1
|
Kohn DB, Booth C, Naldini L. Myelodysplasia after Lentiviral Gene Therapy. N Engl J Med 2024; 391:2382. [PMID: 39693551 DOI: 10.1056/nejmc2414069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Affiliation(s)
- Donald B Kohn
- University of California, Los Angeles, Los Angeles, CA
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| |
Collapse
|
2
|
Davies JC, Polineni D, Boyd AC, Donaldson S, Gill DR, Griesenbach U, Hyde SC, Jain R, McLachlan G, Mall MA, Alton EWFW. Lentiviral Gene Therapy for Cystic Fibrosis: A Promising Approach and First-in-Human Trial. Am J Respir Crit Care Med 2024; 210:1398-1408. [PMID: 39236265 DOI: 10.1164/rccm.202402-0389ci] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene. Although CF is a multiorgan disease, the leading causes of morbidity and mortality are related to progressive lung disease. Current understanding of the effects of the broad spectrum of CFTR mutations on CFTR function has allowed for the development of CFTR modulator therapies. Despite the remarkable impact that these therapies have had, there remains a significant proportion of people with CF (estimated at 10-15% of the global CF population) who are genetically ineligible for, or intolerant of, current CFTR-targeting therapies and whose therapeutic needs remain unmet. Inhaled genetic therapies offer the prospect of addressing the unmet pulmonary treatment need in people with CF, with several approaches, including gene addition therapy (the focus of this review), RNA-based therapies, antisense oligonucleotides, and gene editing, being explored. Various nonviral and viral vectors have been investigated for CF gene addition therapy for mutation-agnostic restoration of CFTR function in the lungs. Lentiviral vectors offer the prospect of highly efficient and long-lasting gene expression, and the potential to be safely and, in contrast to other commonly used viral vectors, effectively redosed. A third-generation lentiviral vector pseudotyped with Sendai virus F and HN envelope proteins (rSIV.F/HN) has been developed for the treatment of CF. Promising preclinical results support the progression of this vector carrying a full-length CFTR transgene (BI 3720931) into a first-in-human clinical trial expected to begin in 2024.
Collapse
Affiliation(s)
- Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- U.K. Respiratory Gene Therapy Consortium, Oxford, United Kingdom
| | - Deepika Polineni
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - A Christopher Boyd
- U.K. Respiratory Gene Therapy Consortium, Oxford, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, and
| | - Scott Donaldson
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Deborah R Gill
- U.K. Respiratory Gene Therapy Consortium, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Uta Griesenbach
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- U.K. Respiratory Gene Therapy Consortium, Oxford, United Kingdom
| | - Stephen C Hyde
- U.K. Respiratory Gene Therapy Consortium, Oxford, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gerry McLachlan
- U.K. Respiratory Gene Therapy Consortium, Oxford, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL) associated partner site, Berlin, Germany; and
- German Center for Child and Adolescent Health (DZKJ) partner site, Berlin, Germany
| | - Eric W F W Alton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- U.K. Respiratory Gene Therapy Consortium, Oxford, United Kingdom
| |
Collapse
|
3
|
Calabria A, Spinozzi G, Cesana D, Buscaroli E, Benedicenti F, Pais G, Gazzo F, Scala S, Lidonnici MR, Scaramuzza S, Albertini A, Esposito S, Tucci F, Canarutto D, Omrani M, De Mattia F, Dionisio F, Giannelli S, Marktel S, Fumagalli F, Calbi V, Cenciarelli S, Ferrua F, Gentner B, Caravagna G, Ciceri F, Naldini L, Ferrari G, Aiuti A, Montini E. Long-term lineage commitment in haematopoietic stem cell gene therapy. Nature 2024; 636:162-171. [PMID: 39442556 PMCID: PMC11618100 DOI: 10.1038/s41586-024-08250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Haematopoietic stem cell (HSC) gene therapy (GT) may provide lifelong reconstitution of the haematopoietic system with gene-corrected cells1. However, the effects of underlying genetic diseases, replication stress and ageing on haematopoietic reconstitution and lineage specification remain unclear. In this study, we analysed haematopoietic reconstitution in 53 patients treated with lentiviral-HSC-GT for diverse conditions such as metachromatic leukodystrophy2,3 (MLD), Wiskott-Aldrich syndrome4,5 (WAS) and β-thalassaemia6 (β-Thal) over a follow-up period of up to 8 years, using vector integration sites as markers of clonal identity. We found that long-term haematopoietic reconstitution was supported by 770 to 35,000 active HSCs. Whereas 50% of transplanted clones demonstrated multi-lineage potential across all conditions, the remaining clones showed a disease-specific preferential lineage output and long-term commitment: myeloid for MLD, lymphoid for WAS and erythroid for β-Thal, particularly in adult patients. Our results indicate that HSC clonogenic activity, lineage output, long-term lineage commitment and rates of somatic mutations are influenced by the underlying disease, patient age at the time of therapy, the extent of genetic defect correction and the haematopoietic stress imposed by the inherited disease. This suggests that HSCs adapt to the pathological condition during haematopoietic reconstitution.
Collapse
Affiliation(s)
- Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Buscaroli
- Department of Mathematics, Informatics and Geosciences, University of Trieste, Triste, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Pais
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Gazzo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Albertini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Esposito
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabiola De Mattia
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Francesca Fumagalli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Sabina Cenciarelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Caravagna
- Department of Mathematics, Informatics and Geosciences, University of Trieste, Triste, Italy
| | - Fabio Ciceri
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Montepeloso A, Mattioli D, Pellin D, Peviani M, Genovese P, Biffi A. Haploinsufficiency at the CX3CR1 locus of hematopoietic stem cells favors the appearance of microglia-like cells in the central nervous system of transplant recipients. Nat Commun 2024; 15:10192. [PMID: 39587072 PMCID: PMC11589136 DOI: 10.1038/s41467-024-54515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Transplantation of engineered hematopoietic stem/progenitor cells (HSPCs) showed curative potential in patients affected by neurometabolic diseases treated in early stage. Favoring the engraftment and maturation of the engineered HSPCs in the central nervous system (CNS) could allow enhancing further the therapeutic potential of this approach. Here we unveil that HSPCs haplo-insufficient at the Cx3cr1 (Cx3cr1-/+) locus are favored in central nervous system (CNS) engraftment and generation of microglia-like progeny cells (MLCs) as compared to wild type (Cx3cr1+/+) HSPCs upon transplantation in mice. Based on this evidence, we have developed a CRISPR-based targeted gene addition strategy at the human CX3CR1 locus resulting in an enhanced ability of the edited human HSPCs to generate mature MLCs upon transplantation in immunodeficient mice, and in lineage specific, regulated and robust transgene expression. This approach, which benefits from the modulation of pathways involved in microglia maturation and migration in haplo-insufficient cells, may broaden the application of HSPC gene therapy to a larger spectrum of neurometabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Annita Montepeloso
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- Gene Therapy Consulting, Padua, Italy
| | - Davide Mattioli
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Padua, Padua, Italy
| | - Danilo Pellin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Marco Peviani
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Pietro Genovese
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Padua, Padua, Italy.
| |
Collapse
|
5
|
Chen Y, van Til NP, Bosma PJ. Gene Therapy for Inherited Liver Disease: To Add or to Edit. Int J Mol Sci 2024; 25:12514. [PMID: 39684224 DOI: 10.3390/ijms252312514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Patients suffering from an inherited severe liver disorder require lifelong treatment to prevent premature death. Until recently, the only curative treatment option was liver transplantation, which requires lifelong immune suppression. Now, liver-directed gene therapy, which is a much less invasive procedure, has become a market-approved treatment for hemophilia A and B. This may pave the way for it to become the treatment of choice for many other recessive inherited liver disorders with loss-of-function mutations. Inherited liver disease with toxic-gain-of-function or intrinsic hepatocyte damage may require alternative applications, such as integrating vectors or genome editing technologies, that can provide permanent or specific modification of the genome. We present an overview of currently available gene therapy strategies, i.e., gene supplementation, gene editing, and gene repair investigated in preclinical and clinical studies to treat inherited severe liver disorders. The advantages and limitations of these gene therapy applications are discussed in relation to the underlying disease mechanism.
Collapse
Affiliation(s)
- Yue Chen
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Niek P van Til
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Piter J Bosma
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| |
Collapse
|
6
|
Pham V, Tricoli L, Hong X, Wongkittichote P, Castruccio Castracani C, Guerra A, Schlotawa L, Adang LA, Kuhs A, Cassidy MM, Kane O, Tsai E, Presa M, Lutz C, Rivella SB, Ahrens-Nicklas RC. Hematopoietic stem cell gene therapy improves outcomes in a clinically relevant mouse model of multiple sulfatase deficiency. Mol Ther 2024; 32:3829-3846. [PMID: 39169621 PMCID: PMC11573602 DOI: 10.1016/j.ymthe.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Multiple sulfatase deficiency (MSD) is a severe, lysosomal storage disorder caused by pathogenic variants in the gene SUMF1, encoding the sulfatase modifying factor formylglycine-generating enzyme. Patients with MSD exhibit functional deficiencies in all cellular sulfatases. The inability of sulfatases to break down their substrates leads to progressive and multi-systemic complications in patients, similar to those seen in single-sulfatase disorders such as metachromatic leukodystrophy and mucopolysaccharidoses IIIA. Here, we aimed to determine if hematopoietic stem cell transplantation with ex vivo SUMF1 lentiviral gene therapy could improve outcomes in a clinically relevant mouse model of MSD. We first tested our approach in MSD patient-derived cells and found that our SUMF1 lentiviral vector improved protein expression, sulfatase activities, and glycosaminoglycan accumulation. In vivo, we found that our gene therapy approach rescued biochemical deficits, including sulfatase activity and glycosaminoglycan accumulation, in affected organs of MSD mice treated post-symptom onset. In addition, treated mice demonstrated improved neuroinflammation and neurocognitive function. Together, these findings suggest that SUMF1 HSCT-GT can improve both biochemical and functional disease markers in the MSD mouse.
Collapse
Affiliation(s)
- Vi Pham
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucas Tricoli
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xinying Hong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Parith Wongkittichote
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Carlo Castruccio Castracani
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, 37075 Goettingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology, 37075 Goettingen, Germany
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amanda Kuhs
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Margaret M Cassidy
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Owen Kane
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Tsai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maximiliano Presa
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Cathleen Lutz
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Stefano B Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Olalla B, Río P. A new breakthrough in genome editing: the story of Casgevy. Cytotherapy 2024; 26:1299-1300. [PMID: 38944796 DOI: 10.1016/j.jcyt.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024]
Affiliation(s)
- Beatriz Olalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.
| |
Collapse
|
8
|
Gupta AO, Azul M, Bhoopalan SV, Abraham A, Bertaina A, Bidgoli A, Bonfim C, DeZern A, Li J, Louis CU, Purtill D, Ruggeri A, Boelens JJ, Prockop S, Sharma A. International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the current state of hematopoietic stem and progenitor cell-based genomic therapies and the challenges faced. Cytotherapy 2024; 26:1411-1420. [PMID: 38970612 PMCID: PMC11471386 DOI: 10.1016/j.jcyt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
Genetic manipulation of hematopoietic stem cells (HSCs) is being developed as a therapeutic strategy for several inherited disorders. This field is rapidly evolving with several novel tools and techniques being employed to achieve desired genetic changes. While commercial products are now available for sickle cell disease, transfusion-dependent β-thalassemia, metachromatic leukodystrophy and adrenoleukodystrophy, several challenges remain in patient selection, HSC mobilization and collection, genetic manipulation of stem cells, conditioning, hematologic recovery and post-transplant complications, financial issues, equity of access and institutional and global preparedness. In this report, we explore the current state of development of these therapies and provide a comprehensive assessment of the challenges these therapies face as well as potential solutions.
Collapse
Affiliation(s)
- Ashish O Gupta
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Azul
- Division of Hematology and Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allistair Abraham
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Amy DeZern
- Bone Marrow Failure and MDS Program, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
9
|
Dunbar CE. Weighing the Risks of Lentiviral Gene Therapy for Cerebral Adrenoleukodystrophy. N Engl J Med 2024; 391:1358-1359. [PMID: 39383463 DOI: 10.1056/nejme2409399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Affiliation(s)
- Cynthia E Dunbar
- From the Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Libertini S, Jadlowsky JK, Lanz TA, Mihalcik LM, Pizzurro DM. Genotoxicity evaluation of gene therapies: A report from the International Workshop on Genotoxicity Testing (IWGT) 2022. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39301812 DOI: 10.1002/em.22633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
At the 8th International Workshop on Genotoxicity Testing meeting in Ottawa, in August 2022, a plenary session was dedicated to the genotoxicity risk evaluation of gene therapies, including insertional oncogenesis and off-target genome editing. This brief communication summarizes the topics of discussion and the main insights from the speakers. Common themes included recommendations to conduct tailored risk assessments based on a weight-of-evidence approach, to promote data sharing, transparency, and cooperation between stakeholders, and to develop state-of-the-art validated tests relevant to clinical scenarios.
Collapse
Affiliation(s)
- S Libertini
- Novartis Biomedical Research, Basel, Switzerland
| | - J K Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - T A Lanz
- Pfizer Drug Safety Research & Development, Groton, Connecticut, USA
| | - L M Mihalcik
- Aclairo Pharmaceutical Development Group, Sterling, Virginia, USA
| | | |
Collapse
|
11
|
Wu T, Hu Y, Tang LV. Gene therapy for polygenic or complex diseases. Biomark Res 2024; 12:99. [PMID: 39232780 PMCID: PMC11375922 DOI: 10.1186/s40364-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Gene therapy utilizes nucleic acid drugs to treat diseases, encompassing gene supplementation, gene replacement, gene silencing, and gene editing. It represents a distinct therapeutic approach from traditional medications and introduces novel strategies for genetic disorders. Over the past two decades, significant advancements have been made in the field of gene therapy, leading to the approval of various gene therapy drugs. Gene therapy was initially employed for treating genetic diseases and cancers, particularly monogenic conditions classified as orphan diseases due to their low prevalence rates; however, polygenic or complex diseases exhibit higher incidence rates within populations. Extensive research on the etiology of polygenic diseases has unveiled new therapeutic targets that offer fresh opportunities for their treatment. Building upon the progress achieved in gene therapy for monogenic diseases and cancers, extending its application to polygenic or complex diseases would enable targeting a broader range of patient populations. This review aims to discuss the strategies of gene therapy, methods of gene editing (mainly CRISPR-CAS9), and carriers utilized in gene therapy, and highlight the applications of gene therapy in polygenic or complex diseases focused on applications that have either entered clinical stages or are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| | - Liang V Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| |
Collapse
|
12
|
Araujo AE, Bentler M, Perez Garmendia X, Kaleem A, Fabian C, Morgan M, Hacker UT, Büning H. Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies. Hum Gene Ther 2024; 35:586-603. [PMID: 39193633 DOI: 10.1089/hum.2024.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.
Collapse
Affiliation(s)
- Angela E Araujo
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Asma Kaleem
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claire Fabian
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ulrich T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Simoni C, Barbon E, Muro AF, Cantore A. In vivo liver targeted genome editing as therapeutic approach: progresses and challenges. Front Genome Ed 2024; 6:1458037. [PMID: 39246827 PMCID: PMC11378722 DOI: 10.3389/fgeed.2024.1458037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
Collapse
Affiliation(s)
- Chiara Simoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Barbon
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
14
|
李 婷, 宋 红. [Advances in gene therapy for inborn errors of immunity]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:865-870. [PMID: 39148393 PMCID: PMC11334546 DOI: 10.7499/j.issn.1008-8830.2404027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse group of disorders caused by defects in immune system structure or function, involving both innate and adaptive immunity. The 2022 update of the IEI classification includes 485 distinct disorders, categorized into ten major disease groups. With the rapid development of molecular biology, the specific pathogenesis of many IEI has been revealed, making gene therapy possible in preclinical and clinical research of this type of disease. This article reviews the advancements in gene therapy for IEI, aiming to increase awareness and understanding of these disorders.
Collapse
|
15
|
Johnson CS, Williams M, Sham K, Belluschi S, Ma W, Wang X, Lau WWY, Kaufmann KB, Krivdova G, Calderbank EF, Mende N, McLeod J, Mantica G, Li J, Grey-Wilson C, Drakopoulos M, Basheer S, Sinha S, Diamanti E, Basford C, Wilson NK, Howe SJ, Dick JE, Göttgens B, Green AR, Francis N, Laurenti E. Adaptation to ex vivo culture reduces human hematopoietic stem cell activity independently of the cell cycle. Blood 2024; 144:729-741. [PMID: 38805639 PMCID: PMC7616366 DOI: 10.1182/blood.2023021426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
ABSTRACT Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.
Collapse
Affiliation(s)
- Carys S. Johnson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Matthew Williams
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kendig Sham
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Serena Belluschi
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Wenjuan Ma
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaonan Wang
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Winnie W. Y. Lau
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gabriela Krivdova
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Emily F. Calderbank
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicole Mende
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jessica McLeod
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Giovanna Mantica
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Grey-Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Drakopoulos
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shaaezmeen Basheer
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shubhankar Sinha
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Evangelia Diamanti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christina Basford
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - Nicola K. Wilson
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Steven J. Howe
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
| | - John E. Dick
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Berthold Göttgens
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Natalie Francis
- Cell Process Development, Cell and Gene Therapy, GlaxoSmithKline, Stevenage, United Kingdom
- Department of Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Elisa Laurenti
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Sheth J, Nair A, Sheth F, Ajagekar M, Dhondekar T, Panigrahi I, Bavdekar A, Nampoothiri S, Datar C, Gandhi A, Muranjan M, Kaur A, Desai M, Mistri M, Patel C, Naik P, Shah M, Godbole K, Kapoor S, Gupta N, Bijarnia-Mahay S, Kadam S, Solanki D, Desai S, Iyer A, Patel K, Patel H, Shah RC, Mehta S, Shah R, Bhavsar R, Shah J, Pandya M, Patel B, Shah S, Shah H, Shah S, Bajaj S, Shah S, Thaker N, Kalane U, Kamate M, Kn VR, Tayade N, Jagadeesan S, Jain D, Chandarana M, Singh J, Mehta S, Suresh B, Sheth H. Burden of rare genetic disorders in India: twenty-two years' experience of a tertiary centre. Orphanet J Rare Dis 2024; 19:295. [PMID: 39138584 PMCID: PMC11323464 DOI: 10.1186/s13023-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Rare disorders comprise of ~ 7500 different conditions affecting multiple systems. Diagnosis of rare diseases is complex due to dearth of specialized medical professionals, testing labs and limited therapeutic options. There is scarcity of data on the prevalence of rare diseases in different populations. India being home to a large population comprising of 4600 population groups, of which several thousand are endogamous, is likely to have a high burden of rare diseases. The present study provides a retrospective overview of a cohort of patients with rare genetic diseases identified at a tertiary genetic test centre in India. RESULTS Overall, 3294 patients with 305 rare diseases were identified in the present study cohort. These were categorized into 14 disease groups based on the major organ/ organ system affected. Highest number of rare diseases (D = 149/305, 48.9%) were identified in the neuromuscular and neurodevelopmental (NMND) group followed by inborn errors of metabolism (IEM) (D = 47/305; 15.4%). Majority patients in the present cohort (N = 1992, 61%) were diagnosed under IEM group, of which Gaucher disease constituted maximum cases (N = 224, 11.2%). Under the NMND group, Duchenne muscular dystrophy (N = 291/885, 32.9%), trinucleotide repeat expansion disorders (N = 242/885; 27.3%) and spinal muscular atrophy (N = 141/885, 15.9%) were the most common. Majority cases of β-thalassemia (N = 120/149, 80.5%) and cystic fibrosis (N = 74/75, 98.7%) under the haematological and pulmonary groups were observed, respectively. Founder variants were identified for Tay-Sachs disease and mucopolysaccharidosis IVA diseases. Recurrent variants for Gaucher disease (GBA:c.1448T > C), β-thalassemia (HBB:c.92.+5G > C), non-syndromic hearing loss (GJB2:c.71G > A), albinism (TYR:c.832 C > T), congenital adrenal hyperplasia (CYP21A2:c.29-13 C > G) and progressive pseudo rheumatoid dysplasia (CCN6:c.298T > A) were observed in the present study. CONCLUSION The present retrospective study of rare disease patients diagnosed at a tertiary genetic test centre provides first insight into the distribution of rare genetic diseases across the country. This information will likely aid in drafting future health policies, including newborn screening programs, development of target specific panel for affordable diagnosis of rare diseases and eventually build a platform for devising novel treatment strategies for rare diseases.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| | - Aadhira Nair
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Frenny Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Manali Ajagekar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | - Inusha Panigrahi
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | | | | | - Chaitanya Datar
- Bharati Hospital and Research Centre, Dhankawadi, Pune, India
| | | | - Mamta Muranjan
- Department of Pediatrics, KEM Hospital, Parel, Mumbai, India
| | - Anupriya Kaur
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Manisha Desai
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mehul Mistri
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Chitra Patel
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Premal Naik
- Rainbow Super speciality Hospital, Ahmedabad, India
| | | | - Koumudi Godbole
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | - Seema Kapoor
- Division of Genetics & Metabolism Department of Pediatrics, Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sandeep Kadam
- Department of Pediatrics, K.E.M Hospital, Pune, India
| | | | - Soham Desai
- Shree Krishna Hospital, Karamsad, Anand, India
| | | | - Ketan Patel
- Himalaya Arcade, Homeopathy Clinic, Vastrapur, Ahmedabad, India
| | - Harsh Patel
- Zydus Hospital & Healthcare Research Pvt Ltd, Ahmedabad, India
| | - Raju C Shah
- Ankur Neonatal Hospital, Ashram Road, Ahmedabad, India
| | | | | | - Riddhi Bhavsar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Jhanvi Shah
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mili Pandya
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | | | - Heli Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shalin Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shruti Bajaj
- The Purple Gene Clinic, Simplex Khushaangan, SV Road, Malad West, Mumbai, India
| | | | | | - Umesh Kalane
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | | | - Vykunta Raju Kn
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Naresh Tayade
- Department of Paediatrics, Dr. Panjabrao Deshmukh Memorial Medical College, Amravati, India
| | - Sujatha Jagadeesan
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Deepika Jain
- Shishu Child Development and Early Intervention Centre, Ahmedabad, India
| | - Mitesh Chandarana
- Medisquare Superspeciality Hospital and Research Institute, Ahmedabad, India
| | - Jitendra Singh
- Neurology Clinic, Shivranjini Cross Road, Satellite, Ahmedabad, India
| | | | - Beena Suresh
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Harsh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| |
Collapse
|
17
|
Klapwijk JC, Del Rio Espinola A, Libertini S, Collin P, Fellows MD, Jobling S, Lynch AM, Martus H, Vickers C, Zeller A, Biasco L, Brugman MH, Bushmann FD, Cathomen T, Ertl HCJ, Gabriel R, Gao G, Jadlowsky JK, Kimber I, Lanz TA, Levine BL, Micklethwaite KP, Onodera M, Pizzurro DM, Reed S, Rothe M, Sabatino DE, Salk JJ, Schambach A, Themis M, Yuan J. Improving the Assessment of Risk Factors Relevant to Potential Carcinogenicity of Gene Therapies: A Consensus Article. Hum Gene Ther 2024; 35:527-542. [PMID: 39049734 DOI: 10.1089/hum.2024.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Regulators and industry are actively seeking improvements and alternatives to current models and approaches to evaluate potential carcinogenicity of gene therapies (GTs). A meeting of invited experts was organized by NC3Rs/UKEMS (London, March 2023) to discuss this topic. This article describes the consensus reached among delegates on the definition of vector genotoxicity, sources of uncertainty, suitable toxicological endpoints for genotoxic assessment of GTs, and future research needs. The collected recommendations should inform the further development of regulatory guidelines for the nonclinical toxicological assessment of GT products.
Collapse
Affiliation(s)
| | | | | | - Philippe Collin
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mick D Fellows
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Susan Jobling
- TestaVec Ltd, Maidenhead, United Kingdom
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | | | - Catherine Vickers
- National Centre for the Replacement Refinement and Reduction of Animals in Research, London, United Kingdom
| | - Andreas Zeller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Luca Biasco
- UCL Zayed Centre for Research (ZCR), London, United Kingdom
| | - Martijn H Brugman
- Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, United Kingdom
| | - Frederic D Bushmann
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, Pennsylvania, USA
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center- University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hildegrund C J Ertl
- Ertl Laboratory, Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Julie K Jadlowsky
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Thomas A Lanz
- Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth P Micklethwaite
- Department of Haematology, Blood Transplant and Cell Therapies Program, Westmead Hospital, Sydney, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory - ICPMR Westmead, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Masafumi Onodera
- Gene & Cell Therapy Promotion Center, National Center for Child Health and Development, Tokyo, Japan
| | | | - Simon Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Denise E Sabatino
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jesse J Salk
- Department of Medicine, Divisions of Hematology and Medical Oncology, University of Washington School of Medicine, Seattle, Washington, USA
- TwinStrand Biosciences Inc., Seattle, Washington, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Themis
- TestaVec Ltd, Maidenhead, United Kingdom
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Jing Yuan
- Kymera Therapeutics, Watertown, Massachusetts, USA
| |
Collapse
|
18
|
Neumayer G, Torkelson JL, Li S, McCarthy K, Zhen HH, Vangipuram M, Mader MM, Gebeyehu G, Jaouni TM, Jacków-Malinowska J, Rami A, Hansen C, Guo Z, Gaddam S, Tate KM, Pappalardo A, Li L, Chow GM, Roy KR, Nguyen TM, Tanabe K, McGrath PS, Cramer A, Bruckner A, Bilousova G, Roop D, Tang JY, Christiano A, Steinmetz LM, Wernig M, Oro AE. A scalable and cGMP-compatible autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. Nat Commun 2024; 15:5834. [PMID: 38992003 PMCID: PMC11239819 DOI: 10.1038/s41467-024-49400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
We present Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a scalable platform producing autologous organotypic iPS cell-derived induced skin composite (iSC) grafts for definitive treatment. Clinical-grade manufacturing integrates CRISPR-mediated genetic correction with reprogramming into one step, accelerating derivation of COL7A1-edited iPS cells from patients. Differentiation into epidermal, dermal and melanocyte progenitors is followed by CD49f-enrichment, minimizing maturation heterogeneity. Mouse xenografting of iSCs from four patients with different mutations demonstrates disease modifying activity at 1 month. Next-generation sequencing, biodistribution and tumorigenicity assays establish a favorable safety profile at 1-9 months. Single cell transcriptomics reveals that iSCs are composed of the major skin cell lineages and include prominent holoclone stem cell-like signatures of keratinocytes, and the recently described Gibbin-dependent signature of fibroblasts. The latter correlates with enhanced graftability of iSCs. In conclusion, DEBCT overcomes manufacturing and safety roadblocks and establishes a reproducible, safe, and cGMP-compatible therapeutic approach to heal lesions of DEB patients.
Collapse
Affiliation(s)
- Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jessica L Torkelson
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Shengdi Li
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Kelly McCarthy
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Hanson H Zhen
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Madhuri Vangipuram
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius M Mader
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Gulilat Gebeyehu
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Taysir M Jaouni
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Joanna Jacków-Malinowska
- Department of Dermatology, Columbia University, New York, NY, USA
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Avina Rami
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Corey Hansen
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Sadhana Gaddam
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Keri M Tate
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lingjie Li
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Grace M Chow
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kevin R Roy
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Thuylinh Michelle Nguyen
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Patrick S McGrath
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Amber Cramer
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Anna Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jean Y Tang
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA.
| | - Anthony E Oro
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Sorel N, Díaz-Pascual F, Bessot B, Sadek H, Mollet C, Chouteau M, Zahn M, Gil-Farina I, Tajer P, van Eggermond M, Berghuis D, Lankester AC, André I, Gabriel R, Cavazzana M, Pike-Overzet K, Staal FJT, Lagresle-Peyrou C. Restoration of T and B Cell Differentiation after RAG1 Gene Transfer in Human RAG1 Defective Hematopoietic Stem Cells. Biomedicines 2024; 12:1495. [PMID: 39062069 PMCID: PMC11275127 DOI: 10.3390/biomedicines12071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recombinase-activating gene (RAG)-deficient SCID patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. The two RAG genes act as a required dimer to initiate gene recombination. Gene therapy is a valid treatment alternative for RAG-SCID patients who lack a suitable bone marrow donor, but developing such therapy for RAG1/2 has proven challenging. Using a clinically approved lentiviral vector with a codon-optimized RAG1 gene, we report here preclinical studies using CD34+ cells from four RAG1-SCID patients. We used in vitro T cell developmental assays and in vivo assays in xenografted NSG mice. The RAG1-SCID patient CD34+ cells transduced with the RAG1 vector and transplanted into NSG mice led to restored human B and T cell development. Together with favorable safety data on integration sites, these results substantiate an ongoing phase I/II clinical trial for RAG1-SCID.
Collapse
Affiliation(s)
- Nataël Sorel
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | | | - Boris Bessot
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Hanem Sadek
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Chloé Mollet
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Myriam Chouteau
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Marco Zahn
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Irene Gil-Farina
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Parisa Tajer
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marja van Eggermond
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dagmar Berghuis
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Arjan C. Lankester
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Richard Gabriel
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
- Imagine Institute UMR1163, Université Paris Cité, Sorbonne Paris Cité, 75015 Paris, France
| | - Kasrin Pike-Overzet
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
| | - Frank J. T. Staal
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Chantal Lagresle-Peyrou
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| |
Collapse
|
20
|
Somekh I, Hendel A, Somech R. Evolution of Gene Therapy for Inborn Errors of Immunity. JAMA Pediatr 2024; 178:645-646. [PMID: 38767875 DOI: 10.1001/jamapediatrics.2024.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This Viewpoint reviews the history and current state of gene therapy for inborn errors of immunity.
Collapse
Affiliation(s)
- Ido Somekh
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Tel-Aviv, Israel
- Faculty of Medicine, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv University, Tel-Aviv, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Tel-Aviv, Israel
- Faculty of Medicine, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
21
|
Mackall CL, Bollard CM, Goodman N, Carr C, Gardner R, Rouce R, Sotillo E, Stoner R, Urnov FD, Wayne AS, Park J, Kohn DB. Enhancing pediatric access to cell and gene therapies. Nat Med 2024; 30:1836-1846. [PMID: 38886624 DOI: 10.1038/s41591-024-03035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Increasing numbers of cell and gene therapies (CGTs) are emerging to treat and cure pediatric diseases. However, small market sizes limit the potential return on investment within the traditional biopharmaceutical drug development model, leading to a market failure. In this Perspective, we discuss major factors contributing to this failure, including high manufacturing costs, regulatory challenges, and licensing practices that do not incorporate pediatric development milestones, as well as potential solutions. We propose the creation of a new entity, the Pediatric Advanced Medicines Biotech, to lead late-stage development and commercialize pediatric CGTs outside the traditional biopharmaceutical model in the United States-where organized efforts to solve this problem have been lacking. The Pediatric Advanced Medicines Biotech would partner with the academic ecosystem, manufacture products in academic good manufacturing practice facilities and work closely with regulatory bodies, to ferry CGTs across the drug development 'valley of death' and, ultimately, increase access to lifesaving treatments for children in need.
Collapse
Affiliation(s)
- Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Bone Marrow Transplant and Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and Department of Pediatrics, Children's National Hospital and The George Washington University, Washington, DC, USA
| | | | - Casey Carr
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Rayne Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Fyodor D Urnov
- Innovative Genomics Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Alan S Wayne
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie Park
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Donald B Kohn
- Departments of Microbiology, Immunology & Molecular Genetics; Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Kleinboehl EW, Laoharawee K, Lahr WS, Jensen JD, Peterson JJ, Bell JB, Webber BR, Moriarity BS. Development and testing of a versatile genome editing application reporter (V-GEAR) system. Mol Ther Methods Clin Dev 2024; 32:101253. [PMID: 38764780 PMCID: PMC11101715 DOI: 10.1016/j.omtm.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
CRISPR-Cas9 and novel cas fusion proteins leveraging specific DNA targeting ability combined with deaminases or reverse transcriptases have revolutionized genome editing. However, their efficacy heavily relies upon protein variants, targeting single guide RNAs, and surrounding DNA sequence context within the targeted loci. This necessitates the need for efficient and rapid screening methods to evaluate these editing reagents and designs. Existing plasmid-based reporters lack flexibility, being fixed to specific DNA sequences, hindering direct comparisons between various editing approaches. To address this, we developed the versatile genome editing application reporter (V-GEAR) system. V-GEAR comprises genes detectable after desired editing via base editing, prime editing, or homology-directed repair within relevant genomic contexts. It employs a detectable synthetic cell surface protein (RQR8) followed by a customizable target sequence resembling genomic regions of interest. These genes allow for reliable identification of corrective editing and cell enrichment. We validated the V-GEAR system with base editors, prime editors, and Cas9-mediated homology-directed repair. Furthermore, the V-GEAR system offers versatility by allowing transient screening or stable integration at the AAVS1 safe harbor loci, rapidly achieved through immunomagnetic isolation. This innovative system enables direct comparisons among editing technologies, accelerating the development and testing of genome editing approaches.
Collapse
Affiliation(s)
- Evan W. Kleinboehl
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walker S. Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob D. Jensen
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph J. Peterson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason B. Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Peng J, Zou WW, Wang XL, Zhang ZG, Huo R, Yang L. Viral-mediated gene therapy in pediatric neurological disorders. World J Pediatr 2024; 20:533-555. [PMID: 36607547 DOI: 10.1007/s12519-022-00669-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Due to the broad application of next-generation sequencing, the molecular diagnosis of genetic disorders in pediatric neurology is no longer an unachievable goal. However, treatments for neurological genetic disorders in children remain primarily symptomatic. On the other hand, with the continuous evolution of therapeutic viral vectors, gene therapy is becoming a clinical reality. From this perspective, we wrote this review to illustrate the current state regarding viral-mediated gene therapy in childhood neurological disorders. DATA SOURCES We searched databases, including PubMed and Google Scholar, using the keywords "adenovirus vector," "lentivirus vector," and "AAV" for gene therapy, and "immunoreaction induced by gene therapy vectors," "administration routes of gene therapy vectors," and "gene therapy" with "NCL," "SMA," "DMD," "congenital myopathy," "MPS" "leukodystrophy," or "pediatric metabolic disorders". We also screened the database of ClinicalTrials.gov using the keywords "gene therapy for children" and then filtered the results with the ones aimed at neurological disorders. The time range of the search procedure was from the inception of the databases to the present. RESULTS We presented the characteristics of commonly used viral vectors for gene therapy for pediatric neurological disorders and summarized their merits and drawbacks, the administration routes of each vector, the research progress, and the clinical application status of viral-mediated gene therapy on pediatric neurological disorders. CONCLUSIONS Viral-mediated gene therapy is on the brink of broad clinical application. Viral-mediated gene therapy will dramatically change the treatment pattern of childhood neurological disorders, and many children with incurable diseases will meet the dawn of a cure. Nevertheless, the vectors must be optimized for better safety and efficacy.
Collapse
Affiliation(s)
- Jing Peng
- Department of Pediatrics, Clinical Research Center for Chidren Neurodevelopmental disablities of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei-Wei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Lei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi-Guo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of Pediatrics, Clinical Research Center for Chidren Neurodevelopmental disablities of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
24
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GMT, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International recommendations for screening and preventative practices for long-term survivors of transplantation and cellular therapy: a 2023 update. Bone Marrow Transplant 2024; 59:717-741. [PMID: 38413823 DOI: 10.1038/s41409-023-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the volume of HCT performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long-term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pre-, peri- and post-transplant exposures and other underlying risk-factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and updated in 2012. To review contemporary literature and update the recommendations while considering the changing practice of HCT and cellular therapy, an international group of experts was again convened. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed but cGVHD management is not covered in detail. These guidelines emphasize special needs of patients with distinct underlying HCT indications or comorbidities (e.g., hemoglobinopathies, older adults) but do not replace more detailed group, disease, or condition specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, MA, USA
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, AZ, USA
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, CA, USA
| | - Peggy Burkhard
- National Bone Marrow Transplant Link, Southfield, MI, USA
| | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, Halifax, NS, Canada
- QEII Health Sciences Center, Halifax, NS, Canada
| | - Gregory M T Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, Sydney, NSW, Australia
- St Vincent's Clinical School Sydney, University of New South Wales, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, WA, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, WI, USA
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, UK
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Public Health and Primary Care, ACCENT VV, KU Leuven-University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Susan K Stewart
- Blood & Marrow Transplant Information Network, Highland Park, IL, 60035, USA
| | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, TN, USA
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Locatelli F, Cavazzana M, Frangoul H, Fuente JDL, Algeri M, Meisel R. Autologous gene therapy for hemoglobinopathies: From bench to patient's bedside. Mol Ther 2024; 32:1202-1218. [PMID: 38454604 PMCID: PMC11081872 DOI: 10.1016/j.ymthe.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
In recent years, a growing number of clinical trials have been initiated to evaluate gene therapy approaches for the treatment of patients with transfusion-dependent β-thalassemia and sickle cell disease (SCD). Therapeutic modalities being assessed in these trials utilize different molecular techniques, including lentiviral vectors to add functional copies of the gene encoding the hemoglobin β subunit in defective cells and CRISPR-Cas9, transcription activator-like effector protein nuclease, and zinc finger nuclease gene editing strategies to either directly address the underlying genetic cause of disease or induce fetal hemoglobin production by gene disruption. Here, we review the mechanisms of action of these various gene addition and gene editing approaches and describe the status of clinical trials designed to evaluate the potentially for these approaches to provide one-time functional cures to patients with transfusion-dependent β-thalassemia and SCD.
Collapse
Affiliation(s)
- Franco Locatelli
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy; Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Marina Cavazzana
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris, 75006 Paris, France
| | - Haydar Frangoul
- Sarah Cannon Center for Blood Cancer at The Children's Hospital at TriStar Centennial, Nashville, TN 37203, USA
| | - Josu de la Fuente
- Imperial College Healthcare NHS Trust, St Mary's Hospital, London W21NY, UK
| | - Mattia Algeri
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy; Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| |
Collapse
|
26
|
Cesana D, Cicalese MP, Calabria A, Merli P, Caruso R, Volpin M, Rudilosso L, Migliavacca M, Barzaghi F, Fossati C, Gazzo F, Pizzi S, Ciolfi A, Bruselles A, Tucci F, Spinozzi G, Pais G, Benedicenti F, Barcella M, Merelli I, Gallina P, Giannelli S, Dionisio F, Scala S, Casiraghi M, Strocchio L, Vinti L, Pacillo L, Draghi E, Cesana M, Riccardo S, Colantuono C, Six E, Cavazzana M, Carlucci F, Schmidt M, Cancrini C, Ciceri F, Vago L, Cacchiarelli D, Gentner B, Naldini L, Tartaglia M, Montini E, Locatelli F, Aiuti A. A case of T-cell acute lymphoblastic leukemia in retroviral gene therapy for ADA-SCID. Nat Commun 2024; 15:3662. [PMID: 38688902 PMCID: PMC11061298 DOI: 10.1038/s41467-024-47866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.
Collapse
Affiliation(s)
- Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Merli
- IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Monica Volpin
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Rudilosso
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Fossati
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Gazzo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Pais
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Pierangela Gallina
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Casiraghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Lucia Pacillo
- Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Eleonora Draghi
- Immunogenetics, Leukemia Genomics and Immunobiology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sara Riccardo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA S.r.l., Pozzuoli, Italy
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA S.r.l., Pozzuoli, Italy
| | - Emmanuelle Six
- Laboratory of Human Lympho-hematopoiesis, INSERM, Paris, France
| | | | - Filippo Carlucci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Caterina Cancrini
- Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine University of Rome Tor Vergata, Rome, Italy
| | - Fabio Ciceri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Haematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Università Vita-Salute San Raffaele, Milan, Italy
- Immunogenetics, Leukemia Genomics and Immunobiology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132, Milan, Italy
- Haematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Haematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Paediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
27
|
Chen X, Zhong S, Zhan Y, Zhang X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell Mol Biol Lett 2024; 29:52. [PMID: 38609863 PMCID: PMC11010303 DOI: 10.1186/s11658-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuhan Zhong
- Department of Hematology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310003, China
| | - Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
28
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GM, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International Recommendations for Screening and Preventative Practices for Long-Term Survivors of Transplantation and Cellular Therapy: A 2023 Update. Transplant Cell Ther 2024; 30:349-385. [PMID: 38413247 PMCID: PMC11181337 DOI: 10.1016/j.jtct.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the number of HCTs performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pretransplantation, peritransplantation, and post-transplantation exposures and other underlying risk factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and then updated in 2012. An international group of experts was convened to review the contemporary literature and update the recommendations while considering the changing practices of HCT and cellular therapy. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed, but cGVHD management is not covered in detail. These guidelines emphasize the special needs of patients with distinct underlying HCT indications or comorbidities (eg, hemoglobinopathies, older adults) but do not replace more detailed group-, disease-, or condition-specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Neel S Bhatt
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, Massachusetts
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, Arizona
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, California
| | | | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | - Gregory Mt Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, St Vincent's Clinical School Sydney, University of New South Wales, School of Medicine Sydney, University of Notre Dame Australia, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, PathWest Laboratory Medicine WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Department of Public Health and Primary Care, ACCENT VV, KU Leuven, University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, Tennessee
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
29
|
Beschorner N, Künzle P, Voges M, Hauber I, Indenbirken D, Nakel J, Virdi S, Bradtke P, Lory NC, Rothe M, Paszkowski-Rogacz M, Buchholz F, Grundhoff A, Schambach A, Thirion C, Mittrücker HW, Schulze zur Wiesch J, Hauber J, Chemnitz J. Preclinical toxicity analyses of lentiviral vectors expressing the HIV-1 LTR-specific designer-recombinase Brec1. PLoS One 2024; 19:e0298542. [PMID: 38457474 PMCID: PMC10923487 DOI: 10.1371/journal.pone.0298542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
Drug-based antiretroviral therapies (ART) efficiently suppress HIV replication in humans, but the virus persists as integrated proviral reservoirs in small numbers of cells. Importantly, ART cannot eliminate HIV from an infected individual, since it does not target the integrated provirus. Therefore, genome editing-based strategies that can inactivate or excise HIV genomes would provide the technology for novel curative therapies. In fact, the HIV-1 LTR-specific designer-recombinase Brec1 has been shown to remove integrated proviruses from infected cells and is highly efficacious on clinical HIV-1 isolates in vitro and in vivo, suggesting that Brec1 has the potential for clinical development of advanced HIV-1 eradication strategies in people living with HIV. In line with the preparation of a first-in-human advanced therapy medicinal product gene therapy trial, we here present an extensive preclinical evaluation of Brec1 and lentiviral vectors expressing the Brec1 transgene. This included detailed functional analysis of potential genomic off-target sites, assessing vector safety by investigating vector copy number (VCN) and the risk for potential vector-related insertional mutagenesis, as well as analyzing the potential of Brec1 to trigger an undesired strong T cell immune response. In conclusion, the antiviral designer-recombinase Brec1 is shown to lack any detectable cytopathic, genotoxic or T cell-related immunogenic effects, thereby meeting an important precondition for clinical application of the therapeutic lentiviral vector LV-Brec1 in novel HIV-1 curative strategies.
Collapse
Affiliation(s)
- Niklas Beschorner
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany
- PROVIREX Genome Editing Therapies GmbH, Hamburg, Germany
| | - Paul Künzle
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany
| | - Maike Voges
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- PROVIREX Genome Editing Therapies GmbH, Hamburg, Germany
| | - Ilona Hauber
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- PROVIREX Genome Editing Therapies GmbH, Hamburg, Germany
| | - Daniela Indenbirken
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany
| | - Jacqueline Nakel
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany
| | - Sanamjeet Virdi
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany
| | - Peter Bradtke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niels Christian Lory
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Frank Buchholz
- PROVIREX Genome Editing Therapies GmbH, Hamburg, Germany
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Adam Grundhoff
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Hauber
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany
- PROVIREX Genome Editing Therapies GmbH, Hamburg, Germany
| | - Jan Chemnitz
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany
- PROVIREX Genome Editing Therapies GmbH, Hamburg, Germany
| |
Collapse
|
30
|
Medaer L, Veys K, Gijsbers R. Current Status and Prospects of Viral Vector-Based Gene Therapy to Treat Kidney Diseases. Hum Gene Ther 2024; 35:139-150. [PMID: 38386502 DOI: 10.1089/hum.2023.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Inherited kidney diseases are among the leading causes of chronic kidney disease, reducing the quality of life and resulting in substantial socioeconomic impact. The advent of early genetic testing and the growing understanding of the molecular basis and pathophysiology of these disorders have opened avenues for novel treatment strategies. Viral vector-based gene therapies have evolved from experimental treatments for rare diseases to potent platforms that carry the intrinsic potential to provide a cure with a single application. Several gene therapy products have reached the market, and the numbers are only expected to increase. Still, none target inherited kidney diseases. Gene transfer to the kidney has lagged when compared to other tissue-directed therapies such as hepatic, neuromuscular, and ocular tissues. Systemic delivery of genetic information to tackle kidney disease is challenging. The pharma industry is taking steps to take on kidney disease and to translate the current research into the therapeutic arena. In this review, we provide an overview of the current viral vector-based approaches and their potential. We discuss advances in platforms and injection routes that have been explored to enhance gene delivery toward kidney cells in animal models, and how these can fuel the development of viable gene therapy products for humans.
Collapse
Affiliation(s)
- Louise Medaer
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine
| | - Koenraad Veys
- Laboratory of Paediatric Nephrology, Department of Development and Regeneration, Faculty of Medicine
| | - Rik Gijsbers
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, Faculty of Medicine
- Leuven Viral Vector Core, Faculty of Medicine; KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Kitawi R, Ledger S, Kelleher AD, Ahlenstiel CL. Advances in HIV Gene Therapy. Int J Mol Sci 2024; 25:2771. [PMID: 38474018 DOI: 10.3390/ijms25052771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Early gene therapy studies held great promise for the cure of heritable diseases, but the occurrence of various genotoxic events led to a pause in clinical trials and a more guarded approach to progress. Recent advances in genetic engineering technologies have reignited interest, leading to the approval of the first gene therapy product targeting genetic mutations in 2017. Gene therapy (GT) can be delivered either in vivo or ex vivo. An ex vivo approach to gene therapy is advantageous, as it allows for the characterization of the gene-modified cells and the selection of desired properties before patient administration. Autologous cells can also be used during this process which eliminates the possibility of immune rejection. This review highlights the various stages of ex vivo gene therapy, current research developments that have increased the efficiency and safety of this process, and a comprehensive summary of Human Immunodeficiency Virus (HIV) gene therapy studies, the majority of which have employed the ex vivo approach.
Collapse
Affiliation(s)
- Rose Kitawi
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chantelle L Ahlenstiel
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
32
|
Jha R, Kinna A, Hotblack A, Bughda R, Bulek A, Gannon I, Ilca T, Allen C, Lamb K, Dolor A, Scott I, Parekh F, Sillibourne J, Cordoba S, Onuoha S, Thomas S, Ferrari M, Pule M. Designer Small-Molecule Control System Based on Minocycline-Induced Disruption of Protein-Protein Interaction. ACS Chem Biol 2024; 19:308-324. [PMID: 38243811 PMCID: PMC10877577 DOI: 10.1021/acschembio.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
A versatile, safe, and effective small-molecule control system is highly desirable for clinical cell therapy applications. Therefore, we developed a two-component small-molecule control system based on the disruption of protein-protein interactions using minocycline, an FDA-approved antibiotic with wide availability, excellent biodistribution, and low toxicity. The system comprises an anti-minocycline single-domain antibody (sdAb) and a minocycline-displaceable cyclic peptide. Here, we show how this versatile system can be applied to OFF-switch split CAR systems (MinoCAR) and universal CAR adaptors (MinoUniCAR) with reversible, transient, and dose-dependent suppression; to a tunable T cell activation module based on MyD88/CD40 signaling; to a controllable cellular payload secretion system based on IL12 KDEL retention; and as a cell/cell inducible junction. This work represents an important step forward in the development of a remote-controlled system to precisely control the timing, intensity, and safety of therapeutic interventions.
Collapse
Affiliation(s)
- Ram Jha
- Autolus
Therapeutics, London W12 7FP, U.K.
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| | | | - Alastair Hotblack
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| | | | - Anna Bulek
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | - Tudor Ilca
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | | | | | - Ian Scott
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | | | | | | | | | | | - Martin Pule
- Autolus
Therapeutics, London W12 7FP, U.K.
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| |
Collapse
|
33
|
Salvator H, Mahlaoui N, Suarez F, Marcais A, Longchampt E, Tcherakian C, Givel C, Chabrol A, Caradec E, Lortholary O, Lanternier F, Goyard C, Couderc LJ, Catherinot E. [Pulmonary complications of Chronic Granulomatous Disease]. Rev Mal Respir 2024; 41:156-170. [PMID: 38272769 DOI: 10.1016/j.rmr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Chronic Granulomatosis Disease (CGD) is an inherited immune deficiency due to a mutation in the genes coding for the subunits of the NADPH oxidase enzyme that affects the oxidative capacity of phagocytic cells. It is characterized by increased susceptibility to bacterial and fungal infections, particularly Aspergillus, as well as complications associated with hyperinflammation and granulomatous tissue infiltration. There exist two types of frequently encountered pulmonary manifestations: (1) due to their being initially pauci-symptomatic, possibly life-threatening infectious complications are often discovered at a late stage. Though their incidence has decreased through systematic anti-bacterial and anti-fungal prophylaxis, they remain a major cause of morbidity and mortality; (2) inflammatory complications consist in persistent granulomatous mass or interstitial pneumoniae, eventually requiring immunosuppressive treatment. Pulmonary complications recurring since infancy generate parenchymal and bronchial sequelae that impact functional prognosis. Hematopoietic stem cell allograft is a curative treatment; it is arguably life-sustaining and may limit the morbidity of the disease. As a result of improved pediatric management, life expectancy has increased dramatically. That said, new challenges have appeared with regard to adults: difficulties of compliance, increased inflammatory manifestations, acquired resistance to anti-infectious therapies. These different developments underscore the importance of the transition period and the need for multidisciplinary management.
Collapse
Affiliation(s)
- H Salvator
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France; UMR0892 VIM-Suresnes Inrae, université Paris-Saclay, Suresnes, France; Faculté de Sciences de la Vie Simone Veil, Université Versailles Saint Quentin, Montigny-le-Bretonneux, France.
| | - N Mahlaoui
- Centre de référence déficits immunitaires héréditaires (CEREDIH), hôpital Necker-Enfants Malades, institut Imagine, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France; Service d'hématologie-immunologie et rhumatologie pédiatrique, hôpital Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris, Paris, France
| | - F Suarez
- Centre de référence déficits immunitaires héréditaires (CEREDIH), hôpital Necker-Enfants Malades, institut Imagine, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France; Service d'hématologie adultes, hôpital Necker-Enfants Malades, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France
| | - A Marcais
- Service d'hématologie adultes, hôpital Necker-Enfants Malades, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France
| | - E Longchampt
- Service d'anatomopathologie, hôpital Foch, Suresnes, France
| | - C Tcherakian
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - C Givel
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - A Chabrol
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - E Caradec
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - O Lortholary
- Service de maladies infectieuses, hôpital Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris, Paris, France; Centre national de référence des mycoses invasives et antifongiques, Centre national de la recherche scientifique, unite mixté de recherche (UMR) 2000, Institut Pasteur, université Paris Cité, Paris, France
| | - F Lanternier
- Service de maladies infectieuses, hôpital Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris, Paris, France; Centre national de référence des mycoses invasives et antifongiques, Centre national de la recherche scientifique, unite mixté de recherche (UMR) 2000, Institut Pasteur, université Paris Cité, Paris, France
| | - C Goyard
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - L J Couderc
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France; UMR0892 VIM-Suresnes Inrae, université Paris-Saclay, Suresnes, France
| | - E Catherinot
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| |
Collapse
|
34
|
Singh M, Brooks A, Toofan P, McLuckie K. Selection of appropriate non-clinical animal models to ensure translatability of novel AAV-gene therapies to the clinic. Gene Ther 2024; 31:56-63. [PMID: 37612361 DOI: 10.1038/s41434-023-00417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Gene Therapy Medicinal Products consist of a recombinant nucleic acid intended for the modulation or manipulation of a genetic sequence. A single administration of a novel gene therapy has the potential to be curative, with a durable long-term benefit to patients. Adeno-associated viral vectors have become the viral vector of choice for in vivo delivery of therapeutic transgenes as they are mildly immunogenic, can effectively transduce a variety of human tissues and cells, and have low levels of genomic integration. Central to the effective translation of data generated in discovery studies to the clinic is the selection of appropriate animal species for pivotal non-clinical studies. This review aims to support the selection of appropriate animal models for non-clinical studies to advance the development of novel adeno-associated virus gene therapies.
Collapse
Affiliation(s)
- Mark Singh
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK.
| | - Andrew Brooks
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Parto Toofan
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Keith McLuckie
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| |
Collapse
|
35
|
Liu Y, Karlsson S. Perspectives of current understanding and therapeutics of Diamond-Blackfan anemia. Leukemia 2024; 38:1-9. [PMID: 37973818 PMCID: PMC10776401 DOI: 10.1038/s41375-023-02082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
ABSTACT Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure disorder characterized by erythroid hypoplasia. It primarily affects infants and is often caused by heterozygous allelic variations in ribosomal protein (RP) genes. Recent studies also indicated that non-RP genes like GATA1, TSR2, are associated with DBA. P53 activation, translational dysfunction, inflammation, imbalanced globin/heme synthesis, and autophagy dysregulation were shown to contribute to disrupted erythropoiesis and impaired red blood cell production. The main therapeutic option for DBA patients is corticosteroids. However, half of these patients become non-responsive to corticosteroid therapy over prolonged treatment and have to be given blood transfusions. Hematopoietic stem cell transplantation is currently the sole curative option, however, the treatment is limited by the availability of suitable donors and the potential for serious immunological complications. Recent advances in gene therapy using lentiviral vectors have shown promise in treating RPS19-deficient DBA by promoting normal hematopoiesis. With deepening insights into the molecular framework of DBA, emerging therapies like gene therapy hold promise for providing curative solutions and advancing comprehension of the underlying disease mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
36
|
Whitney D, Shestopalov I, Fincker M, d’Anjou M, Kral K, Gayron M, Pierciey FJ, Colvin RA. Drug product attributes predict clinical efficacy in betibeglogene autotemcel gene therapy for β-thalassemia. Mol Ther Methods Clin Dev 2023; 31:101155. [PMID: 38074412 PMCID: PMC10709156 DOI: 10.1016/j.omtm.2023.101155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/08/2023] [Indexed: 10/16/2024]
Abstract
Ex vivo autologous hematopoietic stem cell lentiviral-based gene therapy with betibeglogene autotemcel has been studied in patients with transfusion-dependent β-thalassemia in Phase III clinical trials (HGB-207 and HGB-212), with 90% of patients reaching transfusion independence (TI). Here, we explore manufacturing parameters, drug product quality attributes, and limited patient characteristics that had an impact on clinical efficacy in HGB-207 and HGB-212. Retrospective analysis revealed that the peripheral blood vector copy number (VCN) was related to TI, with a strong correlation between peripheral blood VCN at 6 months and gene therapy-derived therapeutic protein (HbAT87Q) expression at 6 months (correlation coefficient, 0.8681; p < 0.0001; R2 = 0.7536). A peripheral blood VCN threshold of ≥0.75 copies per diploid genome at 6 months post betibeglogene autotemcel infusion provided a stringent surrogate biomarker for TI and was used as the outcome variable for multivariate analysis using a random forest classifier. The top predictive feature of clinical efficacy was found to be the percentage of lentiviral vector-positive cells in the drug product. This retrospective analysis is critical to understanding the key product quality attributes that can predict clinical efficacy in lentiviral vector gene therapy within this clinical trial population.
Collapse
Affiliation(s)
| | | | | | | | - Kelly Kral
- bluebird bio, Inc., Somerville, MA 02145, USA
| | | | | | | |
Collapse
|
37
|
Schott JW, Huang P, Morgan M, Nelson-Brantley J, Koehler A, Renslo B, Büning H, Warnecke A, Schambach A, Staecker H. Third-generation lentiviral gene therapy rescues function in a mouse model of Usher 1B. Mol Ther 2023; 31:3502-3519. [PMID: 37915173 PMCID: PMC10727968 DOI: 10.1016/j.ymthe.2023.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/30/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Usher syndrome 1B (USH1B) is a devastating genetic disorder with congenital deafness, loss of balance, and blindness caused by mutations in the myosin-VIIa (MYO7A) gene, for which there is currently no cure. We developed a gene therapy approach addressing the vestibulo-cochlear deficits of USH1B using a third-generation, high-capacity lentiviral vector system capable of delivering the large 6,645-bp MYO7A cDNA. Lentivirally delivered MYO7A and co-encoded dTomato were successfully expressed in the cochlear cell line HEI-OC1. In normal-hearing mice, both cochlea and the vestibular organ were efficiently transduced, and ectopic MYO7A overexpression did not show any adverse effects. In Shaker-1 mice, an USH1B disease model based on Myo7a mutation, cochlear and vestibular hair cells, the main inner ear cell types affected in USH1B, were successfully transduced. In homozygous mutant mice, delivery of MYO7A at postnatal day 16 resulted in a trend for partial recovery of auditory function and in strongly reduced balance deficits. Heterozygous mutant mice were found to develop severe hearing loss at 6 months of age without balance deficits, and lentiviral MYO7A gene therapy completely rescued hearing to wild-type hearing thresholds. In summary, this study demonstrates improved hearing and balance function through lentiviral gene therapy in the inner ear.
Collapse
Affiliation(s)
- Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jennifer Nelson-Brantley
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Ally Koehler
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Bryan Renslo
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
38
|
Ott de Bruin LM, Lankester AC, Staal FJ. Advances in gene therapy for inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:467-477. [PMID: 37846903 PMCID: PMC10621649 DOI: 10.1097/aci.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Provide an overview of the landmark accomplishments and state of the art of gene therapy for inborn errors of immunity (IEI). RECENT FINDINGS Three decades after the first clinical application of gene therapy for IEI, there is one market authorized product available, while for several others efficacy has been demonstrated or is currently being tested in ongoing clinical trials. Gene editing approaches using programmable nucleases are being explored preclinically and could be beneficial for genes requiring tightly regulated expression, gain-of-function mutations and dominant-negative mutations. SUMMARY Gene therapy by modifying autologous hematopoietic stem cells (HSCs) offers an attractive alternative to allogeneic hematopoietic stem cell transplantation (HSCT), the current standard of care to treat severe IEI. This approach does not require availability of a suitable allogeneic donor and eliminates the risk of graft versus host disease (GvHD). Gene therapy can be attempted by using a viral vector to add a copy of the therapeutic gene (viral gene addition) or by using programmable nucleases (gene editing) to precisely correct mutations, disrupt a gene or introduce an entire copy of a gene at a specific locus. However, gene therapy comes with its own challenges such as safety, therapeutic effectiveness and access. For viral gene addition, a major safety concern is vector-related insertional mutagenesis, although this has been greatly reduced with the introduction of safer vectors. For gene editing, the risk of off-site mutagenesis is a main driver behind the ongoing search for modified nucleases. For both approaches, HSCs have to be manipulated ex vivo, and doing this efficiently without losing stemness remains a challenge, especially for gene editing.
Collapse
Affiliation(s)
- Lisa M. Ott de Bruin
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
| | - Frank J.T. Staal
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Rós FA, Couto SCF, Milhomens J, Ovider I, Maio KT, Jennifer V, Ramos RN, Picanço-Castro V, Kashima S, Calado RT, Barros LRC, Rocha V. A systematic review of clinical trials for gene therapies for β-hemoglobinopathy around the world. Cytotherapy 2023; 25:1300-1306. [PMID: 37318395 DOI: 10.1016/j.jcyt.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AIMS Amidst the success of cell therapy for the treatment of onco-hematological diseases, the first recently Food and Drug Administration-approved gene therapy product for patients with transfusion-dependent β-thalassemia (TDT) indicates the feasibility of gene therapy as curative for genetic hematologic disorders. This work analyzed the current-world scenario of clinical trials involving gene therapy for β-hemoglobinopathies. METHODS Eighteen trials for patients with sickle cell disease (SCD) and 24 for patients with TDT were analyzed. RESULTS Most are phase 1 and 2 trials, funded by the industry and are currently recruiting volunteers. Treatment strategies for both diseases are fetal hemoglobin induction (52.4%); addition of wild-type or therapeutic β-globin gene (38.1%) and correction of mutations (9,5%). Gene editing (52.4%) and gene addition (40.5%) are the two most used techniques. The United States and France are the countries with the greatest number of clinical trials centers for SCD, with 83.1% and 4.2%, respectively. The United States (41.1%), China (26%) and Italy (6.8%) lead TDT trials centers. CONCLUSIONS Geographic trial concentration indicates the high costs of this technology, logistical issues and social challenges that need to be overcome for gene therapy to reach low- and middle-income countries where SCD and TDT are prevalent and where they most impact the patient's health.
Collapse
Affiliation(s)
- Felipe Augusto Rós
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Postgraduate program in Medical Science, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil.
| | - Samuel Campanelli Freitas Couto
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Fundação Pró-Sangue-Hemocentro de Sao Paulo, São Paulo, Brazil
| | - Jonathan Milhomens
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ian Ovider
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Postgraduate program in Medical Science, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Karina Tozatto Maio
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Viviane Jennifer
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Postgraduate program in Medical Science, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Rodrigo Nalio Ramos
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
| | - Virginia Picanço-Castro
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Simone Kashima
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rodrigo T Calado
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luciana Rodrigues Carvalho Barros
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Fundação Pró-Sangue-Hemocentro de Sao Paulo, São Paulo, Brazil; Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Churchill Hospital, Department of Hematology, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Castiello MC, Di Verniere M, Draghici E, Fontana E, Penna S, Sereni L, Zecchillo A, Minuta D, Uva P, Zahn M, Gil-Farina I, Annoni A, Iaia S, Ott de Bruin LM, Notarangelo LD, Pike-Overzet K, Staal FJT, Villa A, Capo V. Partial correction of immunodeficiency by lentiviral vector gene therapy in mouse models carrying Rag1 hypomorphic mutations. Front Immunol 2023; 14:1268620. [PMID: 38022635 PMCID: PMC10679457 DOI: 10.3389/fimmu.2023.1268620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Recombination activating genes (RAG) 1 and 2 defects are the most frequent form of severe combined immunodeficiency (SCID). Patients with residual RAG activity have a spectrum of clinical manifestations ranging from Omenn syndrome to delayed-onset combined immunodeficiency, often associated with granulomas and/or autoimmunity (CID-G/AI). Lentiviral vector (LV) gene therapy (GT) has been proposed as an alternative treatment to the standard hematopoietic stem cell transplant and a clinical trial for RAG1 SCID patients recently started. However, GT in patients with hypomorphic RAG mutations poses additional risks, because of the residual endogenous RAG1 expression and the general state of immune dysregulation and associated inflammation. Methods In this study, we assessed the efficacy of GT in 2 hypomorphic Rag1 murine models (Rag1F971L/F971L and Rag1R972Q/R972Q), exploiting the same LV used in the clinical trial encoding RAG1 under control of the MND promoter. Results and discussion Starting 6 weeks after transplant, GT-treated mice showed a decrease in proportion of myeloid cells and a concomitant increase of B, T and total white blood cells. However, counts remained lower than in mice transplanted with WT Lin- cells. At euthanasia, we observed a general redistribution of immune subsets in tissues, with the appearance of mature recirculating B cells in the bone marrow. In the thymus, we demonstrated correction of the block at double negative stage, with a modest improvement in the cortical/medullary ratio. Analysis of antigenspecific IgM and IgG serum levels after in vivo challenge showed an amelioration of antibody responses, suggesting that the partial immune correction could confer a clinical benefit. Notably, no overt signs of autoimmunity were detected, with B-cell activating factor decreasing to normal levels and autoantibodies remaining stable after GT. On the other hand, thymic enlargement was frequently observed, although not due to vector integration and insertional mutagenesis. In conclusion, our work shows that GT could partially alleviate the combined immunodeficiency of hypomorphic RAG1 patients and that extensive efficacy and safety studies with alternative models are required before commencing RAG gene therapy in thesehighly complex patients.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Sara Penna
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Sereni
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Zecchillo
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Denise Minuta
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Andrea Annoni
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Iaia
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lisa M. Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Valentina Capo
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
41
|
Galy A, Dewannieux M. Recent advances in hematopoietic gene therapy for genetic disorders. Arch Pediatr 2023; 30:8S24-8S31. [PMID: 38043980 DOI: 10.1016/s0929-693x(23)00224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hematopoietic gene therapy is based on the transplantation of gene-modified autologous hematopoietic stem cells and since the inception of this approach, many technological and medical improvements have been achieved. This review focuses on the clinical studies that have used hematopoietic gene therapy to successfully treat several rare and severe genetic disorders of the blood or immune system as well as some non-hematological diseases. Today, in some cases hematopoietic gene therapy has progressed to the point of being equal to, or better than, allogeneic bone marrow transplant. In others, further improvements are needed to obtain more consistent efficacy or to reduce the risks posed by vectors or protocols. Several hematopoietic gene therapy products showing both long-term efficacy and safety have reached the market, but economic considerations challenge the possibility of patient access to novel disease-modifying therapies. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Anne Galy
- ART-TG, Inserm US35, Corbeil-Essonnes, France.
| | | |
Collapse
|
42
|
Boespflug-Tanguy O, Sevin C, Piguet F. Gene therapy for neurodegenerative disorders in children: dreams and realities. Arch Pediatr 2023; 30:8S32-8S40. [PMID: 38043981 DOI: 10.1016/s0929-693x(23)00225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy encompasses the administration of biological medicinal products containing recombinant nucleic acids, mainly DNA, with the aim of treating or curing diseases. This represents a unique therapeutic strategy to reach the brain, in order to prevent or halt a neurodegenerative process. During the past decade, active multidisciplinary research has started to solve many issues for gene therapy in neurodegenerative disorders in terms of vectors, modes of administration, and expression of the therapeutic DNA. The engineering of hematopoietic stem cells (HSC) with lentivirus vectors for ex vivo gene therapy has demonstrated efficiency in reaching the brain through their transformation into microglial/macrophages cells with a long-term gene expression of the therapeutic vector as an alternative to autologous HSC transplants. Two drugs based on this strategy have been approved to date. The first is for metachromatic leukodystrophy (MLD), a severe lysosomal storage disease, and provides high levels of the deficient enzyme; the second one is for cerebral forms of X-linked adrenoleukodystrophy (X-ALD), and works by halting the neuroinflammation process. However, due to the long-lasting effect of the procedure, the therapy is applicable only to pre- or pauci/oligo-symptomatic patients. In vivo gene therapy via direct injection into the brain or the cerebrospinal fluid, but also by intravenous injection, represents a more efficient approach; however, many challenges remain to be solved despite the approval of two drugs: one for the early infantile form of spinal muscular atrophy (SMA), in which the gene product injected intravenously is able to prevent spinal motoneuron neurodegeneration. The second one, for aromatic L-amino acid decarboxylase (AADC) deficiency, provides the defective enzyme to the basal ganglia via intraparenchymal injection. The production of vectors able to reach the brain target cells with a sufficiently high expression remains a major bottleneck. In parallel, efforts must continue in order to better define (i) the natural history and clinical outcomes of many neurodegenerative disorders with childhood onset, and (ii) the mechanisms involved in the neurodegenerative process. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Odile Boespflug-Tanguy
- APHP, Service de Neuropediatrie, Hôpital Robert Debré, Paris, France; Université Paris Cité, INSERM UMR 1141, Hôpital Robert Debré, Paris France.
| | - Caroline Sevin
- APHP, Service de Neuropediatrie, Hôpital du Kremlin Bicêtre, Paris, France; GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Francoise Piguet
- GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| |
Collapse
|
43
|
Tucci F, Consiglieri G, Cossutta M, Bernardo ME. Current and Future Perspective in Hematopoietic Stem Progenitor Cell-gene Therapy for Inborn Errors of Metabolism. Hemasphere 2023; 7:e953. [PMID: 37711990 PMCID: PMC10499111 DOI: 10.1097/hs9.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | - Giulia Consiglieri
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Matilde Cossutta
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University of Rome Tor Vergata, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- “Vita-Salute” San Raffaele University, Milan, Italy
| |
Collapse
|
44
|
Murugesan R, Karuppusamy KV, Marepally S, Thangavel S. Current approaches and potential challenges in the delivery of gene editing cargos into hematopoietic stem and progenitor cells. Front Genome Ed 2023; 5:1148693. [PMID: 37780116 PMCID: PMC10540692 DOI: 10.3389/fgeed.2023.1148693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Advancements in gene delivery and editing have expanded the applications of autologous hematopoietic stem and progenitor cells (HSPCs) for the treatment of monogenic and acquired diseases. The gene editing toolbox is growing, and the ability to achieve gene editing with mRNA or protein delivered intracellularly by vehicles, such as electroporation and nanoparticles, has highlighted the potential of gene editing in HSPCs. Ongoing phase I/II clinical trials with gene-edited HSPCs for β-hemoglobinopathies provide hope for treating monogenic diseases. The development of safe and efficient gene editing reagents and their delivery into hard-to-transfect HSPCs have been critical drivers in the rapid translation of HSPC gene editing into clinical studies. This review article summarizes the available payloads and delivery vehicles for gene editing HSPCs and their potential impact on therapeutic applications.
Collapse
Affiliation(s)
- Ramya Murugesan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karthik V. Karuppusamy
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| |
Collapse
|
45
|
Canarutto D, Omer Javed A, Pedrazzani G, Ferrari S, Naldini L. Mobilization-based engraftment of haematopoietic stem cells: a new perspective for chemotherapy-free gene therapy and transplantation. Br Med Bull 2023; 147:108-120. [PMID: 37460391 PMCID: PMC10502445 DOI: 10.1093/bmb/ldad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION In haematopoietic stem cell transplantation (HSCT), haematopoietic stem cells (HSCs) from a healthy donor replace the patient's ones. Ex vivo HSC gene therapy (HSC-GT) is a form of HSCT in which HSCs, usually from an autologous source, are genetically modified before infusion, to generate a progeny of gene-modified cells. In HSCT and HSC-GT, chemotherapy is administered before infusion to free space in the bone marrow (BM) niche, which is required for the engraftment of infused cells. Here, we review alternative chemotherapy-free approaches to niche voidance that could replace conventional regimens and alleviate the morbidity of the procedure. SOURCES OF DATA Literature was reviewed from PubMed-listed peer-reviewed articles. No new data are presented in this article. AREAS OF AGREEMENT Chemotherapy exerts short and long-term toxicity to haematopoietic and non-haematopoietic organs. Whenever chemotherapy is solely used to allow engraftment of donor HSCs, rather than eliminating malignant cells, as in the case of HSC-GT for inborn genetic diseases, non-genotoxic approaches sparing off-target tissues are highly desirable. AREAS OF CONTROVERSY In principle, HSCs can be temporarily moved from the BM niches using mobilizing drugs or selectively cleared with targeted antibodies or immunotoxins to make space for the infused cells. However, translation of these principles into clinically relevant settings is only at the beginning, and whether therapeutically meaningful levels of chimerism can be safely established with these approaches remains to be determined. GROWING POINTS In pre-clinical models, mobilization of HSCs from the niche can be tailored to accommodate the exchange and engraftment of infused cells. Infused cells can be further endowed with a transient engraftment advantage. AREAS TIMELY FOR DEVELOPING RESEARCH Inter-individual efficiency and kinetics of HSC mobilization need to be carefully assessed. Investigations in large animal models of emerging non-genotoxic approaches will further strengthen the rationale and encourage application to the treatment of selected diseases.
Collapse
Affiliation(s)
- Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, MI, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132 Milano, MI, Italy
| |
Collapse
|
46
|
Tiroille V, Krug A, Bokobza E, Kahi M, Bulcaen M, Ensinck MM, Geurts MH, Hendriks D, Vermeulen F, Larbret F, Gutierrez-Guerrero A, Chen Y, Van Zundert I, Rocha S, Rios AC, Medaer L, Gijsbers R, Mangeot PE, Clevers H, Carlon MS, Bost F, Verhoeyen E. Nanoblades allow high-level genome editing in murine and human organoids. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:57-74. [PMID: 37435135 PMCID: PMC10331042 DOI: 10.1016/j.omtn.2023.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/04/2023] [Indexed: 07/13/2023]
Abstract
Genome engineering has become more accessible thanks to the CRISPR-Cas9 gene-editing system. However, using this technology in synthetic organs called "organoids" is still very inefficient. This is due to the delivery methods for the CRISPR-Cas9 machinery, which include electroporation of CRISPR-Cas9 DNA, mRNA, or ribonucleoproteins containing the Cas9-gRNA complex. However, these procedures are quite toxic for the organoids. Here, we describe the use of the "nanoblade (NB)" technology, which outperformed by far gene-editing levels achieved to date for murine- and human tissue-derived organoids. We reached up to 75% of reporter gene knockout in organoids after treatment with NBs. Indeed, high-level NB-mediated knockout for the androgen receptor encoding gene and the cystic fibrosis transmembrane conductance regulator gene was achieved with single gRNA or dual gRNA containing NBs in murine prostate and colon organoids. Likewise, NBs achieved 20%-50% gene editing in human organoids. Most importantly, in contrast to other gene-editing methods, this was obtained without toxicity for the organoids. Only 4 weeks are required to obtain stable gene knockout in organoids and NBs simplify and allow rapid genome editing in organoids with little to no side effects including unwanted insertion/deletions in off-target sites thanks to transient Cas9/RNP expression.
Collapse
Affiliation(s)
- Victor Tiroille
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| | - Emma Bokobza
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Michel Kahi
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Mattijs Bulcaen
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marjolein M. Ensinck
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Maarten H. Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | | | | | - Alejandra Gutierrez-Guerrero
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Indra Van Zundert
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Anne C. Rios
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Louise Medaer
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Philippe E. Mangeot
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Marianne S. Carlon
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Frédéric Bost
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
| |
Collapse
|
47
|
Bueren JA, Auricchio A. Advances and Challenges in the Development of Gene Therapy Medicinal Products for Rare Diseases. Hum Gene Ther 2023; 34:763-775. [PMID: 37694572 DOI: 10.1089/hum.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The development of viral vectors and recombinant DNA technology since the 1960s has enabled gene therapy to become a real therapeutic option for several inherited and acquired diseases. After several ups and downs in the gene therapy field, we are currently living a new era in the history of medicine in which several ex vivo and in vivo gene therapies have reached maturity. This is testified by the recent marketing authorization of several gene therapy medicinal products. In addition, many others are currently under evaluation after exhaustive investigation in human clinical trials. In this review, we summarize some of the most significant milestones in the development of gene therapy medicinal products that have already facilitated the treatment of a significant number of rare diseases. Despite progresses in the gene therapy field, the transfer of these innovative therapies to clinical practice is also finding important restrictions. Advances and also challenges in the progress of gene therapy for rare diseases are discussed in this opening review of a Human Gene Therapy issue dedicated to the 30th annual Congress of the European Society for Gene and Cell Therapy.
Collapse
Affiliation(s)
- Juan A Bueren
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
48
|
Abstract
β-Thalassemia and sickle cell disease are autosomal recessive disorders of red blood cells due to mutations in the adult β-globin gene, with a worldwide diffusion. The severe forms of hemoglobinopathies are fatal if untreated, and allogeneic bone marrow transplantation can be offered to a limited proportion of patients. The unmet clinical need and the disease incidence have promoted the development of new genetic therapies based on the engineering of autologous hematopoietic stem cells. Here, the steps of ex vivo gene therapy development are reviewed along with results from clinical trials and recent new approaches employing cutting edge gene editing tools.
Collapse
Affiliation(s)
- Maria Rosa Lidonnici
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy; and
| | - Samantha Scaramuzza
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy; and
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy; and
- University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
49
|
Finotti A, Gambari R. Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: treatment with HbF inducers and CRISPR-Cas9 based genome editing. Front Genome Ed 2023; 5:1204536. [PMID: 37529398 PMCID: PMC10387548 DOI: 10.3389/fgeed.2023.1204536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Genome editing (GE) is one of the most efficient and useful molecular approaches to correct the effects of gene mutations in hereditary monogenetic diseases, including β-thalassemia. CRISPR-Cas9 gene editing has been proposed for effective correction of the β-thalassemia mutation, obtaining high-level "de novo" production of adult hemoglobin (HbA). In addition to the correction of the primary gene mutations causing β-thalassemia, several reports demonstrate that gene editing can be employed to increase fetal hemoglobin (HbF), obtaining important clinical benefits in treated β-thalassemia patients. This important objective can be achieved through CRISPR-Cas9 disruption of genes encoding transcriptional repressors of γ-globin gene expression (such as BCL11A, SOX6, KLF-1) or their binding sites in the HBG promoter, mimicking non-deletional and deletional HPFH mutations. These two approaches (β-globin gene correction and genome editing of the genes encoding repressors of γ-globin gene transcription) can be, at least in theory, combined. However, since multiplex CRISPR-Cas9 gene editing is associated with documented evidence concerning possible genotoxicity, this review is focused on the possibility to combine pharmacologically-mediated HbF induction protocols with the "de novo" production of HbA using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
50
|
Canarutto D, Oltolini C, Barzaghi F, Calbi V, Migliavacca M, Tucci F, Gallo V, Consiglieri G, Ferrua F, Recupero S, Cervi MC, Al-Mousa H, Pituch-Noworolska A, Tassan Din C, Scarpellini P, Silvani P, Fossati C, Casiraghi M, Cirillo DM, Castagna A, Bernardo ME, Aiuti A, Cicalese MP. Outcome of BCG Vaccination in ADA-SCID Patients: A 12-Patient Series. Biomedicines 2023; 11:1809. [PMID: 37509449 PMCID: PMC10376767 DOI: 10.3390/biomedicines11071809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Vaccination with Bacillus Calmette-Guérin (BCG) can be harmful to patients with combined primary immunodeficiencies. We report the outcome of BCG vaccination in a series of twelve patients affected by adenosine deaminase deficiency (ADA-SCID). BCG vaccination resulted in a very high incidence of complications due to uncontrolled replication of the mycobacterium. All patients who developed BCG-related disease were treated successfully and remained free from recurrence of disease. We recommend the prompt initiation of enzyme replacement therapy and secondary prophylaxis to reduce the risk of BCG-related complications in ADA-SCID patients.
Collapse
Affiliation(s)
- Daniele Canarutto
- Faculty of Medicine and Surgery, Vita-Salute S. Raffaele University, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Oltolini
- Clinic of Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vera Gallo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Consiglieri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Salvatore Recupero
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Celia Cervi
- Pediatric Infectious Diseases Division, Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Hamoud Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | | | - Chiara Tassan Din
- Clinic of Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paolo Scarpellini
- Clinic of Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paolo Silvani
- Department of Anesthesia and Critical Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Fossati
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Miriam Casiraghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Castagna
- Faculty of Medicine and Surgery, Vita-Salute S. Raffaele University, 20132 Milan, Italy
- Clinic of Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Ester Bernardo
- Faculty of Medicine and Surgery, Vita-Salute S. Raffaele University, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Aiuti
- Faculty of Medicine and Surgery, Vita-Salute S. Raffaele University, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Pia Cicalese
- Faculty of Medicine and Surgery, Vita-Salute S. Raffaele University, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|