1
|
Demirkan A, van Dongen J, Finnicum CT, Westra HJ, Jankipersadsing S, Willemsen G, Ijzerman RG, Boomsma DI, Ehli EA, Bonder MJ, Fu J, Franke L, Wijmenga C, de Geus EJC, Kurilshikov A, Zhernakova A. Linking the gut microbiome to host DNA methylation by a discovery and replication epigenome-wide association study. BMC Genomics 2024; 25:1224. [PMID: 39702006 DOI: 10.1186/s12864-024-11136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Microbiome influences multiple human systems, but its effects on gene methylation is unknown. We investigated the relations between gene methylation in blood and the abundance of common gut bacteria profiled by 16s rRNA gene sequencing in two population-based Dutch cohorts: LifeLines-Deep (LLD, n = 616, discovery) and the Netherlands Twin Register (NTR, n = 296, replication). In LLD, we also explored microbial pathways using data generated by shotgun metagenomic sequencing (n = 683). Methylation in both cohorts was profiled in blood samples using the Illumina 450K array. Discovery and replication analysis identified two independent CpGs associated with the genus Eggerthella: cg16586104 (Pmeta-analysis = 3.21 × 10-11) and cg12234533 (Pmeta-analysis = 4.29 × 10-10). We also show that microbiome can mediate the effect of environmental factors on host gene methylation. In this first association study linking epigenome to microbiome, we found and replicated the associations of two CpGs to the abundance of genus Eggerthella and identified microbiome as a mediator of the exposome. These associations are observational and suggest further investigation in larger and longitudinal set-ups.
Collapse
Affiliation(s)
- Ayşe Demirkan
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
- Department of Clinical and Experimental Medicine, Section of Statistical Multi-omics, School of Biosciences and Medicine & People-Centered AI institute University of Surrey, Guildford, United Kingdom.
| | - Jenny van Dongen
- Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam MC, Amsterdam, the Netherlands
| | - Casey T Finnicum
- Avera Institute of Human Genetics, Avera McKennan Hospital & University Health Center, Sioux Falls, Sioux Falls, SD, USA
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Soesma Jankipersadsing
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gonneke Willemsen
- Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam MC, Amsterdam, the Netherlands
| | - Richard G Ijzerman
- Department of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Amsterdam Public Health Research Institute, Amsterdam MC, Amsterdam, the Netherlands
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik A Ehli
- Avera Institute of Human Genetics, Avera McKennan Hospital & University Health Center, Sioux Falls, Sioux Falls, SD, USA
| | - Marc Jan Bonder
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eco J C de Geus
- Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam MC, Amsterdam, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Lopes CR, Cunha RA. Impact of coffee intake on human aging: Epidemiology and cellular mechanisms. Ageing Res Rev 2024; 102:102581. [PMID: 39557300 DOI: 10.1016/j.arr.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The conception of coffee consumption has undergone a profound modification, evolving from a noxious habit into a safe lifestyle actually preserving human health. The last 20 years also provided strikingly consistent epidemiological evidence showing that the regular consumption of moderate doses of coffee attenuates all-cause mortality, an effect observed in over 50 studies in different geographic regions and different ethnicities. Coffee intake attenuates the major causes of mortality, dampening cardiovascular-, cerebrovascular-, cancer- and respiratory diseases-associated mortality, as well as some of the major causes of functional deterioration in the elderly such as loss of memory, depression and frailty. The amplitude of the benefit seems discrete (17 % reduction) but nonetheless corresponds to an average increase in healthspan of 1.8 years of lifetime. This review explores evidence from studies in humans and human tissues supporting an ability of coffee and of its main components (caffeine and chlorogenic acids) to preserve the main biological mechanisms responsible for the aging process, namely genomic instability, macromolecular damage, metabolic and proteostatic impairments with particularly robust effects on the control of stress adaptation and inflammation and unclear effects on stem cells and regeneration. Further studies are required to detail these mechanistic benefits in aged individuals, which may offer new insights into understanding of the biology of aging and the development of new senostatic strategies. Additionally, the safety of this lifestyle factor in the elderly prompts a renewed attention to recommending the maintenance of coffee consumption throughout life as a healthy lifestyle and to further exploring who gets the greater benefit with what schedules of which particular types and doses of coffee.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal; MIA-Portugal, Multidisciplinary Institute of Aging, University of Coimbra, Portugal; Centro de Medicina Digital P5, Escola de Medicina da Universidade do Minho, Braga, Portugal.
| |
Collapse
|
3
|
Bordoni L, Agostinho de Sousa J, Zhuo J, von Meyenn F. Evaluating the connection between diet quality, EpiNutrient intake and epigenetic age: an observational study. Am J Clin Nutr 2024; 120:1143-1155. [PMID: 39510725 DOI: 10.1016/j.ajcnut.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND DNA methylation (DNAm) has unique properties which makes it a potential biomarker for lifestyle-related exposures. Epigenetic clocks, particularly DNAm-based biological age predictors [epigenetic age (EA)], represent an exciting new area of clinical research and deviations of EA from chronological age [epigenetic age acceleration (EAA)] have been linked to overall health, age-related diseases, and environmental exposures. OBJECTIVES This observational study investigates the relationships between biological aging and various dietary factors within the LifeLines-DEEP Cohort. These factors include diet quality, processed food consumption, dietary glycemic load, and intake of vitamins involved in maintaining the epigenetic homeostasis (vitamins B-9, B-12, B-6, B-2, and C). METHODS Dietary records collected using food-frequency questionnaires were used to estimate diet quality [LifeLines Diet Score (LLDS)], measure the intake of unprocessed/ultraprocessed food according to the NOVA food classification system, and the adequacy of the dietary intake of vitamins B-9, B-12, B-2, B-6, and C. EA using Horvath, Hannum, Levine, and Horvath2 epigenetic clock models and DNAm-predicted telomere length (DNAm-TL) were calculated from DNAm data in 760 subjects. Associations between dietary factors and EAA were tested, adjusting for sex, energy intake, and body composition. RESULTS LLDS was associated with EAA (EAA_Horvath: β: -0.148; P = 1 × 10-4; EAA_Hannum: β: -0.148; P = 9 × 10-5; EAA_Levine: β: -0.174; P = 1 × 10-5; and EAA_Horvath2: β: -0.176; P = 4 × 10-6) and DNAm-TL (β: 0.116; P = 0.003). Particularly, EAA was associated with dietary glycemic load (EAA_Horvath: β: 0.476; P = 9 × 10-10; EAA_Hannum: β: 0.565; P = 1 × 10-13; EAA_Levine: β: 0.469; P = 5 × 10-9; EAA_Horvath2: β: 0.569; P = 1 × 10-13; and DNAmTL adjusted for age: β: -0.340; P = 2 × 10-5) and different measures of food processing (NOVA classes 1 and 4). Positive EAA was also associated with inadequate intake of vitamin B-12 (EAA_Horvath: β: -0.167; P = 0.002; EAA_Hannum: β: -0.144; P = 0.007; and EAA_Horvath2: β: -0.126; P = 0.019) and C (EAA_Hannum: β: -0.136; P = 0.010 and EAA_Horvath2: β: -0.151; P = 0.005). CONCLUSIONS Our findings corroborate the hypothesis that nutrition plays a pivotal role in influencing epigenetic homeostasis, especially DNAm, thereby contributing to individual health trajectories and the pace of aging.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy.
| | - João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Jingran Zhuo
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| |
Collapse
|
4
|
Karagöz MF, Koçyiğit E, Koçak T, Özturan Şirin A, Icer MA, Ağagündüz D, Coreta-Gomes F. Decoding coffee cardiometabolic potential: Chemical composition, nutritional, and health relationships. Compr Rev Food Sci Food Saf 2024; 23:e13414. [PMID: 39137004 DOI: 10.1111/1541-4337.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024]
Abstract
Coffee is one of the most consumed beverages worldwide, recognized for its unique taste and aroma and for its social and health impacts. Coffee contains a plethora of nutritional and bioactive components, whose content can vary depending on their origin, processing, and extraction methods. Gathered evidence in literature shows that the regular coffee consumption containing functional compounds (e.g., polysaccharides, phenolic compounds, and melanoidins) can have potential beneficial effects on cardiometabolic risk factors such as abdominal adiposity, hyperglycemia, and lipogenesis. On the other hand, coffee compounds, such as caffeine, diterpenes, and advanced glycation end products, may be considered a risk for cardiometabolic health. The present comprehensive review provides up-to-date knowledge on the structure-function relationships between different chemical compounds present in coffee, one of the most prevalent beverages present in human diet, and cardiometabolic health.
Collapse
Affiliation(s)
- Mustafa Fevzi Karagöz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hitit University, Çorum, Türkiye
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, Ordu, Türkiye
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gümüşhane University, Gümüşhane, Türkiye
| | - Ayçıl Özturan Şirin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya, Türkiye
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| | - Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, Coimbra Chemistry Centre, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Hao M, Li Y, Ma W, Wang L, Zheng J, Wu Y. Relationship between sex differences in drinking, smoking, and exercising and the incidence of malignancies and medical procedures: a cross-sectional study of 21,916 participants in China. J Cancer 2024; 15:4551-4565. [PMID: 39006079 PMCID: PMC11242335 DOI: 10.7150/jca.95456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Objectives: The unresolved issue of the relationship between sex differences in tea, coffee, and beverage consumption and malignancy risk prompted our study in 2022. Methods: Logistic proportional hazards models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) in our investigation of the associations between cancer risk and tea, coffee, and beverage consumption. Results: Our findings revealed that frequent consumption of white tea significantly reduced the occurrence of malignant tumours, but this effect was detected only in the fully adjusted model for males (OR: 0.736, 95% CI: 0.095-5.704). The amount of sugar added to coffee was associated with an increased risk of malignancy in a dose-dependent manner (P for trend = 0.001), with significance observed for both men (P for trend = 0.049) and women (P for trend = 0.005) in the final model. Notably, individuals who consumed more than 2100 ml of sugary beverages daily had a statistically significant reduction in malignancy risk (OR: 0.219, 95% CI: 0.052-0.917). Interestingly, the intake of sugary beverages had a protective effect on cancer incidence, with a significant effect on males (P for trend = 0.031) but not females (P for trend = 0.096) in the final model. Conclusions: Our study highlights the substantial impact of regular white tea consumption on reducing the risk of malignant tumours in males. This study first reported that the potential protective effect of consuming sugary beverages is predominantly observed in males, and a correlation between the amount of sugar added to coffee and a heightened risk of malignancy.
Collapse
Affiliation(s)
- Mingyan Hao
- School of Public Health, Shanxi Medical University, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Shanxi Province Carcinoma Hospital, Carcinoma Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Yifan Li
- Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Shanxi Province Carcinoma Hospital, Carcinoma Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Wenjun Ma
- School of Public Health and Preventive Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Lizheng Wang
- Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Shanxi Province Carcinoma Hospital, Carcinoma Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Janzhong Zheng
- School of Public Health and Preventive Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yibo Wu
- School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Ikram MA, Kieboom BCT, Brouwer WP, Brusselle G, Chaker L, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, de Knegt RJ, Luik AI, van Meurs J, Pardo LM, Rivadeneira F, van Rooij FJA, Vernooij MW, Voortman T, Terzikhan N. The Rotterdam Study. Design update and major findings between 2020 and 2024. Eur J Epidemiol 2024; 39:183-206. [PMID: 38324224 DOI: 10.1007/s10654-023-01094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
The Rotterdam Study is a population-based cohort study, started in 1990 in the district of Ommoord in the city of Rotterdam, the Netherlands, with the aim to describe the prevalence and incidence, unravel the etiology, and identify targets for prediction, prevention or intervention of multifactorial diseases in mid-life and elderly. The study currently includes 17,931 participants (overall response rate 65%), aged 40 years and over, who are examined in-person every 3 to 5 years in a dedicated research facility, and who are followed-up continuously through automated linkage with health care providers, both regionally and nationally. Research within the Rotterdam Study is carried out along two axes. First, research lines are oriented around diseases and clinical conditions, which are reflective of medical specializations. Second, cross-cutting research lines transverse these clinical demarcations allowing for inter- and multidisciplinary research. These research lines generally reflect subdomains within epidemiology. This paper describes recent methodological updates and main findings from each of these research lines. Also, future perspective for coming years highlighted.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands.
| | - Brenda C T Kieboom
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Willem Pieter Brouwer
- Department of Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Guy Brusselle
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Pulmonology, University Hospital Ghent, Ghent, Belgium
| | - Layal Chaker
- Department of Epidemiology, and Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - André Goedegebure
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, and Department of Neurology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Rob J de Knegt
- Department of Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Luba M Pardo
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- Department of Medicine, and Department of Oral & Maxillofacial Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, and Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
7
|
Domínguez-Barragán J, Fernández-Sanlés A, Hernáez Á, Llauradó-Pont J, Marrugat J, Robinson O, Tzoulaki I, Elosua R, Lassale C. Blood DNA methylation signature of diet quality and association with cardiometabolic traits. Eur J Prev Cardiol 2024; 31:191-202. [PMID: 37793095 PMCID: PMC10809172 DOI: 10.1093/eurjpc/zwad317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
AIMS Diet quality might influence cardiometabolic health through epigenetic changes, but this has been little investigated in adults. Our aims were to identify cytosine-phosphate-guanine (CpG) dinucleotides associated with diet quality by conducting an epigenome-wide association study (EWAS) based on blood DNA methylation (DNAm) and to assess how diet-related CpGs associate with inherited susceptibility to cardiometabolic traits: body mass index (BMI), systolic blood pressure (SBP), triglycerides, type 2 diabetes (T2D), and coronary heart disease (CHD). METHODS AND RESULTS Meta-EWAS including 5274 participants in four cohorts from Spain, the USA, and the UK. We derived three dietary scores (exposures) to measure adherence to a Mediterranean diet, to a healthy plant-based diet, and to the Dietary Approaches to Stop Hypertension. Blood DNAm (outcome) was assessed with the Infinium arrays Human Methylation 450K BeadChip and MethylationEPIC BeadChip. For each diet score, we performed linear EWAS adjusted for age, sex, blood cells, smoking and technical variables, and BMI in a second set of models. We also conducted Mendelian randomization analyses to assess the potential causal relationship between diet-related CpGs and cardiometabolic traits. We found 18 differentially methylated CpGs associated with dietary scores (P < 1.08 × 10-7; Bonferroni correction), of which 12 were previously associated with cardiometabolic traits. Enrichment analysis revealed overrepresentation of diet-associated genes in pathways involved in inflammation and cardiovascular disease. Mendelian randomization analyses suggested that genetically determined methylation levels corresponding to lower diet quality at cg02079413 (SNORA54), cg02107842 (MAST4), and cg23761815 (SLC29A3) were causally associated with higher BMI and at cg05399785 (WDR8) with greater SBP, and methylation levels associated with higher diet quality at cg00711496 (PRMT1) with lower BMI, T2D risk, and CHD risk and at cg0557921 (AHRR) with lower CHD risk. CONCLUSION Diet quality in adults was related to differential methylation in blood at 18 CpGs, some of which related to cardiometabolic health.
Collapse
Affiliation(s)
- Jorge Domínguez-Barragán
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
| | - Alba Fernández-Sanlés
- MRC Unit for Lifelong Health and Ageing, University College London, London WC1E 7HB, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Álvaro Hernáez
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo 0463, Norway
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
- Consortium for Biomedical Research—Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 08029 Madrid, Spain
| | - Joana Llauradó-Pont
- Barcelona Institute of Global Health (ISGlobal), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Jaume Marrugat
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Robinson
- μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Centre for Systems Biology, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Roberto Elosua
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic—Central University of Catalunya, Ctra. de Roda, 70, 08500 Vic, Spain
| | - Camille Lassale
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 08029 Madrid, Spain
- Barcelona Institute of Global Health (ISGlobal), Dr Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
8
|
Fang F, Quach B, Lawrence KG, van Dongen J, Marks JA, Lundgren S, Lin M, Odintsova VV, Costeira R, Xu Z, Zhou L, Mandal M, Xia Y, Vink JM, Bierut LJ, Ollikainen M, Taylor JA, Bell JT, Kaprio J, Boomsma DI, Xu K, Sandler DP, Hancock DB, Johnson EO. Trans-ancestry epigenome-wide association meta-analysis of DNA methylation with lifetime cannabis use. Mol Psychiatry 2024; 29:124-133. [PMID: 37935791 PMCID: PMC11078760 DOI: 10.1038/s41380-023-02310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA methylation can serve as a mediator to link environmental exposures to health outcomes. We conducted an epigenome-wide association study (EWAS) of peripheral blood-based DNA methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9436 participants (7795 European and 1641 African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05 ( p < 5.85 × 10 - 7 ) : cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132. Additionally, our EWAS analysis in participants who never smoked cigarettes identified another epigenome-wide significant CpG site, cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores constructed as a weighted sum of the significant CpGs. The best model can explain 3.79% of the variance in lifetime cannabis use. These findings unravel the DNA methylation changes associated with lifetime cannabis use that are independent of cigarette smoking and may serve as a starting point for further research on the mechanisms through which cannabis exposure impacts health outcomes.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA.
| | - Bryan Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jesse A Marks
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Sara Lundgren
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Mingkuan Lin
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
| | - Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ricardo Costeira
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Linran Zhou
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Meisha Mandal
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Yujing Xia
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Laura J Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Dana B Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Kanarik M, Sakala K, Matrov D, Kaart T, Roy A, Ziegler GC, Veidebaum T, Lesch KP, Harro J. MAOA methylation is associated with impulsive and antisocial behaviour: dependence on allelic variation, family environment and diet. J Neural Transm (Vienna) 2024; 131:59-71. [PMID: 37507512 DOI: 10.1007/s00702-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Congenital absence of monoamine oxidase A (MAO-A) activity predisposes to antisocial impulsive behaviour, and the MAOA uVNTR low-expressing genotype (MAOA-L) together with childhood maltreatment is associated with similar phenotypes in males. A possible explanation of how family environment may lead to such behaviour involves DNA methylation. We have assessed MAOA methylation and impulsive/antisocial behaviour in 121 males from the Estonian Children Personality Behaviour and Health Study. Of the 12 CpG sites measured, methylation levels at the locus designated CpG3 were significantly lower in subjects with antisocial behaviour involving police contact. CpG3 methylation was lower in subjects with alcohol use disorder by age 25, but only in MAOA-H genotype. No correlation between MAOA CpG3 methylation levels and adaptive impulsivity was found at age 15, but in MAOA-L genotype a positive correlation appeared by age 18. By age 25, this positive correlation was no longer observed in subjects with better family relationships but had increased further with experience of adversity within the family. MAOA CpG3 methylation had different developmental dynamics in relation to maladaptive impulsivity. At age 18, a positive correlation was observed in MAOA-L genotype with inferior family relationships and a negative correlation was found in MAOA-H with superior home environment; both of these associations had disappeared by age 25. CpG3 methylation was associated with dietary intake of several micronutrients, most notable was a negative correlation with the intake of zinc, but also with calcium, potassium and vitamin E; a positive correlation was found with intake of phosphorus. In conclusion, MAOA CpG3 methylation is related to both maladaptive and adaptive impulsivity in adolescence in MAOA-L males from adverse home environment. By young adulthood, this relationship with maladaptive impulsivity had disappeared but with adaptive impulsivity strengthened. Thus, MAOA CpG3 methylation may serve as a marker for adaptive developmental neuroplasticity in MAOA-L genotype. The mechanisms involved may include dietary factors.
Collapse
Affiliation(s)
- Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia
| | - Katre Sakala
- National Institute for Health Development, Tallinn, Estonia
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Denis Matrov
- Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
| | - Arunima Roy
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | | | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia.
| |
Collapse
|
10
|
Liu J, Huang B, Ding F, Li Y. Environment factors, DNA methylation, and cancer. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7543-7568. [PMID: 37715840 DOI: 10.1007/s10653-023-01749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Today, the rapid development of science and technology and the rapid change in economy and society are changing the way of life of human beings and affecting the natural, living, working, and internal environment on which human beings depend. At the same time, the global incidence of cancer has increased significantly yearly, and cancer has become the number one killer that threatens human health. Studies have shown that diet, living habits, residential environment, mental and psychological factors, intestinal flora, genetics, social factors, and viral and non-viral infections are closely related to human cancer. However, the molecular mechanisms of the environment and cancer development remain to be further explored. In recent years, DNA methylation has become a key hub and bridge for environmental and cancer research. Some environmental factors can alter the hyper/hypomethylation of human cancer suppressor gene promoters, proto-oncogene promoters, and the whole genome, causing low/high expression or gene mutation of related genes, thereby exerting oncogenic or anticancer effects. It is expected to develop early warning markers of cancer environment based on DNA methylation, thereby providing new methods for early detection of cancers, diagnosis, and targeted therapy. This review systematically expounds on the internal mechanism of environmental factors affecting cancer by changing DNA methylation, aiming to help establish the concept of cancer prevention and improve people's health.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Feifei Ding
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China.
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China.
| |
Collapse
|
11
|
Schellhas L, Monasso GS, Felix JF, Jaddoe VW, Huang P, Fernández-Barrés S, Vrijheid M, Pesce G, Annesi-Maesano I, Page CM, Brantsæter AL, Bekkhus M, Håberg SE, London SJ, Munafò MR, Zuccolo L, Sharp GC. Maternal caffeine consumption during pregnancy and offspring cord blood DNA methylation: an epigenome-wide association study meta-analysis. Epigenomics 2023; 15:1179-1193. [PMID: 38018434 DOI: 10.2217/epi-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Background: Prenatal caffeine exposure may influence offspring health via DNA methylation, but no large studies have tested this. Materials & methods: Epigenome-wide association studies and differentially methylated regions in cord blood (450k or EPIC Illumina arrays) were meta-analyzed across six European cohorts (n = 3725). Differential methylation related to self-reported caffeine intake (mg/day) from coffee, tea and cola was compared with assess whether caffeine is driving effects. Results: One CpG site (cg19370043, PRRX1) was associated with caffeine and another (cg14591243, STAG1) with cola intake. A total of 12-22 differentially methylated regions were detected with limited overlap across caffeinated beverages. Conclusion: We found little evidence to support an intrauterine effect of caffeine on offspring DNA methylation. Statistical power limitations may have impacted our findings.
Collapse
Affiliation(s)
- Laura Schellhas
- School of Psychological Science, University of Bristol, Bristol, BS8 1QU, UK
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 2BN, UK
- Institute for Sex Research and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany[
| | - Giulietta S Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Peiyuan Huang
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 2BN, UK
| | - Sílvia Fernández-Barrés
- Barcelona Institute for Global Health (ISGlobal), Barcelona, 08003, Spain
- Agència de Salut Pública de Barcelona, Pl. Lesseps 1, 08023, Barcelona, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, 08003, Spain
- Universitat Pompeu Fabra, Barcelona, 08002, Spain
- CIBER Epidemiología y Salud Pública, Madrid, 28029, Spain
| | - Giancarlo Pesce
- INSERM UMR-S 1136, Team of Epidemiology of Allergic and Respiratory Diseases (EPAR), Institute Pierre Louis of Epidemiology and Public Health (IPLESP), Sorbonne University, Paris, 75005, France
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, INSERM and Montpellier University, Montpellier, 34090, France
- Department of Allergic and Respiratory Diseases, Montpellier University Hospital, Montpellier, 34295, France
| | - Christian M Page
- Department of Physical Health and Aging, Division for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, 0456, Norway
| | - Anne-Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, 0456, Norway
| | - Mona Bekkhus
- PROMENTA Research Centre, Department of Psychology, University of Oslo, Oslo, 0373, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, 0456, Norway
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Marcus R Munafò
- School of Psychological Science, University of Bristol, Bristol, BS8 1QU, UK
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 2BN, UK
- NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, BS2 8DX, UK
| | - Luisa Zuccolo
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 2BN, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PN, UK
- Health Data Science Centre, Human Technopole, Milan, 20157, Italy
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, BS8 2BN, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PN, UK
- School of Psychology, University of Exeter, Exeter, EX4 4PY, UK
| |
Collapse
|
12
|
Fan J, Yuan Y, Zhang X, Li W, Ma W, Wang W, Gu J, Zhou B. Association between urinary caffeine and caffeine metabolites and stroke in American adults: a cross-sectional study from the NHANES, 2009-2014. Sci Rep 2023; 13:11855. [PMID: 37481659 PMCID: PMC10363104 DOI: 10.1038/s41598-023-39126-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
This study investigates the potential correlation between urinary caffeine levels and the occurrence of stroke, a serious cerebrovascular disease that can lead to disability or death. The data used in this study was obtained from the National Health and Nutrition Examination Survey conducted between 2009 and 2014. The study analyzed a total of 5,339 individuals, divided into a control group (n = 5,135) and a stroke group (n = 162). The researchers utilized multiple logistic regression and smoothed curve fitting to examine the relationship between urinary caffeine and caffeine metabolites and the incidence of stroke. The study found that higher urinary caffeine levels were associated with a lower risk of stroke in Mexican American participants (odds ratio [OR] = 0.886, 95% confidence interval [CI]: (0.791, 0.993), P = 0.037). After adjusting for certain participant characteristics, it was also found that higher urinary paraxanthine levels were associated with a lower risk of stroke incidence (OR = 0.991, 95% CI (0.984, 0.999), P = 0.027). Meanwhile, the highest urinary paraxanthine levels group had 43.7% fewer strokes than the lowest level group (OR = 0.563, 95% CI (0.341, 0.929), P = 0.025). In this study, we showed a negative link between urine paraxanthine levels and the risk of stroke. Meanwhile, urinary caffeine levels were negatively associated with the incidence of stroke in Mexican Americans, but no correlation in other populations. Our findings may have predictive and diagnostic implications in clinical practice. Further extensive prospective investigations are still needed to validate our conclusions.
Collapse
Affiliation(s)
- Jinming Fan
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yajun Yuan
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Xiaoting Zhang
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Wenhan Li
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Wuqin Ma
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Wenhao Wang
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jinyan Gu
- Department of Scientific Research, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
| | - Bin Zhou
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
13
|
Otsuka S, Qin XY, Wang W, Ito T, Nansai H, Abe K, Fujibuchi W, Nakao Y, Sone H. iGEM as a human iPS cell-based global epigenetic modulation detection assay provides throughput characterization of chemicals affecting DNA methylation. Sci Rep 2023; 13:6663. [PMID: 37095195 PMCID: PMC10125974 DOI: 10.1038/s41598-023-33729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
Chemical-induced dysregulation of DNA methylation during the fetal period is known to contribute to developmental disorders or increase the risk of certain diseases later in life. In this study, we developed an iGEM (iPS cell-based global epigenetic modulation) detection assay using human induced pluripotent stem (hiPS) cells that express a fluorescently labeled methyl-CpG-binding domain (MBD), which enables a high-throughput screening of epigenetic teratogens/mutagens. 135 chemicals with known cardiotoxicity and carcinogenicity were categorized according to the MBD signal intensity, which reflects the degree of nuclear spatial distribution/concentration of DNA methylation. Further biological characterization through machine-learning analysis that integrated genome-wide DNA methylation, gene expression profiling, and knowledge-based pathway analysis revealed that chemicals with hyperactive MBD signals strongly associated their effects on DNA methylation and expression of genes involved in cell cycle and development. These results demonstrated that our MBD-based integrated analytical system is a powerful framework for detecting epigenetic compounds and providing mechanism insights of pharmaceutical development for sustainable human health.
Collapse
Affiliation(s)
- Satoshi Otsuka
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan
- Department of Cellular and Tissue Communication, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8555, Japan
| | - Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Wenlong Wang
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-Ku, Kyoto, 615-8540, Japan
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hiroko Nansai
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Cellular Dynamics, BioResource Center, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-Cho, Sho-Goin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Cellular and Tissue Communication, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8555, Japan
| | - Yoichi Nakao
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
- Environmental Health and Prevention Research Unit, Department of Environmental Health and Preventive Medicine, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama, 245-0066, Japan.
| |
Collapse
|
14
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
15
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
16
|
Hellbach F, Sinke L, Costeira R, Baumeister SE, Beekman M, Louca P, Leeming ER, Mompeo O, Berry S, Wilson R, Wawro N, Freuer D, Hauner H, Peters A, Winkelmann J, Koenig W, Meisinger C, Waldenberger M, Heijmans BT, Slagboom PE, Bell JT, Linseisen J. Pooled analysis of epigenome-wide association studies of food consumption in KORA, TwinsUK and LLS. Eur J Nutr 2023; 62:1357-1375. [PMID: 36571600 PMCID: PMC10030421 DOI: 10.1007/s00394-022-03074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Examining epigenetic patterns is a crucial step in identifying molecular changes of disease pathophysiology, with DNA methylation as the most accessible epigenetic measure. Diet is suggested to affect metabolism and health via epigenetic modifications. Thus, our aim was to explore the association between food consumption and DNA methylation. METHODS Epigenome-wide association studies were conducted in three cohorts: KORA FF4, TwinsUK, and Leiden Longevity Study, and 37 dietary exposures were evaluated. Food group definition was harmonized across the three cohorts. DNA methylation was measured using Infinium MethylationEPIC BeadChip in KORA and Infinium HumanMethylation450 BeadChip in the Leiden study and the TwinsUK study. Overall, data from 2293 middle-aged men and women were included. A fixed-effects meta-analysis pooled study-specific estimates. The significance threshold was set at 0.05 for false-discovery rate-adjusted p values per food group. RESULTS We identified significant associations between the methylation level of CpG sites and the consumption of onions and garlic (2), nuts and seeds (18), milk (1), cream (11), plant oils (4), butter (13), and alcoholic beverages (27). The signals targeted genes of metabolic health relevance, for example, GLI1, RPTOR, and DIO1, among others. CONCLUSION This EWAS is unique with its focus on food groups that are part of a Western diet. Significant findings were mostly related to food groups with a high-fat content.
Collapse
Affiliation(s)
- Fabian Hellbach
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Sebastian-Edgar Baumeister
- Institute of Health Services Research in Dentistry, Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Panayiotis Louca
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Emily R Leeming
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Olatz Mompeo
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Sarah Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Nina Wawro
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Dennis Freuer
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), Ingolstädter Landstr. 1, 85764, Munich-Neuherberg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health (HmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8A & 9, 80336, Munich, Germany
- German Heart Centre Munich, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081, Ulm, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), Ingolstädter Landstr. 1, 85764, Munich-Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8A & 9, 80336, Munich, Germany
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, England, UK
| | - Jakob Linseisen
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Marchioninistr. 15, 81377, Munich, Germany
- Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| |
Collapse
|
17
|
Urabe A, Chi S, Minami Y. The Immuno-Oncology and Genomic Aspects of DNA-Hypomethylating Therapeutics in Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24043727. [PMID: 36835136 PMCID: PMC9961620 DOI: 10.3390/ijms24043727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypomethylating agents (HMAs) have been used for decades in the treatment of hematologic neoplasms, and now, have gathered attention again in terms of their combination with potent molecular-targeted agents such as a BCL-6 inhibitor venetoclax and an IDH1 inhibitor ivosidenib, as well as a novel immune-checkpoint inhibitor (anit-CD47 antibody) megrolimab. Several studies have shown that leukemic cells have a distinct immunological microenvironment, which is at least partially due to genetic alterations such as the TP53 mutation and epigenetic dysregulation. HMAs possibly improve intrinsic anti-leukemic immunity and sensitivity to immune therapies such as PD-1/PD-L1 inhibitors and anti-CD47 agents. This review describes the immuno-oncological backgrounds of the leukemic microenvironment and the therapeutic mechanisms of HMAs, as well as current clinical trials of HMAs and/or venetoclax-based combination therapies.
Collapse
Affiliation(s)
| | | | - Yosuke Minami
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| |
Collapse
|
18
|
Ding Q, Xu YM, Lau ATY. The Epigenetic Effects of Coffee. Molecules 2023; 28:molecules28041770. [PMID: 36838754 PMCID: PMC9958838 DOI: 10.3390/molecules28041770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 02/16/2023] Open
Abstract
In this review, we discuss the recent knowledge regarding the epigenetic effects of coffee extract and the three essential active ingredients in coffee (caffeine, chlorogenic acid, and caffeic acid). As a popular beverage, coffee has many active ingredients which have a variety of biological functions such as insulin sensitization, improvement of sugar metabolism, antidiabetic properties, and liver protection. However, recent researches have shown that coffee is not only beneficial for human, but also bad, which may be due to its complex components. Studies suggest that coffee extract and its components can potentially impact gene expression via alteration of DNA methylation, histone modifications, and ncRNA expression; thus, exert long lasting impacts on the epigenome. More importantly, coffee consumption during pregnancy has been linked to multiple negative effects on offspring due to epigenetic modifications; on the other hand, it has also been linked to improvements in many diseases, including cancer. Therefore, understanding more about the epigenetic effects associated with coffee components is crucial to finding ways for improving human health.
Collapse
Affiliation(s)
| | - Yan-Ming Xu
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
19
|
Zhou J, Xiao L, Huang R, Song F, Li L, Li P, Fang Y, Lu W, Lv C, Quan M, Zhang D, Du Q. Local diversity of drought resistance and resilience in Populus tomentosa correlates with the variation of DNA methylation. PLANT, CELL & ENVIRONMENT 2023; 46:479-497. [PMID: 36385613 DOI: 10.1111/pce.14490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Little information is known about DNA methylation variation in shaping environment-specific drought resistance and resilience for tree adaptation. In this study, we leveraged RNA sequencing and whole-genome bisulfite sequencing data to dissect the distinction of epigenetic regulation under drought stress and rewater condition of Populus tomentosa accessions from three geographical regions. We demonstrated low resistance and high resilience for accessions from South. Non-CG methylation levels in promoter regions of Southern accessions were lower than accessions from higher latitudes and negatively regulated gene expression. CHH context methylation was more sensitive to drought stress, and the geographical-specific differentially methylated regions were scarcely changed by environmental fluctuation. We identified 60 conserved hub genes within the co-expression networks that correlate with photosynthetic and stomatal morphological traits. Epigenome-wide association studies and genome-wide association studies of these 60 hub genes revealed the interdependency between genetic and epigenetic variation in GATA9 and LECRK-VIII.2, which was associated with stomatal morphology and chlorophyll content. The natural epigenetic variation in GATA9 was also faithfully transmitted to progenies in two family-based F1 populations. This study indicates a functional relationship of DNA methylation diversity with drought resistance and resilience which offers new insights into plants' local adaptation to a stressful environment.
Collapse
Affiliation(s)
- Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Rui Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Lianzheng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Chenfei Lv
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
20
|
Safe S, Kothari J, Hailemariam A, Upadhyay S, Davidson LA, Chapkin RS. Health Benefits of Coffee Consumption for Cancer and Other Diseases and Mechanisms of Action. Int J Mol Sci 2023; 24:2706. [PMID: 36769029 PMCID: PMC9916720 DOI: 10.3390/ijms24032706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide, and epidemiology studies associate higher coffee consumption with decreased rates of mortality and decreased rates of neurological and metabolic diseases, including Parkinson's disease and type 2 diabetes. In addition, there is also evidence that higher coffee consumption is associated with lower rates of colon and rectal cancer, as well as breast, endometrial, and other cancers, although for some of these cancers, the results are conflicting. These studies reflect the chemopreventive effects of coffee; there is also evidence that coffee consumption may be therapeutic for some forms of breast and colon cancer, and this needs to be further investigated. The mechanisms associated with the chemopreventive or chemotherapeutic effects of over 1000 individual compounds in roasted coffee are complex and may vary with different diseases. Some of these mechanisms may be related to nuclear factor erythroid 2 (Nrf2)-regulated pathways that target oxidative stress or pathways that induce reactive oxygen species to kill diseased cells (primarily therapeutic). There is evidence for the involvement of receptors which include the aryl hydrocarbon receptor (AhR) and orphan nuclear receptor 4A1 (NR4A1), as well as contributions from epigenetic pathways and the gut microbiome. Further elucidation of the mechanisms will facilitate the potential future clinical applications of coffee extracts for treating cancer and other inflammatory diseases.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Jainish Kothari
- Master of Biotechnology Program, Texas A&M University, College Station, TX 77843, USA
| | - Amanuel Hailemariam
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Srijana Upadhyay
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Laurie A. Davidson
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
Wu L, Pei H, Zhang Y, Zhang X, Feng M, Yuan L, Guo M, Wei Y, Tang Z, Xiang X. Association between Dried Fruit Intake and DNA Methylation: A Multivariable Mendelian Randomization Analysis. J Nutr Health Aging 2023; 27:1132-1139. [PMID: 37997736 DOI: 10.1007/s12603-023-2030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES Observational studies have reported associations between dried fruit intake and DNA methylation(DNAm). However, inherent flaws in observational study designs make them susceptible to confounding and reverse causality bias. Consequently, it is unclear whether a causal association exists. In the present study, we aimed to investigate the causal associations between dried fruit intake and DNAm. METHODS We performed two-sample Mendelian randomization (MR) using the IEU Open GWAS database aggregated data. Forty-three single nucleotide polymorphisms (SNPs) associated with dried fruit intake as instrumental variables (IVs) were selected as exposure. DNAm outcomes include Gran (estimated granulocyte proportions); AgeAccelGrim(GrimAge acceleration); Hannum (Hannum age acceleration); IEAA(Intrinsic epigenetic age acceleration), AgeAccelPheno( PhenoAge acceleration), and DNAmPAIadjAge (DNAm-estimated plasminogen activator inhibitor-1 levels). We used the MR pleiotropy residual sum and outlier test (MRPRESSO) and Radial-MR test to identify any level of multi-effect outliers and assessed the causal effect estimates(after removing outliers). The primary causal effects were estimated using inverse-variance weighted (IVW) method and undertook sensitivity analyses using MR methods robust to horizontal pleiotropy.The direct effects of dried fruit intake on DNAm were estimated using multivariable mendelian randomization (MVMR). RESULTS Leveraging two-sample MR analysis, we observed statistically significant associations between dried fruit intake with a lower AgeAccelGrim(β=-1.365, 95% confidence intervals [CI] -2.266 to -0.464, PIVW=2.985×10-3) and AgeAccelPheno (β= -1.933, 95% CI -3.068 to -0.798, PIVW=8.371×10-4). By contrast, the effects level on Gran (β=0.008, PIVW=0.430), Hannum(β=-0.430, PIVW=0.357), IEAA(β=-0.184, PIVW=0.700), and DNAmPAIadjAge (β=-1.861, PIVW=0.093) were not statistically significant. MVMR results adjusting for the potential effects of confounders showed that the causal relationship between dried fruit intake and AgeAccelGrim(β= -1.315, 95% CI -2.373 to -0.258, PIVW=1.480×10-2) and AgeAccelPheno(β= -1.595, 95% CI -2.987 to -0.202, PIVW=2.483×10-2) persisted. No significant horizontal polymorphism was found in the sensitivity analysis. CONCLUSION Our MR study suggested that increased dried fruit intake is associated with slower AgeAccelGrim and AgeAccelPheno. It can providing a promising avenue for exploring the beneficial effects of dried fruit intake on lifespan extension.
Collapse
Affiliation(s)
- L Wu
- Xiqiao Xiang. Department of PET Imaging Center, Shanghai Jiaotong University Affiliated Sixth People Hospital South Campus. Shanghai, 201499, China. E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kawada T. Coffee consumption and risk of cancers: Kidney as an example for the assessment. Clin Nutr 2022; 41:3122. [PMID: 36400638 DOI: 10.1016/j.clnu.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, Japan.
| |
Collapse
|
23
|
Whole Exome Sequencing Study Identifies Novel Rare Risk Variants for Habitual Coffee Consumption Involved in Olfactory Receptor and Hyperphagia. Nutrients 2022; 14:nu14204330. [PMID: 36297015 PMCID: PMC9607528 DOI: 10.3390/nu14204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Habitual coffee consumption is an addictive behavior with unknown genetic variations and has raised public health issues about its potential health-related outcomes. We performed exome-wide association studies to identify rare risk variants contributing to habitual coffee consumption utilizing the newly released UK Biobank exome dataset (n = 200,643). A total of 34,761 qualifying variants were imported into SKAT to conduct gene-based burden and robust tests with minor allele frequency <0.01, adjusting the polygenic risk scores (PRS) of coffee intake to exclude the effect of common coffee-related polygenic risk. The gene-based burden and robust test of the exonic variants found seven exome-wide significant associations, such as OR2G2 (PSKAT = 1.88 × 10−9, PSKAT-Robust = 2.91 × 10−17), VEZT1 (PSKAT = 3.72 × 10−7, PSKAT-Robust = 1.41 × 10−7), and IRGC (PSKAT = 2.92 × 10−5, PSKAT-Robust = 1.07 × 10−7). These candidate genes were verified in the GWAS summary data of coffee intake, such as rs12737801 (p = 0.002) in OR2G2, and rs34439296 (p = 0.008) in IRGC. This study could help to extend genetic insights into the pathogenesis of coffee addiction, and may point to molecular mechanisms underlying health effects of habitual coffee consumption.
Collapse
|
24
|
Sularz O, Koronowicz A, Boycott C, Smoleń S, Stefanska B. Molecular Effects of Iodine-Biofortified Lettuce in Human Gastrointestinal Cancer Cells. Nutrients 2022; 14:4287. [PMID: 36296971 PMCID: PMC9607317 DOI: 10.3390/nu14204287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Considering the growing number of cancer cases around the world, natural products from the diet that exhibit potential antitumor properties are of interest. Our previous research demonstrated that fortification with iodine compounds is an effective way to improve the antioxidant potential of lettuce. The purpose of the present study was to evaluate the effect of iodine-biofortified lettuce on antitumor properties in human gastrointestinal cancer cell lines, gastric AGS and colon HT-29. Our results showed that extracts from iodine-biofortified lettuce reduce the viability and proliferation of gastric and colon cancer cells. The extracts mediated cell cycle arrest which was accompanied by inactivation of anti-apoptotic Bcl-2 and activation of caspases, as assessed by flow cytometry. However, extracts from lettuce fortified with organic forms of iodine acted more effectively than extracts from control and KIO3-enriched plants. Using quantitative PCR, we detected the increase in pro-apoptotic genes BAD, BAX and BID in AGS cells whereas up-regulation of cell cycle progression inhibitor CDKN2A and downregulation of pro-proliferative MDM2 in HT-29 cells. Interestingly, lettuce extracts led to down-regulation of pro-survival AKT1 and protooncogenic MDM2, which was consistent for extracts of lettuce fortified with organic form of iodine, 5-ISA, in both cell lines. MDM2 downregulation in HT-29 colon cancer cells was associated with RB1 upregulation upon 5-ISA-fortified lettuce extracts, which provides a link to the epigenetic regulation of tumor suppressor genes by RB/MDM2 pathway. Indeed, SEMA3A tumor suppressor gene was hypomethylated and upregulated in HT-29 cells treated with 5-ISA-fortified lettuce. Control lettuce exerted similar effects on RB/MDM2 pathway and SEMA3A epigenetic activation in HT-29 cells. Our findings suggest that lettuce as well as lettuce fortified with organic form of iodine, 5-ISA, may exert epigenetic anti-cancer effects that can be cancer type-specific.
Collapse
Affiliation(s)
- Olga Sularz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
25
|
Surma S, Romańczyk M, Filipiak KJ, Lip GYH. Coffee and cardiac arrhythmias: Up-date review of the literature and clinical studies. Cardiol J 2022; 30:654-667. [PMID: 35912715 PMCID: PMC10508080 DOI: 10.5603/cj.a2022.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Coffee, next to water, is the most consumed drink in the world. Coffee contains over 1000 chemical compounds, the most popular of which are caffeine, chlorogenic acid, kahweol, cafestol and trigonelline. Numerous studies have shown the beneficial effects of coffee on the cardiovascular system, nervous system, digestive system and kidneys. Due to the high incidence of cardiac arrhythmias, especially atrial fibrillation, the influence of coffee consumption on arrhythmogenesis remains a controversial and clinically important issue. Many mechanisms by which coffee can increase and decrease the risk of arrhythmias have been described. Habitual consumption of moderate amounts of coffee seems to lead to less arrhythmias, which is reflected in the results of many clinical trials and meta-analyzes. This review summarizes the mechanisms of coffee action on the heart muscle and the results of the most recent important clinical trials assessing the impact of coffee consumption on the risk of various cardiac arrhythmias.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Poland
- Club of Young Hypertensiologists, Polish Society of Hypertension, Gdansk, Poland
| | - Monika Romańczyk
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Poland
| | - Krzysztof J Filipiak
- Institute of Clinical Sciences, Maria Sklodowska-Curie Medical Academy in Warsaw, Poland.
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
26
|
Hellbach F, Baumeister SE, Wilson R, Wawro N, Dahal C, Freuer D, Hauner H, Peters A, Winkelmann J, Schwettmann L, Rathmann W, Kronenberg F, Koenig W, Meisinger C, Waldenberger M, Linseisen J. Association between Usual Dietary Intake of Food Groups and DNA Methylation and Effect Modification by Metabotype in the KORA FF4 Cohort. Life (Basel) 2022; 12:life12071064. [PMID: 35888152 PMCID: PMC9318948 DOI: 10.3390/life12071064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Associations between diet and DNA methylation may vary among subjects with different metabolic states, which can be captured by clustering populations in metabolically homogenous subgroups, called metabotypes. Our aim was to examine the relationship between habitual consumption of various food groups and DNA methylation as well as to test for effect modification by metabotype. A cross-sectional analysis of participants (median age 58 years) of the population-based prospective KORA FF4 study, habitual dietary intake was modeled based on repeated 24-h diet recalls and a food frequency questionnaire. DNA methylation was measured using the Infinium MethylationEPIC BeadChip providing data on >850,000 sites in this epigenome-wide association study (EWAS). Three metabotype clusters were identified using four standard clinical parameters and BMI. Regression models were used to associate diet and DNA methylation, and to test for effect modification. Few significant signals were identified in the basic analysis while many significant signals were observed in models including food group-metabotype interaction terms. Most findings refer to interactions of food intake with metabotype 3, which is the metabotype with the most unfavorable metabolic profile. This research highlights the importance of the metabolic characteristics of subjects when identifying associations between diet and white blood cell DNA methylation in EWAS.
Collapse
Affiliation(s)
- Fabian Hellbach
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilian University of Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.W.); (J.L.)
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
- Correspondence: ; Tel.: +49-821-598-6473
| | - Sebastian-Edgar Baumeister
- Institute of Health Services Research in Dentistry, Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany;
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (R.W.); (A.P.); (M.W.)
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nina Wawro
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilian University of Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.W.); (J.L.)
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| | - Chetana Dahal
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| | - Dennis Freuer
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| | - Hans Hauner
- Else Kröner-Fresenius-Center for Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992 Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (R.W.); (A.P.); (M.W.)
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany;
| | - Juliane Winkelmann
- Institute of Neurogenomic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany;
| | - Lars Schwettmann
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany;
- Department of Economics, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany;
| | - Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria;
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Pettenkoferstr. 8A & 9, 80336 Munich, Germany;
- German Heart Centre Munich, Technical University Munich, Lazarettstr. 36, 80636 Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081 Ulm, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (R.W.); (A.P.); (M.W.)
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany;
| | - Jakob Linseisen
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilian University of Munich, Marchioninistr. 15, 81377 Munich, Germany; (N.W.); (J.L.)
- Epidemiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany; (C.D.); (D.F.); (C.M.)
| |
Collapse
|
27
|
Ingegnoli F, Cavalli S, Giudice L, Caporali R. Caffeine and rheumatoid arthritis: A complicated relationship. Clin Exp Rheumatol 2022; 21:103117. [PMID: 35595049 DOI: 10.1016/j.autrev.2022.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
The current ideal goal of rheumatoid arthritis (RA) management is to resolve joint and systemic inflammation by using pharmacological interventions, assuming this will correspondingly lead to overall well-being. Nonetheless, it has emerged that a substantial number of RA patients do not reach optimal disease control. Thus suggesting the holistic management of subjective symptoms might be overlooked. This poses significant medical challenges; hence the proposal of incorporating lifestyle interventions as part of a multidimensional approach. Among these aspects, both patients and physicians perceive the important role of nutrition. This review shall examine how caffeine, one of the most studied bioactive components of the most widely consumed beverages, may potentially interfere with RA management. In particular, the mechanism by which caffeine affects RA pathogenesis, as a trigger for RA onset or flare, including its influence on rheumatic drug metabolism and the most common RA comorbidities and constitutional symptoms are outlined, highlighting important knowledge gaps and unmet research needs.
Collapse
Affiliation(s)
- Francesca Ingegnoli
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy.
| | - Silvia Cavalli
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| | - Laura Giudice
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| | - Roberto Caporali
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
28
|
Nutrient-Response Pathways in Healthspan and Lifespan Regulation. Cells 2022; 11:cells11091568. [PMID: 35563873 PMCID: PMC9102925 DOI: 10.3390/cells11091568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular, small invertebrate and vertebrate models are a driving force in biogerontology studies. Using various models, such as yeasts, appropriate tissue culture cells, Drosophila, the nematode Caenorhabditis elegans and the mouse, has tremendously increased our knowledge around the relationship between diet, nutrient-response signaling pathways and lifespan regulation. In recent years, combinatorial drug treatments combined with mutagenesis, high-throughput screens, as well as multi-omics approaches, have provided unprecedented insights in cellular metabolism, development, differentiation, and aging. Scientists are, therefore, moving towards characterizing the fine architecture and cross-talks of growth and stress pathways towards identifying possible interventions that could lead to healthy aging and the amelioration of age-related diseases in humans. In this short review, we briefly examine recently uncovered knowledge around nutrient-response pathways, such as the Insulin Growth Factor (IGF) and the mechanistic Target of Rapamycin signaling pathways, as well as specific GWAS and some EWAS studies on lifespan and age-related disease that have enhanced our current understanding within the aging and biogerontology fields. We discuss what is learned from the rich and diverse generated data, as well as challenges and next frontiers in these scientific disciplines.
Collapse
|
29
|
Long-term administration of Tetragenococcus halophilus No. 1 over generations affects the immune system of mice. PLoS One 2022; 17:e0267473. [PMID: 35472068 PMCID: PMC9041805 DOI: 10.1371/journal.pone.0267473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Japanese people have been consuming miso soup over generations; it is beneficial for health and longevity. In this study, Tetragenococcus halophilus No. 1 in miso was found to possess salient immunomodulatory functions. Recently, we also demonstrated its effect on boosting immunological robustness. Although the consumption of miso is suggested to affect health over generations, such a long-term experiment has not been conducted until now. Thus, we evaluated the effects of miso-derived T. halophilus No. 1 over generations on the immune system of mice. As the generations increase, the proportion of germinal center B cells tends to increase. Furthermore, we found that CD4+ T cells expressing CD69, an activation marker, were increased in the third generation of mice. In addition, the proportion of follicular helper T cells and regulatory T cells tended to increase. Among the subsets of CD4+ T cells in the fourth generation, effector T cells and effector memory T cells tended to increase. In contrast, central memory T cells and naive T cells decreased. Moreover, autoimmunity was suppressed by long-term administration of T. halophilus No. 1. Based on these findings, we believe that the long-term administration of T. halophilus No. 1 over generations promotes immune activation and tolerance and enhances immunological robustness.
Collapse
|
30
|
Li X, Qi L. Epigenetics in Precision Nutrition. J Pers Med 2022; 12:jpm12040533. [PMID: 35455649 PMCID: PMC9027461 DOI: 10.3390/jpm12040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging area of nutrition research, with primary focus on the individual variability in response to dietary and lifestyle factors, which are mainly determined by an individual’s intrinsic variations, such as those in genome, epigenome, and gut microbiome. The current research on precision nutrition is heavily focused on genome and gut microbiome, while epigenome (DNA methylation, non-coding RNAs, and histone modification) is largely neglected. The epigenome acts as the interface between the human genome and environmental stressors, including diets and lifestyle. Increasing evidence has suggested that epigenetic modifications, particularly DNA methylation, may determine the individual variability in metabolic health and response to dietary and lifestyle factors and, therefore, hold great promise in discovering novel markers for precision nutrition and potential targets for precision interventions. This review summarized recent studies on DNA methylation with obesity, diabetes, and cardiovascular disease, with more emphasis put in the relations of DNA methylation with nutrition and diet/lifestyle interventions. We also briefly reviewed other epigenetic events, such as non-coding RNAs, in relation to human health and nutrition, and discussed the potential role of epigenetics in the precision nutrition research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-504-988-7259
| |
Collapse
|
31
|
Tin A, Schlosser P, Matias-Garcia PR, Thio CHL, Joehanes R, Liu H, Yu Z, Weihs A, Hoppmann A, Grundner-Culemann F, Min JL, Kuhns VLH, Adeyemo AA, Agyemang C, Ärnlöv J, Aziz NA, Baccarelli A, Bochud M, Brenner H, Bressler J, Breteler MMB, Carmeli C, Chaker L, Coresh J, Corre T, Correa A, Cox SR, Delgado GE, Eckardt KU, Ekici AB, Endlich K, Floyd JS, Fraszczyk E, Gao X, Gào X, Gelber AC, Ghanbari M, Ghasemi S, Gieger C, Greenland P, Grove ML, Harris SE, Hemani G, Henneman P, Herder C, Horvath S, Hou L, Hurme MA, Hwang SJ, Kardia SLR, Kasela S, Kleber ME, Koenig W, Kooner JS, Kronenberg F, Kühnel B, Ladd-Acosta C, Lehtimäki T, Lind L, Liu D, Lloyd-Jones DM, Lorkowski S, Lu AT, Marioni RE, März W, McCartney DL, Meeks KAC, Milani L, Mishra PP, Nauck M, Nowak C, Peters A, Prokisch H, Psaty BM, Raitakari OT, Ratliff SM, Reiner AP, Schöttker B, Schwartz J, Sedaghat S, Smith JA, Sotoodehnia N, Stocker HR, Stringhini S, Sundström J, Swenson BR, van Meurs JBJ, van Vliet-Ostaptchouk JV, Venema A, Völker U, Winkelmann J, Wolffenbuttel BHR, Zhao W, Zheng Y, Loh M, Snieder H, Waldenberger M, Levy D, Akilesh S, Woodward OM, Susztak K, Teumer A, Köttgen A. Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus. Nat Commun 2021; 12:7173. [PMID: 34887389 PMCID: PMC8660809 DOI: 10.1038/s41467-021-27198-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E-7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.
Collapse
Affiliation(s)
- Adrienne Tin
- Department of Medicine, University of Mississippi Medical Center, Jackson, 39216, MS, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Chris H L Thio
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Roby Joehanes
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hongbo Liu
- Department of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA
| | - Zhi Yu
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Anselm Hoppmann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Josine L Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society (NVS), Family Medicine and Primary Care Unit, Karolinska Institutet, Huddinge, Sweden
- School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Nasir A Aziz
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Andrea Baccarelli
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Hermann Brenner
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Monique M B Breteler
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Cristian Carmeli
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Population Health Laboratory, University of Fribourg, Fribourg, Switzerland
| | - Layal Chaker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tanguy Corre
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, 39216, MS, USA
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-UniversitätErlangen-Nürnberg, 91054, Erlangen, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, 98101, WA, USA
- Department of Epidemiology, University of Washington, Seattle, 98101, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, 98101, WA, USA
| | - Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xu Gao
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xīn Gào
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
| | - Allan C Gelber
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sahar Ghasemi
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Sarah E Harris
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
- Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mikko A Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA, USA
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Jaspal S Kooner
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Southall, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dan Liu
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim and Augsburg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christoph Nowak
- Department of Neurobiology, Care Sciences and Society (NVS), Family Medicine and Primary Care Unit, Karolinska Institutet, Huddinge, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Ludwig-Maximilians Universität München, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Computational Health, Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, 98101, WA, USA
- Department of Epidemiology, University of Washington, Seattle, 98101, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, 98101, WA, USA
- Department of Health Services, University of Washington, Seattle, 98101, WA, USA
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, 98101, WA, USA
| | - Ben Schöttker
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sanaz Sedaghat
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, 98101, WA, USA
| | - Hannah R Stocker
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Silvia Stringhini
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Brenton R Swenson
- Cardiovascular Health Research Unit, University of Washington, Seattle, 98101, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Chair Neurogenetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Bavaria, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katalin Susztak
- Department of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, PA, USA
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Polinski KJ, Purdue-Smithe A, Robinson SL, Zhao SK, Schliep KC, Silver RM, Guan W, Schisterman EF, Mumford SL, Yeung EH. Maternal caffeine intake and DNA methylation in newborn cord blood. Am J Clin Nutr 2021; 115:482-491. [PMID: 34669932 PMCID: PMC8827095 DOI: 10.1093/ajcn/nqab348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Epigenetic mechanisms may underlie associations between maternal caffeine consumption and adverse childhood metabolic outcomes. However, limited studies have examined neonate DNA methylation (DNAm) patterns in the context of preconception or prenatal exposure to caffeine metabolites. OBJECTIVES We examined preconception and pregnancy caffeine exposure with DNAm alterations in neonate cord blood (n = 378). METHODS In a secondary analysis of the Effects of Aspirin in Gestation and Reproduction Trial (EAGeR), we measured maternal caffeine, paraxanthine, and theobromine concentrations from stored serum collected preconception (on average 2 months before pregnancy) and at 8 weeks of gestation. In parallel, self-reported caffeinated beverage intake was captured via administration of questionnaires and daily diaries. We profiled DNAm from the cord blood buffy coat of singletons using the MethylationEPIC BeadChip. We assessed associations of maternal caffeine exposure and methylation β values using multivariable robust linear regression. A false discovery rate (FDR) correction was applied using the Benjamini-Hochberg method. RESULTS In preconception, the majority of women reported consuming 1 or fewer servings/day of caffeine on average, and caffeine and paraxanthine metabolite levels were 88 and 36 µmol/L, respectively. Preconception serum caffeine metabolites were not associated with individual cytosine-guanine (CpG) sites (FDR >5%), though pregnancy theobromine was associated with DNAm at cg09460369 near RAB2A (β = 0.028; SE = 0.005; FDR P = 0.012). Preconception self-reported caffeinated beverage intake compared to no intake was associated with DNAm at cg09002832 near GLIS3 (β = -0.013; SE = 0.002; FDR P = 0.036). No associations with self-reported intake during pregnancy were found. CONCLUSIONS Few effects of maternal caffeine exposure on neonate methylation differences in leukocytes were identified in this population with relatively low caffeine consumption.
Collapse
Affiliation(s)
- Kristen J Polinski
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Purdue-Smithe
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sonia L Robinson
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sifang Kathy Zhao
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Karen C Schliep
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert M Silver
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - Weihua Guan
- University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Enrique F Schisterman
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sunni L Mumford
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
33
|
Selected Literature Watch. J Caffeine Adenosine Res 2021. [DOI: 10.1089/caff.2021.29022.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Abstract
Purpose of Review Coffee is a very popular drink and an estimated 2.25 billion cups worldwide are consumed daily. Such popularity of coffee makes it the most consumed drink next to water. Numerous studies have shown a beneficial effect of habitual and moderate coffee consumption on the functioning of the nervous, digestive, and cardiovascular systems, as well as on kidney function. Taking into account the very high prevalence of arterial hypertension in the world (31.1% of adults), much controversy has been raised about the influence of coffee consumption on blood pressure and the risk of arterial hypertension. Moreover, there have been extensive discussions about the safety of coffee consumption for hypertensive persons. Recent Findings There are over 1000 chemical compounds in coffee. The best characterized of these are caffeine, chlorogenic acid, trigonelline, kahweol, cafestol, ferulic acid, and melanoidins. These compounds have bidirectional influences on blood pressure regulation. The results of numerous studies and meta-analyses indicate that moderate and habitual coffee consumption does not increase and may even reduce the risk of developing arterial hypertension. Conversely, occasional coffee consumption has hypertensinogenic effects. Moderate habitual coffee consumption in hypertensive persons does not appear to increase the risk of uncontrolled blood pressure and may even reduce the risk of death from any cause. Summary Moderate and habitual consumption of coffee (1-–3 cups / day) does not adversely affect blood pressure in most people, including those with arterial hypertension.
Collapse
|