1
|
Guo B, Gu J, Zhuang T, Zhang J, Fan C, Li Y, Zhao M, Chen R, Wang R, Kong Y, Xu S, Gao W, Liang L, Yu H, Han T. MicroRNA-126: From biology to therapeutics. Biomed Pharmacother 2025; 185:117953. [PMID: 40036996 DOI: 10.1016/j.biopha.2025.117953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
MicroRNA-126 (miR-126) has emerged as one of the most extensively studied microRNAs in the context of human diseases, particularly in vascular disorders and cancer. Its high degree of conservation across vertebrates underscores its evolutionary significance and essential functional roles. Extensive research has been devoted to elucidating the molecular mechanisms through which miR-126 modulates key physiological and pathological processes, including angiogenesis, immune response, inflammation, tumor growth, and metastasis. Furthermore, miR-126 plays a causal role in the pathogenesis of various diseases, serving as potential biomarkers for disease prediction, diagnosis, prognosis and drug response, as well as a promising therapeutic target. In this review, we synthesize findings from 283 articles, focusing on the roles of miR-126 in critical biological processes such as cell development, survival, cycle regulation, proliferation, migration, invasion, communication, and metabolism. Additionally, miR-126 represents a promising candidate for miRNA-based therapeutic strategies. A comprehensive understanding and evaluation of miR-126 are crucial for advancing its clinical applications and therapeutic potential.
Collapse
Affiliation(s)
- Bei Guo
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongtian Zhuang
- Department of Dermatology, Air Force Hospital of Northern Theater Command, Shenyang, China
| | - Jingbin Zhang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyang Fan
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiyao Li
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Mengdi Zhao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ruoran Chen
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Rui Wang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuan Kong
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuang Xu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Gao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Linlang Liang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Yu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Wei W, Valerio M, Ma N, Kang H, Nguyen LXT, Marcucci G, Vaidehi N. Disordered C-Terminus Plays a Critical Role in the Activity of the Small GTPase Ran. Biochemistry 2025. [PMID: 39999282 DOI: 10.1021/acs.biochem.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ran is a small GTPase of the Ras superfamily that governs nucleocytoplasmic transport, including that of miR-126, a microRNA that supports the homeostasis and expansion of leukemia stem cells (LSCs). Ran binds to Exportin 5 to facilitate the transport of precursor (pre)-miR-126 across the nuclear membrane for its maturation. Our goal is to inhibit Ran to prevent transport of pre-miR-126 to the cytoplasm. Like other Ras family proteins, targeting Ran with small molecules is challenging due to its relatively flat surface and lack of binding cavities. Ran's activity is regulated by a long and disordered C-terminus that provides opportunities for identifying cryptic binding pockets to target. We used a combination of molecular dynamics simulations and experiments and uncovered the critical role of the ensemble of the C-terminal conformations that enable the transition of Ran from the GTP-bound "on state" to its GDP-bound "off-state". We also showed that the Ran C-terminus allosterically modulates the conformations of residues in the nucleotide binding site and in the functionally relevant Switch 1 and 2 regions. Through computational deep mutational scans and experiments, we identified four residue hotspots L182, Y197, D200, and L201 at the core-C-terminus interface and four residue mutations V27A, E70D, N122A, and N122Y that mediate the allosteric communication between the core and switch regions. This information paves the way for our next step in the design of novel allosteric modulators for Ran.
Collapse
Affiliation(s)
- Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| | - Melissa Valerio
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
| | - Hyunjun Kang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
| | - Le Xuan Truong Nguyen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California 91010, United States
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California 91010, United States
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
- Irell and Manella Graduate School of Biosciences, City of Hope, Duarte, California 91010, United States
| |
Collapse
|
3
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
4
|
Shi X, Feng M, Nakada D. Metabolic dependencies of acute myeloid leukemia stem cells. Int J Hematol 2024; 120:427-438. [PMID: 38750343 PMCID: PMC11779507 DOI: 10.1007/s12185-024-03789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy primarily driven by an immature population of AML cells termed leukemia stem cells (LSCs) that are implicated in AML development, chemoresistance, and relapse. An emerging area of research in AML focuses on identifying and targeting the aberrant metabolism in LSCs. Dysregulated metabolism is involved in sustaining functional properties of LSCs, impeding myeloid differentiation, and evading programmed cell death, both in the process of leukemogenesis and in response to chemotherapy. This review discusses recent discoveries regarding the aberrant metabolic processes of AML LSCs that have begun to change the therapeutic landscape of AML.
Collapse
Affiliation(s)
- Xiangguo Shi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Mengdie Feng
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Chavaro-Francisco G, Hernández-Zavala A, Bravo-Cidro CE, Rios-Rodriguez S, Muciño-Sánchez M, López-López M, Castro-Martínez XH, Olarte-Carrillo I, Garcia-Laguna A, Barranco-Lampón G, De la Cruz-Rosas A, Martínez-Tovar A, Córdova EJ. Gene Variants in Components of the microRNA Processing Pathway in Chronic Myeloid Leukemia. Genes (Basel) 2024; 15:1054. [PMID: 39202414 PMCID: PMC11353722 DOI: 10.3390/genes15081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Current therapy in chronic myeloid leukemia (CML) has improved patient life expectancy close to that of healthy individuals. However, molecular alterations other than BCR::ABL1 fusion gene in CML are barely known. MicroRNAs are important regulators of gene expression, and variants in some of the components of microRNA biosynthesis pathways have been associated with genetic susceptibility to different types of cancer. Thus, the aim of this study was to evaluate the association of variants located in genes involved in the biogenesis of microRNAs with susceptibility to CML. Fifteen variants in eight genes involved in the biogenesis of miRNAs were genotyped in 296 individuals with CML and 485 healthy participants using TaqMan probes. The association of gene variants with CML and clinical variables was evaluated by a Chi-square test, and odds ratios and 95% confidence intervals were estimated by logistic regression. The variant rs13078 in DICER1 was significantly higher among CML individuals than in healthy participants. In addition, the variants rs7813 and rs2740349 were significantly associated with worse prognosis, according to their Hasford scores, whereas the rs2740349 variant was also associated with a later age at diagnosis. These findings suggest that variants in components of the microRNA biogenesis pathway could be involved in CML genetic risk.
Collapse
Affiliation(s)
- Guillermina Chavaro-Francisco
- Section of Research and Postgraduate Studies, Superior School of Medicine, National Institute Polytechique, Mexico City 11340, Mexico; (G.C.-F.); (A.H.-Z.)
- Oncogenomics Consortium Laboratory, Clinic Research Department, National Institute of Genomic Medicine, Mexico City 14610, Mexico; (C.E.B.-C.); (S.R.-R.); (M.M.-S.)
| | - Araceli Hernández-Zavala
- Section of Research and Postgraduate Studies, Superior School of Medicine, National Institute Polytechique, Mexico City 11340, Mexico; (G.C.-F.); (A.H.-Z.)
| | - Camila E. Bravo-Cidro
- Oncogenomics Consortium Laboratory, Clinic Research Department, National Institute of Genomic Medicine, Mexico City 14610, Mexico; (C.E.B.-C.); (S.R.-R.); (M.M.-S.)
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City 04960, Mexico;
| | - Sandybel Rios-Rodriguez
- Oncogenomics Consortium Laboratory, Clinic Research Department, National Institute of Genomic Medicine, Mexico City 14610, Mexico; (C.E.B.-C.); (S.R.-R.); (M.M.-S.)
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City 04960, Mexico;
| | - Mabel Muciño-Sánchez
- Oncogenomics Consortium Laboratory, Clinic Research Department, National Institute of Genomic Medicine, Mexico City 14610, Mexico; (C.E.B.-C.); (S.R.-R.); (M.M.-S.)
- School of Biology, Metropolitan Autonomous University, Campus Xochimilco, Mexico City 04960, Mexico
| | - Marisol López-López
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City 04960, Mexico;
| | - Xóchitl H. Castro-Martínez
- Genomics of Psychiatric and Neurogenerative Diseases Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico;
| | - Irma Olarte-Carrillo
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico, “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (I.O.-C.); (A.G.-L.); (G.B.-L.); (A.M.-T.)
| | - Anel Garcia-Laguna
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico, “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (I.O.-C.); (A.G.-L.); (G.B.-L.); (A.M.-T.)
| | - Gilberto Barranco-Lampón
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico, “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (I.O.-C.); (A.G.-L.); (G.B.-L.); (A.M.-T.)
| | - Adrián De la Cruz-Rosas
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico, “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (I.O.-C.); (A.G.-L.); (G.B.-L.); (A.M.-T.)
| | - Adolfo Martínez-Tovar
- Molecular Biology Laboratory, Service of Hematology, Hospital General de Mexico, “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (I.O.-C.); (A.G.-L.); (G.B.-L.); (A.M.-T.)
| | - Emilio J. Córdova
- Oncogenomics Consortium Laboratory, Clinic Research Department, National Institute of Genomic Medicine, Mexico City 14610, Mexico; (C.E.B.-C.); (S.R.-R.); (M.M.-S.)
| |
Collapse
|
6
|
Jian J, Yuan C, Hao H. Identifying key genes and functionally enriched pathways in acute myeloid leukemia by weighted gene co-expression network analysis. J Appl Genet 2024:10.1007/s13353-024-00881-0. [PMID: 38977582 DOI: 10.1007/s13353-024-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Acute myeloid leukemia (AML) is characterized by the uncontrolled proliferation of myeloid leukemia cells in the bone marrow and other hematopoietic tissues and is highly heterogeneous. While with the progress of sequencing technology, understanding of the AML-related biomarkers is still incomplete. The purpose of this study is to identify potential biomarkers for prognosis of AML. Based on WGCNA analysis of gene mutation expression, methylation level distribution, mRNA expression, and AML-related genes in public databases were employed for investigating potential biomarkers for the prognosis of AML. This study screened a total of 6153 genes by analyzing various changes in 103 acute myeloid leukemia (AML) samples, including gene mutation expression, methylation level distribution, mRNA expression, and AML-related genes in public databases. Moreover, seven AML-related co-expression modules were mined by WGCNA analysis, and twelve biomarkers associated with the AML prognosis were identified from each top 10 genes of the seven co-expression modules. The AML samples were then classified into two subgroups, the prognosis of which is significantly different, based on the expression of these twelve genes. The differentially expressed 7 genes of two subgroups (HOXB-AS3, HOXB3, SLC9C2, CPNE8, MEG8, S1PR5, MIR196B) are mainly involved in glucose metabolism, glutathione biosynthesis, small G protein-mediated signal transduction, and the Rap1 signaling pathway. With the utilization of WGCNA mining, seven gene co-expression modules were identified from the TCGA database, and there are unreported genes that may be potential driver genes of AML and may be the direction to identify the possible molecular signatures to predict survival of AML patients and help guide experiments for potential clinical drug targets.
Collapse
Affiliation(s)
- Jimo Jian
- Qilu Hospital of Shandong University, Qingdao, 266035, Shandong, China
- Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chenglu Yuan
- Qilu Hospital of Shandong University, Qingdao, 266035, Shandong, China
| | - Hongyuan Hao
- Qilu Hospital of Shandong University, Qingdao, 266035, Shandong, China.
| |
Collapse
|
7
|
Zare-Khormizi MR, Pourrajab F. Off-Pump Coronary Artery Bypass Graft (OCABG) Surgery Outcome: AKI Incidence, Serum Uric Acid, and Cut-Offs of Variables. Cardiovasc Ther 2024; 2024:5945687. [PMID: 39742008 PMCID: PMC11239226 DOI: 10.1155/2024/5945687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/27/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose: One of the most important challenges of the medical community is to find out the success rate of coronary artery bypass surgery and control complications after surgery, including acute kidney injury (AKI). The present study was conducted with the aim of determining the predictive effect of serum uric acid (SUA) (UA) level in patients undergoing off-pump coronary artery bypass (OCABG) surgery. Methods: The present descriptive-analytical study included 144 patients who underwent OCABG and met the inclusion criteria. SUA and related indicators, duration of hospitalization and stay in ICU, AKI and in-hospital mortality, and 6-month follow-up mortality were investigated. Results: Patients were divided into high and normal groups based on SUA levels. The prevalence of postoperative AKI was 20% and was significantly associated with the preoperative UA levels (OR: 2.04; CI: 95%; 1.03-4.20). The mortality rate of patients was between 2% and 9%, which increased to 13% in patients with high SUA (p value ~0.224). The average duration of ICU and hospitalization in patients with high UA was longer than the other group (p value ~0.06 and p value ~0.002, respectively). Conclusion: SUA levels are independently associated with a higher risk of AKI and outcome complications after off-pump CABG, and confounding factors at specific cutoffs affect the odds ratio of UA for AKI occurrence.
Collapse
Affiliation(s)
- Mohamad Reza Zare-Khormizi
- Cardiovascular Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical Sciences, Kerman, Iran
- School of MedicineShahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Pourrajab
- School of MedicineShahid Sadoughi University of Medical Sciences, Yazd, Iran
- Reproductive Immunology Research CenterShahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Marchesini M, Gherli A, Simoncini E, Tor LMD, Montanaro A, Thongon N, Vento F, Liverani C, Cerretani E, D'Antuono A, Pagliaro L, Zamponi R, Spadazzi C, Follini E, Cambò B, Giaimo M, Falco A, Sammarelli G, Todaro G, Bonomini S, Adami V, Piazza S, Corbo C, Lorusso B, Mezzasoma F, Lagrasta CAM, Martelli MP, La Starza R, Cuneo A, Aversa F, Mecucci C, Quaini F, Colla S, Roti G. Orthogonal proteogenomic analysis identifies the druggable PA2G4-MYC axis in 3q26 AML. Nat Commun 2024; 15:4739. [PMID: 38834613 PMCID: PMC11150407 DOI: 10.1038/s41467-024-48953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The overexpression of the ecotropic viral integration site-1 gene (EVI1/MECOM) marks the most lethal acute myeloid leukemia (AML) subgroup carrying chromosome 3q26 abnormalities. By taking advantage of the intersectionality of high-throughput cell-based and gene expression screens selective and pan-histone deacetylase inhibitors (HDACis) emerge as potent repressors of EVI1. To understand the mechanism driving on-target anti-leukemia activity of this compound class, here we dissect the expression dynamics of the bone marrow leukemia cells of patients treated with HDACi and reconstitute the EVI1 chromatin-associated co-transcriptional complex merging on the role of proliferation-associated 2G4 (PA2G4) protein. PA2G4 overexpression rescues AML cells from the inhibitory effects of HDACis, while genetic and small molecule inhibition of PA2G4 abrogates EVI1 in 3q26 AML cells, including in patient-derived leukemia xenografts. This study positions PA2G4 at the crosstalk of the EVI1 leukemogenic signal for developing new therapeutics and urges the use of HDACis-based combination therapies in patients with 3q26 AML.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Chromosomes, Human, Pair 3/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- MDS1 and EVI1 Complex Locus Protein/metabolism
- MDS1 and EVI1 Complex Locus Protein/genetics
- Proteogenomics/methods
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Matteo Marchesini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Andrea Gherli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Elisa Simoncini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Lucas Moron Dalla Tor
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Anna Montanaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Federica Vento
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Chiara Liverani
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elisa Cerretani
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Anna D'Antuono
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Raffaella Zamponi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
| | - Chiara Spadazzi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elena Follini
- Hematology and BMT Unit, Azienda USL Piacenza, Piacenza, Italy
| | - Benedetta Cambò
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Mariateresa Giaimo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriella Sammarelli
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Giannalisa Todaro
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sabrina Bonomini
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Valentina Adami
- High-Throughput Screening Core Facility, CIBIO, University of Trento, Trento, Italy
| | - Silvano Piazza
- High-Throughput Screening Core Facility, CIBIO, University of Trento, Trento, Italy
- Computational Biology group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Claudia Corbo
- University of Milano-Bicocca, Department of Medicine and Surgery, NANOMIB Center, Monza, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federica Mezzasoma
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria Della Misericordia Hospital, Perugia, Italy
| | | | - Maria Paola Martelli
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Roberta La Starza
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Antonio Cuneo
- Department of Medical Science, University of Ferrara, Ferrara, Italy
- Hematology Unit, Azienda Ospedaliera-Universitaria S.ANNA, University of Ferrara, Ferrara, Italy
| | | | - Cristina Mecucci
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics Laboratory, University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
9
|
Dong H, He X, Zhang L, Chen W, Lin YC, Liu SB, Wang H, Nguyen LXT, Li M, Zhu Y, Zhao D, Ghoda L, Serody J, Vincent B, Luznik L, Gojo I, Zeidner J, Su R, Chen J, Sharma R, Pirrotte P, Wu X, Hu W, Han W, Shen B, Kuo YH, Jin J, Salhotra A, Wang J, Marcucci G, Luo YL, Li L. Targeting PRMT9-mediated arginine methylation suppresses cancer stem cell maintenance and elicits cGAS-mediated anticancer immunity. NATURE CANCER 2024; 5:601-624. [PMID: 38413714 PMCID: PMC11056319 DOI: 10.1038/s43018-024-00736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Current anticancer therapies cannot eliminate all cancer cells, which hijack normal arginine methylation as a means to promote their maintenance via unknown mechanisms. Here we show that targeting protein arginine N-methyltransferase 9 (PRMT9), whose activities are elevated in blasts and leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML), eliminates disease via cancer-intrinsic mechanisms and cancer-extrinsic type I interferon (IFN)-associated immunity. PRMT9 ablation in AML cells decreased the arginine methylation of regulators of RNA translation and the DNA damage response, suppressing cell survival. Notably, PRMT9 inhibition promoted DNA damage and activated cyclic GMP-AMP synthase, which underlies the type I IFN response. Genetically activating cyclic GMP-AMP synthase in AML cells blocked leukemogenesis. We also report synergy of a PRMT9 inhibitor with anti-programmed cell death protein 1 in eradicating AML. Overall, we conclude that PRMT9 functions in survival and immune evasion of both LSCs and non-LSCs; targeting PRMT9 may represent a potential anticancer strategy.
Collapse
Affiliation(s)
- Haojie Dong
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Xin He
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Lei Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Wei Chen
- Integrative Genomics Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yi-Chun Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, People's Republic of China
| | - Huafeng Wang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Min Li
- Division of Biostatistics, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yinghui Zhu
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Dandan Zhao
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Lucy Ghoda
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Jonathan Serody
- Department of Medicine, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology and Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Benjamin Vincent
- Department of Medicine, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Leo Luznik
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana Gojo
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua Zeidner
- Department of Medicine, Division of Hematology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Ritin Sharma
- Cancer & Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Medical Center, Duarte, CA, USA
| | - Patrick Pirrotte
- Cancer & Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Medical Center, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Weidong Hu
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Weidong Han
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Amandeep Salhotra
- Department of Hematology and HCT, City of Hope Medical Center, Duarte, CA, USA
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Hematology and HCT, City of Hope Medical Center, Duarte, CA, USA
| | - Yun Lyna Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA.
- Department of Pediatrics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA.
| |
Collapse
|
10
|
Ratajczak MZ, Ratajczak J. Leukemogenesis occurs in a microenvironment enriched by extracellular microvesicles/exosomes: recent discoveries and questions to be answered. Leukemia 2024; 38:692-698. [PMID: 38388648 PMCID: PMC10997496 DOI: 10.1038/s41375-024-02188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
In single-cell organisms, extracellular microvesicles (ExMVs) were one of the first cell-cell communication platforms that emerged very early during evolution. Multicellular organisms subsequently adapted this mechanism. Evidence indicates that all types of cells secrete these small circular structures surrounded by a lipid membrane that may be encrusted by ligands and receptors interacting with target cells and harboring inside a cargo comprising RNA species, proteins, bioactive lipids, signaling nucleotides, and even entire organelles "hijacked" from the cells of origin. ExMVs are secreted by normal cells and at higher levels by malignant cells, and there are some differences in their cargo. On the one hand, ExMVs secreted from malignant cells interact with cells in the microenvironment, and in return, they are exposed by a "two-way mechanism" to ExMVs secreted by non-leukemic cells. Therefore, leukemogenesis occurs and progresses in ExMVs enriched microenvironments, and this biological fact has pathologic, diagnostic, and therapeutic implications. We are still trying to decipher this intriguing cell-cell communication language better. We will present a current point of view on this topic and review some selected most recent discoveries and papers.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.
| | - Janina Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
11
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
12
|
Kang H, Hoang DH, Valerio M, Pathak K, Zhang L, Buettner R, Chen F, Estrella K, Graff W, Li Z, Xie J, Horne D, Kuo YH, Zhang B, Pirrotte P, Nguyen LXT, Marcucci G. OST-01, a natural product from Baccharis coridifolia, targets c-Myc-dependent ribogenesis in acute myeloid leukemia. Leukemia 2024; 38:657-662. [PMID: 38233463 PMCID: PMC10912030 DOI: 10.1038/s41375-024-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Affiliation(s)
- HyunJun Kang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Dinh Hoa Hoang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Melissa Valerio
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Khyatiben Pathak
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lianjun Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Ralf Buettner
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Fang Chen
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Katrina Estrella
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | | | - Zhuo Li
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jun Xie
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - David Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Ya-Huei Kuo
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA
| | - Patrick Pirrotte
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Le Xuan Truong Nguyen
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA.
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
13
|
Ge Y, Hong M, Zhang Y, Wang J, Li L, Zhu H, Sheng Y, Wu WS, Zhang Z. miR-30e-5p regulates leukemia stem cell self-renewal through the Cyb561/ROS signaling pathway. Haematologica 2024; 109:411-421. [PMID: 37584287 PMCID: PMC10828755 DOI: 10.3324/haematol.2023.282837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Leukemia stem cells (LSC) represent a crucial and rare subset of cells present in acute myeloid leukemia (AML); they play a pivotal role in the initiation, maintenance, and relapse of this disease. Targeting LSC holds great promise for preventing AML relapse and improving long-term outcomes. However the precise molecular mechanisms governing LSC self-renewal are still poorly understood. Here, we present compelling evidence that the expression of miR-30e-5p, a potential tumor-suppressive microRNA, is significantly lower in AML samples than in healthy bone marrow samples. Forced expression of miR- 30e effectively inhibits leukemogenesis, impairs LSC self-renewal, and delays leukemia progression. Mechanistically, Cyb561 acts as a direct target of miR-30e-5p in LSC, and its deficiency restricts the self-renewal of LSC by activating reactive oxygen series signaling and markedly prolongs recipients' survival. Moreover, genetic or pharmacological overexpression of miR-30e-5p or knockdown of Cyb561 suppresses the growth of human AML cells. In conclusion, our findings establish the crucial role of the miR-30e-5p/Cyb561/ROS axis in finely regulating LSC self-renewal, highlighting Cyb561 as a potential therapeutic target for LSC-directed therapies.
Collapse
Affiliation(s)
- Yanwen Ge
- School of Life Sciences, Shanghai University, Shanghai, 200444
| | - Mei Hong
- School of Life Sciences, Shanghai University, Shanghai, 200444
| | - Yu Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444
| | - Jiachen Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, the University of Illinois at Chicago, IL 60612.
| | - Zhonghui Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shaoxing Institute of Technology, Shanghai University, Shaoxing, 312000.
| |
Collapse
|
14
|
Jimbu L, Mesaros O, Joldes C, Neaga A, Zaharie L, Zdrenghea M. MicroRNAs Associated with a Bad Prognosis in Acute Myeloid Leukemia and Their Impact on Macrophage Polarization. Biomedicines 2024; 12:121. [PMID: 38255226 PMCID: PMC10813737 DOI: 10.3390/biomedicines12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding ribonucleic acids (RNAs) associated with gene expression regulation. Since the discovery of the first miRNA in 1993, thousands of miRNAs have been studied and they have been associated not only with physiological processes, but also with various diseases such as cancer and inflammatory conditions. MiRNAs have proven to be not only significant biomarkers but also an interesting therapeutic target in various diseases, including cancer. In acute myeloid leukemia (AML), miRNAs have been regarded as a welcome addition to the limited therapeutic armamentarium, and there is a vast amount of data on miRNAs and their dysregulation. Macrophages are innate immune cells, present in various tissues involved in both tissue repair and phagocytosis. Based on their polarization, macrophages can be classified into two groups: M1 macrophages with pro-inflammatory functions and M2 macrophages with an anti-inflammatory action. In cancer, M2 macrophages are associated with tumor evasion, metastasis, and a poor outcome. Several miRNAs have been associated with a poor prognosis in AML and with either the M1 or M2 macrophage phenotype. In the present paper, we review miRNAs with a reported negative prognostic significance in cancer with a focus on AML and analyze their potential impact on macrophage polarization.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Laura Zaharie
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Zhang H, Du Z, Tu C, Zhou X, Menu E, Wang J. Hypoxic Bone Marrow Stromal Cells Secrete miR-140-5p and miR-28-3p That Target SPRED1 to Confer Drug Resistance in Multiple Myeloma. Cancer Res 2024; 84:39-55. [PMID: 37756570 DOI: 10.1158/0008-5472.can-23-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/19/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Bone marrow stromal cell (BMSC)-derived small extracellular vesicles (sEV) promote drug resistance to bortezomib in multiple myeloma cells. Elucidating the components of BMSC sEV that induce drug resistance in multiple myeloma cells could help identify strategies to overcome resistance. Considering the hypoxic nature of the myeloma microenvironment, we explored the role of hypoxia in regulating BMSC sEV cargo and investigated whether hypoxia-driven sEV miRNAs contribute to the drug resistance in multiple myeloma cells. Hypoxia increased the release of sEVs from BMSCs, and these sEVs more strongly attenuated bortezomib sensitivity in multiple myeloma cells than sEVs from BMSCs under normoxic conditions. RNA sequencing revealed that significantly elevated levels of miR-140-5p and miR-28-3p were enclosed in hypoxic BMSC-derived sEVs. Both miR-140-5p and miR-28-3p conferred bortezomib resistance in multiple myeloma cells by synergistically targeting SPRED1, a member of the Sprouty protein family that regulates MAPK activation. SPRED1 inhibition reduced sensitivity to bortezomib in multiple myeloma cells through activating MAPK-related pathways and significantly promoted multiple myeloma bortezomib resistance and tumor growth in a mouse model. These findings shed light on the role of hypoxia-induced miRNAs shuttled in BMSC-derived sEVs to multiple myeloma cells in inducing drug resistance and identify the miR-140-5p/miR-28-3p/SPRED1/MAPK pathway as a potential targetable axis for treating multiple myeloma. SIGNIFICANCE Hypoxia induces stromal cells to secrete extracellular vesicles with increased miR-140-5p and miR-28-3p that are transferred to multiple myeloma cells and drive drug resistance by increasing the MAPK signaling.
Collapse
Affiliation(s)
- Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhimin Du
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- School of Nursing, Guangzhou Medical University, Guangzhou, China
| | - Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xinyan Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Zhang Z, Zhou K, Han L, Small A, Xue J, Huang H, Weng H, Su R, Tan B, Shen C, Li W, Zhao Z, Qing Y, Qin X, Wang K, Leung K, Boldin M, Chen CW, Ann D, Qian Z, Deng X, Chen J, Chen Z. RNA m 6A reader YTHDF2 facilitates precursor miR-126 maturation to promote acute myeloid leukemia progression. Genes Dis 2024; 11:382-396. [PMID: 37588203 PMCID: PMC10425806 DOI: 10.1016/j.gendis.2023.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 03/30/2023] Open
Abstract
As the most common internal modification of mRNA, N6-methyladenosine (m6A) and its regulators modulate gene expression and play critical roles in various biological and pathological processes including tumorigenesis. It was reported previously that m6A methyltransferase (writer), methyltransferase-like 3 (METTL3) adds m6A in primary microRNAs (pri-miRNAs) and facilitates its processing into precursor miRNAs (pre-miRNAs). However, it is unknown whether m6A modification also plays a role in the maturation process of pre-miRNAs and (if so) whether such a function contributes to tumorigenesis. Here, we found that YTHDF2 is aberrantly overexpressed in acute myeloid leukemia (AML) patients, especially in relapsed patients, and plays an oncogenic role in AML. Moreover, YTHDF2 promotes expression of miR-126-3p (also known as miR-126, as it is the main product of precursor miR-126 (pre-miR-126)), a miRNA that was reported as an oncomiRNA in AML, through facilitating the processing of pre-miR-126 into mature miR-126. Mechanistically, YTHDF2 recognizes m6A modification in pre-miR-126 and recruits AGO2, a regulator of pre-miRNA processing, to promote the maturation of pre-miR-126. YTHDF2 positively and negatively correlates with miR-126 and miR-126's downstream target genes, respectively, in AML patients, and forced expression of miR-126 could largely rescue YTHDF2/Ythdf2 depletion-mediated suppression on AML cell growth/proliferation and leukemogenesis, indicating that miR-126 is a functionally important target of YTHDF2 in AML. Overall, our studies not only reveal a previously unappreciated YTHDF2/miR-126 axis in AML and highlight the therapeutic potential of targeting this axis for AML treatment, but also suggest that m6A plays a role in pre-miRNA processing that contributes to tumorigenesis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, China
| | - Andrew Small
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Tongji Hospital Affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huilin Huang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Hengyou Weng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
- Bioland Laboratory, Guangzhou, Guangdong 51005, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Mark Boldin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - David Ann
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Zhijian Qian
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32603, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
17
|
Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, Liang ZF. Non-coding RNAs' function in cancer development, diagnosis and therapy. Biomed Pharmacother 2023; 167:115527. [PMID: 37751642 DOI: 10.1016/j.biopha.2023.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
While previous research on cancer biology has focused on genes that code for proteins, in recent years it has been discovered that non-coding RNAs (ncRNAs)play key regulatory roles in cell biological functions. NcRNAs account for more than 95% of human transcripts and are an important entry point for the study of the mechanism of cancer development. An increasing number of studies have demonstrated that ncRNAs can act as tumor suppressor genes or oncogenes to regulate tumor development at the epigenetic level, transcriptional level, as well as post-transcriptional level. Because of the importance of ncRNAs in cancer, most clinical trials have focused on ncRNAs to explore whether ncRNAs can be used as new biomarkers or therapies. In this review, we focus on recent studies of ncRNAs including microRNAs (miRNAs), long ncRNAs (lncRNAs), circle RNAs (circRNAs), PIWI interacting RNAs (piRNAs), and tRNA in different types of cancer and explore the application of these ncRNAs in the development of cancer and the identification of relevant therapeutic targets and tumor biomarkers. Graphical abstract drawn by Fidraw.
Collapse
Affiliation(s)
- XinYi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Xiaoqing Xu
- Nanjing Renpin ENT Hospital, Nanjing 210000, Jiangsu, China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China.
| | - Zhao Feng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu university, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
18
|
Soureas K, Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Cancer quiescence: non-coding RNAs in the spotlight. Trends Mol Med 2023; 29:843-858. [PMID: 37516569 DOI: 10.1016/j.molmed.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Cancer quiescence reflects the ability of cancer cells to enter a reversible slow-cycling or mitotically dormant state and represents a powerful self-protecting mechanism preventing cancer cell 'damage' from hypoxic conditions, nutrient deprivation, immune surveillance, and (chemo)therapy. When stress conditions are restrained, and tumor microenvironment becomes beneficial, quiescent cancer cells re-enter cell cycle to facilitate tumor spread and cancer progression/metastasis. Recent studies have highlighted the dynamic role of regulatory non-coding RNAs (ncRNAs) in orchestrating cancer quiescence. The elucidation of regulatory ncRNA networks will shed light on the quiescence-proliferation equilibrium and, ultimately, pave the way for new treatment options. Herein, we have summarized the ever-growing role of ncRNAs upon cancer quiescence regulation and their impact on treatment resistance and modern cancer therapeutics.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece.
| |
Collapse
|
19
|
de Oliveira C, Gonçalves PG, Bidinotto LT. Role of EGFL7 in human cancers: A review. J Cell Physiol 2023; 238:1756-1767. [PMID: 37490307 DOI: 10.1002/jcp.31084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
EGFL7 is a proangiogenic factor. It has been widely described with having a vital role in tubulogenesis and regulation of angiogenesis, mainly during embryogenesis and organogenesis. It has been mainly associated with NOTCH pathway, but there are reports showing association with MAPK and integrin pathways. Given its association with angiogenesis and these other pathways, there are several studies associating EGFL7 with carcinogenesis. In fact, most of the studies have pointed to EGFL7 as an oncogene, and some of them suggest EGFL7 expression as a possible biomarker of prognosis or use for a patient's follow-up. Here, we review the molecular pathways which EGFL7 is associated and highlight several studies describing the role of EGFL7 in tumorigenesis, separated by tumor type. Besides its role on angiogenesis, EGFL7 may act in other pathways as oncogene, which makes it a possible biomarker and a candidate to targeted therapy.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Paola Gyuliane Gonçalves
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Lucas Tadeu Bidinotto
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Human and Experimental Biology Department, Barretos School of Health Sciences, Dr Paulo Prata - FACISB, Barretos, São Paulo, Brazil
| |
Collapse
|
20
|
Wu SC, Lai SW, Lu XJ, Lai HF, Chen YG, Chen PH, Ho CL, Wu YY, Chiu YL. Profiling of miRNAs and their interfering targets in peripheral blood mononuclear cells from patients with chronic myeloid leukaemia. Front Oncol 2023; 13:1173970. [PMID: 37476380 PMCID: PMC10356106 DOI: 10.3389/fonc.2023.1173970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction MicroRNAs may be implicated in the acquisition of drug resistance in chronic myeloid leukemia as they regulate the expression of not only BCR-ABL1 but also genes associated with the activation of drug transfer proteins or essential signaling pathways. Methods To understand the impact of specifically expressed miRNAs in chronic myeloid leukemia and their target genes, we collected peripheral blood mononuclear cells (PBMC) from patients diagnosed with chronic myeloid leukemia (CML) and healthy donors to determine whole miRNA expression by small RNA sequencing and screened out 31 differentially expressed microRNAs (DE-miRNAs) with high expression. With the utilization of miRNA set enrichment analysis tools, we present here a comprehensive analysis of the relevance of DE-miRNAs to disease and biological function. Furthermore, the literature-based miRNA-target gene database was used to analyze the overall target genes of the DE-miRNAs and to define their associated biological responses. We further integrated DE-miRNA target genes to identify CML miRNA targeted gene signature singscore (CMTGSS) and used gene-set enrichment analysis (GSEA) to analyze the correlation between CMTGSS and Hallmark gene-sets in PBMC samples from clinical CML patients. Finally, the association of CMTGSS stratification with multiple CML cell lineage gene sets was validated in PBMC samples from CML patients using GSEA. Results Although individual miRNAs have been reported to have varying degrees of impact on CML, overall, our results show that abnormally upregulated miRNAs are associated with apoptosis and aberrantly downregulated miRNAs are associated with cell cycle. The clinical database shows that our defined DE-miRNAs are associated with the prognosis of CML patients. CMTGSS-based stratification analysis presented a tendency for miRNAs to affect cell differentiation in the blood microenvironment. Conclusion Collectively, this study defined differentially expressed miRNAs by miRNA sequencing from clinical samples and comprehensively analyzed the biological functions of the differential miRNAs in association with the target genes. The analysis of the enrichment of specific myeloid differentiated cells and immune cells also suggests the magnitude and potential targets of differentially expressed miRNAs in the clinical setting. It helps us to make links between the different results obtained from the multi-faceted studies to provide more potential research directions.
Collapse
Affiliation(s)
- Sheng-Cheng Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, Magong City, Taiwan
| | - Shiue-Wei Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Xin-Jie Lu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Guang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Po-Huang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Ying Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
21
|
Amin SA, Khatun S, Gayen S, Das S, Jha T. Are inhibitors of histone deacetylase 8 (HDAC8) effective in hematological cancers especially acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)? Eur J Med Chem 2023; 258:115594. [PMID: 37429084 DOI: 10.1016/j.ejmech.2023.115594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Histone deacetylase 8 (HDAC8) aberrantly deacetylates histone and non-histone proteins. These include structural maintenance of chromosome 3 (SMC3) cohesin protein, retinoic acid induced 1 (RAI1), p53, etc and thus, regulating diverse processes such as leukemic stem cell (LSC) transformation and maintenance. HDAC8, one of the crucial HDACs, affects the gene silencing process in solid and hematological cancer progressions especially on acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). A specific HDAC8 inhibitor PCI-34051 showed promising results against both T-cell lymphoma and AML. Here, we summarize the role of HDAC8 in hematological malignancies, especially in AML and ALL. This article also introduces the structure/function of HDAC8 and a special attention has been paid to address the HDAC8 enzyme selectivity issue in hematological cancer especially against AML and ALL.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India.
| | - Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
22
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
23
|
Hashemi M, Roshanzamir SM, Paskeh MDA, Karimian SS, Mahdavi MS, Kheirabad SK, Naeemi S, Taheriazam A, Salimimoghaddam S, Entezari M, Mirzaei S, Samarghandian S. Non-coding RNAs and exosomal ncRNAs in multiple myeloma: An emphasis on molecular pathways. Eur J Pharmacol 2023; 941:175380. [PMID: 36627099 DOI: 10.1016/j.ejphar.2022.175380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 01/08/2023]
Abstract
One of the most common hematological malignancies is multiple myeloma (MM) that its mortality and morbidity have increased. The incidence rate of MM is suggested to be higher in Europe and various kinds of therapeutic strategies including stem cell transplantation. However, MM treatment is still challenging and gene therapy has been shown to be promising. The non-coding RNAs (ncRNAs) including miRNAs, lncRNAs and circRNAs are considered as key players in initiation, development and progression of MM. In the present review, the role of ncRNAs in MM progression and drug resistance is highlighted to provide new insights for future experiments for their targeting and treatment of MM. The miRNAs affect proliferation and invasion of MM cells, and targeting tumor-promoting miRNAs can induce apoptosis and cell cycle arrest, and reduces proliferation of MM cells. Furthermore, miRNA regulation is of importance for modulating metastasis and chemotherapy response of tumor cells. The lncRNAs exert the same function and determine proliferation, migration and therapy response of MM cells. Notably, lncRNAs mainly target miRNAs in regulating MM progression. The circRNAs also target different molecular pathways in regulating MM malignancy that miRNAs are the most well-known ones. Furthermore, clinical application of ncRNAs in MM is discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Sadat Mahdavi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shokooh Salimimoghaddam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
24
|
Gimeno M, San José-Enériz E, Villar S, Agirre X, Prosper F, Rubio A, Carazo F. Explainable artificial intelligence for precision medicine in acute myeloid leukemia. Front Immunol 2022; 13:977358. [PMID: 36248800 PMCID: PMC9556772 DOI: 10.3389/fimmu.2022.977358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Artificial intelligence (AI) can unveil novel personalized treatments based on drug screening and whole-exome sequencing experiments (WES). However, the concept of “black box” in AI limits the potential of this approach to be translated into the clinical practice. In contrast, explainable AI (XAI) focuses on making AI results understandable to humans. Here, we present a novel XAI method -called multi-dimensional module optimization (MOM)- that associates drug screening with genetic events, while guaranteeing that predictions are interpretable and robust. We applied MOM to an acute myeloid leukemia (AML) cohort of 319 ex-vivo tumor samples with 122 screened drugs and WES. MOM returned a therapeutic strategy based on the FLT3, CBFβ-MYH11, and NRAS status, which predicted AML patient response to Quizartinib, Trametinib, Selumetinib, and Crizotinib. We successfully validated the results in three different large-scale screening experiments. We believe that XAI will help healthcare providers and drug regulators better understand AI medical decisions.
Collapse
Affiliation(s)
- Marian Gimeno
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián, Spain
| | - Edurne San José-Enériz
- Programa Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Villar
- Departamento de Hematología and CCUN (Cancer Center University of Navarra), Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Xabier Agirre
- Programa Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Programa Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Departamento de Hematología and CCUN (Cancer Center University of Navarra), Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Angel Rubio
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián, Spain
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Universidad de Navarra, Pamplona, Spain
- *Correspondence: Angel Rubio, ; Fernando Carazo,
| | - Fernando Carazo
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián, Spain
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Universidad de Navarra, Pamplona, Spain
- *Correspondence: Angel Rubio, ; Fernando Carazo,
| |
Collapse
|
25
|
Zhang C, Ni C, Lu H. Polo-Like Kinase 2: From Principle to Practice. Front Oncol 2022; 12:956225. [PMID: 35898867 PMCID: PMC9309260 DOI: 10.3389/fonc.2022.956225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase (PLK) 2 is an evolutionarily conserved serine/threonine kinase that shares the n-terminal kinase catalytic domain and the C-terminal Polo Box Domain (PBD) with other members of the PLKs family. In the last two decades, mounting studies have focused on this and tried to clarify its role in many aspects. PLK2 is essential for mitotic centriole replication and meiotic chromatin pairing, synapsis, and crossing-over in the cell cycle; Loss of PLK2 function results in cell cycle disorders and developmental retardation. PLK2 is also involved in regulating cell differentiation and maintaining neural homeostasis. In the process of various stimuli-induced stress, including oxidative and endoplasmic reticulum, PLK2 may promote survival or apoptosis depending on the intensity of stimulation and the degree of cell damage. However, the role of PLK2 in immunity to viral infection has been studied far less than that of other family members. Because PLK2 is extensively and deeply involved in normal physiological functions and pathophysiological mechanisms of cells, its role in diseases is increasingly being paid attention to. The effect of PLK2 in inhibiting hematological tumors and fibrotic diseases, as well as participating in neurodegenerative diseases, has been gradually recognized. However, the research results in solid organ tumors show contradictory results. In addition, preliminary studies using PLK2 as a disease predictor and therapeutic target have yielded some exciting and promising results. More research will help people better understand PLK2 from principle to practice.
Collapse
Affiliation(s)
- Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- *Correspondence: Hao Lu,
| |
Collapse
|
26
|
Implication of microRNAs in Carcinogenesis with Emphasis on Hematological Malignancies and Clinical Translation. Int J Mol Sci 2022; 23:ijms23105838. [PMID: 35628648 PMCID: PMC9143361 DOI: 10.3390/ijms23105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs, that are involved in the multistep process of carcinogenesis, contributing to all established hallmarks of cancer. In this review, implications of miRNAs in hematological malignancies and their clinical utilization fields are discussed. As components of the complex regulatory network of gene expression, influenced by the tissue microenvironment and epigenetic modifiers, miRNAs are “micromanagers” of all physiological processes including the regulation of hematopoiesis and metabolic pathways. Dysregulated miRNA expression levels contribute to both the initiation and progression of acute leukemias, the metabolic reprogramming of malignantly transformed hematopoietic precursors, and to the development of chemoresistance. Since they are highly stable and can be easily quantified in body fluids and tissue specimens, miRNAs are promising biomarkers for the early detection of hematological malignancies. Besides novel opportunities for differential diagnosis, miRNAs can contribute to advanced chemoresistance prediction and prognostic stratification of acute leukemias. Synthetic oligonucleotides and delivery vehicles aim the therapeutic modulation of miRNA expression levels. However, major challenges such as efficient delivery to specific locations, differences of miRNA expression patterns between pediatric and adult hematological malignancies, and potential side effects of miRNA-based therapies should be considered.
Collapse
|
27
|
Sibilano M, Tullio V, Adorno G, Savini I, Gasperi V, Catani MV. Platelet-Derived miR-126-3p Directly Targets AKT2 and Exerts Anti-Tumor Effects in Breast Cancer Cells: Further Insights in Platelet-Cancer Interplay. Int J Mol Sci 2022; 23:ijms23105484. [PMID: 35628294 PMCID: PMC9141257 DOI: 10.3390/ijms23105484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
Among the surrounding cells influencing tumor biology, platelets are recognized as novel players as they release microvesicles (MVs) that, once delivered to cancer cells, modulate signaling pathways related to cell growth and dissemination. We have previously shown that physiological delivery of platelet MVs enriched in miR-126 exerted anti-tumor effects in different breast cancer (BC) cell lines. Here, we seek further insight by identifying AKT2 kinase as a novel miR-126-3p direct target, as assessed by bioinformatic analysis and validated by luciferase assay. Both ectopic expression and platelet MV-mediated delivery of miR-126-3p downregulated AKT2 expression, thus suppressing proliferating and invading properties, in either triple negative (BT549 cells) or less aggressive Luminal A (MCF-7 cells) BC subtypes. Accordingly, as shown by bioinformatic analysis, both high miR-126 and low AKT2 levels were associated with favorable long-term prognosis in BC patients. Our results, together with the literature data, indicate that miR-126-3p exerts suppressor activity by specifically targeting components of the PIK3/AKT signaling cascade. Therefore, management of platelet-derived MV production and selective delivery of miR-126-3p to tumor cells may represent a useful tool in multimodal therapeutic approaches in BC patients.
Collapse
Affiliation(s)
- Matteo Sibilano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
| | - Valentina Tullio
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
| | - Gaspare Adorno
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Isabella Savini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
| | - Valeria Gasperi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
- Correspondence: (V.G.); (M.V.C.); Tel.: +39-06-7259-6465 (V.G.); +39-06-7259-6465 (M.V.C.)
| | - Maria Valeria Catani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
- Correspondence: (V.G.); (M.V.C.); Tel.: +39-06-7259-6465 (V.G.); +39-06-7259-6465 (M.V.C.)
| |
Collapse
|
28
|
Wei X, Wu J, Li J, Yang Q. PLK2 targets GSK3β to protect against cisplatin-induced acute kidney injury. Exp Cell Res 2022; 417:113181. [PMID: 35523306 DOI: 10.1016/j.yexcr.2022.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Cisplatin-induced acute kidney injury (AKI), which is accompanied by a rapid decline in renal function and a high risk of death, is a complex critical illness with no effective or specific treatment. Polo-like kinase 2 (PLK2), a serine/threonine kinase, is involved in the progression of multiple diseases, including cancers, cardiac fibrosis, diabetic nephropathy, etc. Here, by integrating two Gene Expression Omnibus (GEO) datasets of cisplatin-induced AKI animal models, we identified PLK2 as a significantly up-regulated gene in AKI renal tissues, which was then verified in different AKI animal models and cell models. Suppressing PLK2 using siRNAs or inhibitors could enhance cisplatin-induced AKI by inducing severe apoptosis and oxidative stress damage, while enforced PLK2 expression could prevent renal dysfunction induced by cisplatin. We further discovered that PLK2 might phosphorylate glycogen synthase kinase 3β (GSK3β) in the pathogenesis of AKI. In conclusion, our results show that PLK2 play a protective role in cisplatin-induced AKI and may be a new protective target of cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Xiaona Wei
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wu
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiongqiong Yang
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Frankhouser DE, O’Meally D, Branciamore S, Uechi L, Zhang L, Chen YC, Li M, Qin H, Wu X, Carlesso N, Marcucci G, Rockne RC, Kuo YH. Dynamic patterns of microRNA expression during acute myeloid leukemia state-transition. SCIENCE ADVANCES 2022; 8:eabj1664. [PMID: 35452289 PMCID: PMC9032952 DOI: 10.1126/sciadv.abj1664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/08/2022] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNAs) have been shown to hold prognostic value in acute myeloid leukemia (AML); however, the temporal dynamics of miRNA expression in AML are poorly understood. Using serial samples from a mouse model of AML to generate time-series miRNA sequencing data, we are the first to show that the miRNA transcriptome undergoes state-transition during AML initiation and progression. We modeled AML state-transition as a particle undergoing Brownian motion in a quasi-potential and validated the AML state-space and state-transition model to accurately predict time to AML in an independent cohort of mice. The critical points of the model provided a framework to align samples from mice that developed AML at different rates. Our mathematical approach allowed discovery of dynamic processes involved during AML development and, if translated to humans, has the potential to predict an individual's disease trajectory.
Collapse
Affiliation(s)
- David E. Frankhouser
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Denis O’Meally
- Center for Gene Therapy, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sergio Branciamore
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lisa Uechi
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lianjun Zhang
- Department of Hematological Malignancies Translational Science, Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
- The Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ying-Chieh Chen
- Department of Hematological Malignancies Translational Science, Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
- The Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Man Li
- Department of Hematological Malignancies Translational Science, Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
- The Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hanjun Qin
- Department of Computational and Quantitative Medicine, Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nadia Carlesso
- The Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Stem Cell and Regenerative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
- The Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Russell C. Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
- The Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
30
|
Hoang DH, Zhao D, Branciamore S, Maestrini D, Rodriguez IR, Kuo YH, Rockne R, Khaled SK, Zhang B, Nguyen LXT, Marcucci G. MicroRNA networks in FLT3-ITD acute myeloid leukemia. Proc Natl Acad Sci U S A 2022; 119:e2112482119. [PMID: 35412895 PMCID: PMC9169767 DOI: 10.1073/pnas.2112482119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/11/2022] [Indexed: 12/29/2022] Open
Abstract
MiR-126 and miR-155 are key microRNAs (miRNAs) that regulate, respectively, hematopoietic cell quiescence and proliferation. Herein we showed that in acute myeloid leukemia (AML), the biogenesis of these two miRNAs is interconnected through a network of regulatory loops driven by the FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD). In fact, FLT3-ITD induces the expression of miR-155 through a noncanonical mechanism of miRNA biogenesis that implicates cytoplasmic Drosha ribonuclease III (DROSHA). In turn, miR-155 down-regulates SH2-containing inositol phosphatase 1 (SHIP1), thereby increasing phosphor-protein kinase B (AKT) that in turn serine-phosphorylates, stabilizes, and activates Sprouty related EVH1 domain containing 1 (SPRED1). Activated SPRED1 inhibits the RAN/XPO5 complex and blocks the nucleus-to-cytoplasm transport of pre-miR-126, which cannot then complete the last steps of biogenesis. The net result is aberrantly low levels of mature miR-126 that allow quiescent leukemia blasts to be recruited into the cell cycle and proliferate. Thus, miR-126 down-regulation in proliferating AML blasts is downstream of FLT3-ITD–dependent miR-155 expression that initiates a complex circuit of concatenated regulatory feedback (i.e., miR-126/SPRED1, miR-155/human dead-box protein 3 [DDX3X]) and feed-forward (i.e., miR-155/SHIP1/AKT/miR-126) regulatory loops that eventually converge into an output signal for leukemic growth.
Collapse
Affiliation(s)
- Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Dandan Zhao
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Davide Maestrini
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Ivan R. Rodriguez
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Russell Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Samer K. Khaled
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope Medical Center, Hematologic Malignancies Research Institute and Center for Stem Cell Transplantation, Duarte, CA 91010
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010
| |
Collapse
|
31
|
Almohsen F, Al-Rubaie HA, Habib MA, Nasr SA, Perni R, Al-Quraishi L. Circulating miR-126-3p and miR-423-5p Expression in de novo Adult Acute Myeloid Leukemia: Correlations with Response to Induction Therapy and the 2-Year Overall Survival. J Blood Med 2022; 13:83-92. [PMID: 35210895 PMCID: PMC8863343 DOI: 10.2147/jbm.s347397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Background Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Faez Almohsen
- College of Medicine, University of Baghdad, Baghdad, Iraq
- Correspondence: Faez Almohsen, College of Medicine, University of Baghdad, Baghdad, Iraq, Tel +964 7902834062, Email
| | | | - Manal A Habib
- College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Sherif A Nasr
- siParadigm Diagnostic Informatics, New Jersey, NJ, USA
| | | | | |
Collapse
|
32
|
Ganesan S, Mathews V, Vyas N. Microenvironment and drug resistance in acute myeloid leukemia: Do we know enough? Int J Cancer 2021; 150:1401-1411. [PMID: 34921734 DOI: 10.1002/ijc.33908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AMLs), as the name suggests, often develop suddenly and are very progressive forms of cancer. Unlike in acute promyelocytic leukemia, a subtype of AML, the outcomes in most other AMLs remain poor. This is mainly attributed to the acquired drug resistance and lack of targeted therapy. Different studies across laboratories suggest that the cellular mechanisms to impart therapy resistance are often very dynamic and should be identified in a context-specific manner. Our review highlights the progress made so far in identifying the different cellular mechanisms of mutation-independent therapy resistance in AML. It reiterates that for more effective outcomes cancer therapies should acquire a more tailored approach where the protective interactions between the cancer cells and their niches are identified and targeted.
Collapse
Affiliation(s)
- Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Neha Vyas
- Division of Molecular Medicine, St. John's Research Institute, SJNAHS, Bengaluru, India
| |
Collapse
|