1
|
Zhang Y, Wang M, Zhu Q, Guo Y, Liu B, Li J, Yao X, Kong C, Zhang Y, Huang Y, Qi H, Wu J, Guo ZV, Dai Q. Long-term mesoscale imaging of 3D intercellular dynamics across a mammalian organ. Cell 2024; 187:6104-6122.e25. [PMID: 39276776 DOI: 10.1016/j.cell.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/06/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
A comprehensive understanding of physio-pathological processes necessitates non-invasive intravital three-dimensional (3D) imaging over varying spatial and temporal scales. However, huge data throughput, optical heterogeneity, surface irregularity, and phototoxicity pose great challenges, leading to an inevitable trade-off between volume size, resolution, speed, sample health, and system complexity. Here, we introduce a compact real-time, ultra-large-scale, high-resolution 3D mesoscope (RUSH3D), achieving uniform resolutions of 2.6 × 2.6 × 6 μm3 across a volume of 8,000 × 6,000 × 400 μm3 at 20 Hz with low phototoxicity. Through the integration of multiple computational imaging techniques, RUSH3D facilitates a 13-fold improvement in data throughput and an orders-of-magnitude reduction in system size and cost. With these advantages, we observed premovement neural activity and cross-day visual representational drift across the mouse cortex, the formation and progression of multiple germinal centers in mouse inguinal lymph nodes, and heterogeneous immune responses following traumatic brain injury-all at single-cell resolution, opening up a horizon for intravital mesoscale study of large-scale intercellular interactions at the organ level.
Collapse
Affiliation(s)
- Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Mingrui Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Qiyu Zhu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yuduo Guo
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Bo Liu
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Jiamin Li
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiao Yao
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chui Kong
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Yi Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yuchao Huang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hai Qi
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Zengcai V Guo
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Lorca-Cámara A, Blot FGC, Accanto N. Recent advances in light patterned optogenetic photostimulation in freely moving mice. NEUROPHOTONICS 2024; 11:S11508. [PMID: 38404422 PMCID: PMC10885521 DOI: 10.1117/1.nph.11.s1.s11508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Optogenetics opened the door to a new era of neuroscience. New optical developments are under way to enable high-resolution neuronal activity imaging and selective photostimulation of neuronal ensembles in freely moving animals. These advancements could allow researchers to interrogate, with cellular precision, functionally relevant neuronal circuits in the framework of naturalistic brain activity. We provide an overview of the current state-of-the-art of imaging and photostimulation in freely moving rodents and present a road map for future optical and engineering developments toward miniaturized microscopes that could reach beyond the currently existing systems.
Collapse
Affiliation(s)
| | | | - Nicolò Accanto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
3
|
Ding P, Wahn H, Chen FD, Li J, Mu X, Stalmashonak A, Luo X, Lo GQ, Poon JKS, Sacher WD. Photonic neural probe enabled microendoscopes for light-sheet light-field computational fluorescence brain imaging. NEUROPHOTONICS 2024; 11:S11503. [PMID: 38322247 PMCID: PMC10846542 DOI: 10.1117/1.nph.11.s1.s11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
Significance Light-sheet fluorescence microscopy is widely used for high-speed, high-contrast, volumetric imaging. Application of this technique to in vivo brain imaging in non-transparent organisms has been limited by the geometric constraints of conventional light-sheet microscopes, which require orthogonal fluorescence excitation and collection objectives. We have recently demonstrated implantable photonic neural probes that emit addressable light sheets at depth in brain tissue, miniaturizing the excitation optics. Here, we propose a microendoscope consisting of a light-sheet neural probe packaged together with miniaturized fluorescence collection optics based on an image fiber bundle for lensless, light-field, computational fluorescence imaging. Aim Foundry-fabricated, silicon-based, light-sheet neural probes can be packaged together with commercially available image fiber bundles to form microendoscopes for light-sheet light-field fluorescence imaging at depth in brain tissue. Approach Prototype microendoscopes were developed using light-sheet neural probes with five addressable sheets and image fiber bundles. Fluorescence imaging with the microendoscopes was tested with fluorescent beads suspended in agarose and fixed mouse brain tissue. Results Volumetric light-sheet light-field fluorescence imaging was demonstrated using the microendoscopes. Increased imaging depth and enhanced reconstruction accuracy were observed relative to epi-illumination light-field imaging using only a fiber bundle. Conclusions Our work offers a solution toward volumetric fluorescence imaging of brain tissue with a compact size and high contrast. The proof-of-concept demonstrations herein illustrate the operating principles and methods of the imaging approach, providing a foundation for future investigations of photonic neural probe enabled microendoscopes for deep-brain fluorescence imaging in vivo.
Collapse
Affiliation(s)
- Peisheng Ding
- Max Planck Institute of Microstructure Physics, Halle, Germany
- University of Toronto, Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
| | - Hannes Wahn
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Fu-Der Chen
- Max Planck Institute of Microstructure Physics, Halle, Germany
- University of Toronto, Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Ontario, Canada
| | - Jianfeng Li
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Ontario, Canada
| | - Xin Mu
- Max Planck Institute of Microstructure Physics, Halle, Germany
- University of Toronto, Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Ontario, Canada
| | | | | | | | - Joyce K. S. Poon
- Max Planck Institute of Microstructure Physics, Halle, Germany
- University of Toronto, Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Ontario, Canada
| | - Wesley D. Sacher
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the surface: unmasking the brain's complexity exploiting optical scattering. NEUROPHOTONICS 2024; 11:S11510. [PMID: 38617592 PMCID: PMC11014413 DOI: 10.1117/1.nph.11.s1.s11510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Caio Vaz Rimoli
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Walther Akemann
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Cathie Ventalon
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Laurent Bourdieu
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Sylvain Gigan
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Hilton B. de Aguiar
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| |
Collapse
|
5
|
Jia D, Cui M, Ding X. Visualizing DNA/RNA, Proteins, and Small Molecule Metabolites within Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404482. [PMID: 39096065 DOI: 10.1002/smll.202404482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Live cell imaging is essential for obtaining spatial and temporal insights into dynamic molecular events within heterogeneous individual cells, in situ intracellular networks, and in vivo organisms. Molecular tracking in live cells is also a critical and general requirement for studying dynamic physiological processes in cell biology, cancer, developmental biology, and neuroscience. Alongside this context, this review provides a comprehensive overview of recent research progress in live-cell imaging of RNAs, DNAs, proteins, and small-molecule metabolites, as well as their applications in molecular diagnosis, immunodiagnosis, and biochemical diagnosis. A series of advanced live-cell imaging techniques have been introduced and summarized, including high-precision live-cell imaging, high-resolution imaging, low-abundance imaging, multidimensional imaging, multipath imaging, rapid imaging, and computationally driven live-cell imaging methods, all of which offer valuable insights for disease prevention, diagnosis, and treatment. This review article also addresses the current challenges, potential solutions, and future development prospects in this field.
Collapse
Affiliation(s)
- Dongling Jia
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Minhui Cui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
6
|
Hu J, Cherkkil A, Surinach DA, Oladepo I, Hossain RF, Fausner S, Saxena K, Ko E, Peters R, Feldkamp M, Konda PC, Pathak V, Horstmeyer R, Kodandaramaiah SB. Pan-cortical cellular imaging in freely behaving mice using a miniaturized micro-camera array microscope (mini-MCAM). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.601964. [PMID: 39005454 PMCID: PMC11245122 DOI: 10.1101/2024.07.04.601964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Understanding how circuits in the brain simultaneously coordinate their activity to mediate complex ethnologically relevant behaviors requires recording neural activities from distributed populations of neurons in freely behaving animals. Current miniaturized imaging microscopes are typically limited to imaging a relatively small field of view, precluding the measurement of neural activities across multiple brain regions. Here we present a miniaturized micro-camera array microscope (mini-MCAM) that consists of four fluorescence imaging micro-cameras, each capable of capturing neural activity across a 4.5 mm x 2.55 mm field of view (FOV). Cumulatively, the mini-MCAM images over 30 mm 2 area of sparsely expressed GCaMP6s neurons distributed throughout the dorsal cortex, in regions including the primary and secondary motor, somatosensory, visual, retrosplenial, and association cortices across both hemispheres. We demonstrate cortex-wide cellular resolution in vivo Calcium (Ca 2+ ) imaging using the mini-MCAM in both head-fixed and freely behaving mice.
Collapse
|
7
|
Hira R. Closed-loop experiments and brain machine interfaces with multiphoton microscopy. NEUROPHOTONICS 2024; 11:033405. [PMID: 38375331 PMCID: PMC10876015 DOI: 10.1117/1.nph.11.3.033405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
In the field of neuroscience, the importance of constructing closed-loop experimental systems has increased in conjunction with technological advances in measuring and controlling neural activity in live animals. We provide an overview of recent technological advances in the field, focusing on closed-loop experimental systems where multiphoton microscopy-the only method capable of recording and controlling targeted population activity of neurons at a single-cell resolution in vivo-works through real-time feedback. Specifically, we present some examples of brain machine interfaces (BMIs) using in vivo two-photon calcium imaging and discuss applications of two-photon optogenetic stimulation and adaptive optics to real-time BMIs. We also consider conditions for realizing future optical BMIs at the synaptic level, and their possible roles in understanding the computational principles of the brain.
Collapse
Affiliation(s)
- Riichiro Hira
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Physiology and Cell Biology, Tokyo, Japan
| |
Collapse
|
8
|
Mizuta K, Sato M. Multiphoton imaging of hippocampal neural circuits: techniques and biological insights into region-, cell-type-, and pathway-specific functions. NEUROPHOTONICS 2024; 11:033406. [PMID: 38464393 PMCID: PMC10923542 DOI: 10.1117/1.nph.11.3.033406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Significance The function of the hippocampus in behavior and cognition has long been studied primarily through electrophysiological recordings from freely moving rodents. However, the application of optical recording methods, particularly multiphoton fluorescence microscopy, in the last decade or two has dramatically advanced our understanding of hippocampal function. This article provides a comprehensive overview of techniques and biological findings obtained from multiphoton imaging of hippocampal neural circuits. Aim This review aims to summarize and discuss the recent technical advances in multiphoton imaging of hippocampal neural circuits and the accumulated biological knowledge gained through this technology. Approach First, we provide a brief overview of various techniques of multiphoton imaging of the hippocampus and discuss its advantages, drawbacks, and associated key innovations and practices. Then, we review a large body of findings obtained through multiphoton imaging by region (CA1 and dentate gyrus), cell type (pyramidal neurons, inhibitory interneurons, and glial cells), and cellular compartment (dendrite and axon). Results Multiphoton imaging of the hippocampus is primarily performed under head-fixed conditions and can reveal detailed mechanisms of circuit operation owing to its high spatial resolution and specificity. As the hippocampus lies deep below the cortex, its imaging requires elaborate methods. These include imaging cannula implantation, microendoscopy, and the use of long-wavelength light sources. Although many studies have focused on the dorsal CA1 pyramidal cells, studies of other local and inter-areal circuitry elements have also helped provide a more comprehensive picture of the information processing performed by the hippocampal circuits. Imaging of circuit function in mouse models of Alzheimer's disease and other brain disorders such as autism spectrum disorder has also contributed greatly to our understanding of their pathophysiology. Conclusions Multiphoton imaging has revealed much regarding region-, cell-type-, and pathway-specific mechanisms in hippocampal function and dysfunction in health and disease. Future technological advances will allow further illustration of the operating principle of the hippocampal circuits via the large-scale, high-resolution, multimodal, and minimally invasive imaging.
Collapse
Affiliation(s)
- Kotaro Mizuta
- RIKEN BDR, Kobe, Japan
- New York University Abu Dhabi, Department of Biology, Abu Dhabi, United Arab Emirates
| | - Masaaki Sato
- Hokkaido University Graduate School of Medicine, Department of Neuropharmacology, Sapporo, Japan
| |
Collapse
|
9
|
Sarafraz H, Nöbauer T, Kim H, Soldevila F, Gigan S, Vaziri A. Speckle-enabled in vivo demixing of neural activity in the mouse brain. BIOMEDICAL OPTICS EXPRESS 2024; 15:3586-3608. [PMID: 38867774 PMCID: PMC11166431 DOI: 10.1364/boe.524521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 06/14/2024]
Abstract
Functional imaging of neuronal activity in awake animals, using a combination of fluorescent reporters of neuronal activity and various types of microscopy modalities, has become an indispensable tool in neuroscience. While various imaging modalities based on one-photon (1P) excitation and parallel (camera-based) acquisition have been successfully used for imaging more transparent samples, when imaging mammalian brain tissue, due to their scattering properties, two-photon (2P) microscopy systems are necessary. In 2P microscopy, the longer excitation wavelengths reduce the amount of scattering while the diffraction-limited 3D localization of excitation largely eliminates out-of-focus fluorescence. However, this comes at the cost of time-consuming serial scanning of the excitation spot and more complex and expensive instrumentation. Thus, functional 1P imaging modalities that can be used beyond the most transparent specimen are highly desirable. Here, we transform light scattering from an obstacle into a tool. We use speckles with their unique patterns and contrast, formed when fluorescence from individual neurons propagates through rodent cortical tissue, to encode neuronal activity. Spatiotemporal demixing of these patterns then enables functional recording of neuronal activity from a group of discriminable sources. For the first time, we provide an experimental, in vivo characterization of speckle generation, speckle imaging and speckle-assisted demixing of neuronal activity signals in the scattering mammalian brain tissue. We found that despite an initial fast speckle decorrelation, substantial correlation was maintained over minute-long timescales that contributed to our ability to demix temporal activity traces in the mouse brain in vivo. Informed by in vivo quantifications of speckle patterns from single and multiple neurons excited using 2P scanning excitation, we recorded and demixed activity from several sources excited using 1P oblique illumination. In our proof-of-principle experiments, we demonstrate in vivo speckle-assisted demixing of functional signals from groups of sources in a depth range of 220-320 µm in mouse cortex, limited by available speckle contrast. Our results serve as a basis for designing an in vivo functional speckle imaging modality and for maximizing the key resource in any such modality, the speckle contrast. We anticipate that our results will provide critical quantitative guidance to the community for designing techniques that overcome light scattering as a fundamental limitation in bioimaging.
Collapse
Affiliation(s)
- Hossein Sarafraz
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Fernando Soldevila
- Laboratoire Kastler Brossel, ENS–Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005 Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS–Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005 Paris, France
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
10
|
Vickers ED, McCormick DA. Pan-cortical 2-photon mesoscopic imaging and neurobehavioral alignment in awake, behaving mice. eLife 2024; 13:RP94167. [PMID: 38808733 PMCID: PMC11136495 DOI: 10.7554/elife.94167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
The flow of neural activity across the neocortex during active sensory discrimination is constrained by task-specific cognitive demands, movements, and internal states. During behavior, the brain appears to sample from a broad repertoire of activation motifs. Understanding how these patterns of local and global activity are selected in relation to both spontaneous and task-dependent behavior requires in-depth study of densely sampled activity at single neuron resolution across large regions of cortex. In a significant advance toward this goal, we developed procedures to record mesoscale 2-photon Ca2+ imaging data from two novel in vivo preparations that, between them, allow for simultaneous access to nearly all 0f the mouse dorsal and lateral neocortex. As a proof of principle, we aligned neural activity with both behavioral primitives and high-level motifs to reveal the existence of large populations of neurons that coordinated their activity across cortical areas with spontaneous changes in movement and/or arousal. The methods we detail here facilitate the identification and exploration of widespread, spatially heterogeneous neural ensembles whose activity is related to diverse aspects of behavior.
Collapse
Affiliation(s)
- Evan D Vickers
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - David A McCormick
- Institute of Neuroscience, University of OregonEugeneUnited States
- Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
11
|
Manley J, Lu S, Barber K, Demas J, Kim H, Meyer D, Traub FM, Vaziri A. Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number. Neuron 2024; 112:1694-1709.e5. [PMID: 38452763 PMCID: PMC11098699 DOI: 10.1016/j.neuron.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/18/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The brain's remarkable properties arise from the collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, can such low-dimensional representations truly explain the vast range of brain activity, and if not, what is the appropriate resolution and scale of recording to capture them? Imaging neural activity at cellular resolution and near-simultaneously across the mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number in populations up to 1 million neurons. Although half of the neural variance is contained within sixteen dimensions correlated with behavior, our discovered scaling of dimensionality corresponds to an ever-increasing number of neuronal ensembles without immediate behavioral or sensory correlates. The activity patterns underlying these higher dimensions are fine grained and cortex wide, highlighting that large-scale, cellular-resolution recording is required to uncover the full substrates of neuronal computations.
Collapse
Affiliation(s)
- Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Sihao Lu
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Kevin Barber
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - David Meyer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Francisca Martínez Traub
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
12
|
Ocklenburg S, Guo ZV. Cross-hemispheric communication: Insights on lateralized brain functions. Neuron 2024; 112:1222-1234. [PMID: 38458199 DOI: 10.1016/j.neuron.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/13/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
On the surface, the two hemispheres of vertebrate brains look almost perfectly symmetrical, but several motor, sensory, and cognitive systems show a deeply lateralized organization. Importantly, the two hemispheres are connected by various commissures, white matter tracts that cross the brain's midline and enable cross-hemispheric communication. Cross-hemispheric communication has been suggested to play an important role in the emergence of lateralized brain functions. Here, we review current advances in understanding cross-hemispheric communication that have been made using modern neuroscientific tools in rodents and other model species, such as genetic labeling, large-scale recordings of neuronal activity, spatiotemporally precise perturbation, and quantitative behavior analyses. These findings suggest that the emergence of lateralized brain functions cannot be fully explained by largely static factors such as genetic variation and differences in structural brain asymmetries. In addition, learning-dependent asymmetric interactions between the left and right hemispheres shape lateralized brain functions.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Zengcai V Guo
- School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Yu Y, Adsit LM, Smith IT. Comprehensive software suite for functional analysis and synaptic input mapping of dendritic spines imaged in vivo. NEUROPHOTONICS 2024; 11:024307. [PMID: 38628980 PMCID: PMC11021036 DOI: 10.1117/1.nph.11.2.024307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Significance Advances in genetically encoded sensors and two-photon imaging have unlocked functional imaging at the level of single dendritic spines. Synaptic activity can be measured in real time in awake animals. However, tools are needed to facilitate the analysis of the large datasets acquired by the approach. Commonly available software suites for imaging calcium transients in cell bodies are ill-suited for spine imaging as dendritic spines have structural characteristics distinct from those of the cell bodies. We present an automated tuning analysis tool (AUTOTUNE), which provides analysis routines specifically developed for the extraction and analysis of signals from subcellular compartments, including dendritic subregions and spines. Aim Although the acquisition of in vivo functional synaptic imaging data is increasingly accessible, a hurdle remains in the computation-heavy analyses of the acquired data. The aim of this study is to overcome this barrier by offering a comprehensive software suite with a user-friendly interface for easy access to nonprogrammers. Approach We demonstrate the utility and effectiveness of our software with demo analyses of dendritic imaging data acquired from layer 2/3 pyramidal neurons in mouse V1 in vivo. A user manual and demo datasets are also provided. Results AUTOTUNE provides a robust workflow for analyzing functional imaging data from neuronal dendrites. Features include source image registration, segmentation of regions-of-interest and detection of structural turnover, fluorescence transient extraction and smoothing, subtraction of signals from putative backpropagating action potentials, and stimulus and behavioral parameter response tuning analyses. Conclusions AUTOTUNE is open-source and extendable for diverse functional synaptic imaging experiments. The ease of functional characterization of dendritic spine activity provided by our software can accelerate new functional studies that complement decades of morphological studies of dendrites, and further expand our understanding of neural circuits in health and in disease.
Collapse
Affiliation(s)
- Yiyi Yu
- University of California, Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Liam M. Adsit
- University of California, Santa Barbara, Department of Molecular, Cellular and Developmental Biology, Santa Barbara, California, United States
| | - Ikuko T. Smith
- University of California, Santa Barbara, Department of Molecular, Cellular and Developmental Biology, Santa Barbara, California, United States
- University of California, Santa Barbara, Neuroscience Research Institute, Santa Barbara, California, United States
- University of California, Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| |
Collapse
|
14
|
Ichimura T, Kakizuka T, Sato Y, Fujioka Y, Ohba Y, Horikawa K, Nagai T. Strength in numbers: Unleashing the potential of trans-scale scope AMATERAS for massive cell quantification. Biophys Physicobiol 2024; 21:e211017. [PMID: 39175860 PMCID: PMC11338690 DOI: 10.2142/biophysico.bppb-v21.s017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024] Open
Abstract
Singularity biology is a scientific field that targets drastic state changes in multicellular systems, aiming to discover the key cells that induce the state change and investigate the mechanisms behind them. To achieve this goal, we developed a trans-scale optical imaging system (trans-scale scope), that is capable of capturing both macroscale changes across the entire system and the micro-scale behavior of individual cells, surpassing the cell observation capabilities of traditional microscopes. We developed two units of the trans-scale scope, named AMATERAS-1 and -2, which demonstrated the ability to observe multicellular systems consisting of over one million cells in a single field of view with sub-cellular resolution. This flagship instrument has been used to observe the dynamics of various cell species, with the advantage of being able to observe a large number of cells, allowing the detection and analysis of rare events and cells such as leader cells in multicellular pattern formation and cells that spontaneously initiate calcium waves. In this paper, we present the design concept of AMATERAS, the optical configuration, and several examples of observations, and demonstrate how the strength-in-numbers works in life sciences.
Collapse
Affiliation(s)
- Taro Ichimura
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taishi Kakizuka
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yuki Sato
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima 770-8503, Japan
| | - Takeharu Nagai
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
15
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the Surface: Unmasking the Brain's Complexity Exploiting Optical Scattering. ARXIV 2024:arXiv:2403.14809v1. [PMID: 38562443 PMCID: PMC10984001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Caio Vaz Rimoli
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Walther Akemann
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Bourdieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
16
|
Takahashi T, Zhang H, Agetsuma M, Nabekura J, Otomo K, Okamura Y, Nemoto T. Large-scale cranial window for in vivo mouse brain imaging utilizing fluoropolymer nanosheet and light-curable resin. Commun Biol 2024; 7:232. [PMID: 38438546 PMCID: PMC10912766 DOI: 10.1038/s42003-024-05865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.
Collapse
Affiliation(s)
- Taiga Takahashi
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Hong Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
| | - Junichi Nabekura
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kohei Otomo
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yosuke Okamura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
17
|
Manley J, Demas J, Kim H, Traub FM, Vaziri A. Simultaneous, cortex-wide and cellular-resolution neuronal population dynamics reveal an unbounded scaling of dimensionality with neuron number. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575721. [PMID: 38293036 PMCID: PMC10827059 DOI: 10.1101/2024.01.15.575721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The brain's remarkable properties arise from collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, what would be the biological utility of such a redundant and metabolically costly encoding scheme and what is the appropriate resolution and scale of neural recording to understand brain function? Imaging the activity of one million neurons at cellular resolution and near-simultaneously across mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number. While half of the neural variance lies within sixteen behavior-related dimensions, we find this unbounded scaling of dimensionality to correspond to an ever-increasing number of internal variables without immediate behavioral correlates. The activity patterns underlying these higher dimensions are fine-grained and cortex-wide, highlighting that large-scale recording is required to uncover the full neural substrates of internal and potentially cognitive processes.
Collapse
Affiliation(s)
- Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Francisca Martínez Traub
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
18
|
Yu CH, Yu Y, Adsit LM, Chang JT, Barchini J, Moberly AH, Benisty H, Kim J, Young BK, Heng K, Farinella DM, Leikvoll A, Pavan R, Vistein R, Nanfito BR, Hildebrand DGC, Otero-Coronel S, Vaziri A, Goldberg JL, Ricci AJ, Fitzpatrick D, Cardin JA, Higley MJ, Smith GB, Kara P, Nielsen KJ, Smith IT, Smith SL. The Cousa objective: a long-working distance air objective for multiphoton imaging in vivo. Nat Methods 2024; 21:132-141. [PMID: 38129618 PMCID: PMC10776402 DOI: 10.1038/s41592-023-02098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/23/2023] [Indexed: 12/23/2023]
Abstract
Multiphoton microscopy can resolve fluorescent structures and dynamics deep in scattering tissue and has transformed neural imaging, but applying this technique in vivo can be limited by the mechanical and optical constraints of conventional objectives. Short working distance objectives can collide with compact surgical windows or other instrumentation and preclude imaging. Here we present an ultra-long working distance (20 mm) air objective called the Cousa objective. It is optimized for performance across multiphoton imaging wavelengths, offers a more than 4 mm2 field of view with submicrometer lateral resolution and is compatible with commonly used multiphoton imaging systems. A novel mechanical design, wider than typical microscope objectives, enabled this combination of specifications. We share the full optical prescription, and report performance including in vivo two-photon and three-photon imaging in an array of species and preparations, including nonhuman primates. The Cousa objective can enable a range of experiments in neuroscience and beyond.
Collapse
Affiliation(s)
- Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Yiyi Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Liam M Adsit
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jeremy T Chang
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Jad Barchini
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Hadas Benisty
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Jinkyung Kim
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brent K Young
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen Heng
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
- Neurosciences Interdepartmental Program, Stanford University, Stanford, CA, USA
| | - Deano M Farinella
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Austin Leikvoll
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Rishaab Pavan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Vistein
- Department of Molecular and Comparative Pathobiology, and Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Brandon R Nanfito
- Solomon H. Snyder Department of Neuroscience, and Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Santiago Otero-Coronel
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Anthony J Ricci
- Department of Otolaryngology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | - Gordon B Smith
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kristina J Nielsen
- Solomon H. Snyder Department of Neuroscience, and Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ikuko T Smith
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Psychology and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Psychology and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
19
|
Ultra-long-working-distance multiphoton objective unlocks new possibilities for imaging. Nat Methods 2024; 21:24-25. [PMID: 38129619 DOI: 10.1038/s41592-023-02116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
|
20
|
Pinke D, Issa JB, Dara GA, Dobos G, Dombeck DA. Full field-of-view virtual reality goggles for mice. Neuron 2023; 111:3941-3952.e6. [PMID: 38070501 PMCID: PMC10841834 DOI: 10.1016/j.neuron.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Visual virtual reality (VR) systems for head-fixed mice offer advantages over real-world studies for investigating the neural circuitry underlying behavior. However, current VR approaches do not fully cover the visual field of view of mice, do not stereoscopically illuminate the binocular zone, and leave the lab frame visible. To overcome these limitations, we developed iMRSIV (Miniature Rodent Stereo Illumination VR)-VR goggles for mice. Our system is compact, separately illuminates each eye for stereo vision, and provides each eye with an ∼180° field of view, thus excluding the lab frame while accommodating saccades. Mice using iMRSIV while navigating engaged in virtual behaviors more quickly than in a current monitor-based system and displayed freezing and fleeing reactions to overhead looming stimulation. Using iMRSIV with two-photon functional imaging, we found large populations of hippocampal place cells during virtual navigation, global remapping during environment changes, and unique responses of place cell ensembles to overhead looming stimulation.
Collapse
Affiliation(s)
- Domonkos Pinke
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - John B Issa
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Gabriel A Dara
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Gergely Dobos
- 360world Ltd, Sümegvár köz 9, 1118 Budapest, Hungary
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
21
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Hoffmann M, Henninger J, Veith J, Richter L, Judkewitz B. Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity. Nat Commun 2023; 14:8019. [PMID: 38049412 PMCID: PMC10695970 DOI: 10.1038/s41467-023-43741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Due to the size and opacity of vertebrate brains, it has until now been impossible to simultaneously record neuronal activity at cellular resolution across the entire adult brain. As a result, scientists are forced to choose between cellular-resolution microscopy over limited fields-of-view or whole-brain imaging at coarse-grained resolution. Bridging the gap between these spatial scales of understanding remains a major challenge in neuroscience. Here, we introduce blazed oblique plane microscopy to perform brain-wide recording of neuronal activity at cellular resolution in an adult vertebrate. Contrary to common belief, we find that inferences of neuronal population activity are near-independent of spatial scale: a set of randomly sampled neurons has a comparable predictive power as the same number of coarse-grained macrovoxels. Our work thus links cellular resolution with brain-wide scope, challenges the prevailing view that macroscale methods are generally inferior to microscale techniques and underscores the value of multiscale approaches to studying brain-wide activity.
Collapse
Affiliation(s)
- Maximilian Hoffmann
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Rockefeller University, New York, USA
| | - Jörg Henninger
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Veith
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology, Humboldt University Berlin, Berlin, Germany
| | - Lars Richter
- Department of Chemistry and Center for NanoScience, Ludwig Maximilians University, Munich, Germany
| | - Benjamin Judkewitz
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Lee CH, Park YK, Lee K. Recent strategies for neural dynamics observation at a larger scale and wider scope. Biosens Bioelectron 2023; 240:115638. [PMID: 37647685 DOI: 10.1016/j.bios.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The tremendous technical progress in neuroscience offers opportunities to observe a more minor or/and broader dynamic picture of the brain. Moreover, the large-scale neural activity of individual neurons enables the dissection of detailed mechanistic links between neural populations and behaviors. To measure neural activity in-vivo, multi-neuron recording, and neuroimaging techniques are employed and developed to acquire more neurons. The tools introduced concurrently recorded dozens to hundreds of neurons in the coordinated brain regions and elucidated the neuronal ensembles from a massive population perspective of diverse neurons at cellular resolution. In particular, the increasing spatiotemporal resolution of neuronal monitoring across the whole brain dramatically facilitates our understanding of additional nervous system functions in health and disease. Here, we will introduce state-of-the-art neuroscience tools involving large-scale neural population recording and the long-range connections spanning multiple brain regions. Their synergic effects provide to clarify the controversial circuitry underlying neuroscience. These challenging neural tools present a promising outlook for the fundamental dynamic interplay across levels of synaptic cellular, circuit organization, and brain-wide. Hence, more observations of neural dynamics will provide more clues to elucidate brain functions and push forward innovative technology at the intersection of neural engineering disciplines. We hope this review will provide insight into the use or development of recent neural techniques considering spatiotemporal scales of brain observation.
Collapse
Affiliation(s)
- Chang Hak Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Young Kwon Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Kwang Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea.
| |
Collapse
|
24
|
Hope J, Beckerle T, Cheng PH, Viavattine Z, Feldkamp M, Fausner S, Saxena K, Ko E, Hryb I, Carter R, Ebner T, Kodandaramaiah S. Brain-wide neural recordings in mice navigating physical spaces enabled by a cranial exoskeleton. RESEARCH SQUARE 2023:rs.3.rs-3491330. [PMID: 38014260 PMCID: PMC10680923 DOI: 10.21203/rs.3.rs-3491330/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Complex behaviors are mediated by neural computations occurring throughout the brain. In recent years, tremendous progress has been made in developing technologies that can record neural activity at cellular resolution at multiple spatial and temporal scales. However, these technologies are primarily designed for studying the mammalian brain during head fixation - wherein the behavior of the animal is highly constrained. Miniaturized devices for studying neural activity in freely behaving animals are largely confined to recording from small brain regions owing to performance limitations. We present a cranial exoskeleton that assists mice in maneuvering neural recording headstages that are orders of magnitude larger and heavier than the mice, while they navigate physical behavioral environments. Force sensors embedded within the headstage are used to detect the mouse's milli-Newton scale cranial forces which then control the x, y, and yaw motion of the exoskeleton via an admittance controller. We discovered optimal controller tuning parameters that enable mice to locomote at physiologically realistic velocities and accelerations while maintaining natural walking gait. Mice maneuvering headstages weighing up to 1.5 kg can make turns, navigate 2D arenas, and perform a navigational decision-making task with the same performance as when freely behaving. We designed an imaging headstage and an electrophysiology headstage for the cranial exoskeleton to record brain-wide neural activity in mice navigating 2D arenas. The imaging headstage enabled recordings of Ca2+ activity of 1000s of neurons distributed across the dorsal cortex. The electrophysiology headstage supported independent control of up to 4 silicon probes, enabling simultaneous recordings from 100s of neurons across multiple brain regions and multiple days. Cranial exoskeletons provide flexible platforms for largescale neural recording during the exploration of physical spaces, a critical new paradigm for unraveling the brain-wide neural mechanisms that control complex behavior.
Collapse
Affiliation(s)
- James Hope
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
| | - Travis Beckerle
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
| | - Pin-Hao Cheng
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
| | - Zoey Viavattine
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
| | - Michael Feldkamp
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
| | - Skylar Fausner
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
| | - Kapil Saxena
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
| | - Eunsong Ko
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
| | - Ihor Hryb
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
- Department of Neuroscience, University of Minnesota, Twin Cities
| | - Russell Carter
- Department of Biomedical Engineering, University of Minnesota, Twin Cities
| | - Timothy Ebner
- Department of Biomedical Engineering, University of Minnesota, Twin Cities
| | - Suhasa Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Twin Cities
- Department of Biomedical Engineering, University of Minnesota, Twin Cities
- Department of Neuroscience, University of Minnesota, Twin Cities
| |
Collapse
|
25
|
Kim SJ, Affan RO, Frostig H, Scott BB, Alexander AS. Advances in cellular resolution microscopy for brain imaging in rats. NEUROPHOTONICS 2023; 10:044304. [PMID: 38076724 PMCID: PMC10704261 DOI: 10.1117/1.nph.10.4.044304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 02/12/2024]
Abstract
Rats are used in neuroscience research because of their physiological similarities with humans and accessibility as model organisms, trainability, and behavioral repertoire. In particular, rats perform a wide range of sophisticated social, cognitive, motor, and learning behaviors within the contexts of both naturalistic and laboratory environments. Further progress in neuroscience can be facilitated by using advanced imaging methods to measure the complex neural and physiological processes during behavior in rats. However, compared with the mouse, the rat nervous system offers a set of challenges, such as larger brain size, decreased neuron density, and difficulty with head restraint. Here, we review recent advances in in vivo imaging techniques in rats with a special focus on open-source solutions for calcium imaging. Finally, we provide suggestions for both users and developers of in vivo imaging systems for rats.
Collapse
Affiliation(s)
- Su Jin Kim
- Johns Hopkins University, Department of Psychological and Brain Sciences, Baltimore, Maryland, United States
| | - Rifqi O. Affan
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
- Boston University, Graduate Program in Neuroscience, Boston, Massachusetts, United States
| | - Hadas Frostig
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
| | - Benjamin B. Scott
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center and Photonics Center, Boston, Massachusetts, United States
| | - Andrew S. Alexander
- University of California Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| |
Collapse
|
26
|
Leikvoll A, Kara P. High fidelity sensory-evoked responses in neocortex after intravenous injection of genetically encoded calcium sensors. Front Neurosci 2023; 17:1181828. [PMID: 37250396 PMCID: PMC10213453 DOI: 10.3389/fnins.2023.1181828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Two-photon imaging of genetically-encoded calcium indicators (GECIs) has traditionally relied on intracranial injections of adeno-associated virus (AAV) or transgenic animals to achieve expression. Intracranial injections require an invasive surgery and result in a relatively small volume of tissue labeling. Transgenic animals, although they can have brain-wide GECI expression, often express GECIs in only a small subset of neurons, may have abnormal behavioral phenotypes, and are currently limited to older generations of GECIs. Inspired by recent developments in the synthesis of AAVs that readily cross the blood brain barrier, we tested whether an alternative strategy of intravenously injecting AAV-PHP.eB is suitable for two-photon calcium imaging of neurons over many months after injection. We injected C57BL/6 J mice with AAV-PHP.eB-Synapsin-jGCaMP7s via the retro-orbital sinus. After allowing 5 to 34 weeks for expression, we performed conventional and widefield two-photon imaging of layers 2/3, 4 and 5 of the primary visual cortex. We found reproducible trial-by-trial neural responses and tuning properties consistent with known feature selectivity in the visual cortex. Thus, intravenous injection of AAV-PHP.eB does not interfere with the normal processing in neural circuits. In vivo and histological images show no nuclear expression of jGCaMP7s for at least 34 weeks post-injection.
Collapse
Affiliation(s)
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
Zhang Y, Zhang G, Han X, Wu J, Li Z, Li X, Xiao G, Xie H, Fang L, Dai Q. Rapid detection of neurons in widefield calcium imaging datasets after training with synthetic data. Nat Methods 2023; 20:747-754. [PMID: 37002377 PMCID: PMC10172132 DOI: 10.1038/s41592-023-01838-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
Widefield microscopy can provide optical access to multi-millimeter fields of view and thousands of neurons in mammalian brains at video rate. However, tissue scattering and background contamination results in signal deterioration, making the extraction of neuronal activity challenging, laborious and time consuming. Here we present our deep-learning-based widefield neuron finder (DeepWonder), which is trained by simulated functional recordings and effectively works on experimental data to achieve high-fidelity neuronal extraction. Equipped with systematic background contribution priors, DeepWonder conducts neuronal inference with an order-of-magnitude-faster speed and improved accuracy compared with alternative approaches. DeepWonder removes background contaminations and is computationally efficient. Specifically, DeepWonder accomplishes 50-fold signal-to-background ratio enhancement when processing terabytes-scale cortex-wide functional recordings, with over 14,000 neurons extracted in 17 h.
Collapse
Affiliation(s)
- Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Guoxun Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Xiaofei Han
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Ziwei Li
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xinyang Li
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Lu Fang
- Department of Electronic Engineering, Tsinghua University, Beijing, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China.
| |
Collapse
|
28
|
Abdeladim L, Shin H, Jagadisan UK, Ogando MB, Adesnik H. Probing inter-areal computations with a cellular resolution two-photon holographic mesoscope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530875. [PMID: 37090604 PMCID: PMC10120651 DOI: 10.1101/2023.03.02.530875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brain computation depends on intricately connected yet highly distributed neural networks. Due to the absence of the requisite technologies, causally testing fundamental hypotheses on the nature of inter-areal processing have remained largely out-of-each. Here we developed the first two photon holographic mesoscope, a system capable of simultaneously reading and writing neural activity patterns with single cell resolution across large regions of the brain. We demonstrate the precise photo-activation of spatial and temporal sequences of neurons in one brain area while reading out the downstream effect in several other regions. Investigators can use this new platform to understand feed-forward and feed-back processing in distributed neural circuits with single cell precision for the first time.
Collapse
|
29
|
Li R, Wang S, Lyu J, Chen K, Sun X, Huang J, Sun P, Liang S, Li M, Yang M, Liu H, Zeng S, Chen X, Li L, Jia H, Zhou Z. Ten-kilohertz two-photon microscopy imaging of single-cell dendritic activity and hemodynamics in vivo. NEUROPHOTONICS 2023; 10:025006. [PMID: 37152357 PMCID: PMC10156610 DOI: 10.1117/1.nph.10.2.025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Significance The studying of rapid neuronal signaling across large spatial scales in intact, living brains requires both high temporal resolution and versatility of the measurement device. Aim We introduce a high-speed two-photon microscope based on a custom-built acousto-optic deflector (AOD). This microscope has a maximum line scan frequency of 400 kHz and a maximum frame rate of 10,000 frames per second (fps) at 250 × 40 pixels . For stepwise magnification from population view to subcellular view with high spatial and temporal resolution, we combined the AOD with resonance-galvo (RS) scanning. Approach With this combinatorial device that supports both large-view navigation and small-view high-speed imaging, we measured dendritic calcium propagation velocity and the velocity of single red blood cells (RBCs). Results We measured dendritic calcium propagation velocity ( 80 / 62.5 - 116.7 μ m / ms ) in OGB-1-labeled single cortical neurons in mice in vivo. To benchmark the spatial precision and detection sensitivity of measurement in vivo, we also visualized the trajectories of single RBCs and found that their movement speed follows Poiseuille's law of laminar flow. Conclusions This proof-of-concept methodological development shows that the combination of AOD and RS scanning two-photon microscopy provides both versatility and precision for quantitative analysis of single neuronal activities and hemodynamics in vivo.
Collapse
Affiliation(s)
- Ruijie Li
- Guangxi University, Advanced Institute for Brain and Intelligence, School of Physical Science and Technology, Nanning, China
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
| | - Sibo Wang
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Jing Lyu
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Ke Chen
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Medical School, Chengdu, China
| | - Xiaxin Sun
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Medical School, Chengdu, China
| | - Junjie Huang
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Pei Sun
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
| | - Susu Liang
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Min Li
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Mengke Yang
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Hongbang Liu
- Guangxi University, Advanced Institute for Brain and Intelligence, School of Physical Science and Technology, Nanning, China
| | - Shaoqun Zeng
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Xiaowei Chen
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Longhui Li
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Hongbo Jia
- Guangxi University, Advanced Institute for Brain and Intelligence, School of Physical Science and Technology, Nanning, China
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Technical University Munich, Institute of Neuroscience and the SyNergy Cluster, Munich, Germany
| | - Zhenqiao Zhou
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| |
Collapse
|
30
|
Leikvoll A, Kara P. High fidelity sensory-evoked responses in neocortex after intravenous injection of genetically encoded calcium sensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531938. [PMID: 36945523 PMCID: PMC10028972 DOI: 10.1101/2023.03.09.531938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Two-photon imaging of genetically-encoded calcium indicators (GECIs) has traditionally relied on intracranial injections of adeno-associated virus (AAV) or transgenic animals to achieve expression. Intracranial injections require an invasive surgery and result in a relatively small volume of tissue labeling. Transgenic animals, although they can have brain-wide GECI expression, often express GECIs in only a small subset of neurons, may have abnormal behavioral phenotypes, and are currently limited to older generations of GECIs. Inspired by recent developments in the synthesis of AAVs that readily cross the blood brain barrier, we tested whether an alternative strategy of intravenously injecting AAV-PhP.eB is suitable for two-photon calcium imaging of neurons over many months after injection. We injected young (postnatal day 23 to 31) C57BL/6J mice with AAV-PhP.eB-Synapsin-jGCaMP7s via the retro-orbital sinus. After allowing 5 to 34 weeks for expression, we performed conventional and widefield two-photon imaging of layers 2/3, 4 and 5 of the primary visual cortex. We found reproducible trial-by-trial neural responses and tuning properties consistent with known feature selectivity in the visual cortex. Thus, intravenous injection of AAV-PhP.eB does not interfere with the normal processing in neural circuits. In vivo and histological images show no nuclear expression of jGCaMP7s for at least 34 weeks post-injection.
Collapse
Affiliation(s)
- Austin Leikvoll
- Department of Neuroscience, University of Minnesota, Minneapolis MN
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis MN
| |
Collapse
|
31
|
Mertz L. Advances in Microscopy Tech Offer Better Views. IEEE Pulse 2023; 14:2-7. [PMID: 37028371 DOI: 10.1109/mpuls.2023.3243316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Microscopes have come a very long way since the 1600s when Henry Power, Robert Hooke, and Anton van Leeuwenhoek began publishing the first views of plant cells and bacteria. The major inventions of contrast, electron, and scanning tunneling microscopes didn't arrive until the 20th century, and the men behind them all earned Nobel Prizes in physics for their efforts. Today, innovations in microscopy are coming at a fast and furious rate with new technologies providing first-time views and information about biological structures and activity, and opening up new avenues for disease therapies.
Collapse
|
32
|
Wang Y, LeDue JM, Murphy TH. Multiscale imaging informs translational mouse modeling of neurological disease. Neuron 2022; 110:3688-3710. [PMID: 36198319 DOI: 10.1016/j.neuron.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Multiscale neurophysiology reveals that simple motor actions are associated with changes in neuronal firing in virtually every brain region studied. Accordingly, the assessment of focal pathology such as stroke or progressive neurodegenerative diseases must also extend widely across brain areas. To derive mechanistic information through imaging, multiple resolution scales and multimodal factors must be included, such as the structure and function of specific neurons and glial cells and the dynamics of specific neurotransmitters. Emerging multiscale methods in preclinical animal studies that span micro- to macroscale examinations fill this gap, allowing a circuit-based understanding of pathophysiological mechanisms. Combined with high-performance computation and open-source data repositories, these emerging multiscale and large field-of-view techniques include live functional ultrasound, multi- and single-photon wide-scale light microscopy, video-based miniscopes, and tissue-penetrating fiber photometry, as well as variants of post-mortem expansion microscopy. We present these technologies and outline use cases and data pipelines to uncover new knowledge within animal models of stroke, Alzheimer's disease, and movement disorders.
Collapse
Affiliation(s)
- Yundi Wang
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey M LeDue
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
33
|
Nietz AK, Popa LS, Streng ML, Carter RE, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Neuronal Network Dynamics In Vivo. BIOLOGY 2022; 11:1601. [PMID: 36358302 PMCID: PMC9687960 DOI: 10.3390/biology11111601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martha L. Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
34
|
Abstract
The ability to develop effective new treatments for epilepsy may depend on improved understanding of seizure pathophysiology, about which many questions remain. Dynamic fluorescence imaging of activity at single-neuron resolution with fluorescent indicators in experimental model systems in vivo has revolutionized basic neuroscience and has the potential to do so for epilepsy research as well. Here, we review salient issues as they pertain to experimental imaging in basic epilepsy research, including commonly used imaging technologies, data processing and analysis, interpretation of results, and selected examples of how imaging-based approaches have revealed new insight into mechanisms of seizures and epilepsy.
Collapse
Affiliation(s)
- Patrick N. Lawlor
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Ethan M. Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
35
|
Chan CJ, Hirashima T. Tissue hydraulics in reproduction. Semin Cell Dev Biol 2022; 131:124-133. [PMID: 35606275 DOI: 10.1016/j.semcdb.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The development of functional eggs and sperm are critical processes in mammalian development as they ensure successful reproduction and species propagation. While past studies have identified important genes that regulate these processes, the roles of luminal flow and fluid stress in reproductive biology remain less well understood. Here, we discuss recent evidence that support the diverse functions of luminal fluid in oogenesis, spermatogenesis and embryogenesis. We also review emerging techniques that allow for precise quantification and perturbation of tissue hydraulics in female and male reproductive systems, and propose new questions and approaches in this field. We hope this review will provide a useful resource to inspire future research in tissue hydraulics in reproductive biology and diseases.
Collapse
Affiliation(s)
- Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; The Hakubi Center/Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
36
|
Machado TA, Kauvar IV, Deisseroth K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 2022; 23:683-704. [PMID: 36192596 PMCID: PMC10327445 DOI: 10.1038/s41583-022-00634-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries - in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.
Collapse
Affiliation(s)
- Timothy A Machado
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
McCullough CM, Ramirez-Gordillo D, Hall M, Futia GL, Moran AK, Gibson EA, Restrepo D. GRINtrode: a neural implant for simultaneous two-photon imaging and extracellular electrophysiology in freely moving animals. NEUROPHOTONICS 2022; 9:045009. [PMID: 36466189 PMCID: PMC9713693 DOI: 10.1117/1.nph.9.4.045009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/01/2022] [Indexed: 06/11/2023]
Abstract
Significance In vivo imaging and electrophysiology are powerful tools to explore neuronal function that each offer unique complementary information with advantages and limitations. Capturing both data types from the same neural population in the freely moving animal would allow researchers to take advantage of the capabilities of both modalities and further understand how they relate to each other. Aim Here, we present a head-mounted neural implant suitable for in vivo two-photon imaging of neuronal activity with simultaneous extracellular electrical recording in head-fixed or fiber-coupled freely moving animals. Approach A gradient refractive index (GRIN) lens-based head-mounted neural implant with extracellular electrical recording provided by tetrodes on the periphery of the GRIN lens was chronically implanted. The design of the neural implant allows for recording from head-fixed animals, as well as freely moving animals by coupling the imaging system to a coherent imaging fiber bundle. Results We demonstrate simultaneous two-photon imaging of GCaMP and extracellular electrophysiology of neural activity in awake head-fixed and freely moving mice. Using the collected information, we perform correlation analysis to reveal positive correlation between optical and local field potential recordings. Conclusion Simultaneously recording neural activity using both optical and electrical methods provides complementary information from each modality. Designs that can provide such bi-modal recording in freely moving animals allow for the investigation of neural activity underlying a broader range of behavioral paradigms.
Collapse
Affiliation(s)
- Connor M. McCullough
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, Colorado, United States
| | - Daniel Ramirez-Gordillo
- University of Colorado Anschutz Medical Campus, Department of Neurosurgery, Aurora, Colorado, United States
| | - Michael Hall
- University of Colorado Anschutz Medical Campus, Neuroscience Machine Shop, Aurora, Colorado, United States
| | - Gregory L. Futia
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, Colorado, United States
| | - Andrew K. Moran
- University of Colorado Anschutz Medical Campus, Department of Cell and Development Biology, Aurora, Colorado, United States
| | - Emily A. Gibson
- University of Colorado Anschutz Medical Campus, Department of Bioengineering, Aurora, Colorado, United States
| | - Diego Restrepo
- University of Colorado Anschutz Medical Campus, Department of Cell and Development Biology, Aurora, Colorado, United States
| |
Collapse
|
38
|
Battistella E, Schniete J, Wesencraft K, Quintana JF, McConnell G. Light-sheet mesoscopy with the Mesolens provides fast sub-cellular resolution imaging throughout large tissue volumes. iScience 2022; 25:104797. [PMID: 36034214 PMCID: PMC9404659 DOI: 10.1016/j.isci.2022.104797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid imaging of large biological tissue specimens such as ultrathick sections of mouse brain cannot easily be performed with a standard microscope. Optical mesoscopy offers a solution, but thus far imaging has been too slow to be useful for routine use. We have developed two different illuminators for light-sheet mesoscopy with the Mesolens and we demonstrate their use in high-speed optical mesoscale imaging of large tissue specimens. The first light-sheet approach uses Gaussian optics and is straightforward to implement. It provides excellent lateral resolution and high-speed imaging, but the axial resolution is poor. The second light-sheet is a more complex Airy light-sheet that provides sub-cellular resolution in three dimensions that is comparable in quality to point-scanning confocal mesoscopy, but the light-sheet method of illuminating the specimen reduces the imaging time by a factor of 14. This creates new possibilities for high-content, higher-throughput optical bioimaging at the mesoscale.
Collapse
Affiliation(s)
- Eliana Battistella
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, UK
| | - Jan Schniete
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, UK
| | - Katrina Wesencraft
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, UK
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG, UK
| |
Collapse
|
39
|
Zhang R, Zhuang C, Wang Z, Xiao G, Chen K, Li H, Tong L, Mi W, Xie H, Cao J. Simultaneous Observation of Mouse Cortical and Hippocampal Neural Dynamics under Anesthesia through a Cranial Microprism Window. BIOSENSORS 2022; 12:bios12080567. [PMID: 35892463 PMCID: PMC9332076 DOI: 10.3390/bios12080567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
Abstract
The fluorescence microscope has been widely used to explore dynamic processes in vivo in mouse brains, with advantages of a large field-of-view and high spatiotemporal resolution. However, owing to background light and tissue scattering, the single-photon wide-field microscope fails to record dynamic neural activities in the deep brain. To achieve simultaneous imaging of deep-brain regions and the superficial cortex, we combined the extended-field-of-view microscopy previously proposed with a novel prism-based cranial window to provide a longitudinal view. As well as a right-angle microprism for imaging above 1 mm, we also designed a new rectangular-trapezoidal microprism cranial window to extend the depth of observation to 1.5 mm and to reduce brain injury. We validated our method with structural imaging of microglia cells in the superficial cortex and deep-brain regions. We also recorded neuronal activity from the mouse brains in awake and anesthesitized states. The results highlight the great potential of our methods for simultaneous dynamic imaging in the superficial and deep layers of mouse brains.
Collapse
Affiliation(s)
- Rujin Zhang
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; (R.Z.); (Z.W.); (K.C.); (H.L.); (L.T.); (W.M.)
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing 100084, China; (C.Z.); (G.X.)
| | - Zilin Wang
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; (R.Z.); (Z.W.); (K.C.); (H.L.); (L.T.); (W.M.)
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing 100084, China; (C.Z.); (G.X.)
| | - Kunsha Chen
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; (R.Z.); (Z.W.); (K.C.); (H.L.); (L.T.); (W.M.)
| | - Hao Li
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; (R.Z.); (Z.W.); (K.C.); (H.L.); (L.T.); (W.M.)
| | - Li Tong
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; (R.Z.); (Z.W.); (K.C.); (H.L.); (L.T.); (W.M.)
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; (R.Z.); (Z.W.); (K.C.); (H.L.); (L.T.); (W.M.)
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing 100084, China; (C.Z.); (G.X.)
- Correspondence: (H.X.); (J.C.)
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; (R.Z.); (Z.W.); (K.C.); (H.L.); (L.T.); (W.M.)
- Correspondence: (H.X.); (J.C.)
| |
Collapse
|
40
|
Lake EMR, Higley MJ. Building bridges: simultaneous multimodal neuroimaging approaches for exploring the organization of brain networks. NEUROPHOTONICS 2022; 9:032202. [PMID: 36159712 PMCID: PMC9506627 DOI: 10.1117/1.nph.9.3.032202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Brain organization is evident across spatiotemporal scales as well as from structural and functional data. Yet, translating from micro- to macroscale (vice versa) as well as between different measures is difficult. Reconciling disparate observations from different modes is challenging because each specializes within a restricted spatiotemporal milieu, usually has bounded organ coverage, and has access to different contrasts. True intersubject biological heterogeneity, variation in experiment implementation (e.g., use of anesthesia), and true moment-to-moment variations in brain activity (maybe attributable to different brain states) also contribute to variability between studies. Ultimately, for a deeper and more actionable understanding of brain organization, an ability to translate across scales, measures, and species is needed. Simultaneous multimodal methods can contribute to bettering this understanding. We consider four modes, three optically based: multiphoton imaging, single-photon (wide-field) imaging, and fiber photometry, as well as magnetic resonance imaging. We discuss each mode as well as their pairwise combinations with regard to the definition and study of brain networks.
Collapse
Affiliation(s)
- Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Michael J. Higley
- Yale School of Medicine, Departments of Neuroscience and Psychiatry, New Haven, Connecticut, United States
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, New Haven, Connecticut, United States
| |
Collapse
|
41
|
Har-Gil H, Golgher L, Kain D, Blinder P. Versatile software and hardware combo enabling photon counting acquisition and real-time display for multiplexing, 2D and continuous 3D two-photon imaging applications. NEUROPHOTONICS 2022; 9:031920. [PMID: 36159710 PMCID: PMC9487143 DOI: 10.1117/1.nph.9.3.031920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
Significance: rPySight brings a flexible and highly customizable open-software platform built around a powerful multichannel digitizer; combined, it enables performing complex photon counting-based experiments. We exploited advanced programming technology to share the photon counting stream with the graphical processing unit (GPU), making possible real-time display of two-dimensional (2D) and three-dimensional (3D) experiments and paving the road for other real-time applications. Aim: Photon counting improves multiphoton imaging by providing better signal-to-noise ratio in photon-deprived applications and is becoming more widely implemented, as indicated by its increasing presence in many microscopy vendor portfolios. Despite the relatively easy access to this technology offered in commercial systems, these remain limited to one or two channels of data and might not enable highly tailored experiments, forcing most researchers to develop their own electronics and code. We set to develop a flexible and open-source interface to a cutting-edge multichannel fast digitizer that can be easily integrated into existing imaging systems. Approach: We selected an advanced multichannel digitizer capable of generating 70M tags/s and wrote an open software application, based on Rust and Python languages, to share the stream of detected events with the GPU, enabling real-time data processing. Results: rPySight functionality was showcased in real-time monitoring of 2D imaging, improved calcium imaging, multiplexing, and 3D imaging through a varifocal lens. We provide a detailed protocol for implementing out-of-the-box rPySight and its related hardware. Conclusions: Applying photon-counting approaches is becoming a fundamental component in recent technical developments that push well beyond existing acquisition speed limitations of classical multiphoton approaches. Given the performance of rPySight, we foresee its use to capture, among others, the joint dynamics of hundreds (if not thousands) of neuronal and vascular elements across volumes, as is likely required to uncover in a much broader sense the hemodynamic transform function.
Collapse
Affiliation(s)
- Hagai Har-Gil
- Tel Aviv University, Sagol School of Neuroscience, Tel Aviv, Israel
- Tel Aviv University, Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Lior Golgher
- Tel Aviv University, Sagol School of Neuroscience, Tel Aviv, Israel
- Tel Aviv University, Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - David Kain
- Tel Aviv University, Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Pablo Blinder
- Tel Aviv University, Sagol School of Neuroscience, Tel Aviv, Israel
- Tel Aviv University, Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| |
Collapse
|
42
|
Papaioannou S, Medini P. Advantages, Pitfalls, and Developments of All Optical Interrogation Strategies of Microcircuits in vivo. Front Neurosci 2022; 16:859803. [PMID: 35837124 PMCID: PMC9274136 DOI: 10.3389/fnins.2022.859803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
The holy grail for every neurophysiologist is to conclude a causal relationship between an elementary behaviour and the function of a specific brain area or circuit. Our effort to map elementary behaviours to specific brain loci and to further manipulate neural activity while observing the alterations in behaviour is in essence the goal for neuroscientists. Recent advancements in the area of experimental brain imaging in the form of longer wavelength near infrared (NIR) pulsed lasers with the development of highly efficient optogenetic actuators and reporters of neural activity, has endowed us with unprecedented resolution in spatiotemporal precision both in imaging neural activity as well as manipulating it with multiphoton microscopy. This readily available toolbox has introduced a so called all-optical physiology and interrogation of circuits and has opened new horizons when it comes to precisely, fast and non-invasively map and manipulate anatomically, molecularly or functionally identified mesoscopic brain circuits. The purpose of this review is to describe the advantages and possible pitfalls of all-optical approaches in system neuroscience, where by all-optical we mean use of multiphoton microscopy to image the functional response of neuron(s) in the network so to attain flexible choice of the cells to be also optogenetically photostimulated by holography, in absence of electrophysiology. Spatio-temporal constraints will be compared toward the classical reference of electrophysiology methods. When appropriate, in relation to current limitations of current optical approaches, we will make reference to latest works aimed to overcome these limitations, in order to highlight the most recent developments. We will also provide examples of types of experiments uniquely approachable all-optically. Finally, although mechanically non-invasive, all-optical electrophysiology exhibits potential off-target effects which can ambiguate and complicate the interpretation of the results. In summary, this review is an effort to exemplify how an all-optical experiment can be designed, conducted and interpreted from the point of view of the integrative neurophysiologist.
Collapse
|
43
|
Brondi M, Bruzzone M, Lodovichi C, dal Maschio M. Optogenetic Methods to Investigate Brain Alterations in Preclinical Models. Cells 2022; 11:1848. [PMID: 35681542 PMCID: PMC9180859 DOI: 10.3390/cells11111848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Investigating the neuronal dynamics supporting brain functions and understanding how the alterations in these mechanisms result in pathological conditions represents a fundamental challenge. Preclinical research on model organisms allows for a multiscale and multiparametric analysis in vivo of the neuronal mechanisms and holds the potential for better linking the symptoms of a neurological disorder to the underlying cellular and circuit alterations, eventually leading to the identification of therapeutic/rescue strategies. In recent years, brain research in model organisms has taken advantage, along with other techniques, of the development and continuous refinement of methods that use light and optical approaches to reconstruct the activity of brain circuits at the cellular and system levels, and to probe the impact of the different neuronal components in the observed dynamics. These tools, combining low-invasiveness of optical approaches with the power of genetic engineering, are currently revolutionizing the way, the scale and the perspective of investigating brain diseases. The aim of this review is to describe how brain functions can be investigated with optical approaches currently available and to illustrate how these techniques have been adopted to study pathological alterations of brain physiology.
Collapse
Affiliation(s)
- Marco Brondi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Matteo Bruzzone
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Claudia Lodovichi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Marco dal Maschio
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| |
Collapse
|
44
|
Ota K, Uwamori H, Ode T, Murayama M. Breaking trade-offs: development of fast, high-resolution, wide-field two-photon microscopes to reveal the computational principles of the brain. Neurosci Res 2022; 179:3-14. [PMID: 35390357 DOI: 10.1016/j.neures.2022.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Information in the brain is represented by the collective and coordinated activity of single neurons. Activity is determined by a large amount of dynamic synaptic inputs from neurons in the same and/or distant brain regions. Therefore, the simultaneous recording of single neurons across several brain regions is critical for revealing the interactions among neurons that reflect the computational principles of the brain. Recently, several wide-field two-photon (2P) microscopes equipped with sizeable objective lenses have been reported. These microscopes enable large-scale in vivo calcium imaging and have the potential to make a significant contribution to the elucidation of information-processing mechanisms in the cerebral cortex. This review discusses recent reports on wide-field 2P microscopes and describes the trade-offs encountered in developing wide-field 2P microscopes. Large-scale imaging of neural activity allows us to test hypotheses proposed in theoretical neuroscience, and to identify rare but influential neurons that have potentially significant impacts on the whole-brain system.
Collapse
Affiliation(s)
- Keisuke Ota
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan; Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan.
| | - Hiroyuki Uwamori
- Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan
| | - Takahiro Ode
- Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan; FOV Corporation, 2-12-3 Taru-machi, Kouhoku-ku, Yokohama, Kanagawa222-0001, Japan
| | - Masanori Murayama
- Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama351-0198, Japan
| |
Collapse
|
45
|
Ito KN, Isobe K, Osakada F. Fast z-focus controlling and multiplexing strategies for multiplane two-photon imaging of neural dynamics. Neurosci Res 2022; 179:15-23. [DOI: 10.1016/j.neures.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
46
|
Zhou A, Engelmann SA, Mihelic SA, Tomar A, Hassan AM, Dunn AK. Evaluation of resonant scanning as a high-speed imaging technique for two-photon imaging of cortical vasculature. BIOMEDICAL OPTICS EXPRESS 2022; 13:1374-1385. [PMID: 35414984 PMCID: PMC8973172 DOI: 10.1364/boe.448473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 05/12/2023]
Abstract
We demonstrate a simple, low-cost two-photon microscope design with both galvo-galvo and resonant-galvo scanning capabilities. We quantify and compare the signal-to-noise ratios and imaging speeds of the galvo-galvo and resonant-galvo scanning modes when used for murine neurovascular imaging. The two scanning modes perform as expected under shot-noise limited detection and are found to achieve comparable signal-to-noise ratios. Resonant-galvo scanning is capable of reaching desired signal-to-noise ratios using less acquisition time when higher excitation power can be used. Given equal excitation power and total pixel dwell time between the two methods, galvo-galvo scanning outperforms resonant-galvo scanning in image quality when detection deviates from being shot-noise limited.
Collapse
Affiliation(s)
- Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Shaun A. Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Samuel A. Mihelic
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Alankrit Tomar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Ahmed M. Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| |
Collapse
|
47
|
Live imaging approach of dynamic multicellular responses in ERK signaling during vertebrate tissue development. Biochem J 2022; 479:129-143. [PMID: 35050327 PMCID: PMC8883488 DOI: 10.1042/bcj20210557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
The chemical and mechanical responses of cells via the exchange of information during growth and development result in the formation of biological tissues. Information processing within the cells through the signaling pathways and networks inherent to the constituent cells has been well-studied. However, the cell signaling mechanisms responsible for generating dynamic multicellular responses in developing tissues remain unclear. Here, I review the dynamic multicellular response systems during the development and growth of vertebrate tissues based on the extracellular signal-regulated kinase (ERK) pathway. First, an overview of the function of the ERK signaling network in cells is provided, followed by descriptions of biosensors essential for live imaging of the quantification of ERK activity in tissues. Then adducing four examples, I highlight the contribution of live imaging techniques for studying the involvement of spatio-temporal patterns of ERK activity change in tissue development and growth. In addition, theoretical implications of ERK signaling are also discussed from the viewpoint of dynamic systems. This review might help in understanding ERK-mediated dynamic multicellular responses and tissue morphogenesis.
Collapse
|
48
|
Janiak FK, Bartel P, Bale MR, Yoshimatsu T, Komulainen E, Zhou M, Staras K, Prieto-Godino LL, Euler T, Maravall M, Baden T. Non-telecentric two-photon microscopy for 3D random access mesoscale imaging. Nat Commun 2022; 13:544. [PMID: 35087041 PMCID: PMC8795402 DOI: 10.1038/s41467-022-28192-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
Diffraction-limited two-photon microscopy permits minimally invasive optical monitoring of neuronal activity. However, most conventional two-photon microscopes impose significant constraints on the size of the imaging field-of-view and the specific shape of the effective excitation volume, thus limiting the scope of biological questions that can be addressed and the information obtainable. Here, employing a non-telecentric optical design, we present a low-cost, easily implemented and flexible solution to address these limitations, offering a several-fold expanded three-dimensional field of view. Moreover, rapid laser-focus control via an electrically tunable lens allows near-simultaneous imaging of remote regions separated in three dimensions and permits the bending of imaging planes to follow natural curvatures in biological structures. Crucially, our core design is readily implemented (and reversed) within a matter of hours, making it highly suitable as a base platform for further development. We demonstrate the application of our system for imaging neuronal activity in a variety of examples in zebrafish, mice and fruit flies.
Collapse
Affiliation(s)
- F K Janiak
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK.
| | - P Bartel
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - M R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - T Yoshimatsu
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - E Komulainen
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - M Zhou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - K Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | | | - T Euler
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - M Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - T Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
49
|
Flexibility in mesoscopic imaging. Nat Methods 2022; 19:32. [PMID: 35017740 DOI: 10.1038/s41592-021-01382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|