1
|
Beydoun MA, Beydoun HA, Li Z, Hu YH, Noren Hooten N, Ding J, Hossain S, Maino Vieytes CA, Launer LJ, Evans MK, Zonderman AB. Alzheimer's Disease polygenic risk, the plasma proteome, and dementia incidence among UK older adults. GeroScience 2025; 47:2507-2523. [PMID: 39586964 PMCID: PMC11978584 DOI: 10.1007/s11357-024-01413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex polygenic neurodegenerative disorder. Its genetic risk's relationship with all-cause dementia may be influenced by the plasma proteome. Up to 40,139 UK Biobank participants aged ≥ 50y at baseline assessment (2006-2010) were followed-up for ≤ 15 y for dementia incidence. Plasma proteomics were performed on a sub-sample of UK Biobank participants (k = 1,463 plasma proteins). AD polygenic risk scores (PRS) were used as the primary exposure and Cox proportional hazards models were conducted to examine the AD PRS-dementia relationship. A four-way decomposition model then partitioned the total effect (TE) of AD PRS on dementia into an effect due to mediation only, an effect due to interaction only, neither or both. The study found that AD PRS tertiles significantly increased the risk for all-cause dementia, particularly among women. The study specifically found that AD PRS was associated with a 79% higher risk for all-cause dementia for each unit increase (HR = 1.79, 95% CI: 1.70-1.87, P < 0.001). Eighty-six plasma proteins were significantly predicted by AD PRS, including a positive association with PLA2G7, BRK1, the glial acidic fibrillary protein (GFAP), neurofilament light chain (NfL), and negative with TREM2. Both GFAP and NfL significantly interacted synergistically with AD PRS to increase all-dementia risk (> 10% of TE is pure interaction), while GFAP was also an important consistent mediator in the AD PRS-dementia relationship. In summary, we detected significant interactions of NfL and GFAP with AD PRS, in relation to dementia incidence, suggesting potential for personalized dementia prevention and management.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, NIH Biomedical Research Center, National Institute On Aging Intramural Research Program, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| | - Hind A Beydoun
- VA National Center On Homelessness Among Veterans, U.S. Department of Veterans Affairs, Washington, DC, 20420, USA
- Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, NIH Biomedical Research Center, National Institute On Aging Intramural Research Program, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, NIH Biomedical Research Center, National Institute On Aging Intramural Research Program, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, NIH Biomedical Research Center, National Institute On Aging Intramural Research Program, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Jun Ding
- Translational Gerontology Branch, National Institute On Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA
| | - Sharmin Hossain
- Department of Human Services (DHS), State of Maryland, Baltimore, MD, 21202, USA
| | - Christian A Maino Vieytes
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, NIH Biomedical Research Center, National Institute On Aging Intramural Research Program, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, NIH Biomedical Research Center, National Institute On Aging Intramural Research Program, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, NIH Biomedical Research Center, National Institute On Aging Intramural Research Program, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIA/NIH/IRP, NIH Biomedical Research Center, National Institute On Aging Intramural Research Program, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| |
Collapse
|
2
|
Qu H, Liu Y, Connolly JJ, Mentch FD, Kao C, Hakonarson H. Risk of Alzheimer's disease in Down syndrome: Insights gained by multi-omics. Alzheimers Dement 2025; 21:e14604. [PMID: 40207399 PMCID: PMC11982707 DOI: 10.1002/alz.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 04/11/2025]
Abstract
Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). The integration of genomics, transcriptomics, epigenomics, proteomics, and metabolomics enables unprecedented understanding of DS-AD, offering a detailed picture of this complex issue. The vast -omics data also present challenges that reflect the complexity of genetic information flow. These studies nonetheless reveal critical mechanisms behind AD risk, including unique observations in DS that differ from those seen in the general population and familial dominant AD. In addition, the correlations between the AD polygenic risk score and proteins related to female infertility and autoimmune thyroiditis corroborate clinical observations. Metabolomic data reveal disrupted metabolic networks, offering prospects for a dynamic score to create specialized nutritional interventions. By adopting a multidimensional perspective with integrated reductionism, the evolving landscape presents an opportunity to identify promising directions for developing precision strategies to mitigate the impact of AD in the DS population. HIGHLIGHTS: Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). DS-AD is characterized by its polygenic nature, extending beyond chromosome 21 with significant contributions from various chromosomes. DS-AD also presents unique features that differ from those observed in the general population and familial dominant AD. Our review consolidates key findings from genomics, transcriptomics, epigenomics, proteomics, and metabolomics, providing a comprehensive view of the molecular mechanisms underlying DS-AD. We highlight promising research directions to further elucidate the pathogenesis of DS-AD.
Collapse
Affiliation(s)
- Hui‐Qi Qu
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Yichuan Liu
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - John J. Connolly
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Frank D. Mentch
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Charlly Kao
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Hakon Hakonarson
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Division of Pulmonary MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| |
Collapse
|
3
|
Xavier C, Pinto N. Navigating the blurred boundary: Neuropathologic changes versus clinical symptoms in Alzheimer's disease, and its consequences for research in genetics. J Alzheimers Dis 2025; 104:611-626. [PMID: 39956949 DOI: 10.1177/13872877251317543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
During decades scientists tried to unveil the genetic architecture of Alzheimer's disease (AD), recurring to increasingly larger sample numbers for genome-wide association studies (GWAS) in hope for higher statistical gains. Here, a retrospective look on the most prominent GWAS was performed, focusing on the quality of the diagnosis associated with the used data and databases. Different methods for AD diagnosis (or absence) carry different levels of accuracy and certainty applied to both subsets of cases and controls. Furthermore, the different phenotypes included in these databases were explored, as several incorporate other ageing comorbidities and might be encompassing many confounding agents as well. Age of the samples' donors and origin populations were also investigated as these could be biasing factors in posterior analyses. A tendency for looser diagnostic methods in more recent GWAS was observed, where greater datasets of individuals are analyzed, which may have been hampering the discovery of associated genetic variants. Specifically for AD, a diagnostic method conveying a clinical outcome may be distinct from the disease neuropathological assessment, since the first has a practical perspective that not necessarily needs a confirmation. Due to its properties and complex diagnosis, this work highlights the importance of the neuropathological confirmation of AD (or its absence) in the subjects considered for research purposes to avoid reaching statistically weak and/or misleading conclusions that may trigger further studies with powerless groundwork.
Collapse
Affiliation(s)
- Catarina Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nádia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- CMUP - Centro de Matemática da Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Bhalala OG, Beamish J, Eratne D, Summerell P, Porter T, Laws SM, Kang MJ, Huq AJ, Chiu WH, Cadwallader C, Walterfang M, Farrand S, Evans AH, Kelso W, Churilov L, Watson R, Yassi N, Velakoulis D, Loi SM. Blood biomarker profiles in young-onset neurocognitive disorders: A cohort study. Aust N Z J Psychiatry 2025; 59:378-388. [PMID: 39825484 PMCID: PMC11924289 DOI: 10.1177/00048674241312805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Young-onset neurocognitive symptoms result from a heterogeneous group of neurological and psychiatric disorders which present a diagnostic challenge. To identify such factors, we analysed the Biomarkers in Younger-Onset Neurocognitive Disorders cohort, a study of individuals <65 years old presenting with neurocognitive symptoms for a diagnosis and who have undergone cognitive and biomarker analyses. METHODS Sixty-five participants (median age at assessment of 56 years, 45% female) were recruited during their index presentation to the Royal Melbourne Hospital Neuropsychiatry Centre, a tertiary specialist service in Melbourne, Australia, and categorized as either early-onset Alzheimer's disease (n = 18), non-Alzheimer's disease neurodegeneration (n = 23) or primary psychiatric disorders (n = 24). Levels of neurofilament light chain, glial fibrillary acidic protein and phosphorylated-tau 181, apolipoprotein E genotype and late-onset Alzheimer's disease polygenic risk scores were determined. Information-theoretic model selection identified discriminatory factors. RESULTS Neurofilament light chain, glial fibrillary acidic protein and phosphorylated-tau 181 levels were elevated in early-onset Alzheimer's disease compared with other diagnostic categories. A multi-omic model selection identified that a combination of cognitive and blood biomarkers, but not the polygenic risk score, discriminated between early-onset Alzheimer's disease and primary psychiatric disorders (area under the curve ⩾ 0.975, 95% confidence interval: 0.825-1.000). Phosphorylated-tau 181 alone significantly discriminated between early-onset Alzheimer's disease and non-Alzheimer's disease neurodegeneration causes (area under the curve = 0.950, 95% confidence interval: 0.877-1.00). DISCUSSION Discriminating between early-onset Alzheimer's disease, non-Alzheimer's disease neurodegeneration and primary psychiatric disorders causes of young-onset neurocognitive symptoms is possible by combining cognitive profiles with blood biomarkers. These results support utilizing blood biomarkers for the work-up of young-onset neurocognitive symptoms and highlight the need for the development of a young-onset Alzheimer's disease-specific polygenic risk score.
Collapse
Affiliation(s)
- Oneil G Bhalala
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jessica Beamish
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Patrick Summerell
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Matthew Jy Kang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Aamira J Huq
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Wei-Hsuan Chiu
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Claire Cadwallader
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Walterfang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Sarah Farrand
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew H Evans
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Wendy Kelso
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Leonid Churilov
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosie Watson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nawaf Yassi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Samantha M Loi
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Duggan MR, Morgan DG, Price BR, Rajbanshi B, Martin-Peña A, Tansey MG, Walker KA. Immune modulation to treat Alzheimer's disease. Mol Neurodegener 2025; 20:39. [PMID: 40165251 PMCID: PMC11956194 DOI: 10.1186/s13024-025-00828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Immune mechanisms play a fundamental role in Alzheimer's disease (AD) pathogenesis, suggesting that approaches which target immune cells and immunologically relevant molecules can offer therapeutic opportunities beyond the recently approved amyloid beta monoclonal therapies. In this review, we provide an overview of immunomodulatory therapeutics in development, including their preclinical evidence and clinical trial results. Along with detailing immune processes involved in AD pathogenesis and highlighting how these mechanisms can be therapeutically targeted to modify disease progression, we summarize knowledge gained from previous trials of immune-based interventions, and provide a series of recommendations for the development of future immunomodulatory therapeutics to treat AD.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA
| | - David G Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Binita Rajbanshi
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alfonso Martin-Peña
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
6
|
Zachariou M, Loizidou EM, Spyrou GM. Topological influence of immediate-early genes in brain genetic networks and their link to Alzheimer's disease. Comput Biol Med 2025; 190:110043. [PMID: 40158459 DOI: 10.1016/j.compbiomed.2025.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
Immediate-early genes (IEGs), a subset of activity-regulated genes (ARGs), are rapidly and transiently activated by neuronal activity independent of protein synthesis. While extensively researched, the role of IEGs within genetic networks and their potential as drug targets for brain diseases remain underexplored. This study aimed to investigate the topological influence of IEGs within genetic networks and explore their relevance to Alzheimer's disease (AD). To achieve this, we employed a multi-step approach: mouse ARG data were analysed and mapped to human genes to identify the topological properties that distinguish IEGs from other ARGs; the involvement of ARGs in biological pathways and diseases and their mutational constraints were examined; ARG-related variants in AD were assessed using genome-wide association study (GWAS) summary statistics and functional analysis; and network and GWAS findings were integrated to identify ARG-AD-associated genes. Our key findings were: (1) IEGs exhibit significantly higher topological influence across human and mouse gene networks compared to other ARGs; (2) ARGs are less frequently involved in diseases and exhibit higher mutational constraint than non-ARGs; (3) Several AD-associated variants are located in ARG regions, particularly in MARK4 near FOSB, with an AD risk eQTL that increases MARK4 expression in cortical areas; (4) MARK4 emerges as a key node in a dense AD multi-omic network and exhibits a high druggability score. These findings underscore the influential role of IEGs within genetic networks, providing valuable insights into their potential as intervention points for diseases characterised by downstream dysregulation, with MARK4 emerging as a promising and underexplored target for AD.
Collapse
Affiliation(s)
- Margarita Zachariou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, P.C. 2371, Ayios Dometios, Nicosia, Cyprus.
| | - Eleni M Loizidou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, P.C. 2371, Ayios Dometios, Nicosia, Cyprus; Biobank.cy, Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Shacolas Educational Centre for Clinical Medicine, P.C. 2029, Aglantzia, Nicosia, Cyprus
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, P.C. 2371, Ayios Dometios, Nicosia, Cyprus
| |
Collapse
|
7
|
García-González P, Puerta R, Cano A, Olivè C, Marquié M, Valero S, Rosende-Roca M, Alegret M, Sanz P, Brosseron F, Martino-Adami P, de Rojas I, Heneka M, Ramírez A, Navarro A, Sáez ME, Tárraga L, Cavazos JE, Boada M, Fernandez MV, Cabrera-Socorro A, Ruiz A. APOE Haplotype Phasing Using ONT Long-Read Sequencing Reveals Two Common ε3 and ε4 intragenic haplotypes in the Spanish Population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.25.25324541. [PMID: 40196265 PMCID: PMC11974914 DOI: 10.1101/2025.03.25.25324541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background The apolipoprotein E ( APOE ) gene is a key genetic determinant of Alzheimer's disease (AD) risk, with the ε4 allele significantly increasing susceptibility. While the pathogenic effects of the ε4 allele are well established, the functional impact of distinct haplotype configurations within the broader ε3 and ε4 backgrounds remains poorly understood. This study investigates the role of intragenic sub haplotypes in modulating APOE expression and their potential influence on AD progression. Methods We utilized Oxford Nanopore Technology (ONT) long-read sequencing to phase variants within a 4-kilobase comprising the APOE locus in a cohort of 1,265 individuals with known APOE genotypes. We evaluated the impact of the identified intragenic haplotypes on APOE protein levels in cerebrospinal fluid (CSF) using the Olink platform, adjusting for demographic and molecular covariates. Statistical modeling was employed to assess the independent effects of these haplotypes alongside traditional APOE genotypes. Additionally, their influence on dementia progression in mild cognitive impairment (MCI) subjects was analyzed using adjusted Cox proportional hazards models. Results Our analysis identified 48 Single Nucleotide Variants (SNVs) within a 4-kilobase region containing the APOE gene, including nine novel variants. Phasing of variants within the APOE locus revealed 59 unique haplotypes in the Spanish population, which were grouped into five major haplogroups-ε2, ε3A, ε3B, ε4A, and ε4B-including two common haplogroups for each of the ε3 and ε4 isoforms. The ε4A haplogroup was associated with a significant decrease in APOE ε4 protein levels in CSF (p = 0.004), suggesting a regulatory mechanism that may mitigate the toxic gain-of-function effect typically attributed to the ε4 allele. Conversely, the ε3B haplogroup was linked to increased APOE ε3 protein levels in ε3/ε4 carriers (p = 0.025), potentially serving a compensatory role. These effects were independent of overall APOE genotype and remained significant after adjusting for covariates. Both haplogroups (ε4A and ε3B) demonstrated protective effects in the progression from MCI to dementia, underscoring their potential relevance in Alzheimer's disease. Conclusions This study provides new insights into the intragenic allelic variability of the APOE gene, demonstrating that intragenic APOE haplogroups within the ε3 and ε4 backgrounds can modulate APOE isoform expression in ways that might modulate AD. Our findings highlight the importance of considering haplotype-specific effects when interpreting the functional impact of APOE and in designing targeted therapeutic strategies. Further research is needed to explore the broader regulatory network of the APOE locus and its interaction with neighboring loci in the 19q13 region.
Collapse
|
8
|
Vandal M, Institoris A, Reveret L, Korin B, Gunn C, Hirai S, Jiang Y, Lee S, Lee J, Bourassa P, Mishra RC, Peringod G, Arellano F, Belzil C, Tremblay C, Hashem M, Gorzo K, Elias E, Yao J, Meilandt B, Foreman O, Roose-Girma M, Shin S, Muruve D, Nicola W, Körbelin J, Dunn JF, Chen W, Park SK, Braun AP, Bennett DA, Gordon GRJ, Calon F, Shaw AS, Nguyen MD. Loss of endothelial CD2AP causes sex-dependent cerebrovascular dysfunction. Neuron 2025; 113:876-895.e11. [PMID: 39892386 DOI: 10.1016/j.neuron.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/27/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
Polymorphisms in CD2-associated protein (CD2AP) predispose to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. Here, we show that loss of CD2AP in cerebral blood vessels is associated with cognitive decline in AD subjects and that genetic downregulation of CD2AP in brain vascular endothelial cells impairs memory function in male mice. Animals with reduced brain endothelial CD2AP display altered blood flow regulation at rest and during neurovascular coupling, defects in mural cell activity, and an abnormal vascular sex-dependent response to Aβ. Antagonizing endothelin-1 receptor A signaling partly rescues the vascular impairments, but only in male mice. Treatment of CD2AP mutant mice with reelin glycoprotein that mitigates the effects of CD2AP loss function via ApoER2 increases resting cerebral blood flow and even protects male mice against the noxious effect of Aβ. Thus, endothelial CD2AP plays critical roles in cerebrovascular functions and represents a novel target for sex-specific treatment in AD.
Collapse
Affiliation(s)
- Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Adam Institoris
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Louise Reveret
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Colin Gunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sotaro Hirai
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sukyoung Lee
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Jiyeon Lee
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Philippe Bourassa
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Govind Peringod
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Faye Arellano
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Camille Belzil
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Cyntia Tremblay
- Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Mada Hashem
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Kelsea Gorzo
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Esteban Elias
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Bill Meilandt
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Meron Roose-Girma
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Steven Shin
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Daniel Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wilten Nicola
- Departments of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jeff F Dunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wayne Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Sang-Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - David A Bennett
- Rush Alzheimer's disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Grant R J Gordon
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada.
| | - Andrey S Shaw
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA.
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada.
| |
Collapse
|
9
|
Yadav A, Ouyang X, Barkley M, Watson JC, Madamanchi K, Kramer J, Zhang J, Melkani G. Regulation of lipid dysmetabolism and neuroinflammation linked with Alzheimer's disease through modulation of Dgat2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638929. [PMID: 40027815 PMCID: PMC11870505 DOI: 10.1101/2025.02.18.638929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaque accumulation, cognitive decline, lipid dysregulation, and neuroinflammation. While mutations in the Amyloid Precursor Protein (APP) and Aβ42 accumulation contribute to AD, the mechanisms linking Aβ to lipid metabolism and neuroinflammation remain unclear. Using Drosophila models, we show that App NLG and Aβ42 expression causes locomotor deficits, disrupted sleep, memory impairments, lipid accumulation, synaptic loss, and neuroinflammation. Similar lipid and inflammatory changes are observed in the App NLG-F knock-in mouse model, reinforcing their role in AD pathogenesis. We identify diacylglycerol O-acyltransferase 2 (Dgat2), a key lipid metabolism enzyme, as a modulator of AD phenotypes. In Drosophila and mouse AD models, Dgat2 levels and its transcription factors are altered. Dgat2 knockdown in Drosophila reduced lipid accumulation, restored synaptic integrity, improved locomotor and cognitive function, and mitigated neuroinflammation. Additionally, Dgat2 modulation improved sleep and circadian rhythms. In App NLG-F mice, Dgat2 inhibition decreased neuroinflammation and reduced AD risk gene expression. These findings highlight the intricate link between amyloid pathology, lipid dysregulation, and neuroinflammation, suggesting that targeting Dgat2 may offer a novel therapeutic approach for AD. Conserved lipid homeostasis mechanisms across species provide valuable translational insights.
Collapse
|
10
|
Xue D, Blue EE, Sofer T, Hughes TM, Rotter JI, Fohner AE. Polygenic risk scores for incident dementia in the Multi-Ethnic Study of Atherosclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.05.25323412. [PMID: 40093241 PMCID: PMC11908322 DOI: 10.1101/2025.03.05.25323412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Over 75 Alzheimer's disease (AD) and dementia-associated variants have been identified through genome-wide association studies, but the utility of polygenic risk scores (PRS) for predicting AD and dementia in diverse and admixed populations remains unclear. We compared how PRS approaches differing in p -value thresholds, variant weights, and source ancestry perform in predicting dementia in 6,338 African American, Chinese, Hispanic, and White individuals from the Multi-Ethnic Study of Atherosclerosis. We tested clumping and thresholding (C+T) methods with varying parameters against Bayesian approaches (PRS-CS, PRS-CSx). We compared the ability of each method to predict incident dementia in all participants and in groups stratified by self-reported race/ethnicity. We additionally analyzed performance across groups stratified by estimated proportion of non-Finnish European (NFE)-like ancestry. Including more variants does not improve performance. The PRS based on C+T method with only 15 SNPs is more strongly associated with dementia (HR 5e-08 = 1.21, 95% CI: 1.11-1.31) than PRS derived from Bayesian models that include >800,000 SNPs (HR CSx = 1.13, 95% CI: 1.04-1.23), even in populations genetically dissimilar from the source data (HR lowNFE _ 5e-08 = 1.26, 95% CI: 1.08-1.47; HR lowNFE _ CSx = 1.13, 95% CI: 0.96-1.32). More selective PRS models using fewer SNPs may offer better AD prediction across diverse populations.
Collapse
|
11
|
Vialle RA, de Paiva Lopes K, Li Y, Ng B, Schneider JA, Buchman AS, Wang Y, Farfel JM, Barnes LL, Wingo AP, Wingo TS, Seyfried NT, De Jager PL, Gaiteri C, Tasaki S, Bennett DA. Structural variants linked to Alzheimer's disease and other common age-related clinical and neuropathologic traits. Genome Med 2025; 17:20. [PMID: 40038788 PMCID: PMC11881306 DOI: 10.1186/s13073-025-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disorder with substantial genetic influence. While genome-wide association studies (GWAS) have identified numerous risk loci for late-onset AD (LOAD), the functional mechanisms underlying most of these associations remain unresolved. Large genomic rearrangements, known as structural variants (SVs), represent a promising avenue for elucidating such mechanisms within some of these loci. METHODS By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing 20,205 common SVs from 1088 participants with whole genome sequencing (WGS) data. A range of Alzheimer's disease and other common age-related clinical and neuropathologic traits were examined. RESULTS First, we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS lead variants and directly associated with the phenotypes tested. The strongest association was a deletion of an Alu element in the 3'UTR of the TMEM106B gene, in high LD with the respective AD GWAS locus and associated with multiple AD and AD-related disorders (ADRD) phenotypes, including tangles density, TDP-43, and cognitive resilience. The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22-kb deletion associated with depression in ROS/MAP and bearing similar association patterns as GWAS SNPs at the IQCK locus. In addition, we leveraged our catalog of SV-GWAS to replicate and characterize independent findings in SV-based GWAS for AD and five other neurodegenerative diseases. Among these findings, we highlight the replication of genome-wide significant SVs for progressive supranuclear palsy (PSP), including markers for the 17q21.31 MAPT locus inversion and a 1483-bp deletion at the CYP2A13 locus, along with other suggestive associations, such as a 994-bp duplication in the LMNTD1 locus, suggestively linked to AD and a 3958-bp deletion at the DOCK5 locus linked to Lewy body disease (LBD) (P = 3.36 × 10-4). CONCLUSIONS While still limited in sample size, this study highlights the utility of including analysis of SVs for elucidating mechanisms underlying GWAS loci and provides a valuable resource for the characterization of the effects of SVs in neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
- Ricardo A Vialle
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA.
| | - Katia de Paiva Lopes
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Yan Li
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Davis, CA, USA
- VA Northern California Health Care System, Davis, CA, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Nicholas T Seyfried
- Department of Neurology and Department of Biochemistry, Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| |
Collapse
|
12
|
Xu X, Kwon J, Yan R, Apio C, Song S, Heo G, Yang Q, Timsina J, Liu M, Budde J, Blennow K, Zetterberg H, Lleó A, Ruiz A, Molinuevo JL, Lee VMY, Deming Y, Heslegrave AJ, Hohman TJ, Pastor P, Peskind ER, Albert MS, Morris JC, Park T, Cruchaga C, Sung YJ. Sex Differences in Apolipoprotein E and Alzheimer Disease Pathology Across Ancestries. JAMA Netw Open 2025; 8:e250562. [PMID: 40067298 PMCID: PMC11897841 DOI: 10.1001/jamanetworkopen.2025.0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/05/2025] [Indexed: 03/15/2025] Open
Abstract
Importance Age, sex, and apolipoprotein E (APOE) are the strongest risk factors for late-onset Alzheimer disease (AD). The role of APOE in AD varies with sex and ancestry. While the association of APOE with AD biomarkers also varies across sex and ancestry, no study has systematically investigated both sex-specific and ancestry differences of APOE on cerebrospinal fluid (CSF) biomarkers together, resulting in limited insights and generalizability. Objective To systematically investigate the association of sex and APOE-ε4 with 3 core CSF biomarkers across ancestries. Design, Setting, and Participants This cohort study examined 3 CSF biomarkers (amyloid β1-42 [Aβ42], phosphorylated tau 181 [p-tau], and total tau, in participants from 20 cohorts from July 1, 1985, to March 31, 2020. These individuals were grouped into African, Asian, and European ancestries based on genetic data. Data analyses were conducted from June 1, 2023, to November 10, 2024. Exposure Sex (male or female) and APOE-ε4. Main Outcomes and Measures The associations of sex and APOE-ε4 with biomarker levels were assessed within each ancestry group, adjusting for age. Meta-analyses were performed to identify these associations across ancestries. Sensitivity analyses were conducted to exclude the potential influence of the APOE-ε2 allele. Results This cohort study included 4592 individuals (mean [SD] age, 70.8 [10.2] years; 2425 [52.8%] female; 119 [2.6%] African, 52 [1.1%] Asian, and 4421 [96.3%] European). Higher APOE-ε4 dosage scores were associated with lower Aβ42 values (β [SE], -0.58 [0.02], P < .001), indicating more severe pathology; these associations were seen in men and women separately and jointly. The association with APOE-ε4 was statistically greater in men (β [SE], -0.63 [0.03]; P < .001) vs women (β [SE], -0.52 [0.03]; P < .001) of European ancestry (P = .01 for interaction). Women had higher levels of p-tau, indicating more severe neurofibrillary pathology. The association between APOE-ε4 dosage and p-tau was in the expected direction (higher APOE-ε4 dosage for higher p-tau values) in both sexes, but the difference between sexes was significant only in those of African ancestry (β [SE], 0.10 [0.18]; P = .57 for men; β [SE], 0.66 [0.17]; P < .001 for women; P = .03 for interaction). Women also had higher levels of total tau, indicating more neuronal damage. The association between APOE-ε4 dosage and total tau was stronger in women than in men in the African cohort (β [SE], 0.20 [0.22]; P = .36 for men and β [SE], 0.65 [0.22], P = .004 for women [P = .16 for interaction]) and European cohort (β [SE], 0.36 [0.03]; P < .001 in women and β [SE], 0.27 [0.03], P < .001 in men [P = .053 for interaction]); no significant associations were found in the Asian cohort. Sensitivity analysis excluding APOE-ε2 carriers yielded similar results. Conclusions and Relevance In this cohort study, the association of the APOE-ε4 risk allele with tau accumulation was higher in women than in men. These findings underscore the importance of considering sex differences in APOE-ε4's association with AD biomarkers and tau pathology mechanisms in AD. Although this study provides robust evidence of complex interplay between sex and APOE-ε4 for European ancestry, further research is needed to fully understand other ancestry differences.
Collapse
Affiliation(s)
- Xiaoyi Xu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
| | - Jiseon Kwon
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Ruiqi Yan
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
| | - Catherine Apio
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Soomin Song
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Gyujin Heo
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Qijun Yang
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Jigyasha Timsina
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Menghan Liu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - John Budde
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Alberto Lleó
- Sant Pau Memory Unit, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Agustin Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Virginia Man-Yee Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Yuetiva Deming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison
| | - Amanda J. Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Tim J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pau Pastor
- University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Elaine R. Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John C. Morris
- Department of Neurology, Washington University, St Louis, Missouri
- Knight Alzheimer’s Disease Research Center, Washington University, St Louis, Missouri
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri
| | - Yun Ju Sung
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
13
|
Nguyen L, Ajredini R, Guo S, Romano LEL, Tomas RF, Bell LR, Ranum PT, Zu T, Bañez Coronel M, Kelley CP, Redding-Ochoa J, Nizamis E, Melloni A, Connors TR, Gaona A, Thangaraju K, Pletnikova O, Clark HB, Davidson BL, Yachnis AT, Golde TE, Lou X, Wang ET, Renton AE, Goate A, Valdmanis PN, Prokop S, Troncoso JC, Hyman BT, Ranum LPW. CASP8 intronic expansion identified by poly-glycine-arginine pathology increases Alzheimer's disease risk. Proc Natl Acad Sci U S A 2025; 122:e2416885122. [PMID: 39937857 PMCID: PMC11848317 DOI: 10.1073/pnas.2416885122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 02/14/2025] Open
Abstract
Alzheimer's disease (AD) affects more than 10% of the population ≥65 y of age, but the underlying biological risks of most AD cases are unclear. We show anti-poly-glycine-arginine (a-polyGR) positive aggregates frequently accumulate in sporadic AD autopsy brains (45/80 cases). We hypothesize that these aggregates are caused by one or more polyGR-encoding repeat expansion mutations. We developed a CRISPR/deactivated-Cas9 enrichment strategy to identify candidate GR-encoding repeat expansion mutations directly from genomic DNA isolated from a-polyGR(+) AD cases. Using this approach, we isolated an interrupted (GGGAGA)n intronic expansion within a SINE-VNTR-Alu element in CASP8 (CASP8-GGGAGAEXP). Immunostaining using a-polyGR and locus-specific C-terminal antibodies demonstrate that the CASP8-GGGAGAEXP expresses hybrid poly(GR)n(GE)n(RE)n proteins that accumulate in CASP8-GGGAGAEXP(+) AD brains. In cells, expression of CASP8-GGGAGAEXP minigenes leads to increased p-Tau (Ser202/Thr205) levels. Consistent with other types of repeat-associated non-AUG (RAN) proteins, poly(GR)n(GE)n(RE)n protein levels are increased by stress. Additionally, levels of these stress-induced proteins are reduced by metformin. Association studies show specific aggregate promoting interrupted CASP8-GGGAGAEXP sequence variants found in ~3.6% of controls and 7.5% AD cases increase AD risk [CASP8-GGGAGA-AD-R1; OR 2.2, 95% CI (1.5185 to 3.1896), P = 3.1 × 10-5]. Cells transfected with a high-risk CASP8-GGGAGA-AD-R1 variant show increased toxicity and increased levels of poly(GR)n(GE)n(RE)n aggregates. Taken together, these data identify polyGR(+) aggregates as a frequent and unexpected type of brain pathology in AD and CASP8-GGGAGA-AD-R1 alleles as a relatively common AD risk factor. Taken together, these data support a model in which CASP8-GGGAGAEXP alleles combined with stress increase AD risk.
Collapse
Affiliation(s)
- Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Ramadan Ajredini
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Shu Guo
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Lisa E. L. Romano
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Rodrigo F. Tomas
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Logan R. Bell
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Paul T. Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Tao Zu
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Monica Bañez Coronel
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Chase P. Kelley
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Javier Redding-Ochoa
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Evangelos Nizamis
- Division of Medical Genetics School of Medicine, University of Washington, Seattle, WA98195
| | - Alexandra Melloni
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA02114
| | - Theresa R. Connors
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA02114
| | - Angelica Gaona
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA02114
| | - Kiruphagaran Thangaraju
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - H. Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN55455
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Anthony T. Yachnis
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL32610
| | - Todd E. Golde
- Center for Translation Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL32610
- McKnight Brain Institute, University of Florida, Gainesville, FL32610
| | - XiangYang Lou
- Department of Biostatistics, University of Florida, Gainesville, FL32611
| | - Eric T. Wang
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Alan E. Renton
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer’s Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Paul N. Valdmanis
- Division of Medical Genetics School of Medicine, University of Washington, Seattle, WA98195
| | - Stefan Prokop
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL32610
- Center for Translation Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL32610
- McKnight Brain Institute, University of Florida, Gainesville, FL32610
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL32611
| | - Juan C. Troncoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Bradley T. Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA02114
| | - Laura P. W. Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL32610
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
- McKnight Brain Institute, University of Florida, Gainesville, FL32610
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL32611
- Norman Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL32608
| |
Collapse
|
14
|
Schaefer AS, Nibali L, Zoheir N, Moutsopoulos NM, Loos BG. Genetic risk variants implicate impaired maintenance and repair of periodontal tissues as causal for periodontitis-A synthesis of recent findings. Periodontol 2000 2025. [PMID: 39953674 DOI: 10.1111/prd.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 02/17/2025]
Abstract
Periodontitis is a complex inflammatory disease in which the host genome, in conjunction with extrinsic factors, determines susceptibility and progression. Genetic predisposition is the strongest risk factor in the first decades of life. As people age, chronic exposure to the periodontal microbiome puts a strain on the proper maintenance of barrier function. This review summarizes our current knowledge on genetic risk factors implicated in periodontitis, derived (i) from hypothesis-free systematic whole genome-profiling studies (genome-wide association studies [GWAS] and quantitative trait loci [QTL] mapping studies), and independently validated through further unbiased approaches; (ii) from monogenic and oligogenic forms of periodontitis; and (iii) from syndromic forms of periodontitis. The genes include, but are not limited to, SIGLEC5, PLG, ROBO2, ABCA1, PF4, and CTSC. Notably, CTSC and PLG gene mutations were also identified in non-syndromic and syndromic forms of prepubertal and early-onset periodontitis. The functions of the identified genes in this review suggest that the pathways affected by the periodontitis-associated gene variants converge in functions involved in the maintenance and repair of structural integrity of the periodontal tissues. Particularly, these genes play a role in the healing of inflamed and ulcerated periodontal tissues, including roles in fibrinolysis, extrusion of cellular debris, extracellular matrix remodeling and angiogenesis. Syndromes that include periodontitis in their phenotype indicate that neutrophils play an important role in the regulation of inflammation in the periodontium. The established genetic susceptibility genes therefore collectively provide new insights into the molecular mechanisms and plausible causal factors underlying periodontitis.
Collapse
Affiliation(s)
- Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Luigi Nibali
- Periodontology Unit, Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Noha Zoheir
- Periodontology Unit, Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Bruno G Loos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Nakatsuka N, Adler D, Jiang L, Hartman A, Cheng E, Klann E, Satija R. A Reproducibility Focused Meta-Analysis Method for Single-Cell Transcriptomic Case-Control Studies Uncovers Robust Differentially Expressed Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.15.618577. [PMID: 39463993 PMCID: PMC11507907 DOI: 10.1101/2024.10.15.618577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We assessed the reproducibility of differentially expressed genes (DEGs) in previously published Alzheimer's (AD), Parkinson's (PD), Schizophrenia (SCZ), and COVID-19 scRNA-seq studies. While transcriptional scores from DEGs of individual PD and COVID-19 datasets had moderate predictive power for case-control status of other datasets (AUC=0.77 and 0.75), genes from individual AD and SCZ datasets had poor predictive power (AUC=0.68 and 0.55). We developed a non-parametric meta-analysis method, SumRank, based on reproducibility of relative differential expression ranks across datasets, and found DEGs with improved predictive power (AUC=0.88, 0.91, 0.78, and 0.62). By multiple other metrics, specificity and sensitivity of these genes were substantially higher than those discovered by dataset merging and inverse variance weighted p-value aggregation methods. The DEGs revealed known and novel biological pathways, and we validate BCAT1 as down-regulated in AD mouse oligodendrocytes. Lastly, we evaluate factors influencing reproducibility of individual studies as a prospective guide for experimental design.
Collapse
|
16
|
Ye Z, Deng J, Wu X, Cai J, Li S, Chen X, Xin J. Association of statins use and genetic susceptibility with incidence of Alzheimer's disease. J Prev Alzheimers Dis 2025; 12:100025. [PMID: 39863334 DOI: 10.1016/j.tjpad.2024.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
BACKGROUND The effect of statins use on the incidence of Alzheimer's disease (AD) is still under debate, and it could be modified by a series of factors. OBJECTIVES We aimed to examine the association of statins use with the risk of cognitive impairment and AD, and assess the moderating roles of genetic susceptibility and other individual-related factors. DESIGN A longitudinal study was conducted from the UK Biobank where individuals completed baseline surveys (2006-2010) and were followed (mean follow-up period: 9 years). SETTING A population-based study. PARTICIPANTS A total of 371,019 dementia-free participants (mean age 56.4 years; 53.6% female). MEASUREMENTS The effects of statins use on cognitive performance and incident AD were examined by using linear regression model and Cox proportional hazards regression model, respectively. We further evaluated the moderating roles of genetic risks and individual-related factors on both multiplicative and additive scales. RESULTS The findings showed statins use was associated with an increased risk of AD development [hazard ratio (HR) 1.19 (95% CI: 1.08, 1.30)] compared with no use of statins. We further found significant negative additive interactions of statins use with APOE ε4 allele. Besides, the effects of statins use would be modified by age, sex and cardiovascular diseases (CVDs). DISCUSSIONS A protective effect of statins use was observed in those who carried two APOE ε4 alleles. Also, sex, age and CVDs could modify the effects of statins use, which would provide insights for the guideline of the statins therapy.
Collapse
Affiliation(s)
- Zirong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, No.29, Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China; Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiang'an Nan Road, Xiang'an District, Xiamen, Fujian Province, 361102, China; Institute of Clinical Neurology, Fujian Medical University, No.29 Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China
| | - Jiahe Deng
- School of Clinical Medicine, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China
| | - Xiuxia Wu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, 350000, China
| | - Jingwen Cai
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, 350000, China
| | - Sicheng Li
- Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiang'an Nan Road, Xiang'an District, Xiamen, Fujian Province, 361102, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, No.29, Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China; Institute of Clinical Neurology, Fujian Medical University, No.29 Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China.
| | - Jiawei Xin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, No.29, Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China; Institute of Clinical Neurology, Fujian Medical University, No.29 Xinquan Road, Gulou District, Fuzhou, Fujian Province, 350000, China.
| |
Collapse
|
17
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
18
|
Dybing KM, McAllister TW, Wu YC, McDonald BC, Broglio SP, Mihalik JP, Guskiewicz KM, Goldman JT, Jackson JC, Saykin AJ, Risacher SL, Nudelman KNH. Association of Alzheimer's Disease Polygenic Risk Score with Concussion Severity and Recovery Metrics. Sports Med 2025:10.1007/s40279-024-02150-w. [PMID: 39821585 DOI: 10.1007/s40279-024-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Identification of genetic alleles associated with both Alzheimer's disease (AD) and concussion severity/recovery could help explain the association between concussion and elevated dementia risk. However, there has been little investigation into whether AD risk genes associate with concussion severity/recovery, and the limited findings are mixed. OBJECTIVE We used AD polygenic risk scores (PRS) and APOE genotypes to investigate any such associations in the NCAA-DoD Grand Alliance CARE Consortium (CARE) dataset. METHODS We assessed six concussion outcomes in 931 participants, including two recovery measures (number of days to asymptomatic and to return to play (RTP)) and four severity measures (scores on SAC and BESS, SCAT symptom severity and total number of symptoms). We calculated the PRS using a published score and performed multiple linear regression to assess the relationship of the PRS with outcomes. We also used ANOVAs, t-tests, and chi-square tests to examine outcomes by APOE genotype. RESULTS Higher PRS was associated with longer injury to RTP time in the normal RTP (< 24 days) subgroup (p = 0.024). A one standard deviation increase in the PRS resulted in a 9.89 hour increase to RTP time. This result was no longer significant after inclusion of covariates. There were no other consistently significant effects. CONCLUSIONS Our findings suggest high AD genetic risk is not associated with more severe concussions or poor recovery in young adults. Future studies should attempt to replicate these findings in larger samples with longer follow-up using PRS calculated from diverse populations.
Collapse
Affiliation(s)
- Kaitlyn M Dybing
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Thomas W McAllister
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Jason P Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua T Goldman
- Sports Medicine, University of California Los Angeles, Los Angeles, Los Angeles, CA, USA
| | - Jonathan C Jackson
- United States Air Force Academy, 2355 Faculty Drive, Suite 1N207, USAFA, CO, USA
- Utah Valley Orthopedics and Sports Medicine, Provo, UT, USA
- Utah Valley Orthopedics and Sports Medicine, Saratoga Springs, UT, USA
- Department of Family Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kelly N H Nudelman
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Rubino E, Italia M, Giorgio E, Boschi S, Dimartino P, Pippucci T, Roveta F, Cambria CM, Elia G, Marcinnò A, Gallone S, Rogaeva E, Antonucci F, Brusco A, Gardoni F, Rainero I. Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease. Alzheimers Res Ther 2025; 17:21. [PMID: 39810256 PMCID: PMC11730494 DOI: 10.1186/s13195-024-01661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant. METHODS Affected and unaffected members from a Northern Italian family were included. Genomic DNA from family members was extracted and initially screened for pathogenic mutations in APP, PSEN1, and PSEN2, and screened for 77 genes associated with neurodegenerative conditions using NeuroX array assay. Exome sequencing was performed on three affected individuals and two healthy relatives. Bioinformatics analyses were conducted. Functional analysis was performed using primary neuronal cultures, and the impact of the variant was assessed through immunocytochemistry and electrophysiology. RESULTS Pathogenic variants were not identified in APP, PSEN1, or PSEN2, nor in the 77 genes in NeuroX array assay. Exome Sequencing revealed the c.3215C > T p.(A1072V) variant in GRIN2C gene (NM 000835.6), encoding for the glutamate ionotropic receptor N-methyl-D-aspartate receptor (NMDA) type subunit 2C (GluN2C). This variant segregated in 6 available AD patients in the family and was absent in 9 healthy relatives. Primary rat hippocampal neurons overexpressing GluN2CA1072V showed an increase in NMDAR-induced currents, suggesting altered glutamatergic transmission. Surface expression assays demonstrated an elevated surface/total ratio of the mutant GluN2C, correlating with the increased NMDAR current. Additionally, immunocytochemistry revealed in neurons expressing the mutant variant a reduced colocalization between the GluN2C subunit and 14-3-3 proteins, which are known to facilitate membrane trafficking of NMDARs. DISCUSSION We identified a rare missense variant in GRIN2C associated with late-onset autosomal dominant Alzheimer's disease. These findings highlight the role of GluN2C-containing NMDARs in glutamatergic signaling and their potential contribution to AD pathogenesis.
Collapse
Affiliation(s)
- Elisa Rubino
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
- Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, University Hospital, Via Cherasco 15, Turin, 10126, Italy.
| | - Maria Italia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, 20133, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, Pavia, 27100, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, 27100, Italy
| | - Silvia Boschi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Paola Dimartino
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, Pavia, 27100, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria, Via Albertoni 15, Bologna, 40138, Italy
| | - Fausto Roveta
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Clara Maria Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Gabriella Elia
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Andrea Marcinnò
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Salvatore Gallone
- Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, University Hospital, Via Cherasco 15, Turin, 10126, Italy
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, King's College Circle 1, Toronto, ON, M5S1A8, Canada
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
- Institute of Neuroscience, IN-CNR, Via Raoul Follereau 3, Vedano al Lambro, 20854, Italy
| | - Alfredo Brusco
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
- Medical Genetics Unit, Città della Salute e della Scienza di Torino, University Hospital, Via Santena 19, Turin, 10126, Italy
- Molecular Biotechnology Center Guido Tarone, University of Turin, Piazza Nizza 44B, Turin, 10126, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, 20133, Italy
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
- Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, University Hospital, Via Cherasco 15, Turin, 10126, Italy
| |
Collapse
|
20
|
Euesden J, Ali M, Robins C, Surendran P, Gormley P, Pulford D, Cruchaga C. Patient stratification by genetic risk in Alzheimer's disease is only effective in the presence of phenotypic heterogeneity. PLoS One 2025; 20:e0310977. [PMID: 39787209 PMCID: PMC11717250 DOI: 10.1371/journal.pone.0310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
Case-only designs in longitudinal cohorts are a valuable resource for identifying disease-relevant genes, pathways, and novel targets influencing disease progression. This is particularly relevant in Alzheimer's disease (AD), where longitudinal cohorts measure disease "progression," defined by rate of cognitive decline. Few of the identified drug targets for AD have been clinically tractable, and phenotypic heterogeneity is an obstacle to both clinical research and basic science. In four cohorts (n = 7241), we performed genome-wide association studies (GWAS) and Mendelian randomization (MR) to discover novel targets associated with progression and assess causal relationships. We tested opportunities for patient stratification by deriving polygenic risk scores (PRS) for AD risk and severity and tested the value of these scores in predicting progression. Genome-wide association studies identified no loci associated with progression at genome-wide significance (α = 5×10-8); MR analyses provided no significant evidence of an association between cognitive decline in AD patients and protein levels in brain, cerebrospinal fluid (CSF), and plasma. Polygenic risk scores for AD risk did not reliably stratify fast from slow progressors; however, a deeper investigation found that APOE ε4 status predicts amyloid-β and tau positive versus negative patients (odds ratio for an additional APOE ε4 allele = 5.78 [95% confidence interval: 3.76-8.89], P<0.001) when restricting to a subset of patients with available CSF biomarker data. These results provided no evidence for large-effect, common-variant loci involved in the rate of memory decline, suggesting that patient stratification based on common genetic risk factors for progression may have limited utility. Where clinically relevant biomarkers suggest diagnostic heterogeneity, there is evidence that a priori identified genetic risk factors may have value in patient stratification. Mendelian randomization was less tractable due to the lack of large-effect loci, and future analyses with increased samples sizes are needed to replicate and validate our results.
Collapse
Affiliation(s)
- Jack Euesden
- Biostatistics, GSK Pharma R&D, Stevenage, Hertfordshire, United Kingdom
| | - Muhammad Ali
- Washington University School of Medicine, NeuroGenomics and Informatics Center, St. Louis, MO, United States of America
| | - Chloe Robins
- Genomic Sciences, GSK Pharma R&D, Collegeville, PA, United States of America
| | - Praveen Surendran
- Genomic Sciences, GSK Pharma R&D, Stevenage, Hertfordshire, United Kingdom
| | - Padhraig Gormley
- Genomic Sciences, GSK Pharma R&D, Cambridge, MA, United States of America
| | | | - David Pulford
- Genomic Sciences, GSK Pharma R&D, Stevenage, Hertfordshire, United Kingdom
| | - Carlos Cruchaga
- Washington University School of Medicine, NeuroGenomics and Informatics Center, St. Louis, MO, United States of America
| |
Collapse
|
21
|
Sampatakakis SN, Mourtzi N, Charisis S, Mamalaki E, Ntanasi E, Hatzimanolis A, Ramirez A, Lambert JC, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou G, Megalou M, Sakka P, Scarmeas N. Walking time and genetic predisposition for Alzheimer's disease: Results from the HELIAD study. Clin Neuropsychol 2025; 39:83-99. [PMID: 38741352 DOI: 10.1080/13854046.2024.2344869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Objective: Our study aimed to explore whether physical condition might affect the association between genetic predisposition for Alzheimer's Disease (AD) and AD incidence. Methods: The sample of participants consisted of 561 community-dwelling adults over 64 years old, without baseline dementia (508 cognitively normal and 53 with mild cognitive impairment), deriving from the HELIAD, an ongoing longitudinal study with follow-up evaluations every 3 years. Physical condition was assessed at baseline through walking time (WT), while a Polygenic Risk Score for late onset AD (PRS-AD) was used to estimate genetic predisposition. The association between WT and PRS-AD with AD incidence was evaluated with Cox proportional hazard models adjusted for age, sex, education years, global cognition score and APOE ε-4 genotype. Then, the association between WT and AD incidence was investigated after stratifying participants by low and high PRS-AD. Finally, we examined the association between PRS-AD and AD incidence after stratifying participants by WT. Results: Both WT and PRS-AD were connected with increased AD incidence (p < 0.05), after adjustments. In stratified analyses, in the slow WT group participants with a greater genetic risk had a 2.5-fold higher risk of developing AD compared to participants with lower genetic risk (p = 0.047). No association was observed in the fast WT group or when participants were stratified based on PRS-AD. Conclusions: Genetic predisposition for AD is more closely related to AD incidence in the group of older adults with slow WT. Hence, physical condition might be a modifier in the relationship of genetic predisposition with AD incidence.
Collapse
Affiliation(s)
- Stefanos N Sampatakakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Niki Mourtzi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Sokratis Charisis
- Department of Neurology, UT Health San Antonio, San Antonio, TX, USA
| | - Eirini Mamalaki
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alex Hatzimanolis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Aiginition Hospital, Athens, Greece
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jean-Charles Lambert
- U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | | | | | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Marousi, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Gao S, Zhu P, Wang T, Han Z, Xue Y, Zhang Y, Wang L, Zhang H, Chen Y, Liu G. Alzheimer's disease genome-wide association studies in the context of statistical heterogeneity. Mol Psychiatry 2025; 30:342-348. [PMID: 38965422 DOI: 10.1038/s41380-024-02654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Affiliation(s)
- Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Ping Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Tao Wang
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Zhifa Han
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Acadamy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, 100029, Beijing, China
| | - Yanli Xue
- School of Biomedical Engineering, Capital Medical University, 10069, Beijing, China
| | - Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Longcai Wang
- Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Haihua Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Yan Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Wuhu, 241002, Anhui, China
- Institute of Chronic Disease Prevention and Control, Wannan Medical College, No.22, Wenchang Road, Wuhu, 241002, Anhui, China
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China.
- Chinese Institute for Brain Research, 102206, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Wuhu, 241002, Anhui, China.
- Institute of Chronic Disease Prevention and Control, Wannan Medical College, No.22, Wenchang Road, Wuhu, 241002, Anhui, China.
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Brain Hospital, Shengli Oilfield Central Hospital, Dongying, 257000, Shandong, China.
| |
Collapse
|
23
|
Duarte RRR, Nixon DF, Powell TR. Ancient viral DNA in the human genome linked to neurodegenerative diseases. Brain Behav Immun 2025; 123:765-770. [PMID: 39401554 PMCID: PMC11870845 DOI: 10.1016/j.bbi.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) are sequences in the human genome that originated from infections with ancient retroviruses during our evolution. Previous studies have linked HERVs to neurodegenerative diseases, but defining their role in aetiology has been challenging. Here, we used a retrotranscriptome-wide association study (rTWAS) approach to assess the relationships between genetic risk for neurodegenerative diseases and HERV expression in the brain, calculated with genomic precision. METHODS We analysed genetic association statistics pertaining to Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Parkinson's disease, using HERV expression models calculated from 792 cortical samples. Robust risk factors were considered those that survived multiple testing correction in the primary analysis, which were also significant in conditional and joint analyses, and that had a posterior inclusion probability above 0.5 in fine-mapping analyses. RESULTS The primary analysis identified 12 HERV expression signatures associated with neurodegenerative disease susceptibility. We found one HERV expression signature robustly associated with amyotrophic lateral sclerosis on chromosome 12q14 (MER61_12q14.2) and one robustly associated with multiple sclerosis on chromosome 1p36 (ERVLE_1p36.32a). A co-expression analysis suggested that these HERVs are involved in homophilic cell adhesion via plasma membrane adhesion molecules. CONCLUSIONS We found HERV expression profiles robustly associated with amyotrophic lateral sclerosis and multiple sclerosis susceptibility, highlighting novel risk mechanisms underlying neurodegenerative disease, and offering potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rodrigo R R Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, the United States of America.
| | - Douglas F Nixon
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, the United States of America
| | - Timothy R Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, the United States of America.
| |
Collapse
|
24
|
Rousset RZ, den Braber A, Verberk IMW, Boonkamp L, Wilson DH, Ligthart L, Teunissen CE, de Geus EJC. Heritability of Alzheimer's disease plasma biomarkers: A nuclear twin family design. Alzheimers Dement 2025; 21:e14269. [PMID: 39588748 PMCID: PMC11775461 DOI: 10.1002/alz.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a highly heritable disease (60%-80%). Amyloid beta (Aβ) 42/40, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) are plasma biomarkers for AD. Clinical biomarker research would be served by an understanding of the sources of variance in these markers. METHODS Blood concentrations of Aβ42/40, NfL, and GFAP of twins and their families (monozygotic twins: 1574, dizygotic twins: 1266, other: 3657) were analyzed on the Simoa HD-X. Twin-family models were used to estimate proportional genetic contributions to the variance in biomarker levels. RESULTS Heritability estimates were 16% for Aβ42/40, 42% for NfL, and 60% for GFAP. NfL and GFAP were significantly correlated with each other (0.37) but not with Aβ42/40. DISCUSSION The heritability of Aβ42/40 (16%) is lower than the heritability of AD, suggesting strong environmental influences on this biomarker. The lack of correlation between NfL/GFAP and Aβ42/40 indicates these markers may be on different biological pathways. HIGHLIGHTS Heritability is found for glial fibrillary acidic protein (60%), neurofilament light chain (42%), and amyloid beta (Aβ) 42/40 (16%) plasma levels. Aβ42/40 plasma levels are sensitive to person-specific environmental influences.
Collapse
Affiliation(s)
- Rebecca Z. Rousset
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Anouk den Braber
- Alzheimer CenterDepartment of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Inge M. W. Verberk
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Lynn Boonkamp
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | | | - Lannie Ligthart
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Eco J. C. de Geus
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
25
|
Roe JM, Vidal-Piñeiro D, Sørensen Ø, Grydeland H, Leonardsen EH, Iakunchykova O, Pan M, Mowinckel A, Strømstad M, Nawijn L, Milaneschi Y, Andersson M, Pudas S, Bråthen ACS, Kransberg J, Falch ES, Øverbye K, Kievit RA, Ebmeier KP, Lindenberger U, Ghisletta P, Demnitz N, Boraxbekk CJ, Drevon CA, Penninx B, Bertram L, Nyberg L, Walhovd KB, Fjell AM, Wang Y. Brain change trajectories in healthy adults correlate with Alzheimer's related genetic variation and memory decline across life. Nat Commun 2024; 15:10651. [PMID: 39690174 DOI: 10.1038/s41467-024-53548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/16/2024] [Indexed: 12/19/2024] Open
Abstract
Throughout adulthood and ageing our brains undergo structural loss in an average pattern resembling faster atrophy in Alzheimer's disease (AD). Using a longitudinal adult lifespan sample (aged 30-89; 2-7 timepoints) and four polygenic scores for AD, we show that change in AD-sensitive brain features correlates with genetic AD-risk and memory decline in healthy adults. We first show genetic risk links with more brain loss than expected for age in early Braak regions, and find this extends beyond APOE genotype. Next, we run machine learning on AD-control data from the Alzheimer's Disease Neuroimaging Initiative using brain change trajectories conditioned on age, to identify AD-sensitive features and model their change in healthy adults. Genetic AD-risk linked with multivariate change across many AD-sensitive features, and we show most individuals over age ~50 are on an accelerated trajectory of brain loss in AD-sensitive regions. Finally, high genetic risk adults with elevated brain change showed more memory decline through adulthood, compared to high genetic risk adults with less brain change. Our findings suggest quantitative AD risk factors are detectable in healthy individuals, via a shared pattern of ageing- and AD-related neurodegeneration that occurs along a continuum and tracks memory decline through adulthood.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway.
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Esten H Leonardsen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olena Iakunchykova
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Athanasia Mowinckel
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura Nawijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Micael Andersson
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Sara Pudas
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anne Cecilie Sjøli Bråthen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Jonas Kransberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie Sogn Falch
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Knut Øverbye
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Klaus P Ebmeier
- Department of Psychiatry and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Naiara Demnitz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Carl-Johan Boraxbekk
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Sciences, Diagnostic Radiology, and Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo Science Park, Oslo, Norway
| | - Brenda Penninx
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Jo T, Bice P, Nho K, Saykin AJ. LD-informed deep learning for Alzheimer's gene loci detection using WGS data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24313993. [PMID: 39371140 PMCID: PMC11451815 DOI: 10.1101/2024.09.19.24313993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
INTRODUCTION The exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-stage deep learning framework that incorporates biological knowledge into its AI architecture to identify genetic regions as significantly associated with Alzheimer's disease (AD). The framework employs a three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, thereby identifying genetic factors contributing to AD risk. METHODS The Deep-Block was applied to a large-scale whole genome sequencing (WGS) dataset from the Alzheimer's Disease Sequencing Project (ADSP), comprising 7,416 non-Hispanic white participants (3,150 cognitively normal older adults (CN), 4,266 AD). RESULTS 30,218 LD blocks were identified and then ranked based on their relevance with Alzheimer's disease. Subsequently, the Deep-Block identified novel SNPs within the top 1,500 LD blocks and confirmed previously known variants, including APOE rs429358 and rs769449. Expression Quantitative Trait Loci (eQTL) analysis across 13 brain regions provided functional evidence for the identified variants. The results were cross-validated against established AD-associated loci from the European Alzheimer's and Dementia Biobank (EADB) and the GWAS catalog. DISCUSSION The Deep-Block framework effectively processes large-scale high throughput sequencing data while preserving SNP interactions during dimensionality reduction, minimizing bias and information loss. The framework's findings are supported by tissue-specific eQTL evidence across brain regions, indicating the functional relevance of the identified variants. Additionally, the Deep-Block approach has identified both known and novel genetic variants, enhancing our understanding of the genetic architecture and demonstrating its potential for application in large-scale sequencing studies.
Collapse
Affiliation(s)
- Taeho Jo
- Indiana Alzheimer Disease Research Center and Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paula Bice
- Indiana Alzheimer Disease Research Center and Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kwangsik Nho
- Indiana Alzheimer Disease Research Center and Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J. Saykin
- Indiana Alzheimer Disease Research Center and Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
27
|
Jun S, Alderson TH, Malone SM, Harper J, Hunt RH, Thomas KM, Iacono WG, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. Netw Neurosci 2024; 8:1065-1088. [PMID: 39735507 PMCID: PMC11674403 DOI: 10.1162/netn_a_00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
28
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2024:10.1038/s41577-024-01104-7. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
29
|
Kuzma A, Valladares O, Greenfest-Allen E, Nicaretta H, Kirsch M, Ren Y, Katanic Z, White H, Wilk A, Bass L, Brettschneider J, Carter L, Cifello J, Chuang WH, Clark K, Gangadharan P, Haut J, Ho PC, Horng W, Iqbal T, Jin Y, Keskinen P, Rose AL, Moon MK, Manuel J, Qu L, Robbins F, Saravanan N, Sha J, Tate S, Zhao Y, Cantwell L, Gardner J, Chou SY, Tzeng JY, Bush W, Naj A, Kuksa P, Lee WP, Leung YY, Schellenberg G, Wang LS. NIAGADS: A Comprehensive National Data Repository for Alzheimer's Disease and Related Dementia Genetics and Genomics Research. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24315029. [PMID: 39417134 PMCID: PMC11483014 DOI: 10.1101/2024.10.07.24315029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
NIAGADS is the National Institute on Aging (NIA) designated national data repository for human genetics research on Alzheimer's Disease and related dementia (ADRD). NIAGADS maintains a high-quality data collection for ADRD genetic/genomic research and supports genetics data production and analysis. NIAGADS hosts whole genome and exome sequence data from the Alzheimer's Disease Sequencing Project (ADSP) and other genotype/phenotype data, encompassing 209,000 samples. NIAGADS shares these data with hundreds of research groups around the world via the Data Sharing Service, a FISMA moderate compliant cloud-based platform that fully supports the NIH Genome Data Sharing Policy. NIAGADS Open Access consists of multiple knowledge bases with genome-wide association summary statistics and rich annotations on the biological significance of genetic variants and genes across the human genome. NIAGADS stands as a keystone in promoting collaborations to advance the understanding and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Amanda Kuzma
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily Greenfest-Allen
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Heather Nicaretta
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Maureen Kirsch
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Youli Ren
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zivadin Katanic
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Heather White
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Wilk
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Bass
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jascha Brettschneider
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Luke Carter
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Cifello
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wei-Hsuan Chuang
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kaylyn Clark
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Prabhakaran Gangadharan
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jacob Haut
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pei-Chuan Ho
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenhwai Horng
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taha Iqbal
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yumi Jin
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter Keskinen
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexis Lerro Rose
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michelle K Moon
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph Manuel
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liming Qu
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Flawless Robbins
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Naveensri Saravanan
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jin Sha
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sam Tate
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Zhao
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura Cantwell
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jake Gardner
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin-Yi Chou
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Economics, Lehigh University, Bethlehem, PA, United States
- National Bureau of Economic Research, Cambridge, MA, United States
| | - Jung-Ying Tzeng
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Bioinformatics Research Center, North Carolina State University, NC, USA
- Department of Statistics, North Carolina State University, NC, USA
| | - William Bush
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adam Naj
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pavel Kuksa
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
30
|
Ramirez AM, Bertholim-Nasciben L, Moura S, Coombs LE, Rajabli F, DeRosa BA, Whitehead PG, Adams LD, Starks TD, Mena P, Illannes-Manrique M, Tejada SJ, Byrd GS, Caban-Holt A, Cuccaro M, McInerney K, Cornejo-Olivas M, Feliciano-Astacio B, Wang L, Robayo MC, Xu W, Jin F, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM, Young JI, Vance JM. Ancestral Genomic Functional Differences in Oligodendroglia: Implications for Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-5338140. [PMID: 39678342 PMCID: PMC11643296 DOI: 10.21203/rs.3.rs-5338140/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background This study aims to elucidate ancestry-specific changes to the genomic regulatory architecture in induced pluripotent stem cell (iPSC)-derived oligodendroglia, focusing on their implications for Alzheimer's disease (AD). This work addresses the lack of diversity in previous iPSC studies by including ancestries that contribute to African American (European/African) and Hispanic/Latino populations (Amerindian/African/European). Methods We generated 12 iPSC lines-four African, four Amerindian, and four European- from both AD patients and non-cognitively impaired individuals, with varying APOE genotypes (APOE3/3 and APOE4/4). These lines were differentiated into neural spheroids containing oligodendrocyte lineage cells. Single-nuclei RNA sequencing and ATAC sequencing were employed to analyze transcriptional and chromatin accessibility profiles, respectively. Differential gene expression, chromatin accessibility, and Hi-C analyses were conducted, followed by pathway analysis to interpret the results. Results We identified ancestry-specific differences in gene expression and chromatin accessibility. Notably, numerous AD GWAS-associated genes were differentially expressed across ancestries. The largest number of differentially expressed genes (DEGs) were found in European vs. Amerindian and African vs. Amerindian iPSC-derived oligodendrocyte progenitor cells (OPCs). Pathway analysis of APOE4/4 carriers vs APOE3/3 carriers exhibited upregulation of a large number of disease and metabolic pathways in APOE4/4 individuals of all ancestries. Of particular interest was that APOE4/4 carriers had significantly upregulated cholesterol biosynthesis genes relative to APOE3/3 individuals across all ancestries, strongest in iOPCs. Comparison of iOPC and iOL transcriptome data with corresponding human frontal cortex data demonstrated a high correlation (R2 > 0.85). Conclusions This research emphasizes the importance of including diverse ancestries in AD research to uncover critical gene expression differences between populations and ancestries that may influence disease susceptibility and therapeutic interventions. The upregulation of cholesterol biosynthesis genes in APOE4/4 carriers of all three ancestries supports the concept that APOE4 may produce disease effects early in life, which could have therapeutic implications as we move forward towards specific therapy for APOE4 carriers. These findings and the high correlation between brain and iPSC-derived OPC and OL transcriptomes support the relevance of this approach as a model for disease study.
Collapse
Affiliation(s)
- Aura M Ramirez
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sofia Moura
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Lauren E Coombs
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Farid Rajabli
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Brooke A DeRosa
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Patrice G Whitehead
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Larry D Adams
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Takiyah D Starks
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Pedro Mena
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sergio J Tejada
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Goldie S Byrd
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Allison Caban-Holt
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Michael Cuccaro
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Katalina McInerney
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Mario Cornejo-Olivas
- Universidad Científica del Sur Facultad de Ciencias de la Salud: Universidad Cientifica del Sur Facultad de Ciencias de la Salud
| | | | - Liyong Wang
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Maria C Robayo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Wanying Xu
- Case Western Reserve University School of Medicine
| | - Fulai Jin
- Case Western Reserve University School of Medicine
| | | | - Anthony J Griswold
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Derek M Dykxhoorn
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Juan I Young
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Jeffery M Vance
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
31
|
Fonseca E, Lallana S, Ortega G, Cano A, Sarria-Estrada S, Pareto D, Quintana M, Lorenzo-Bosquet C, López-Maza S, Gifreu A, Campos-Fernández D, Abraira L, Santamarina E, Orellana A, Montrreal L, Puerta R, Aguilera N, Ramis M, de Rojas I, Ruiz A, Tárraga L, Rovira À, Marquié M, Boada M, Toledo M. Amyloid deposition in adults with drug-resistant temporal lobe epilepsy. Epilepsia 2024; 65:3664-3675. [PMID: 39403981 DOI: 10.1111/epi.18142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Pathological amyloid-β (Aβ) accumulation and hyperphosphorylated tau proteins have been described in resected temporal lobe specimens of epilepsy patients. We aimed to determine cerebrospinal fluid (CSF) Aβ1-42 and p181-tau levels and cerebral Aβ deposits on positron emission tomography (Aβ PET) and correlate these findings with cognitive performance in adults with drug-resistant temporal lobe epilepsy (TLE). METHODS In this cross-sectional study, we enrolled individuals with drug-resistant TLE who were 25-55 years old. Each participant underwent 18F-flutemetamol PET, determination of CSF Aβ1-42, p181-tau, and total tau, and a comprehensive neuropsychological assessment. We evaluated normalized standard uptake value ratios (SUVRs) for different brain regions on Aβ PET. RESULTS Thirty patients (mean age = 41.9 ± SD 8.1 years, 57% men) were included. The median disease duration was 9.5 (interquartile range = 4-24) years. Twenty-six patients (87%) had a clinically significant cognitive impairment on neuropsychological evaluation, 18 (69%) of the amnesic type. On Aβ PET, high uptake was observed in both mesial temporal regions (ipsilateral: SUVR z-score = .90, 95% confidence interval [CI] = .60-1.20; contralateral: SUVR z-score = .92, 95% CI = .57-1.27; p < .001), which was higher when compared to SUVR z-scores in all the remaining regions (p < .001) and in the ipsilateral anterior cingulate (SUVR z-score = .27, 95% CI = .04-.49, p = .020). No significant deposition was observed in other regions. Seven patients (23%) had low Aβ1-42 levels, and two (7%) had elevated p181-tau levels in CSF. Higher p181-tau levels correlated with poorer verbal fluency (R = -.427, p = .044). SIGNIFICANCE Our findings reveal a considerable Aβ deposition in mesial temporal regions and ipsilateral anterior cingulate among adults with drug-resistant TLE. Additionally, abnormal CSF Aβ1-42 levels were observed in a significant proportion of patients, and p181-tau levels were associated with verbal fluency. These results suggest that markers of neuronal damage can be observed in adults with TLE, warranting further investigation.
Collapse
Affiliation(s)
- Elena Fonseca
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Sofía Lallana
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Gemma Ortega
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvana Sarria-Estrada
- Neuroradiology Section, Radiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Deborah Pareto
- Neuroradiology Section, Radiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel Quintana
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Carles Lorenzo-Bosquet
- Nuclear Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Samuel López-Maza
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Ariadna Gifreu
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Daniel Campos-Fernández
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Laura Abraira
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Estevo Santamarina
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Núria Aguilera
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maribel Ramis
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Lluis Tárraga
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Àlex Rovira
- Neuroradiology Section, Radiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Toledo
- Epilepsy Unit, Neurology Department, Medicine Department, Universitat Autònoma de Barcelona, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Research Group on Status Epilepticus and Acute Seizures, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Hospital Campus, Barcelona, Spain
| |
Collapse
|
32
|
Bunney TD, Kampyli C, Gregory A, Katan M. Characterisation of molecular mechanisms for PLCγ2 disease-linked variants. Adv Biol Regul 2024; 94:101053. [PMID: 39313402 DOI: 10.1016/j.jbior.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The phospholipase C enzyme PLCγ2 is best characterised in the context of immune cell regulation. Furthermore, many mutations discovered in PLCγ2 have been linked to the development of complex immune disorders as well as resistance to ibrutinib treatment in chronic lymphocytic leukaemia. Importantly, it has also been found that a rare variant of PLCγ2 (P522R) has a protective role in Alzheimer's disease (AD). Despite initial characterisation of these disease-linked variants, a comprehensive understanding of their differences and underpinning molecular mechanisms, needed to facilitate therapeutic efforts, is lacking. Here, we used available structural insights for PLCγ enzymes to further analyse PLCγ2 M1141K mutation, representative for mutations in immune disorders and cancer resistance, and the AD-protective variant, PLCγ2 P522R. Together with several other mutations in the autoinhibitory interface, the PLCγ2 M1141K mutation was strongly activating in a cell-based assay, under basal and stimulated conditions. Measurements of PLC activity in various in vitro assays demonstrated enhanced activity of PLCγ2 M1141K while the activity of PLCγ2 P522R was not significantly different from the WT. Similar trends were observed in several other assays, including direct liposome binding. However, an enhanced rate of phosphorylation of a functionally important tyrosine by Btk in vitro was observed for PLCγ2 P522R variants. To further assess implications of these in vitro findings in a cellular context relevant for the PLCγ2 P522R variant, microglia (BV2) stable cell lines were generated and analysed under growth conditions. The PLC activity in cells expressing PLCγ2 P522R at physiologically relevant levels was clearly enhanced compared to the WT, and differences in cell morphology observed. These data, combined with the structural insights, suggest that the PLCγ2 P522R variant has subtle, localised structural changes that do not directly affect the PLC activity by compromising autoinhibition, as determined for PLCγ2 M1141K. It is also likely that in contrast to the PLCγ2 M1141K, the functional impact of the P522R substitution completely depends on further interactions with upstream kinases and other regulatory proteins in a relevant cellular context, where changes in the PLCγ2 P522R variant could facilitate processes such as phosphorylation and protein-protein interactions.
Collapse
Affiliation(s)
- Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Charis Kampyli
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Ashley Gregory
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
33
|
Seifar F, Fox EJ, Shantaraman A, Liu Y, Dammer EB, Modeste E, Duong DM, Yin L, Trautwig AN, Guo Q, Xu K, Ping L, Reddy JS, Allen M, Quicksall Z, Heath L, Scanlan J, Wang E, Wang M, Linden AV, Poehlman W, Chen X, Baheti S, Ho C, Nguyen T, Yepez G, Mitchell AO, Oatman SR, Wang X, Carrasquillo MM, Runnels A, Beach T, Serrano GE, Dickson DW, Lee EB, Golde TE, Prokop S, Barnes LL, Zhang B, Haroutunian V, Gearing M, Lah JJ, De Jager P, Bennett DA, Greenwood A, Ertekin‐Taner N, Levey AI, Wingo A, Wingo T, Seyfried NT. Large-scale deep proteomic analysis in Alzheimer's disease brain regions across race and ethnicity. Alzheimers Dement 2024; 20:8878-8897. [PMID: 39535480 PMCID: PMC11667503 DOI: 10.1002/alz.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within non-Hispanic White (NHW) populations. Here we provide an extensive survey of the proteomic landscape of AD across diverse racial/ethnic groups. METHODS Two cortical regions, from multiple centers, were harmonized by uniform neuropathological diagnosis. Among 998 unique donors, 273 donors self-identified as African American, 229 as Latino American, and 434 as NHW. RESULTS While amyloid precursor protein and the microtubule-associated protein tau demonstrated higher abundance in AD brains, no significant race-related differences were observed. Further proteome-wide and focused analyses (specific amyloid beta [Aβ] species and the tau domains) supported the absence of racial differences in these AD pathologies within the brain proteome. DISCUSSION Our findings indicate that the racial differences in AD risk and clinical presentation are not underpinned by dramatically divergent patterns in the brain proteome, suggesting that other determinants account for these clinical disparities. HIGHLIGHTS We present a large-scale proteome (∼10,000 proteins) of DLPFC (998) and STG (244) across AD cases. About 50% of samples were from racially and ethnically diverse brain donors. Key AD proteins (amyloid and tau) correlated with CERAD and Braak stages. No significant race-related differences in amyloid and tau protein levels were observed in AD brains. AD-associated protein changes showed a strong correlation between the brain proteomes of African American and White individuals. This dataset advances understanding of ethnoracial-specific AD pathways and potential therapies.
Collapse
|
34
|
Morató X, Puerta R, Cano A, Orellana A, de Rojas I, Capdevila M, Montrreal L, Rosende-Roca M, García-González P, Olivé C, García-Gutiérrez F, Blázquez J, Miguel A, Núñez-Llaves R, Pytel V, Alegret M, Fernández MV, Marquié M, Valero S, Cavazos JE, Mañes S, Boada M, Cabrera-Socorro A, Ruiz A. Associations of plasma SMOC1 and soluble IL6RA levels with the progression from mild cognitive impairment to dementia. Brain Behav Immun Health 2024; 42:100899. [PMID: 39640195 PMCID: PMC11617377 DOI: 10.1016/j.bbih.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/12/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
Despite the central role attributed to neuroinflammation in the etiology and pathobiology of Alzheimer's disease (AD), the direct link between levels of inflammatory mediators in blood and cerebrospinal fluid (CSF) compartments, as well as their potential implications for AD diagnosis and progression, remains inconclusive. Moreover, there is debate on whether inflammation has a protective or detrimental effect on disease onset and progression. Indeed, distinct immunological mechanisms may govern protective and damaging effects at early and late stages, respectively. This study aims to (i) identify inflammatory mediators demonstrating robust correlations between peripheral and central nervous system (CNS) compartments by means of plasma and CSF analysis, respectively, and (ii) assess their potential significance in the context of AD and disease progression from mild cognitive impairment (MCI) to dementia. To achieve this, we have examined the inflammatory profile of a well-defined subcohort comprising 485 individuals from the Ace Alzheimer Center Barcelona (ACE). Employing a hierarchical clustering approach, we thoroughly evaluated the intercompartmental correlations of 63 distinct inflammation mediators, quantified in paired CSF and plasma samples, using advanced SOMAscan technology. Of the array of mediators investigated, only six mediators (CRP, IL1RAP, ILRL1, IL6RA, PDGFRB, and YKL-40) exhibited robust correlations between the central and peripheral compartments (proximity scores <400). To strengthen the validity of our findings, these identified mediators were subsequently validated in a second subcohort of individuals from ACE (n = 873). The observed plasma correlations across the entire cohort consistently have a Spearman rho value above 0.51 (n = 1,360, p < 1.77E-93). Of the high CSF-plasma correlated proteins, only soluble IL6RA (sIL6RA) displayed a statistically significant association with the conversion from MCI to dementia. This association remained robust even after applying a stringent Bonferroni correction (Cox proportional hazard ratio [HR] = 1.936 per standard deviation; p = 0.0018). This association retained its significance when accounting for various factors, including CSF amyloid (Aβ42) and Thr181-phosphorylated tau (p-tau) levels, age, sex, baseline Mini-Mental State Examination (MMSE) score, and potential sampling biases identified through principal component analysis (PCA) modeling. Furthermore, our study confirmed the association of both plasma and CSF levels of SPARC-related modular calcium-binding protein 1 (SMOC1) with amyloid and tau accumulation, indicating their role as early surrogate biomarkers for AD pathology. Despite the lack of a statistically significant correlation between SMOC1 levels in CSF and plasma, both acted as independent biomarkers of disease progression (HR > 1.3, p < 0.002). In conclusion, our study unveils that sIL6RA and SMOC1 are associated with MCI progression. The absence of correlations among inflammatory mediators between the central and peripheral compartments appears to be a common pattern, with only a few intriguing exceptions.
Collapse
Affiliation(s)
- Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Universitat de Barcelona (UB), Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - María Capdevila
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maitée Rosende-Roca
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Claudia Olivé
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Josep Blázquez
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Andrea Miguel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raúl Núñez-Llaves
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Marta Marquié
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Enrique Cavazos
- South Texas Medical Science Training Program, University of Texas Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agustín Ruiz
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
35
|
Moore A, Ritchie MD. Is the Relationship Between Cardiovascular Disease and Alzheimer's Disease Genetic? A Scoping Review. Genes (Basel) 2024; 15:1509. [PMID: 39766777 PMCID: PMC11675426 DOI: 10.3390/genes15121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cardiovascular disease (CVD) and Alzheimer's disease (AD) are two diseases highly prevalent in the aging population and often co-occur. The exact relationship between the two diseases is uncertain, though epidemiological studies have demonstrated that CVDs appear to increase the risk of AD and vice versa. This scoping review aims to examine the current identified overlapping genetics between CVDs and AD at the individual gene level and at the shared pathway level. METHODS Following PRISMA-ScR guidelines for a scoping review, we searched the PubMed and Scopus databases from 1990 to October 2024 for articles that involved (1) CVDs, (2) AD, and (3) used statistical methods to parse genetic relationships. RESULTS Our search yielded 2918 articles, of which 274 articles passed screening and were organized into two main sections: (1) evidence of shared genetic risk; and (2) shared mechanisms. The genes APOE, PSEN1, and PSEN2 reportedly have wide effects across the AD and CVD spectrum, affecting both cardiac and brain tissues. Mechanistically, changes in three main pathways (lipid metabolism, blood pressure regulation, and the breakdown of the blood-brain barrier (BBB)) contribute to subclinical and etiological changes that promote both AD and CVD progression. However, genetic studies continue to be limited by the availability of longitudinal data and lack of cohorts that are representative of diverse populations. CONCLUSIONS Highly penetrant familial genes simultaneously increase the risk of CVDs and AD. However, in most cases, sets of dysregulated genes within larger-scale mechanisms, like changes in lipid metabolism, blood pressure regulation, and BBB breakdown, increase the risk of both AD and CVDs and contribute to disease progression.
Collapse
Affiliation(s)
- Anni Moore
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Informatics, Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Bissar N, Kassir R, Salami A, El Shamieh S. Association of immunity-related gene SNPs with Alzheimer's disease. Exp Biol Med (Maywood) 2024; 249:10303. [PMID: 39651329 PMCID: PMC11620869 DOI: 10.3389/ebm.2024.10303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive cognitive decline. Genetic factors have been implicated in disease susceptibility as its etiology remains multifactorial. The CD33 and the HLA-DRB1 genes, involved in immune responses, have emerged as potential candidates influencing AD risk. In this study, 644 Lebanese individuals, including 127 AD patients and 250 controls, were genotyped, by KASP assay, for six SNPs selected from the largest GWAS study in 2021. Logistic regression analysis assessed the association between SNP genotypes and AD risk, adjusting for potential confounders. Among the six SNPs analyzed, rs1846190G>A in HLA-DRB1 and rs1354106T>G in CD33 showed significant associations with AD risk in the Lebanese population (p < 0.05). Carriers of the AG and AA genotypes of rs1846190 in HLA-DRB1 exhibited a protective effect against AD (AG: OR = 0.042, p = 0.026; AA: OR = 0.052, p = 0.031). The GT genotype of rs1354106T>G in CD33 was also associated with reduced risk (OR = 0.173, p = 0.005). Following Bonferroni correction, a significant correlation of rs1354106T > G with AD risk was established. Our results might highlight the complex interplay between genetic and immunological factors contributing to the development of the disease.
Collapse
Affiliation(s)
- Nisrine Bissar
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Rayan Kassir
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Ali Salami
- Faculty of Sciences (V), Lebanese University, Nabatieh, Lebanon
| | - Said El Shamieh
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
37
|
Beer S, Elmenhorst D, Bischof GN, Ramirez A, Bauer A, Drzezga A. Explainable artificial intelligence identifies an AQP4 polymorphism-based risk score associated with brain amyloid burden. Neurobiol Aging 2024; 143:19-29. [PMID: 39208715 DOI: 10.1016/j.neurobiolaging.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Aquaporin-4 (AQP4) is hypothesized to be a component of the glymphatic system, a pathway for removing brain interstitial solutes like amyloid-β (Aβ). Evidence exists that genetic variation of AQP4 impacts Aβ clearance, clinical outcome in Alzheimer's disease as well as sleep measures. We examined whether a risk score calculated from several AQP4 single-nucleotide polymorphisms (SNPs) is related to Aβ neuropathology in older cognitively unimpaired white individuals. We used a machine learning approach and explainable artificial intelligence to extract information on synergistic effects of AQP4 SNPs on brain amyloid burden from the ADNI cohort. From this information, we formulated a sex-specific AQP4 SNP-based risk score and evaluated it using data from the screening process of the A4 study. We found in both cohorts significant associations of the risk score with brain amyloid burden. The results support the hypothesis of an involvement of the glymphatic system, and particularly AQP4, in brain amyloid aggregation pathology. They suggest also that different AQP4 SNPs exert a synergistic effect on the build-up of brain amyloid burden.
Collapse
Affiliation(s)
- Simone Beer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Germany.
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Germany; Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Gerard N Bischof
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Germany; Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany; Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Germany
| | - Alexander Drzezga
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Germany; Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| |
Collapse
|
38
|
Fan X, Chen H, He W, Zhang J. Emerging microglial biology highlights potential therapeutic targets for Alzheimer's disease. Ageing Res Rev 2024; 101:102471. [PMID: 39218078 DOI: 10.1016/j.arr.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease is a chronic degenerative disease of the central nervous system, which primarily affects elderly people and accounts for 70-80 % of dementia cases. The current prevailing amyloid cascade hypothesis suggests that Alzheimer's disease begins with the deposition of amyloid β (Aβ) in the brain. Major therapeutic strategies target Aβ production, aggregation, and clearance, although many clinical trials have shown that these therapeutic strategies are not sufficient to completely improve cognitive deficits in AD patients. Recent genome-wide association studies have identified that multiple important regulators are the most significant genetic risk factors for Alzheimer's disease, especially in the innate immune pathways. These genetic risk factors suggest a critical role for microglia, highlighting their therapeutic potential in treating neurodegenerative diseases. In this review, we discuss how these recently documented AD risk genes affect microglial function and AD pathology and how they can be further targeted to regulate microglial states and slow AD progression, especially the highly anticipated APOE and TREM2 targets. We focused on recent findings that modulation of innate and adaptive neuroimmune microenvironment crosstalk reverses cognitive deficits in AD patients. We also considered novel strategies for microglia in AD patients.
Collapse
Affiliation(s)
- Xi Fan
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Chen
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China.
| | - Wei He
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China.
| | - Jianmin Zhang
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
39
|
Shen Y, Timsina J, Heo G, Beric A, Ali M, Wang C, Yang C, Wang Y, Western D, Liu M, Gorijala P, Budde J, Do A, Liu H, Gordon B, Llibre-Guerra JJ, Joseph-Mathurin N, Perrin RJ, Maschi D, Wyss-Coray T, Pastor P, Renton AE, Surace EI, Johnson ECB, Levey AI, Alvarez I, Levin J, Ringman JM, Allegri RF, Seyfried N, Day GS, Wu Q, Fernández MV, Tarawneh R, McDade E, Morris JC, Bateman RJ, Goate A, Ibanez L, Sung YJ, Cruchaga C. CSF proteomics identifies early changes in autosomal dominant Alzheimer's disease. Cell 2024; 187:6309-6326.e15. [PMID: 39332414 PMCID: PMC11531390 DOI: 10.1016/j.cell.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and employed machine learning to develop and validate predictive models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, including eight that changed before traditional AD biomarkers. These proteins are grouped into three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, cell communication). The predictive model revealed a six-protein subset that more effectively differentiated MCs from NCs, compared with conventional biomarkers.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Gyujin Heo
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Yueyao Wang
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Daniel Western
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Anh Do
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Gordon
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jorge J Llibre-Guerra
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University St Louis, St Louis, MO 63110, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Dario Maschi
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona 08916, Spain
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ezequiel I Surace
- Laboratory of Neurodegenerative Diseases, Institute of Neurosciences (INEU-Fleni-CONICET), Buenos Aires, Argentina
| | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30307, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Ignacio Alvarez
- Department of Neurology, University Hospital Mútua de Terrassa and Fundació Docència i Recerca Mútua de Terrassa, Terrassa 08221, Barcelona, Spain
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich 80336, Germany; German Center for Neurodegenerative Diseases, site Munich, Munich 80336, Germany
| | - John M Ringman
- Alzheimer's Disease Research Center, Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA 90033, USA
| | - Ricardo Francisco Allegri
- Department of Cognitive Neurology, Neuropsychology and Neuropsychiatry, FLENI, Buenos Aires, Argentina
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Gregg S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL 32224, USA
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Rawan Tarawneh
- The University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
Zhao Z, Gruenloh T, Yan M, Wu Y, Sun Z, Miao J, Wu Y, Song J, Lu Q. Optimizing and benchmarking polygenic risk scores with GWAS summary statistics. Genome Biol 2024; 25:260. [PMID: 39379999 PMCID: PMC11462675 DOI: 10.1186/s13059-024-03400-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Polygenic risk score (PRS) is a major research topic in human genetics. However, a significant gap exists between PRS methodology and applications in practice due to often unavailable individual-level data for various PRS tasks including model fine-tuning, benchmarking, and ensemble learning. RESULTS We introduce an innovative statistical framework to optimize and benchmark PRS models using summary statistics of genome-wide association studies. This framework builds upon our previous work and can fine-tune virtually all existing PRS models while accounting for linkage disequilibrium. In addition, we provide an ensemble learning strategy named PUMAS-ensemble to combine multiple PRS models into an ensemble score without requiring external data for model fitting. Through extensive simulations and analysis of many complex traits in the UK Biobank, we demonstrate that this approach closely approximates gold-standard analytical strategies based on external validation, and substantially outperforms state-of-the-art PRS methods. CONCLUSIONS Our method is a powerful and general modeling technique that can continue to combine the best-performing PRS methods out there through ensemble learning and could become an integral component for all future PRS applications.
Collapse
Affiliation(s)
- Zijie Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Tim Gruenloh
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Meiyi Yan
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yixuan Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongxuan Sun
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuchang Wu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Jie Song
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
41
|
Reus LM, Jansen IE, Tijms BM, Visser PJ, Tesi N, van der Lee SJ, Vermunt L, Peeters CFW, De Groot LA, Hok-A-Hin YS, Chen-Plotkin A, Irwin DJ, Hu WT, Meeter LH, van Swieten JC, Holstege H, Hulsman M, Lemstra AW, Pijnenburg YAL, van der Flier WM, Teunissen CE, del Campo Milan M. Connecting dementia risk loci to the CSF proteome identifies pathophysiological leads for dementia. Brain 2024; 147:3522-3533. [PMID: 38527854 PMCID: PMC11449142 DOI: 10.1093/brain/awae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Genome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins [proximity extension-based (PEA) immunoassays] in a deeply-phenotyped mixed memory clinic cohort [n = 502, mean age (standard deviation, SD) = 64.1 (8.7) years, 181 female (35.4%)], including patients with Alzheimer's disease (AD, n = 213), dementia with Lewy bodies (DLB, n = 50) and frontotemporal dementia (FTD, n = 93), and controls (n = 146). Validation was assessed in independent cohorts (n = 99 PEA platform, n = 198, mass reaction monitoring-targeted mass spectroscopy and multiplex assay). We performed additional analyses stratified according to diagnostic status (AD, DLB, FTD and controls separately), to explore whether associations between CSF proteins and genetic variants were specific to disease or not. We identified four AD risk loci as protein quantitative trait loci (pQTL): CR1-CR2 (rs3818361, P = 1.65 × 10-8), ZCWPW1-PILRB (rs1476679, P = 2.73 × 10-32), CTSH-CTSH (rs3784539, P = 2.88 × 10-24) and HESX1-RETN (rs186108507, P = 8.39 × 10-8), of which the first three pQTLs showed direct replication in the independent cohorts. We identified one AD-specific association between a rare genetic variant of TREM2 and CSF IL6 levels (rs75932628, P = 3.90 × 10-7). DLB risk locus GBA showed positive trans effects on seven inter-related CSF levels in DLB patients only. No pQTLs were identified for FTD loci, either for the total sample as for analyses performed within FTD only. Protein QTL variants were involved in the immune system, highlighting the importance of this system in the pathophysiology of dementia. We further identified pQTLs in stratified analyses for AD and DLB, hinting at disease-specific pQTLs in dementia. Dissecting the contribution of risk loci to neurobiological processes aids in understanding disease mechanisms underlying dementia.
Collapse
Affiliation(s)
- Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA 90095 CA, USA
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Psychiatry, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Niccoló Tesi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Lisa Vermunt
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical and Statistical Methods group (Biometris), Wageningen University and Research, Wageningen, 6708 PB Wageningen, The Netherlands
| | - Lisa A De Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Rutgers-RWJ Medical School, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, New Brunswick, NJ 08901, USA
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Marta del Campo Milan
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, 28003 Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, 08005 Barcelona, Spain
| |
Collapse
|
42
|
Lv X, Zhao Q, Liu Q, Ji Q, Huang X, Zhou L, Hu Z, Liu M, Zhan Y. Serum Fatty Acid Profiles and Neurofilament Light Chain Levels in the General Population. J Nutr 2024; 154:3070-3078. [PMID: 39004226 DOI: 10.1016/j.tjnut.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated associations between fatty acids and neurological disorders. However, no studies have examined the relationship between serum fatty acid levels and serum neurofilament light chain (NfL), a biomarker of neurological disorders. OBJECTIVES This study aimed to comprehensively investigate the intricate relationship between 30 serum fatty acids and serum NfL levels in a nationally representative sample of United States adults, using data from the 2013-2014 National Health and Nutrition Examination Survey. METHODS Using a cross-sectional analysis, multivariable linear regression models were used to explore the associations between 30 serum fatty acids and serum NfL levels. This analysis involved adjustment for potential confounding variables, including age, sex, race, body mass index (BMI), smoking status, hyperlipidemia, and diabetes, to clarify the association between serum fatty acids and serum NfL levels. RESULTS The analysis revealed that certain fatty acids exhibited distinct associations with serum NfL levels. Notably, docosanoic acid (22:0) and tricosanoic acid (C23:0) were found to be inversely associated with serum NfL levels (β = -0.280, 95% confidence interval [CI]: -0.525, -0.035; β = -0.292, 95% CI: -0.511, -0.072). Conversely, palmitoleic acid (16:1n-7) demonstrated a positive association with serum NfL levels (β = 0.125, 95% CI: 0.027, 0.222). Notably, these associations remained significant even after adjustment for potential confounders. CONCLUSIONS Individuals with high relative concentrations of certain SFA exhibited decreased serum NfL, whereas those with high relative concentrations of certain monounsaturated fatty acids showed increased serum NfL. These findings contribute to a deeper understanding of the potential impact of serum fatty acids on NfL levels, shedding light on novel avenues for further investigation and potential interventions in the context of neurological health.
Collapse
Affiliation(s)
- Xiaogang Lv
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qingya Zhao
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qi Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaoping Huang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Liqiong Zhou
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhao Hu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Miao Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
43
|
Cano A, Capdevila M, Puerta R, Arranz J, Montrreal L, de Rojas I, García-González P, Olivé C, García-Gutiérrez F, Sotolongo-Grau O, Orellana A, Aguilera N, Ramis M, Rosende-Roca M, Lleó A, Fortea J, Tartari JP, Lafuente A, Vargas L, Pérez-Cordón A, Muñoz N, Sanabria Á, Alegret M, Morató X, Tárraga L, Fernández V, Marquié M, Valero S, Alcolea D, Boada M, Ruiz A. Clinical value of plasma pTau181 to predict Alzheimer's disease pathology in a large real-world cohort of a memory clinic. EBioMedicine 2024; 108:105345. [PMID: 39299003 PMCID: PMC11424964 DOI: 10.1016/j.ebiom.2024.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The identification of patients with an elevated risk of developing Alzheimer's disease (AD) dementia and eligible for the disease-modifying treatments (DMTs) in the earliest stages is one of the greatest challenges in the clinical practice. Plasma biomarkers has the potential to predict these issues, but further research is still needed to translate them to clinical practice. Here we evaluated the clinical applicability of plasma pTau181 as a predictive marker of AD pathology in a large real-world cohort of a memory clinic. METHODS Three independent cohorts (modelling [n = 991, 59.7% female], testing [n = 642, 56.2% female] and validation [n = 441, 55.1% female]) of real-world patients with subjective cognitive decline (SCD), mild cognitive impairment (MCI), AD dementia, and other dementias were included. Paired cerebrospinal fluid (CSF) and plasma samples were used to measure AT(N) CSF biomarkers and plasma pTau181. FINDINGS CSF and plasma pTau181 showed correlation in all phenotypes except in SCD and other dementias. Age significantly influenced the biomarker's performance. The general Aβ(+) vs Aβ(-) ROC curve showed an AUC = 0.77 [0.74-0.80], whereas the specific ROC curve of MCI due to AD vs non-AD MCI showed an AUC = 0.89 [0.85-0.93]. A cut-off value of 1.30 pg/ml of plasma pTau181 exhibited a sensitivity of 93.57% [88.72-96.52], specificity of 72.38% [62.51-79.01], VPP of 77.85% [70.61-83.54], and 8.30% false negatives in the subjects with MCI of the testing cohort. The HR of cox regression showed that patients with MCI up to this cut-off value exhibited a HR = 1.84 [1.05-3.22] higher risk to convert to AD dementia than patients with MCI below the cut-off value. INTERPRETATION Plasma pTau181 has the potential to be used in the memory clinics as a screening biomarker of AD pathology in subjects with MCI, presenting a valuable prognostic utility in predicting the MCI conversion to AD dementia. In the context of a real-world population, a confirmatory test employing gold-standard procedures is still advisable. FUNDING This study has been mainly funded by Ace Alzheimer Center Barcelona, Instituto de Salud Carlos III (ISCIII), Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science and Innovation, Fundación ADEY, Fundación Echevarne and Grífols S.A.
Collapse
Affiliation(s)
- Amanda Cano
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - María Capdevila
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Claudia Olivé
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | | | - Oscar Sotolongo-Grau
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nuria Aguilera
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Maribel Ramis
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Maitee Rosende-Roca
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Juan Pablo Tartari
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Asunción Lafuente
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Liliana Vargas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Nathalia Muñoz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Ángela Sanabria
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Xavier Morató
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Victoria Fernández
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
44
|
Khalili-Moghadam F, Hosseini Nejad J, Badri T, Sadeghi M, Gharechahi J. Association of MME gene polymorphisms with susceptibility to Alzheimer's disease in an Iranian population. Heliyon 2024; 10:e37556. [PMID: 39309779 PMCID: PMC11416268 DOI: 10.1016/j.heliyon.2024.e37556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Background the MME gene encodes a membrane metalloendopeptidase, known as neprilysin (NEP). There are no reports on the potential implications of MME gene polymorphisms on the risk of Alzheimer's disease (AD) in the Iranian population. In this study, we studied the potential association of two single nucleotide polymorphisms (SNPs), rs6797911 and rs3736187, in the MME gene and the risk of developing AD in an Iranian population. Methods This case-control study comprised 120 AD-diagnosed patients and 120 healthy individuals without any prior family history of AD. The patient and control groups were matched for major demographic and health characteristics. Genotyping was performed by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Results All patients included in this study were assessed by an experienced neurologist to exclude cases with other forms of dementia based on a brain computed tomography scan and other clinical findings. There were no significant differences in demographic and health characteristics including sex, diabetes, blood pressure, and cigarette smoking status between case and control groups (p > 0.05). However, the age difference appeared significant. Both SNPs were significantly associated with the risk of AD in our study population. The rs3736187 (T > C, 3:155168489) was strongly associated with AD risk under the log-additive model (OR = 1.67, CI = 1.18-2.37, p-value = 0.003). The rs6797911 (T > A, 3:155144601) also showed a significant association with AD risk under the dominant model (TT vs. TA and AA, OR = 3.37, CI = 1.86-6.1, p-value <0.001). Conclusion There is a strong association between MME gene polymorphisms and susceptibility to AD in the Iranian population. Amyloid-β (Aβ) can serve as a substrate for the NEP metalloendopeptidase, the product of the MME gene. However, the mechanistic understanding of how these genetic variations affect NEP expression, function, and consequently susceptibility to AD, is poorly understood. Further research is required to fully understand the exact implication of MME gene variations on AD, particularly in a larger, ethnicity-diverse population.
Collapse
Affiliation(s)
| | - Javad Hosseini Nejad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taleb Badri
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Sadeghi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Vilkaite G, Vogel J, Mattsson-Carlgren N. Integrating amyloid and tau imaging with proteomics and genomics in Alzheimer's disease. Cell Rep Med 2024; 5:101735. [PMID: 39293391 PMCID: PMC11525023 DOI: 10.1016/j.xcrm.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of β-amyloid (Aβ) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aβ bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aβ and tau in AD. Developments of high-throughput omics, including genomics, proteomics, and transcriptomics, together with molecular imaging of Aβ and tau with positron emission tomography (PET), allow us to discover and understand the biological pathways that regulate the aggregation and spread of Aβ and tau in living humans. The field of integrated omics and PET studies of Aβ and tau in AD is growing rapidly. We here provide an update of this field, both in terms of biological insights and in terms of future clinical implications of integrated omics-molecular imaging studies.
Collapse
Affiliation(s)
- Gabriele Vilkaite
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Jacob Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
46
|
Jensen AMG, Raska J, Fojtik P, Monti G, Lunding M, Bartova S, Pospisilova V, van der Lee SJ, Van Dongen J, Bossaerts L, Van Broeckhoven C, Dols-Icardo O, Lléo A, Bellini S, Ghidoni R, Hulsman M, Petsko GA, Sleegers K, Bohaciakova D, Holstege H, Andersen OM. The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2408262121. [PMID: 39226352 PMCID: PMC11406263 DOI: 10.1073/pnas.2408262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.
Collapse
Affiliation(s)
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s Faculty Hospital Brno60200, Brno, Czech Republic
| | - Petr Fojtik
- Department of Biomedicine, Aarhus University, Aarhus CDK8000, Denmark
- Department of Histology and Embryology, Faculty of Medicine, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s Faculty Hospital Brno60200, Brno, Czech Republic
| | - Giulia Monti
- Department of Biomedicine, Aarhus University, Aarhus CDK8000, Denmark
| | - Melanie Lunding
- Department of Biomedicine, Aarhus University, Aarhus CDK8000, Denmark
| | - Simona Bartova
- Department of Histology and Embryology, Faculty of Medicine, Brno62500, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Brno62500, Czech Republic
| | - Sven J. van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center1081 HV, Amsterdam, The Netherlands
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer’s Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp2000, Antwerp, Belgium
| | - Liene Bossaerts
- Department of Biomedical Sciences, University of Antwerp2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB2000, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB2000, Antwerp, Belgium
| | - Oriol Dols-Icardo
- Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona08041, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED28029, Madrid, Spain
| | - Alberto Lléo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED28029, Madrid, Spain
- Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau–Hospital de Sant Pau, Universitat Autònoma de Barcelona08025, Barcelona, Spain
| | - Sonia Bellini
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli25125, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli25125, Brescia, Italy
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center1081 HV, Amsterdam, The Netherlands
| | - Gregory A. Petsko
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA02115
| | - Kristel Sleegers
- Complex Genetics of Alzheimer’s Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp2000, Antwerp, Belgium
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s Faculty Hospital Brno60200, Brno, Czech Republic
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center1081 HV, Amsterdam, The Netherlands
| | - Olav M. Andersen
- Department of Biomedicine, Aarhus University, Aarhus CDK8000, Denmark
| |
Collapse
|
47
|
Delvenne A, Gobom J, Schindler SE, Kate MT, Reus LM, Dobricic V, Tijms BM, Benzinger TLS, Cruchaga C, Teunissen CE, Ramakers I, Martinez‐Lage P, Tainta M, Vandenberghe R, Schaeverbeke J, Engelborghs S, Roeck ED, Popp J, Peyratout G, Tsolaki M, Freund‐Levi Y, Lovestone S, Streffer J, Barkhof F, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vos SJB. CSF proteomic profiles of neurodegeneration biomarkers in Alzheimer's disease. Alzheimers Dement 2024; 20:6205-6220. [PMID: 38970402 PMCID: PMC11497678 DOI: 10.1002/alz.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS Individuals without dementia were classified as A+ (CSF amyloid beta [Aβ]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.
Collapse
|
48
|
Chen Q, Aguirre L, Liang G, Zhao H, Dong T, Borrego F, de Rojas I, Hu Q, Reyes C, Su LY, Zhang B, Lechleiter JD, Göring HHH, De Jager PL, Kleinman JE, Hyde TM, Li PP, Ruiz A, Weinberger DR, Seshadri S, Ma L. Identification of a specific APOE transcript and functional elements associated with Alzheimer's disease. Mol Neurodegener 2024; 19:63. [PMID: 39210471 PMCID: PMC11361112 DOI: 10.1186/s13024-024-00751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The APOE gene is the strongest genetic risk factor for late-onset Alzheimer's Disease (LOAD). However, the gene regulatory mechanisms at this locus remain incompletely characterized. METHODS To identify novel AD-linked functional elements within the APOE locus, we integrated SNP variants with multi-omics data from human postmortem brains including 2,179 RNA-seq samples from 3 brain regions and two ancestries (European and African), 667 DNA methylation samples, and ChIP-seq samples. Additionally, we plotted the expression trajectory of APOE transcripts in human brains during development. RESULTS We identified an AD-linked APOE transcript (jxn1.2.2) particularly observed in the dorsolateral prefrontal cortex (DLPFC). The APOE jxn1.2.2 transcript is associated with brain neuropathological features, cognitive impairment, and the presence of the APOE4 allele in DLPFC. We prioritized two independent functional SNPs (rs157580 and rs439401) significantly associated with jxn1.2.2 transcript abundance and DNA methylation levels. These SNPs are located within active chromatin regions and affect brain-related transcription factor-binding affinities. The two SNPs shared effects on the jxn1.2.2 transcript between European and African ethnic groups. CONCLUSION The novel APOE functional elements provide potential therapeutic targets with mechanistic insight into the disease etiology.
Collapse
Affiliation(s)
- Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Luis Aguirre
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Guoming Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Huanhuan Zhao
- Bioinformatics Program, University of Texas at El Paso, El Paso, TX, USA
| | - Tao Dong
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felix Borrego
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Qichan Hu
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Christopher Reyes
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ling-Yan Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bao Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute and Division of Human Genetics, University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pan P Li
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Agustín Ruiz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neurology, Neuroscience, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | - Liang Ma
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
49
|
Fu M, Valiente-Banuet L, Wadhwa SS, Pasaniuc B, Vossel K, Chang TS. Improving genetic risk modeling of dementia from real-world data in underrepresented populations. Commun Biol 2024; 7:1049. [PMID: 39183196 PMCID: PMC11345412 DOI: 10.1038/s42003-024-06742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. We employ an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compare this model with APOE and polygenic risk score models across genetic ancestry groups (Hispanic Latino American sample: 610 patients with 126 cases; African American sample: 440 patients with 84 cases; East Asian American sample: 673 patients with 75 cases), using electronic health records from UCLA Health for discovery and the All of Us cohort for validation. Our model significantly outperforms other models across multiple ancestries, improving the area-under-precision-recall curve by 31-84% (Wilcoxon signed-rank test p-value <0.05) and the area-under-the-receiver-operating characteristic by 11-17% (DeLong test p-value <0.05) compared to the APOE and the polygenic risk score models. We identify shared and ancestry-specific risk genes and biological pathways, reinforcing and adding to existing knowledge. Our study highlights the benefits of integrating functional mapping, multiple neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. Our findings hold potential for refining precision medicine strategies in dementia diagnosis.
Collapse
Affiliation(s)
- Mingzhou Fu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Medical Informatics Home Area, Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Leopoldo Valiente-Banuet
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Satpal S Wadhwa
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bogdan Pasaniuc
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy S Chang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
50
|
Huq A, Thompson B, Winship I. Clinical application of whole genome sequencing in young onset dementia: challenges and opportunities. Expert Rev Mol Diagn 2024; 24:659-675. [PMID: 39135326 DOI: 10.1080/14737159.2024.2388765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024]
Abstract
INTRODUCTION Young onset dementia (YOD) by its nature is difficult to diagnose. Despite involvement of multidisciplinary neurogenetics services, patients with YOD and their families face significant diagnostic delays. Genetic testing for people with YOD currently involves a staggered, iterative approach. There is currently no optimal single genetic investigation that simultaneously identifies the different genetic variants resulting in YOD. AREAS COVERED This review discusses the advances in clinical genomic testing for people with YOD. Whole genome sequencing (WGS) can be employed as a 'one stop shop' genomic test for YOD. In addition to single nucleotide variants, WGS can reliably detect structural variants, short tandem repeat expansions, mitochondrial genetic variants as well as capture single nucleotide polymorphisms for the calculation of polygenic risk scores. EXPERT OPINION WGS, when used as the initial genetic test, can enhance the likelihood of a precision diagnosis and curtail the time taken to reach this. Finding a clinical diagnosis using WGS can reduce invasive and expensive investigations and could be cost effective. These advances need to be balanced against the limitations of the technology and the genetic counseling needs for these vulnerable patients and their families.
Collapse
Affiliation(s)
- Aamira Huq
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Bryony Thompson
- Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Ingrid Winship
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|