past 2 decades, synthetic biology has yielded ever more complex genetic circuits that are able to perform sophisticated functions in response to specific signals. Yet, genetic circuits are not immediately transferable to an outside-the-lab setting where their performance is highly compromised. We propose introducing a broader test step to the design-build-test-learn workflow to include factors that might contribute to unexpected genetic circuit performance. As a proof of concept, we have designed and evaluated a genetic circuit in various temperatures, inducer concentrations, nonsterilized soil exposure, and bacterial growth stages. We determined that the circuit's performance is dramatically altered when these factors differ from the optimal lab conditions. We observed significant changes in the time for signal detection as well as signal intensity when the genetic circuit was tested under nonoptimal lab conditions. As a learning effort, we then proceeded to generate model predictions in untested conditions, which is currently lacking in synthetic biology application design. Furthermore, broader test and learn steps uncovered a negative correlation between the time it takes for a gate to turn ON and the bacterial growth phases. As the synthetic biology discipline transitions from proof-of-concept genetic programs to appropriate and safe application implementations, more emphasis on test and learn steps (i.e., characterizing parts and circuits for a broad range of conditions) will provide missing insights on genetic circuit behavior outside the lab.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- The
Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Pedro Fontanarrosa
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Darya Bychenko
- The
Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Yuval Dorfan
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Bio-engineering,
Electrical Engineering Faculty, Holon Institute
of Technology (HIT), Holon 5810201, Israel
- Alagene
Ltd., Innovation Center, Reichman University, Herzliya 7670608, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, Life Sciences Faculty, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Chris J. Myers
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
43
|
Cai P, Liu S, Zhang D, Hu QN. MCF2Chem: A manually curated knowledge base of biosynthetic compound production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:167. [PMID: 37925500 PMCID: PMC10625697 DOI: 10.1186/s13068-023-02419-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Microbes have been used as cell factories to synthesize various chemical compounds. Recent advances in synthetic biological technologies have accelerated the increase in the number and capacity of microbial cell factories; the variety and number of synthetic compounds produced via these cell factories have also grown substantially. However, no database is available that provides detailed information on the microbial cell factories and the synthesized compounds. RESULTS In this study, we established MCF2Chem, a manually curated knowledge base on the production of biosynthetic compounds using microbial cell factories. It contains 8888 items of production records related to 1231 compounds that were synthesizable by 590 microbial cell factories, including the production data of compounds (titer, yield, productivity, and content), strain culture information (culture medium, carbon source/precursor/substrate), fermentation information (mode, vessel, scale, and condition), and other information (e.g., strain modification method). The database contains statistical analyses data of compounds and microbial species. The data statistics of MCF2Chem showed that bacteria accounted for 60% of the species and that "fatty acids", "terpenoids", and "shikimates and phenylpropanoids" accounted for the top three chemical products. Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, and Corynebacterium glutamicum synthesized 78% of these chemical compounds. Furthermore, we constructed a system to recommend microbial cell factories suitable for synthesizing target compounds and vice versa by combining MCF2Chem data, additional strain- and compound-related data, the phylogenetic relationships between strains, and compound similarities. CONCLUSIONS MCF2Chem provides a user-friendly interface for querying, browsing, and visualizing detailed statistical information on microbial cell factories and their synthesizable compounds. It is publicly available at https://mcf.lifesynther.com . This database may serve as a useful resource for synthetic biologists.
Collapse
Affiliation(s)
- Pengli Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sheng Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dachuan Zhang
- Ecological Systems Design, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
44
|
Ting WW, Ng IS. Tunable T7 Promoter Orthogonality on T7RNAP for cis-Aconitate Decarboxylase Evolution via Base Editor and Screening from Itaconic Acid Biosensor. ACS Synth Biol 2023; 12:3020-3029. [PMID: 37750409 PMCID: PMC10595973 DOI: 10.1021/acssynbio.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 09/27/2023]
Abstract
The deaminase-fused T7 RNA polymerase (T7RNAP) presents a promising toolkit for in vivo target-specific enzyme evolution, offering the unique advantage of simultaneous DNA modification and screening. Previous studies have reported the mutation efficiency of base editors relying on different resources. In contrast, the mechanism underlying the T7RNAP/T7 system is well-understood. Therefore, this study aimed to establish a new platform, termed dT7-Muta, by tuning the binding efficiency between T7RNAP and the T7 promoter for gene mutagenesis. The strategy for proof-of-concept involves alterations in the fluorescence distribution through dT7-Muta and screening of the mutants via flow cytometry. The cis-aconitate decarboxylase from Aspergillus terreus (AtCadA) was evolved and screened via an itaconate-induced biosensor as proof-of-function of enzyme evolution. First, the degenerated codons were designed within the binding and initial region of T7 promoters (dT7s), including upstream (U), central (C), and downstream (D) regions. Three strength variants of dT7 promoter from each design, i.e., strong (S), medium (M), and weak (W), were used for evaluation. Mutation using dT7s of varying strength resulted in a broader fluorescence distribution in sfGFP mutants from the promoters CW and DS. On the other hand, broader fluorescence distribution was observed in the AtCadA mutants from the original promoter T7, UW, and DS, with the highest fluorescence and itaconic acid titer at 860 a.u. and 0.51 g/L, respectively. The present platform introduces a novel aspect of the deaminase-based mutagenesis, emphasizing the potential of altering the binding efficiency between T7RNAP and the T7 promoter for further efforts in enzyme evolution.
Collapse
Affiliation(s)
- Wan-Wen Ting
- Department of Chemical
Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical
Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
45
|
Zhang C, Li Z, Liu J, Liu C, Zhang H, Lee WG, Yao C, Guo H, Xu F. Synthetic Gene Circuit-Based Assay with Multilevel Switch Enables Background-Free and Absolute Quantification of Circulating Tumor DNA. RESEARCH (WASHINGTON, D.C.) 2023; 6:0217. [PMID: 37789988 PMCID: PMC10543738 DOI: 10.34133/research.0217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023]
Abstract
Circulating tumor DNA (ctDNA) detection has found widespread applications in tumor diagnostics and treatment, where the key is to obtain accurate quantification of ctDNA. However, this remains challenging due to the issue of background noise associated with existing assays. In this work, we developed a synthetic gene circuit-based assay with multilevel switch (termed CATCH) for background-free and absolute quantification of ctDNA. The multilevel switch combining a small transcription activating RNA and a toehold switch was designed to simultaneously regulate transcription and translation processes in gene circuit to eliminate background noise. Moreover, such a multilevel switch-based gene circuit was integrated with a Cas9 nickase H840A (Cas9n) recognizer and a molecular beacon reporter to form CATCH for ctDNA detection. The CATCH can be implemented in one-pot reaction at 35 °C with virtually no background noise, and achieve robust absolute quantification of ctDNA when integrated with a digital chip (i.e., digital CATCH). Finally, we validated the clinical capability of CATCH by detecting drug-resistant ctDNA mutations from the plasma of 76 non-small cell lung cancer (NSCLC) patients, showing satisfying clinical sensitivity and specificity. We envision that the simple and robust CATCH would be a powerful tool for next-generation ctDNA detection.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
- TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Jie Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Won Gu Lee
- Department of Mechanical Engineering,
Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital,
Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
46
|
Lin S, Wu F, Zhang Y, Chen H, Guo H, Chen Y, Liu J. Surface-modified bacteria: synthesis, functionalization and biomedical applications. Chem Soc Rev 2023; 52:6617-6643. [PMID: 37724854 DOI: 10.1039/d3cs00369h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a great leap forward in bacteria-based living agents, including imageable probes, diagnostic reagents, and therapeutics, by virtue of their unique characteristics, such as genetic manipulation, rapid proliferation, colonization capability, and disease site targeting specificity. However, successful translation of bacterial bioagents to clinical applications remains challenging, due largely to their inherent susceptibility to environmental insults, unavoidable toxic side effects, and limited accumulation at the sites of interest. Cell surface components, which play critical roles in shaping bacterial behaviors, provide an opportunity to chemically modify bacteria and introduce different exogenous functions that are naturally unachievable. With the help of surface modification, a wide range of functionalized bacteria have been prepared over the past years and exhibit great potential in various biomedical applications. In this article, we mainly review the synthesis, functionalization, and biomedical applications of surface-modified bacteria. We first introduce the approaches of chemical modification based on the bacterial surface structure and then highlight several advanced functions achieved by modifying specific components on the surface. We also summarize the advantages as well as limitations of surface chemically modified bacteria in the applications of bioimaging, diagnosis, and therapy and further discuss the current challenges and possible solutions in the future. This work will inspire innovative design thinking for the development of chemical strategies for preparing next-generation biomedical bacterial agents.
Collapse
Affiliation(s)
- Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Huan Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
47
|
Arboleda-García A, Alarcon-Ruiz I, Boada-Acosta L, Boada Y, Vignoni A, Jantus-Lewintre E. Advancements in synthetic biology-based bacterial cancer therapy: A modular design approach. Crit Rev Oncol Hematol 2023; 190:104088. [PMID: 37541537 DOI: 10.1016/j.critrevonc.2023.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Synthetic biology aims to program living bacteria cells with artificial genetic circuits for user-defined functions, transforming them into powerful tools with numerous applications in various fields, including oncology. Cancer treatments have serious side effects on patients due to the systemic action of the drugs involved. To address this, new systems that provide localized antitumoral action while minimizing damage to healthy tissues are required. Bacteria, often considered pathogenic agents, have been used as cancer treatments since the early 20th century. Advances in genetic engineering, synthetic biology, microbiology, and oncology have improved bacterial therapies, making them safer and more effective. Here we propose six modules for a successful synthetic biology-based bacterial cancer therapy, the modules include Payload, Release, Tumor-targeting, Biocontainment, Memory, and Genetic Circuit Stability Module. These will ensure antitumor activity, safety for the environment and patient, prevent bacterial colonization, maintain cell stability, and prevent loss or defunctionalization of the genetic circuit.
Collapse
Affiliation(s)
- Andrés Arboleda-García
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Ivan Alarcon-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lissette Boada-Acosta
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Yadira Boada
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Alejandro Vignoni
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain.
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
48
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
49
|
Liu J, Hu Y, Gu W, Lan H, Zhang Z, Jiang L, Xu X. Research progress on the application of cell-free synthesis systems for enzymatic processes. Crit Rev Biotechnol 2023; 43:938-955. [PMID: 35994247 DOI: 10.1080/07388551.2022.2090314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022]
Abstract
Cell-free synthesis systems can complete the transcription and translation process in vitro to produce complex proteins that are difficult to be expressed in traditional cell-based systems. Such systems also can be used for the assembly of efficient localized multienzyme cascades to synthesize products that are toxic to cells. Cell-free synthesis systems provide a simpler and faster engineering solution than living cells, allowing unprecedented design freedom. This paper reviews the latest progress on the application of cell-free synthesis systems in the field of enzymatic catalysis, including cell-free protein synthesis and cell-free metabolic engineering. In cell-free protein synthesis: complex proteins, toxic proteins, membrane proteins, and artificial proteins containing non-natural amino acids can be easily synthesized by directly controlling the reaction conditions in the cell-free system. In cell-free metabolic engineering, the synthesis of desired products can be made more specific and efficient by designing metabolic pathways and screening biocatalysts based on purified enzymes or crude extracts. Through the combination of cell-free synthesis systems and emerging technologies, such as: synthetic biology, microfluidic control, cofactor regeneration, and artificial scaffolds, we will be able to build increasingly complex biomolecule systems. In the next few years, these technologies are expected to mature and reach industrialization, providing innovative platforms for a wide range of biotechnological applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yongqi Hu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wanyi Gu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haiquan Lan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
50
|
Prasad M, Brar B, Bala K, Singh N. Emerging Microbial Technologies. Indian J Microbiol 2023; 63:231-234. [PMID: 37781007 PMCID: PMC10533750 DOI: 10.1007/s12088-023-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Affiliation(s)
| | - Basanti Brar
- Om Sterling Global University Hisar, Hisar, India
| | - Kiran Bala
- Om Sterling Global University Hisar, Hisar, India
| | - Namita Singh
- Microbial Biotechnology Laboratory, Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001 India
| |
Collapse
|