1
|
Zhang T, Yu P, Guo X, Liu Y, Zheng X, Duan Z, Fan Q, Cao F, Li C, Kong Q, Zhang J. Co 2P/CoP embedded in N, P, S triply-doped hollow carbon towards enhanced oxygen electrocatalysis. J Colloid Interface Sci 2025; 679:273-281. [PMID: 39366257 DOI: 10.1016/j.jcis.2024.09.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Simultaneously dispersing phosphide crystallites and multiple heteroatoms in hollow carbon is a significant yet challenging task for achieving high-performance oxygen electrocatalysts of zinc-air batteries. Herein, a simple wrapping-pyrolysis strategy is proposed to prepare Co2P/CoP embedded in N, P, S triply-doped hollow carbon (Co2P/CoP@NPS-HC). Co2P/CoP@NPS-HC composite features hollow polyhedral structure populated with numerous catalytically active Co2P/CoP nanoparticles and N, P, S heteroatoms. This optimized catalyst exhibits excellent activity for oxygen reduction reaction, with a half-wave potential of 0.82 V vs. RHE, and impressive enhancement for oxygen evolution reaction, indicated by an overpotential of 400 mV at 10 mA cm-2. Moreover, Co2P/CoP@NPS-HC catalyst exhibits greater durability and superior methanol tolerance compared to commercial Pt/C. The excellent bifunctional electrocatalytic performance of Co2P/CoP@NPS-HC catalyst is attributed to the synergistic effect of uniformly dispersed Co2P/CoP nanoparticles and N, P, S triply-doped hollow carbon structure. The former provides abundant catalytically active sites, while the latter offers a high accessible specific surface area, as well as enhances catalytic activity and electronic conductivity due to its altered charge distribution.
Collapse
Affiliation(s)
- Tianli Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Pengfei Yu
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Xingmei Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Yuanjun Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Xiangjun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Zhongyao Duan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Qianqian Fan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Fu Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China.
| | - Qinghong Kong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
2
|
Wang Y, Wang Y, Wang Y, Zhao J, Gao Y, Liang J, Hu T, Lv B, Luo E, Jia J. Se-functionalized metal-free catalysts rich in sp 3-hybridized carbon enable efficient oxygen electroreduction. J Colloid Interface Sci 2025; 679:206-213. [PMID: 39362145 DOI: 10.1016/j.jcis.2024.09.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Carbon-based metal-free materials are emerging as leading candidates to replace noble-metal catalysts in the oxygen reduction reaction (ORR). Herein, we introduce a facile secondary carbonation technique for fabricating Se and N co-doped metal-free catalysts using a zeolite imidazole framework (ZIF-8) as the precursor. The optimal electrocatalyst, designated SeNC-900, exhibited good ORR performance under both alkaline and acidic conditions, with half-wave potentials of 0.864 V and 0.731 V (vs. RHE), respectively. Density functional theory (DFT) calculations reveal that the enhanced activity of SeNC-900 originates from Se doping, which triggers an increase in the intrinsic defects of sp3-hybridized C. Concurrently, the sp3-hybridized C, in concert with Se dopant, modulates the electronic structure of the active C atoms. This work not only underscores the significance of tuning the electronic structure to boost catalytic performance by enriching intrinsic defects but also presents a fresh insight into the effect of heteroatom doping on carbon-based materials for electrocatalysis.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Yuxin Wang
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Yueting Wang
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Jin Zhao
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Yang Gao
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Jingyi Liang
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Tianjun Hu
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Baoliang Lv
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Ergui Luo
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Jianfeng Jia
- Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| |
Collapse
|
3
|
Mostoni S, Mirizzi L, Frigerio A, Zuccante G, Ferrara C, Muhyuddin M, D'Arienzo M, Fernanda Orsini S, Scotti R, Cosenza A, Atanassov P, Santoro C. In-Situ HF Forming Agents for Sustainable Manufacturing of Iron-Based Oxygen Reduction Reaction Electrocatalysis Synthesized Through Sacrificial Support Method. CHEMSUSCHEM 2025; 18:e202401185. [PMID: 39325923 PMCID: PMC11789974 DOI: 10.1002/cssc.202401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Fe-Nx-Cs being suitable to replace scarce and overpriced platinum group metals (PGMs) for cathodic oxygen reduction reaction (ORR) are gaining significant importance in the fuel cell arena. Although the typical sacrificial support method (SSM) ensures the superior electrocatalytic activity of derived Fe-Nx-C, removing silica hard templates always remains a great challenge due to the hazardous use of highly toxic and not environmentally friendly hydrofluoric acid. Herein, strategic insight was given to modified SSM by exploiting the in-situ formation of HF, deriving from the decomposition of NH4HF2 and NaF, to dissolve silica templates, thus avoiding the direct use of HF. First, the suitable molar ratio between the etching agent and the silica was analyzed, revealing that NH4HF2 efficiently dissolved silica even in a stoichiometric amount, whereas an excess of NaF was required. However, both etching agents exhibited conformal removal of silica while dispersed active moieties within the highly porous architecture of derived electrocatalysts were left behind. Moreover, NH4HF2-washed counterparts demonstrated relatively higher performance both in acidic and alkaline media. Notably, with NH4HF2-washed Fe-Nx-C electrocatalyst, a remarkable onset potential of 970 mV (vs RHE) was achieved with nearly tetra-electronic ORR as the peroxide yield remained less than 10 % in the alkaline medium.
Collapse
Affiliation(s)
- Silvia Mostoni
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Lorenzo Mirizzi
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Alessandra Frigerio
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Giovanni Zuccante
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
- Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| | - Chiara Ferrara
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Mohsin Muhyuddin
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Massimiliano D'Arienzo
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Sara Fernanda Orsini
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Roberto Scotti
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| | - Alessio Cosenza
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaIrvineCA92697United States
| | - Plamen Atanassov
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaIrvineCA92697United States
| | - Carlo Santoro
- Department of Materials ScienceUniversity of Milano-Bicocca U5Via Roberto Cozzi 5520125MilanoItaly
| |
Collapse
|
4
|
Liu Y, Liu P, Cai Y, Zhu M, Dou N, Zhang L, Men YL, Pan YX. Platinum/(Carbon-Nanotube) Electrocatalyst Boosts Hydrogen Evolution Reaction in Acidic, Neutral and Alkaline Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411181. [PMID: 39866017 DOI: 10.1002/smll.202411181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Widely used catalysts for electrocatalytic hydrogen (H2) evolution reaction (HER) have high platinum (Pt) contents and show low efficiencies in neutral and alkaline solutions. Herein, a carbon nanotube (CNT) supported Pt catalyst (Pt/CNT45) with 1 wt.% Pt is fabricated. For HER, the mass activity of Pt/CNT45 in acidic (18.76 A mgPt -1), neutral (3.92 A mgPt -1), and alkaline (3.88 A mgPt -1) solutions is respectively much higher than those on commercial Pt/C catalyst with 20 wt.% Pt (acidic: 0.31 A mgPt -1, neutral: 0.03 A mgPt -1, alkaline: 0.07 A mgPt -1). Thus, Pt/CNT45 enhances HER not only in acidic solutions but also in neutral and alkaline solutions. Ptδ+ at Pt-CNT interface on Pt/CNT45 promotes water (H2O) dissociation and hydroxyl (OH) desorption from Pt/CNT45, thus enhancing HER. This work opens a new way for enhancing HER in a wider pH range by catalyst with low Pt content, and helpful for commercialization.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yingying Cai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Minghui Zhu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ning Dou
- Department of Thyroid Breast and Vascular Surgery, Shanghai Fourth People's Hospital Affiliated To Tongji University School of Medicine, Shanghai, 200081, P. R. China
| | - Lei Zhang
- Department of Vascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Yu-Long Men
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Xiang Pan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Zou H, Shu S, Yang W, Chu YC, Cheng M, Dong H, Liu H, Li F, Hu J, Wang Z, Liu W, Chen HM, Duan L. Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect. Nat Commun 2024; 15:10818. [PMID: 39737986 DOI: 10.1038/s41467-024-55116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N4 atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e- to the 2e- pathway under acidic conditions. Proton inventory studies and theoretical calculations reveal that the introduced pendant amine acts as a proton relay and promotes the protonation of *O2 to *OOH on the Co-N4 active site, facilitating H2O2 production. The second sphere-tailored Co-N4 sites reach optima H2O2 selectivity of 97% ± 1.13%, showing a 3.46-fold enhancement to bare Co-N4 catalyst (28% ± 1.75%). This work provides an appealed approach for enzyme-like catalyst design, bridging the gap between enzymatic and heterogeneous catalysis.
Collapse
Affiliation(s)
- Haiyuan Zou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Wenqiang Yang
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - You-Chiuan Chu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan
| | - Minglun Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Hong Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Fan Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Junhui Hu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhenbin Wang
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby, Denmark
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology, Dalian, China
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan
| | - Lele Duan
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co. Ltd, Hangzhou, Zhejiang, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
6
|
Jia J, Li Z, Sang Z, Liu X, Peng W, Chen R, Jiang Q, Li X, Ren Z, Hao W, Yin L, Liu J, Hou F, Liang J. High-throughput Design of Single-atom Catalysts with Nonplanar and Triple Pyrrole-N Coordination for Highly Efficient H 2O 2 Electrosynthesis. Angew Chem Int Ed Engl 2024:e202421864. [PMID: 39740117 DOI: 10.1002/anie.202421864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
Single-atom catalysts (SACs) with nonplanar configurations possess unique capabilities for tailoring the oxygen reduction reaction (ORR) catalytic performance compared with the ones with planar configurations, owing to the additional orbital rearrangement arising from the asymmetric coordination atoms. However, the systematic investigation of these nonplanar SACs has long been hindered by the difficulty in screening feasible nonplanar configurations and precisely controlling the coordination structures. Herein, we demonstrate a combined high-throughput screening and experimental verification of nonplanar SACs (ppy-MN3) with metal atoms triple-coordinated by pyrrole-N, for highly active and selective 2e- ORR electrocatalysis. With the additional p-orbital rearrangement of N-ligands for ppy-MN3 during catalysis, a new descriptor on the energy difference between d-band center of metal sites and p-band centers of N-ligands (Δϵd-p) is proposed to accurately identify the relationship between their catalytic activities and electronic structures, on top of the conventional d-band center theory. Consequently, ppy-ZnN3 is identified with excellent 2e- ORR activity (η=0.08 eV) and selectivity, as well as a low 2e- ORR kinetic barrier under alkaline condition owing to a strong hydrogen bonding between OOH* intermediate and interfacial water, which is then experimentally verified by its high electrocatalytic H2O2 yield (43 mol g-1 h-1) and selectivity (92 %) under alkaline condition. This study thus presents a proof-of-concept demonstration of the performance-oriented and precise coordination design of nonplanar SACs for efficient H2O2 electrosynthesis, and, more importantly, provides an essential complement to the d-band theory for more accurately predicting the catalytic activities of catalysts with nonplanar configurations for series potential electrochemical processes.
Collapse
Affiliation(s)
- Jingjing Jia
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Zhenxin Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Zhiyuan Sang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoqing Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Wei Peng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Rui Chen
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Qiao Jiang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Xia Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Zhizhen Ren
- School of Physics, Beihang University, Beijing, 100191, China
- The Analysis & Testing Center, Beihang University, Beijing, 100191, China
| | - Weichang Hao
- School of Physics, Beihang University, Beijing, 100191, China
- The Analysis & Testing Center, Beihang University, Beijing, 100191, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China
| | - Jiachen Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin, University, Tianjin, 300072, China
| |
Collapse
|
7
|
Li H, Fang L, Wang T, Bai R, Zhang J, Li T, Duan Z, Chen KJ, Pan F. In Situ Modulated Nickel Single Atoms on Bicontinuous Porous Carbon Fibers and Sheets Networks for Acidic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416337. [PMID: 39726351 DOI: 10.1002/adma.202416337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO2 reduction. However, traditional carbon supports fall short in building high-site-utilization and CO2-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni. In IPCF@CS nanostructure, highly mesoporous IPCF hinders stacking of CS that provides additional fully exposed sites and abundant bicontinuous mesochannels of IPCF facilitate smooth CO2 transport. Such unique features enable enhanced Ni utilization and local CO2 enrichment, which cannot be achieved over conventional pore-deficient and discontinuous porous carbon fibers-based supports. In situ X-ray and Infrared spectroscopy coupling constant-potential calculations reveal the dynamic distortion of the planar Ni-N4 to an out-of-plane configuration with expanded Ni-N bond during operating CO2 electroreduction. The potential-driven low-valance-state Ni-N4 possesses enhanced intrinsic electrokinetics for CO2 activation and CO desorption yet inhibiting hydrogen evolution. The favorable electronic and interfacial reaction environments, resulted from the in situ tailored Ni site and IPCF@CS support, achieve an FE of near 100% at 540 mA cm-2, a TOF of 55.5 s-1, and a SPCE of 89.2% in acidic CO2-to-CO electrolysis.
Collapse
Affiliation(s)
- Haoyang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Rui Bai
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jian Zhang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Zhiyao Duan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Kai-Jie Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Fuping Pan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| |
Collapse
|
8
|
Quirós‐Díez EP, Herreros‐Lucas C, Vila‐Fungueiriño JM, Vizcaíno‐Anaya L, Sabater‐Algarra Y, Giménez‐López MDC. Boosting Oxygen Reduction Reaction Selectivity in Metal Nanoparticles with Polyoxometalates. SMALL METHODS 2024; 8:e2301805. [PMID: 38517266 PMCID: PMC11672175 DOI: 10.1002/smtd.202301805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
The lack of selectivity toward the oxygen reduction reaction (ORR) in metal nanoparticles can be linked to the generation of intermediates. This constitutes a crucial constraint on the performance of specific electrochemical devices, such as fuel cells and metal-air batteries. To boost selectivity of metal nanoparticles, a novel methodology that harnesses the unique electrocatalytic properties of polyoxometalates (POM) to scavenge undesired intermediates of the ORR (such as HO2 -) promoting selectivity is proposed. It involves the covalent functionalization of metal nanoparticle's surface with an electrochemically active capping layer containing a new sulfur-functionalized vanadium-based POM (AuNP@POM). To demonstrate this approach, preformed thiolate Au(111) nanoparticles with a relatively poor ORR selectivity are chosen. The dispersion of AuNP@POM on the surface of carbon nanofibers (CNF) enhances oxygen diffusion, and therefore the ORR activity. The resulting electrocatalyst (AuNP@POM/CNF) exhibits superior stability against impurities like methanol and a higher pH tolerance range compared to the standard commercial Pt/C. The work demonstrates for the first time, the use of a POM-based electrochemically active capping layer to switch on the selectivity of poorly selective gold nanoparticles, offering a promising avenue for the preparation of electrocatalyst materials with improved selectivity, performance, and stability for ORR-based devices.
Collapse
Affiliation(s)
- Eugenia Pilar Quirós‐Díez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Carlos Herreros‐Lucas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - José Manuel Vila‐Fungueiriño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química FísicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Lucía Vizcaíno‐Anaya
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Yolanda Sabater‐Algarra
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - María del Carmen Giménez‐López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química InorgánicaUniversidade de Santiago de CompostelaSantiago de Compostela15782Spain
| |
Collapse
|
9
|
Lin S, Li X, Yuan D, Liu Y, Jin Z, Li P. Conductive Polymer Hydrogel-Derived 3D Nanostructures for Energy and Environmental Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406235. [PMID: 39279356 DOI: 10.1002/smll.202406235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Renewable energy and advanced water treatment technologies hold profound significance for driving sustainable development in modern society. Given the environmental friendliness and high efficiency of electrocatalysis processes, great expectations are placed on their applications in energy and water-related fields. However, the electrocatalysis is limited by the selectivity, activity, and durability of the electrocatalytic reactions. Hydrogels, with their hierarchical porous structure, compositional and structural tunability, and ease of functionalization, are bringing surprising advances in advanced energy and environment. Hydrogel catalysts, inheriting the advantages of hydrogel materials, hold promise for achieving significant breakthroughs in electrochemical performance. Here, the latest advancements in energy and environmental electrocatalytic fields are summarized based on the 3D nanostructured hydrogel catalysts. In addition, future potentials and challenges of continuing research on hydrogel materials for energy and environment are discussed.
Collapse
Affiliation(s)
- Siyi Lin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Dunyi Yuan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuanting Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
10
|
Deng Z, Jin S, Gong M, Chen N, Chen W, Seo MH, Wang X. Potential-Driven Coordinated Oxygen Migration in an Electrocatalyst for Sustainable H 2O 2 Synthesis. ACS NANO 2024; 18:32834-32846. [PMID: 39530515 DOI: 10.1021/acsnano.4c11307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Local coordination environment (LCE) manipulation has emerged as a significant approach for modulating the electrocatalytic behavior of low-dimensional nanomaterials. However, challenges persist in accurately identifying active sites and understanding dynamic changes during operation. Here, we underscore the influence of LCE on the electrochemical production of H2O2, utilizing the Pd cluster as a model catalyst. Density functional theory (DFT) calculations illustrate the role of first- and second-coordinated sulfur and oxygen in modulating the binding strength of HOO*. Guided by DFT screening, the as-prepared Pd cluster (Pdx/HMCS) catalyst presents exceptional catalytic performance with a high mass activity of 4.06 A mg-1 at 0.45 V and selectivity above 94%. The Pdx/HMCS catalyst also delivers promising potential for industrial practices with a production rate of 16.3 mol gcat-1 h-1 in flow cell evaluation. Elaborated in situ characterizations confirm that under operation, oxygen migrates from the second coordination sphere (CS) to the first CS to achieve oxygen coverage on the catalyst surface. Such an oxygen migration phenomenon and the optimized first and second coordination environment give rise to the outstanding performance.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Song Jin
- Department of Hydrogen Energy Materials, Surface Technology Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero Seongsangu, Changwon, Gyeongnam 51508, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Mingxing Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), Wuhan, Hubei 430078, China
| | - Ning Chen
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon S7N 2 V3, Canada
| | - Weifeng Chen
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon S7N 2 V3, Canada
| | - Min Ho Seo
- Department of Nanotechnology Engineering, Pukyong National University, 45 Yongso-ro Nam-gu, Busan 48547, Republic of Korea
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
11
|
Malik W, Tafoya JPV, Doszczeczko S, Sobrido ABJ, Boa AN, Volpe R. Fe-N catalyst derived from and supported on Lycopodium clavatum sporopollenin exine capsules for the oxygen reduction reaction. Sci Rep 2024; 14:26052. [PMID: 39472697 PMCID: PMC11522689 DOI: 10.1038/s41598-024-77780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
A carbon-supported electrocatalyst, featuring carbon nanotubes anchored on 3D porous graphitic carbon, was developed with the aim to perform in the operating conditions of alkaline fuel cells and metal air batteries. The catalyst was developed via two steps: first powders of Sporopollenin exine capsules used as a bio-based carbon support were activated via CO2 gasification to obtain a high specific area and porosity, second the derived porous carbons were impregnated by an iron salt and a nitrogen source, to be carbonised in Nitrogen at high temperature. The prepared catalyst demonstrated an efficient oxygen reduction reaction activity showing a half-wave potential of ~ 0.775 V vs. Reversible hydrogen electrode, comparable with that of commercial 20 wt% Pt/C in alkaline conditions, a good stability after accelerated degradation testing, retaining ~ 86% of the initial limiting current density, and a higher diffusion limited current density (6.3 vs. 5.1 mA cm- 2) than the commercial counterpart. Overall, we show the suitability of Sporopollenin exine capsule as support for electrocatalysis and a promising methodology to develop sustainable catalysts for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Waqas Malik
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | | | - Szymon Doszczeczko
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Ana Belen Jorge Sobrido
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Andrew N Boa
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Roberto Volpe
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
12
|
Mangue J, Wehrung I, Pécaut J, Ménage S, Orio M, Torelli S. Bio-inspired copper complexes with Cu 2S cores: (solvent) effects on oxygen reduction reactions. Dalton Trans 2024; 53:15576-15582. [PMID: 39229908 DOI: 10.1039/d4dt01629g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The need for effective alternative energy sources and "green" industrial processes is a more crucial societal topic than ever. In this context, mastering oxygen reduction reactions (ORRs) is a key step to develop fuel cells or to propose alternatives to energy-intensive setups such as the anthraquinone process for hydrogen peroxide production. Achieving this goal using bio-inspired metal complexes based on abundant and non-toxic elements could provide an environmentally friendly option. Given the prevalence of Cu-containing active sites capable of reductive activation of dioxygen in nature, the development of Cu-based catalysts for the ORR thus appears to be a relevant approach. We herein report the preparation, full characterization and (TD)DFT investigation of a new dinuclear mixed-valent copper complex 6 exhibiting a Cu2S core and a bridging triflate anion. Its ORR activity was compared with that of its parent catalyst 1. Two types of solvents were used, acetonitrile and acetone, and various catalyst/Me8Fc (electron source) ratios were tested. Our results highlight a counterintuitive solvent effect for 1 and a drastic drop in the activity for 6 in coordinating acetonitrile together with the modification of its chemical structure.
Collapse
Affiliation(s)
- Jordan Mangue
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| | - Iris Wehrung
- Aix Marseille Univ. Centrale Med., ISM2, Marseille, France.
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES, UMR 5819, F-38000 Grenoble, France
| | - Stéphane Ménage
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| | - Maylis Orio
- Aix Marseille Univ. Centrale Med., ISM2, Marseille, France.
| | - Stéphane Torelli
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
13
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
14
|
Cheng Q, Wei H, Wang J, Wang ZQ, Gong XQ, Wang D. Clarifying the Direct Generation of •OH Radicals in Photocatalytic O 2 Reduction: Theoretical Prediction Combined with Experimental Validation. J Phys Chem Lett 2024; 15:8650-8659. [PMID: 39151150 DOI: 10.1021/acs.jpclett.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
This work systematically studied thermocatalytic and photocatalytic pathways of formaldehyde degradation and H-assisted O2 reduction over a Pt13/anatase-TiO2(101) composite via DFT calculations together with constrained molecular dynamics (MD) simulations. We show that photocatalytic O2 reduction on Pt/TiO2 can directly generate •OH radicals (*O2 → *OOH → •OH) via two hydrogenation steps with small barriers, and the product selectivity (*H2O2 or •OH) is decided by the relative position between catalyst Fermi level and •OH/*H2O2 redox potential (theoretical determination of 0.07 V referencing to the SHE). Such a novel reaction channel was furthermore validated at the liquid-solid interface via constrained MD simulations and experimental electron paramagnetic resonance detections, and a wide range of H resources, e.g., *HCHO, *HCO, *H (H+ + e-), can always drive the direct •OH generation. The additional portion of e--triggered •OH radicals are prone to diffuse into solution or the TiO2 surface and furthermore cooperate with the conventional h+-driven photooxidations.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hehe Wei
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinling Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhi-Qiang Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xue-Qing Gong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
15
|
Deng D, Wang Y, Jiang J, Bai Y, Chen Y, Zheng H, Ou H, Lei Y. Indium oxide with oxygen vacancies boosts O 2 adsorption and activation for electrocatalytic H 2O 2 production. Chem Commun (Camb) 2024; 60:9364-9367. [PMID: 39129473 DOI: 10.1039/d4cc03361b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Oxygen reduction reaction via the two-electron pathway (2e- ORR) offers a sustainable opportunity for hydrogen peroxide (H2O2) production, but suffers from low selectivity. In this work, indium oxide with oxygen vacancies (In2O3-x) exhibits a H2O2 selectivity close to 98% at 0.6 V vs. RHE. Further, a Faradaic efficiency (FE) of around 95% at 0.4-0.6 V vs. RHE and a H2O2 productivity of 3.7 mol gcatalyst-1 h-1 are reached in a flow cell. In situ Raman spectra indicate that In2O3-x promotes the adsorption and activation of O2 and stabilizes oxygen intermediates. This work provides an insight into improving H2O2 selectivity for 2e- ORR catalysts.
Collapse
Affiliation(s)
- Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Haitao Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Houzheng Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|
16
|
Deng Z, Choi SJ, Li G, Wang X. Advancing H 2O 2 electrosynthesis: enhancing electrochemical systems, unveiling emerging applications, and seizing opportunities. Chem Soc Rev 2024; 53:8137-8181. [PMID: 39021095 DOI: 10.1039/d4cs00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen peroxide (H2O2) is a highly desired chemical with a wide range of applications. Recent advancements in H2O2 synthesis center on the electrochemical reduction of oxygen, an environmentally friendly approach that facilitates on-site production. To successfully implement practical-scale, highly efficient electrosynthesis of H2O2, it is critical to meticulously explore both the design of catalytic materials and the engineering of other components of the electrochemical system, as they hold equal importance in this process. Development of promising electrocatalysts with outstanding selectivity and activity is a prerequisite for efficient H2O2 electrosynthesis, while well-configured electrolyzers determine the practical implementation of large-scale H2O2 production. In this review, we systematically summarize fundamental mechanisms and recent achievements in H2O2 electrosynthesis, including electrocatalyst design, electrode optimization, electrolyte engineering, reactor exploration, potential applications, and integrated systems, with an emphasis on active site identification and microenvironment regulation. This review also proposes new insights into the existing challenges and opportunities within this rapidly evolving field, together with perspectives on future development of H2O2 electrosynthesis and its industrial-scale applications.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Seung Joon Choi
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
17
|
Chu T, Wang G, Zhang X, Jia Y, Dai S, Liu X, Zhang L, Yang X, Zhang B, Xuan FZ. High-Density Dual-Structure Single-Atom Pt Electrocatalyst for Efficient Hydrogen Evolution and Multimodal Sensing. NANO LETTERS 2024; 24:9666-9674. [PMID: 39072504 DOI: 10.1021/acs.nanolett.4c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Herein, we report a high-density dual-structure single-atom catalyst (SAC) by creating a large number of vacancies of O and Ti in two-dimensional (2D) Ti3C2 to immobilize Pt atoms (SA Pt-Ti3C2). The SA Pt-Ti3C2 showed excellent performance toward the pH-universal electrochemical hydrogen evolution reaction (HER) and multimodal sensing. For HER catalysis, compared to the commercial 20 wt % Pt/C, the Pt mass activities of SA Pt-Ti3C2 at the overpotentials of ∼30 and 110 mV in acid and alkaline media are 45 and 34 times higher, respectively. More importantly, during the alkaline HER process, an interesting synergetic effect between Pt-C and Pt-Ti sites that dominated the Volmer and Heyrovsky steps, respectively, was revealed. Moreover, the SA Pt-Ti3C2 catalyst exhibited high sensitivity (0.62-2.65 μA μM-1) and fast response properties for the multimodal identifications of ascorbic acid, dopamine, uric acid, and nitric oxide under the assistance of machine learning.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinzhi Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
18
|
Xu T, Wang D, Fu Q, Liu C. Effect of Different N/C Coordination Electronic Structures on the Activity of Bifunctional Rare-Earth Ytterbium Electrocatalysts for Oxygen Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16463-16472. [PMID: 39054753 DOI: 10.1021/acs.langmuir.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The research and development of bifunctional electrocatalysts for the oxygen electrode is of great significance to solve the problem of electrochemical energy. Herein, the effect of different structure-activity relationships on the performance of YbNxCy-gra catalysts was explored. The bifunctional activity of graphene with a vacancy defect supported by single-atom rare-earth ytterbium was studied by density functional theory (DFT) calculations. We systematically analyzed the stability, electronic properties, and catalytic performance of potential bifunctional catalysts. The results showed that all catalysts were thermodynamically and kinetically stable. Under acidic conditions, YbN2C2-oppo-gra and YbN2C2-pen-gra showed good ORR activity, and their overpotentials were 0.53 and 0.65 V, respectively. In an alkaline environment, most of the Yb(OH)NxCy-gra catalysts showed excellent ORR and OER bifunctional catalytic activity. Their overpotentials were all below 0.6 V. In particular, the ηORR and ηOER of the Yb(OH)N4C0-gra electrocatalyst were as low as 0.33 and 0.42 V. This verified the practicability and feasibility of hydroxyl-modified catalysts to enhance activity. This research provides theoretical insights into the further design and development of high-efficiency rare-earth-supported bifunctional catalysts.
Collapse
Affiliation(s)
- Tao Xu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Daomiao Wang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Qiming Fu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
19
|
Jing L, Wang W, Tian Q, Kong Y, Ye X, Yang H, Hu Q, He C. Efficient Neutral H 2O 2 Electrosynthesis from Favorable Reaction Microenvironments via Porous Carbon Carrier Engineering. Angew Chem Int Ed Engl 2024; 63:e202403023. [PMID: 38763905 DOI: 10.1002/anie.202403023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The efficient electrosynthesis of hydrogen peroxide (H2O2) via two-electron oxygen reduction reaction (2e- ORR) in neutral media is undoubtedly a practical route, but the limited comprehension of electrocatalysts has hindered the system advancement. Herein, we present the design of model catalysts comprising mesoporous carbon spheres-supported Pd nanoparticles for H2O2 electrosynthesis at near-zero overpotential with approximately 95 % selectivity in a neutral electrolyte. Impressively, the optimized Pd/MCS-8 electrocatalyst in a flow cell device achieves an exceptional H2O2 yield of 15.77 mol gcatalyst -1 h-1, generating a neutral H2O2 solution with an accumulated concentration of 6.43 wt %, a level sufficiently high for medical disinfection. Finite element simulation and experimental results suggest that mesoporous carbon carriers promote O2 enrichment and localized pH elevation, establishing a favorable microenvironment for 2e- ORR in neutral media. Density functional theory calculations reveal that the robust interaction between Pd nanoparticles and the carbon carriers optimized the adsorption of OOH* at the carbon edge, ensuring high active 2e- process. These findings offer new insights into carbon-loaded electrocatalysts for efficient 2e- ORR in neutral media, emphasizing the role of carrier engineering in constructing favorable microenvironments and synergizing active sites.
Collapse
Affiliation(s)
- Lingyan Jing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenyi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qiang Tian
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yan Kong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xieshu Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
20
|
Hao Q, Zhen C, Tang Q, Wang J, Ma P, Wu J, Wang T, Liu D, Xie L, Liu X, Gu MD, Hoffmann MR, Yu G, Liu K, Lu J. Universal Formation of Single Atoms from Molten Salt for Facilitating Selective CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406380. [PMID: 38857899 DOI: 10.1002/adma.202406380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Clarifying the formation mechanism of single-atom sites guides the design of emerging single-atom catalysts (SACs) and facilitates the identification of the active sites at atomic scale. Herein, a molten-salt atomization strategy is developed for synthesizing zinc (Zn) SACs with temperature universality from 400 to 1000/1100 °C and an evolved coordination from Zn-N2Cl2 to Zn-N4. The electrochemical tests and in situ attenuated total reflectance-surface-enhanced infrared absorption spectroscopy confirm that the Zn-N4 atomic sites are active for electrochemical carbon dioxide (CO2) conversion to carbon monoxide (CO). In a strongly acidic medium (0.2 m K2SO4, pH = 1), the Zn SAC formed at 1000 °C (Zn1NC) containing Zn-N4 sites enables highly selective CO2 electroreduction to CO, with nearly 100% selectivity toward CO product in a wide current density range of 100-600 mA cm-2. During a 50 h continuous electrolysis at the industrial current density of 200 mA cm-2, Zn1NC achieves Faradaic efficiencies greater than 95% for CO product. The work presents a temperature-universal formation of single-atom sites, which provides a novel platform for unraveling the active sites in Zn SACs for CO2 electroreduction and extends the synthesis of SACs with controllable coordination sites.
Collapse
Affiliation(s)
- Qi Hao
- School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Qi Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiazhi Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peiyu Ma
- Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junxiu Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tianyang Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Dongxue Liu
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin, 130022, China
| | - Linxuan Xie
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xiao Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Michael R Hoffmann
- Department of Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Gang Yu
- Merging Contaminants Research Center, Beijing Normal University, Zhuhai, Guangdong, 519087, China
| | - Kai Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
21
|
Liu M, Zhang J, Peng Y, Guan S. Synergistic dual sites of Zn-Mg on hierarchical porous carbon as an advanced oxygen reduction electrocatalyst for Zn-air batteries. Dalton Trans 2024; 53:8940-8947. [PMID: 38722024 DOI: 10.1039/d4dt00152d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The development of cost-effective and high-performance non-noble metal catalysts for the oxygen reduction reaction (ORR) holds substantial promise for real-world applications. Introducing a secondary metal to design bimetallic sites enables effective modulation of a metal-nitrogen-carbon (M-N-C) catalyst's electronic structure, providing new opportunities for enhancing ORR activity and stability. Here, we successfully synthesized an innovative hierarchical porous carbon material with dual sites of Zn and Mg (Zn/Mg-N-C) using polymeric ionic liquids (PILs) as precursors and SBA-15 as a template through a bottom-up approach. The hierarchical porous structure and optimized Zn-Mg bimetallic catalytic centers enable Zn/Mg-N-C to exhibit a half-wave potential of 0.89 V, excellent stability, and good methanol tolerance in 0.1 M KOH solution. Theoretical calculations indicated that the Zn-Mg bimetallic sites in Zn/Mg-N-C effectively lowered the ORR energy barrier. Furthermore, the Zn-air batteries assembled based on Zn/Mg-N-C demonstrated an outstanding peak power density (298.7 mW cm-2) and superior cycling stability. This work provides a method for designing and synthesizing bimetallic site catalysts for advanced catalysis.
Collapse
Affiliation(s)
- Mincong Liu
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Jing Zhang
- College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Yan Peng
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Shiyou Guan
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| |
Collapse
|
22
|
Liu L, Kang L, Feng J, Hopkinson DG, Allen CS, Tan Y, Gu H, Mikulska I, Celorrio V, Gianolio D, Wang T, Zhang L, Li K, Zhang J, Zhu J, Held G, Ferrer P, Grinter D, Callison J, Wilding M, Chen S, Parkin I, He G. Atomically dispersed asymmetric cobalt electrocatalyst for efficient hydrogen peroxide production in neutral media. Nat Commun 2024; 15:4079. [PMID: 38744850 PMCID: PMC11093996 DOI: 10.1038/s41467-024-48209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Electrochemical hydrogen peroxide (H2O2) production (EHPP) via a two-electron oxygen reduction reaction (2e- ORR) provides a promising alternative to replace the energy-intensive anthraquinone process. M-N-C electrocatalysts, which consist of atomically dispersed transition metals and nitrogen-doped carbon, have demonstrated considerable EHPP efficiency. However, their full potential, particularly regarding the correlation between structural configurations and performances in neutral media, remains underexplored. Herein, a series of ultralow metal-loading M-N-C electrocatalysts are synthesized and investigated for the EHPP process in the neutral electrolyte. CoNCB material with the asymmetric Co-C/N/O configuration exhibits the highest EHPP activity and selectivity among various as-prepared M-N-C electrocatalyst, with an outstanding mass activity (6.1 × 105 A gCo-1 at 0.5 V vs. RHE), and a high practical H2O2 production rate (4.72 mol gcatalyst-1 h-1 cm-2). Compared with the popularly recognized square-planar symmetric Co-N4 configuration, the superiority of asymmetric Co-C/N/O configurations is elucidated by X-ray absorption fine structure spectroscopy analysis and computational studies.
Collapse
Affiliation(s)
- Longxiang Liu
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Liqun Kang
- Department of Inorganic Spectroscopy, Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Jianrui Feng
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - David G Hopkinson
- Electron Physical Science Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Christopher S Allen
- Electron Physical Science Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Yeshu Tan
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Hao Gu
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Iuliia Mikulska
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Veronica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Tianlei Wang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Liquan Zhang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Jichao Zhang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Jiexin Zhu
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Georg Held
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - David Grinter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - June Callison
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Martin Wilding
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Sining Chen
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ivan Parkin
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK.
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
23
|
Ni B, Shen P, Zhang G, Zhao J, Ding H, Ye Y, Yue Z, Yang H, Wei H, Jiang K. Second-Shell N Dopants Regulate Acidic O 2 Reduction Pathways on Isolated Pt Sites. J Am Chem Soc 2024. [PMID: 38608251 DOI: 10.1021/jacs.3c14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Pt is a well-known benchmark catalyst in the acidic oxygen reduction reaction (ORR) that drives electrochemical O2-to-H2O conversion with maximum chemical energy-to-electricity efficiency. Once dispersing bulk Pt into isolated single atoms, however, the preferential ORR pathway remains a long-standing controversy due to their complex local coordination environment and diverse site density over substrates. Herein, using a set of carbon nanotube supported Pt-N-C single-atom catalysts, we demonstrate how the neighboring N dopants regulate the electronic structure of the Pt central atom and thus steer the ORR selectivity; that is, the O2-to-H2O2 conversion selectivity can be tailored from 10% to 85% at 0.3 V versus reversible hydrogen electrode. Moreover, via a comprehensive X-ray-radiated spectroscopy and shell-isolated nanoparticle-enhanced Raman spectroscopy analysis coupled with theoretical modeling, we reveal that a dominant pyridinic- and pyrrolic-N coordination within the first shell of Pt-N-C motifs favors the 4e- ORR, whereas the introduction of a second-shell graphitic-N dopant weakens *OOH binding on neighboring Pt sites and gives rise to a dominant 2e- ORR. These findings underscore the importance of the chemical environment effect for steering the electrochemical performance of single-atom catalysts.
Collapse
Affiliation(s)
- Baoxin Ni
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Shen
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guiru Zhang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajun Zhao
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Zhouying Yue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hao Wei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun Jiang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Yan Y, Zhu Q, Cao L, Gu F, Liu S, Luo Y, Liu F, Wang S, Fan L, Xiong S. Ceria nanoclusters coupled with Ce-Nx sites for efficient oxygen reduction in Zn-air batteries. J Colloid Interface Sci 2024; 659:31-39. [PMID: 38157724 DOI: 10.1016/j.jcis.2023.12.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Rational construction of efficient carbon-supported rare earth cerium nanoclusters as oxygen reduction reaction (ORR) is of great significance to promote the practical application of zinc-air batteries (ZABs). Herein, N doped conductive carbon black anchored CeO2 nanoclusters (CeO2 Clusters/NC) for the ORR is reported. The volatile cerium species vaporized by CeO2 nanoclusters at high temperatures are captured by nitrogen-rich carbon carriers to form highly dispersed Ce-Nx active sites. Benefiting from the coupling effect between oxygen vacancies-enriched CeO2 nanoclusters and highly dispersed Ce-Nx sites, the prepared 2CeO2 Clusters/NC catalyst possesses an ORR half-wave potential of 0.88 V, superior electrochemical stability, and better methanol tolerance compared to commercial Pt/C catalysts. Moreover, the 2CeO2 Clusters/NC involved liquid ZABs show excellent energy efficiency, superior stability, and a high energy density of 982 Wh kg-1 at 10 mA cm-2.
Collapse
Affiliation(s)
- Yueming Yan
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Qian Zhu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Lei Cao
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Feng Gu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China; Alber Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Shiji Liu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yuhao Luo
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Liu
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shufen Wang
- Alber Particle Science and Technology Research Institute, Nanchang, 330000, China
| | - Lanlan Fan
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Shixian Xiong
- Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices/Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China.
| |
Collapse
|
25
|
Yin J, Wang C, Li J, Yu S, Wu Z, Zhang Y, Du Y. In Situ Electrodeposition of Ultralow Pt into NiFe-Metal-Organic Framework/Nickel Foam Nanosheet Arrays as a Bifunctional Catalyst for Overall Water Splitting. Inorg Chem 2024; 63:5167-5174. [PMID: 38442484 DOI: 10.1021/acs.inorgchem.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Exploring highly effective bifunctional electrocatalysts with surface structural advantages and synergistic optimization effects among multimetals is greatly important for overall water splitting. Herein, we successfully synthesized Pt-loaded NiFe-metal-organic framework nanosheet arrays grown on nickel foam (Pt-NiFe-MOF/NF) via a facile hydrothermal-electrodeposition process. Benefiting from large exposed specific surface, optimal electrical conductivity and efficient metal-support interaction endow Pt-NiFe-MOF/NF with highly catalytic performance, exhibiting small overpotential of 261 mV toward oxygen evolution reaction and 125 mV toward hydrogen evolution reaction at a current density of 100 mA cm-2 in alkaline medium. More significantly, the assembled water electrolyzer comprising the Pt-NiFe-MOF/NF//Pt-NiFe-MOF/NF couple demands a low cell voltage of 1.45 V to reach 10 mA cm-2. This work renders a viable approach to design dual-functional electrocatalysts with exceptional electrocatalytic activity and stability at high current density, showing the great prospect of water electrolysis for commercial application.
Collapse
Affiliation(s)
- Jiongting Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
- College of Chemical and Environmental Engineering, Yancheng Teachers University, No. 2 Hope Avenue South Road, Yancheng 224007, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shudi Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
26
|
Pazos Urrea M, Meilinger S, Herold F, Gopakumar J, Tusini E, De Giacinto A, Zimina A, Grunwaldt JD, Chen D, Rønning M. Aqueous Phase Reforming over Platinum Catalysts on Doped Carbon Supports: Exploring Platinum-Heteroatom Interactions. ACS Catal 2024; 14:4139-4154. [PMID: 38510663 PMCID: PMC10949196 DOI: 10.1021/acscatal.3c05385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
A series of platinum catalysts supported on carbon nanofibers with various heteroatom dopings were synthesized to investigate the effect of the local platinum environment on the catalytic activity and selectivity in aqueous phase reforming (APR) of ethylene glycol (EG). Typical carbon dopants such as oxygen, nitrogen, sulfur, phosphorus, and boron were chosen based on their ability to bring acidic or basic functional groups to the carbon surface. In situ X-ray absorption spectroscopy (XAS) was used to identify the platinum oxidation state and platinum species formed during APR of EG through multivariate curve resolution alternating least-squares analysis, observing differences in activity, selectivity, and platinum local environment among the catalysts. The platinum-based catalyst on the nitrogen-doped carbon support demonstrated the most favorable properties for H2 production due to high Pt dispersion and basicity (H2 site time yield 22.7 h-1). Direct Pt-N-O coordination was identified by XAS in this catalyst. The sulfur-doped catalyst presented Pt-S contributions with the lowest EG conversion rate and minimal production of the gas phase components. Boron and phosphorus-doped catalysts showed moderate activity, which was affected by low platinum dispersion on the carbon support. The phosphorus-doped catalyst showed preferential selectivity to alcohols in the liquid phase, associated with the presence of acid sites and Pt-P contributions observed under APR conditions.
Collapse
Affiliation(s)
- Monica Pazos Urrea
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Simon Meilinger
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Felix Herold
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Jithin Gopakumar
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Enrico Tusini
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Andrea De Giacinto
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Anna Zimina
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - De Chen
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | - Magnus Rønning
- Department
of Chemical Engineering, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
27
|
Zhao Y, Raj J, Xu X, Jiang J, Wu J, Fan M. Carbon Catalysts Empowering Sustainable Chemical Synthesis via Electrochemical CO 2 Conversion and Two-Electron Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2311163. [PMID: 38308114 DOI: 10.1002/smll.202311163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Indexed: 02/04/2024]
Abstract
Carbon materials hold significant promise in electrocatalysis, particularly in electrochemical CO2 reduction reaction (eCO2 RR) and two-electron oxygen reduction reaction (2e- ORR). The pivotal factor in achieving exceptional overall catalytic performance in carbon catalysts is the strategic design of specific active sites and nanostructures. This work presents a comprehensive overview of recent developments in carbon electrocatalysts for eCO2 RR and 2e- ORR. The creation of active sites through single/dual heteroatom doping, functional group decoration, topological defect, and micro-nano structuring, along with their synergistic effects, is thoroughly examined. Elaboration on the catalytic mechanisms and structure-activity relationships of these active sites is provided. In addition to directly serving as electrocatalysts, this review explores the role of carbon matrix as a support in finely adjusting the reactivity of single-atom molecular catalysts. Finally, the work addresses the challenges and prospects associated with designing and fabricating carbon electrocatalysts, providing valuable insights into the future trajectory of this dynamic field.
Collapse
Affiliation(s)
- Yuying Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Xiang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| |
Collapse
|
28
|
Zhang L, Li T, Du T, Dai X, Zhang L, Tao C, Ding J, Yan C, Qian T. Manipulation of Electronic States of Pt Sites via d-Band Center Tuning for Enhanced Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Inorg Chem 2024; 63:2138-2147. [PMID: 38237037 DOI: 10.1021/acs.inorgchem.3c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Expediting the torpid kinetics of the oxygen reduction reaction (ORR) at the cathode with minimal amounts of Pt under acidic conditions plays a significant role in the development of proton exchange membrane fuel cells (PEMFCs). Herein, a novel Pt-N-C system consisting of Pt single atoms and nanoparticles anchored onto the defective carbon nanofibers is proposed as a highly active ORR catalyst (denoted as Pt-N-C). Detailed characterizations together with theoretical simulations illustrate that the strong coupling effect between different Pt sites can enrich the electron density of Pt sites, modify the d-band electronic environments, and optimize the oxygen intermediate adsorption energies, ultimately leading to significantly enhanced ORR performance. Specifically, the as-designed Pt-N-C demonstrates exceptional ORR properties with a high half-wave potential of 0.84 V. Moreover, the mass activity of Pt-N-C reaches 193.8 mA gPt-1 at 0.9 V versus RHE, which is 8-fold greater than that of Pt/C, highlighting the enormously improved electrochemical properties. More impressively, when integrated into a membrane electrode assembly as cathode in an air-fed PEMFC, Pt-N-C achieved a higher maximum power density (655.1 mW cm-2) as compared to Pt/C-based batteries (376.25 mW cm-2), hinting at the practical application of Pt-N-C in PEMFCs.
Collapse
Affiliation(s)
- Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Tianheng Du
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Xinyi Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Chen Tao
- School of Electrical Engineering, Nantong University, Nantong226019, China
| | - Jinjin Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou213164, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| |
Collapse
|
29
|
Zhou X, Min Y, Zhao C, Chen C, Ke MK, Xu SL, Chen JJ, Wu Y, Yu HQ. Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H 2O 2 production. Nat Commun 2024; 15:193. [PMID: 38167494 PMCID: PMC10761824 DOI: 10.1038/s41467-023-44585-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Direct electrosynthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction presents a burgeoning alternative to the conventional energy-intensive anthraquinone process for on-site applications. Nevertheless, its adoption is currently hindered by inferior H2O2 selectivity and diminished H2O2 yield induced by consecutive H2O2 reduction or Fenton reactions. Herein, guided by theoretical calculations, we endeavor to overcome this challenge by activating a main-group Pb single-atom catalyst via a local micro-environment engineering strategy employing a sulfur and oxygen super-coordinated structure. The main-group catalyst, synthesized using a carbon dot-assisted pyrolysis technique, displays an industrial current density reaching 400 mA cm-2 and elevated accumulated H2O2 concentrations (1358 mM) with remarkable Faradaic efficiencies. Both experimental results and theoretical simulations elucidate that S and O super-coordination directs a fraction of electrons from the main-group Pb sites to the coordinated oxygen atoms, consequently optimizing the *OOH binding energy and augmenting the 2e- oxygen reduction activity. This work unveils novel avenues for mitigating the production-depletion challenge in H2O2 electrosynthesis through the rational design of main-group catalysts.
Collapse
Affiliation(s)
- Xiao Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Changming Zhao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Cai Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Kun Ke
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shi-Lin Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
30
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
31
|
Magdaleno AL, Cerrón-Calle GA, Dos Santos AJ, Lanza MRV, Apul OG, Garcia-Segura S. Unlocking the Potential of Nanobubbles: Achieving Exceptional Gas Efficiency in Electrogeneration of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304547. [PMID: 37621039 DOI: 10.1002/smll.202304547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Indexed: 08/26/2023]
Abstract
The electrogeneration of hydrogen peroxide (H2 O2 ) via the oxygen reduction reaction is a crucial process for advanced water treatment technologies. While significant effort is being devoted to developing highly reactive materials, gas provision systems used in these processes are receiving less attention. Here, using oxygen nanobubbles to improve the gas efficiency of the electrogeneration of H2 O2 is proposed. Aeration with nanobubbles is compared to aeration with macrobubbles under an identical experimental set-up, with nanobubbles showing a much higher gas-liquid volumetric mass transfer coefficient (KL a) of 2.6 × 10-2 min-1 compared to 2.7 × 10-4 min-1 for macrobubbles. Consequently, nanobubbles exhibit a much higher gas efficiency using 60% of O2 delivered to the system compared to 0.19% for macrobubbles. Further, it is observed that the electrogeneration of H2 O2 using carbon felt electrodes is enhanced using nanobubbles. Under the same dissolved oxygen levels, nanobubbles boost the reaction yield to 84%, while macrobubbles yield only 53.8%. To the authors' knowledge, this is the first study to investigate the use of nanobubbles in electrochemical reactions and demonstrate their ability to enhance gas efficiency and electrocatalytic response. These findings have important implications for developing more efficient chemical and electrochemical processes operating under gas-starving systems.
Collapse
Affiliation(s)
- Andre L Magdaleno
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Gabriel A Cerrón-Calle
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Alexsandro J Dos Santos
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, 04469, USA
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| |
Collapse
|
32
|
Wang Z, Jin X, Chen F, Kuang X, Min J, Duan H, Li J, Chen J. Oxygen vacancy induced interaction between Pt and TiO 2 to improve the oxygen reduction performance. J Colloid Interface Sci 2023; 650:901-912. [PMID: 37453314 DOI: 10.1016/j.jcis.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
In proton exchange membrane fuel cells (PEMFCS), a Pt-based catalyst has been plagued by activity and durability, making it difficult to implement in large-scale commercial applications. In this paper, a composite material formed by titanium dioxide and carbon black containing oxygen vacancies (TiO2(OV)-C) was used as a functional support to successfully load Pt nanoparticles (NPS). The introduction of oxygen vacancies induces the formation of a connection between Pt and TiO2, which not only strengthens the fixation of Pt by the composite support but also optimizes the local charge density of Pt. Compared with Pt/C (0.842 V) and Pt/TiO2-C (0.841 V), the half-wave potential (E1/2) of Pt/TiO2(OV)-C (0.862 V) is increased by 20 mV and 21 mV, respectively. After a long-term durability test, the E1/2 of Pt/TiO2(OV)-C is only attenuated by 5 mV. In addition, the mass activity (MA) and specific activity (SA) decreased from 183.4 mA mg-1 and 0.565 mA cm-2 to 144.4 mA mg-1 and 0.483 mA cm-2 at 0.85 V, only decreasing by 21% and 17 %, showing good stability. X-ray photoelectron spectroscopies (XPS) and density functional theory (DFT) calculations show that the interaction between Pt and TiO2 reduces the d-band center of Pt, thereby improving the desorption of intermediates *OH, which in turn promotes the activity of alkaline ORR. This study not only shows that OV plays a key role in the process of inducing interaction, but also deeply studies the influence of this interaction on the active site Pt, which provides more choices for the design of excellent multiphase catalysts.
Collapse
Affiliation(s)
- Ziyu Wang
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xuekun Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fengjuan Chen
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Xuanyu Kuang
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Junyong Min
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Haiming Duan
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianjun Chen
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Feng JD, Zhang WD, Liu Y, Han WK, Zhu RM, Gu ZG. A 3D Covalent Organic Framework with In-situ Formed Pd Nanoparticles for Efficient Electrochemical Oxygen Reduction. Chemistry 2023; 29:e202302201. [PMID: 37565784 DOI: 10.1002/chem.202302201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
Non-platinum noble metals are highly desirable for the development of highly active, stable oxygen reduction reaction (ORR) electrocatalysts for fuel cells and metal-air batteries. However, how to improve the utilization of non-platinum noble metals is an urgent issue. Herein, a highly efficient catalyst for ORR was prepared through homogeneous loading of Pd precursors by a domain-limited method in a three-dimensional covalent organic framework (COF) followed by pyrolysis. The morphology of the Pd nanoparticles (Pd NPs) was well maintained after carbonization, which was attributed to the rigid structure of the 3D COF. Thanks to the uniform distribution of Pd NPs in the carbon, the catalyst exhibited a remarkable half-wave potential of 0.906 V and a Tafel slope of 70 mV dec-1 in 0.1 M KOH, surpassing the commercial Pt/C catalyst (0.863 V and 75 mV dec-1 ). Furthermore, a maximum power density of 144.0 mW cm-2 was achieved at 252 mA cm-2 , which was significantly higher than the control battery (105.1 mW cm-2 ). This work not only provides a simple strategy for in-situ preparation of highly dispersible metal catalysts in COFs, but also offers new insights into the ORR electrocatalysis.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
34
|
Wang H, Pei Y, Wang K, Zuo Y, Wei M, Xiong J, Zhang P, Chen Z, Shang N, Zhong D, Pei P. First-Row Transition Metals for Catalyzing Oxygen Redox. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304863. [PMID: 37469215 DOI: 10.1002/smll.202304863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Rechargeable zinc-air batteries are widely recognized as a highly promising technology for energy conversion and storage, offering a cost-effective and viable alternative to commercial lithium-ion batteries due to their unique advantages. However, the practical application and commercialization of zinc-air batteries are hindered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Recently, extensive research has focused on the potential of first-row transition metals (Mn, Fe, Co, Ni, and Cu) as promising alternatives to noble metals in bifunctional ORR/OER electrocatalysts, leveraging their high-efficiency electrocatalytic activity and excellent durability. This review provides a comprehensive summary of the recent advancements in the mechanisms of ORR/OER, the performance of bifunctional electrocatalysts, and the preparation strategies employed for electrocatalysts based on first-row transition metals in alkaline media for zinc-air batteries. The paper concludes by proposing several challenges and highlighting emerging research trends for the future development of bifunctional electrocatalysts based on first-row transition metals.
Collapse
Affiliation(s)
- Hengwei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Pei
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Keliang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| | - Yayu Zuo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Manhui Wei
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pengfei Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhuo Chen
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nuo Shang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Daiyuan Zhong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pucheng Pei
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
35
|
An Y, Cao W, Ouyang M, Chen S, Wang G, Chen X. Substantial impact of surface charges on electrochemical reaction kinetics on S vacancies of MoS2 using grand-canonical iteration method. J Chem Phys 2023; 159:144702. [PMID: 37811830 DOI: 10.1063/5.0153358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
The surface charges of catalysts have intricate influences on the thermodynamics and kinetics of electrochemical reactions. Herein, we develop a grand-canonical iteration method based on density functional theory calculations to explore the effect of surface charges on reaction kinetics beyond the traditional Butler-Volmer picture. Using the hydrogen evolution reaction on S vacancies of MoS2 as an example, we show how to track the change of surface charge in a reaction and to analyze its influence on the kinetics. Protons adsorb on S vacancies in a tough and charge-insensitive water splitting manner, which explains the observed large Tafel slope. Grand-canonical calculations report an unanticipated surface charge-induced change of the desorption pathway from the Heyrovsky route to a Volmer-Tafel route. During an electrochemical reaction, a net electron inflow into the catalyst may bring two effects, i.e., stabilization of the canonical energy and destabilization of the charge-dependent grand-canonical part. On the contrary, a net outflow of electrons from the catalyst can reverse the two effects. This surface charge effect has substantial impacts on the overpotential and the Tafel slope. We suggest that the surface charge effect is universal for all electrochemical reactions and significant for those involving interfacial proton transfers.
Collapse
Affiliation(s)
- Yi An
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wei Cao
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Min Ouyang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shiqi Chen
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Guangjin Wang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Xiaobo Chen
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
36
|
Li J, Gao RT, Liu X, Zhang X, Wu L, Wang L. Single-Atom Pt Embedded in Defective Layered Double Hydroxide for Efficient and Durable Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42501-42510. [PMID: 37641500 DOI: 10.1021/acsami.3c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Electrocatalysis in neutral conditions is appealing for hydrogen production by utilizing abundant wastewater or seawater resources. Single-atom catalysts (SACs) immobilized on supports are considered one of the most promising strategies for electrocatalysis research. While they have principally exhibited breakthrough activity and selectivity for the hydrogen evolution reaction (HER) electrocatalysis in alkaline or acidic conditions, few SACs were reported for HER in neutral media. Herein, we report a facile strategy to tailor the water dissociation active sites on the NiFe LDH by inducing Mo species and an ultralow single atomic Pt loading. The defected NiFeMo LDH (V-NiFeMo LDH) shows HER activity with an overpotential of 89 mV at 10 mA cm-2 in 1 M phosphate buffer solutions. The induced Mo species and the transformed NiO/Ni phases after etching significantly increase the electron conductivity and the catalytic active sites. A further enhancement can be achieved by modulating the ultralow single atom Pt anchored on the V-NiFeMo LDH by potentiostatic polarization. A potential as low as 37 mV is obtained at 10 mA cm-2 with a pronounced long-term durability over 110 h, surpassing its crystalline LDH materials and most of the HER catalysts in neutral medium. Experimental and density functional theory calculation results have demonstrated that the synergistic effects of Mo/SAs Pt and phase transformation into NiFe LDH reduce the kinetic energy barrier of the water dissociation process and promote the H* conversion for accelerating the neutral HER.
Collapse
Affiliation(s)
- Jiamin Li
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Xueyuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Chin
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
37
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
38
|
Qi Z, Zhou Y, Guan R, Fu Y, Baek JB. Tuning the Coordination Environment of Carbon-Based Single-Atom Catalysts via Doping with Multiple Heteroatoms and Their Applications in Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210575. [PMID: 36779510 DOI: 10.1002/adma.202210575] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Carbon-based single-atom catalysts (SACs) are considered to be a perfect platform for studying the structure-activity relationship of different reactions due to the adjustability of their coordination environment. Multi-heteroatom doping has been demonstrated as an effective strategy for tuning the coordination environment of carbon-based SACs and enhancing catalytic performance in electrochemical reactions. Herein, recently developed strategies for multi-heteroatom doping, focusing on the regulation of single-atom active sites by heteroatoms in different coordination shells, are summarized. In addition, the correlation between the coordination environment and the catalytic activity of carbon-based SACs are investigated through representative experiments and theoretical calculations for various electrochemical reactions. Finally, concerning certain shortcomings of the current strategies of doping multi-heteroatoms, some suggestions are put forward to promote the development of carbon-based SACs in the field of electrocatalysis.
Collapse
Affiliation(s)
- Zhijie Qi
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Zhou
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Runnan Guan
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
39
|
Xie L, Wang P, Zheng W, Zhan S, Xia Y, Liu Y, Yang W, Li Y. The strong metal-support interactions induced electrocatalytic three-electron oxygen reduction to hydroxyl radicals for water treatment. Proc Natl Acad Sci U S A 2023; 120:e2307989120. [PMID: 37603765 PMCID: PMC10466190 DOI: 10.1073/pnas.2307989120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
As a promising environmental remediation technology, the electro-Fenton (EF) process is mainly limited by the two rate-limiting steps, which are H2O2 generation and activation. The electrocatalytic three-electron oxygen reduction reaction (3e- ORR) can directly activate oxygen to hydroxyl radicals (•OH), which is expected to break through the rate-limiting steps of the EF process. However, limited success has been achieved in the design of 3e- ORR electrocatalysts. Herein, we propose Cu/CoSe2/C with the strong metal-support interactions to enhance the 3e- ORR process, exhibiting remarkable reactivity and stability for •OH generation. Both experiment and DFT calculation results reveal that CoSe2 is conducive to the generation of H2O2. Meanwhile, the metallic Cu can enhance the adsorption strength of *H2O2 intermediates and thus promotes the one-electron reduction to •OH. The Cu/CoSe2/C catalyst exhibits the electron-transfer number close to 3.0 during the ORR process, and exhibits the outstanding •OH generation performance, achieving a higher apparent rate constant (6.0 times faster) toward ciprofloxacin compared with its analogy without the SMSI effect. Our work represents that the SMSI effect endows Cu/CoSe2/C high activity and selectivity for •OH generation, providing a unique perspective for the design of a high-efficiency 3e- ORR catalyst.
Collapse
Affiliation(s)
- Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Pengfei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Wenwen Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Sihui Zhan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Yuguo Xia
- School of Chemistry and Chemical Engineering, Shandong University, Shandong250100, China
| | - Yuepeng Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Wenjing Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Fuzhou, Binhai New City350207, China
| |
Collapse
|
40
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
41
|
Cho J, Lim T, Kim H, Meng L, Kim J, Lee S, Lee JH, Jung GY, Lee KS, Viñes F, Illas F, Exner KS, Joo SH, Choi CH. Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis. Nat Commun 2023; 14:3233. [PMID: 37270530 PMCID: PMC10239452 DOI: 10.1038/s41467-023-38964-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Platinum single-atom catalysts hold promise as a new frontier in heterogeneous electrocatalysis. However, the exact chemical nature of active Pt sites is highly elusive, arousing many hypotheses to compensate for the significant discrepancies between experiments and theories. Here, we identify the stabilization of low-coordinated PtII species on carbon-based Pt single-atom catalysts, which have rarely been found as reaction intermediates of homogeneous PtII catalysts but have often been proposed as catalytic sites for Pt single-atom catalysts from theory. Advanced online spectroscopic studies reveal multiple identities of PtII moieties on the single-atom catalysts beyond ideally four-coordinated PtII-N4. Notably, decreasing Pt content to 0.15 wt.% enables the differentiation of low-coordinated PtII species from the four-coordinated ones, demonstrating their critical role in the chlorine evolution reaction. This study may afford general guidelines for achieving a high electrocatalytic performance of carbon-based single-atom catalysts based on other d8 metal ions.
Collapse
Affiliation(s)
- Junsic Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taejung Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Haesol Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ling Meng
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Jinjong Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghoon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jong Hoon Lee
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Gwan Yeong Jung
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kug-Seung Lee
- Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Francesc Viñes
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Kai S Exner
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; Cluster of Excellence RESOLV, 44801 Bochum, Germany; Center for Nanointegration Duisburg-Essen (CENIDE), 47057, Duisburg, Germany.
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
42
|
Chen K, Wang J, Zhang H, Ma D, Chu K. Self-Tandem Electrocatalytic NO Reduction to NH 3 on a W Single-Atom Catalyst. NANO LETTERS 2023; 23:1735-1742. [PMID: 36786441 DOI: 10.1021/acs.nanolett.2c04444] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We design single-atom W confined in MoO3-x amorphous nanosheets (W1/MoO3-x) comprising W1-O5 motifs as a highly active and durable NORR catalyst. Theoretical and operando spectroscopic investigations reveal the dual functions of W1-O5 motifs to (1) facilitate the activation and protonation of NO molecules and (2) promote H2O dissociation while suppressing *H dimerization to increase the proton supply, eventually resulting in a self-tandem NORR mechanism of W1/MoO3-x to greatly accelerate the protonation energetics of the NO-to-NH3 pathway. As a result, W1/MoO3-x exhibits the highest NH3-Faradaic efficiency of 91.2% and NH3 yield rate of 308.6 μmol h-1 cm-2, surpassing that of most previously reported NORR catalysts.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiaxin Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
43
|
Multicore-shell structure CuxCoy-Fe alloy nitrogen doped mesoporous hollow carbon nanotubes composites for oxygen reduction reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Nitrogen-containing carbon nanofibers as supports for bimetallic Pt-Mn catalysts in aqueous phase reforming of ethylene glycol. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
45
|
Rodríguez-Kessler PL, Muñoz-Castro A, Rodríguez-Domínguez AR, Cabellos JL. Structure effects of Pt 15 clusters for the oxygen reduction reaction: first-principles calculations. Phys Chem Chem Phys 2023; 25:4764-4772. [PMID: 36692089 DOI: 10.1039/d2cp05188e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the present work, the lowest energy structures and electronic properties of Pt15 clusters are investigated using molecular dynamics simulations. The results showed that the most stable configuration is a capped pyramidal structure, which is 0.8 kal mol-1 lower in energy than a layered structure previously reported [V. Kumar and Y. Kawazoe, Evolution of Atomic and Electronic Structure of Pt Clusters: Planar, Layered, Pyramidal, Cage, Cubic, and Octahedral Growth, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 205418.]. The result is further confirmed by using both the PW91/cc-pVDZ-PP and PBE/PW approaches including the other representative isomers for Pt15. Due to the interesting structure arrangements found, we have investigated the catalytic activities for the oxygen reduction reaction. We found that the most stable Pt15 clusters are plausible catalyts for the ORR according to their interaction with oxygen species, which is consistent with experiments of Pt clusters with atomicity below 20. The results of the structure, electronic, adsorption and vibrational properties of the clusters are provided.
Collapse
Affiliation(s)
- Peter L Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C. (CIO), Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150, Mexico.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| | - Adán R Rodríguez-Domínguez
- Universidad Politécnica de Tapachula, Carretera Tapachula a Puerto Madero km 24 + 300, San Benito, Puerto Madero C.P., 30830 Tapachula, Chiapas, Mexico
| | - José Luis Cabellos
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico
| |
Collapse
|
46
|
Zheng Y, Wang P, Huang WH, Chen CL, Jia Y, Dai S, Li T, Zhao Y, Qiu Y, Waterhouse GIN, Chen G. Toward More Efficient Carbon-Based Electrocatalysts for Hydrogen Peroxide Synthesis: Roles of Cobalt and Carbon Defects in Two-Electron ORR Catalysis. NANO LETTERS 2023; 23:1100-1108. [PMID: 36692959 DOI: 10.1021/acs.nanolett.2c04901] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical production of H2O2 is a cost-effective and environmentally friendly alternative to the anthraquinone-based processes. Metal-doped carbon-based catalysts are commonly used for 2-electron oxygen reduction reaction (2e-ORR) due to their high selectivity. However, the exact roles of metals and carbon defects on ORR catalysts for H2O2 production remain unclear. Herein, by varying the Co loading in the pyrolysis precursor, a Co-N/O-C catalyst with Faradaic efficiency greater than 90% in alkaline electrolyte was obtained. Detailed studies revealed that the active sites in the Co-N/O-C catalysts for 2e-ORR were carbon atoms in C-O-C groups at defect sites. The direct contribution of cobalt single atom sites and metallic Co for the 2e-ORR performance was negligible. However, Co plays an important role in the pyrolytic synthesis of a catalyst by catalyzing carbon graphitization, tuning the formation of defects and oxygen functional groups, and controlling O and N concentrations, thereby indirectly enhancing 2e-ORR performance.
Collapse
Affiliation(s)
- Yuanjie Zheng
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 51006, China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 51006, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tan Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 51006, China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 51006, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 51006, China
| | | | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 51006, China
| |
Collapse
|
47
|
He L, Li B, Ma Z, Chen L, Gong S, Zhang M, Bai Y, Guo Q, Wu F, Zhao F, Li J, Zhang D, Sheng D, Dai X, Chen L, Shu J, Chai Z, Wang S. Synergy of first- and second-sphere interactions in a covalent organic framework boosts highly selective platinum uptake. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
48
|
Yan L, Li P, Zhu Q, Kumar A, Sun K, Tian S, Sun X. Atomically precise electrocatalysts for oxygen reduction reaction. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Hossain SS, Ahmad Alwi MM, Saleem J, Al-Odail F, Basu A, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cell-II-Platinum-Based Catalysts. CHEM REC 2022; 22:e202200156. [PMID: 36073789 DOI: 10.1002/tcr.202200156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Indexed: 12/14/2022]
Abstract
Platinum-based catalysts have a long history of application in formic acid oxidation (FAO). The single metal Pt is active in FAO but expensive, scarce, and rapidly deactivates. Understanding the mechanism of FAO over Pt important for the rational design of catalysts. Pt nanomaterials rapidly deactivate because of the CO poisoning of Pt active sites via the dehydration pathway. Alloying with another transition metal improves the performance of Pt-based catalysts through bifunctional, ensemble, and steric effects. Supporting Pt catalysts on a high-surface-area support material is another technique to improve their overall catalytic activity. This review summarizes recent findings on the mechanism of FAO over Pt and Pt-based alloy catalysts. It also summarizes and analyzes binary and ternary Pt-based catalysts to understand their catalytic activity and structure relationship.
Collapse
Affiliation(s)
- Sk Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Muhammad Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Avijit Basu
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
50
|
Experimental probing of the effect of PFSA ionomer poisoning at different Pt loadings in a PEMFC. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|