1
|
Mallett G. The effect of exercise and physical activity on skeletal muscle epigenetics and metabolic adaptations. Eur J Appl Physiol 2025:10.1007/s00421-025-05704-6. [PMID: 39775881 DOI: 10.1007/s00421-025-05704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Physical activity (PA) and exercise elicit adaptations and physiological responses in skeletal muscle, which are advantageous for preserving health and minimizing chronic illnesses. The complicated atmosphere of the exercise response can be attributed to hereditary and environmental variables. The primary cause of these adaptations and physiological responses is the transcriptional reactions that follow exercise, whether endurance- (ET) or resistance- training (RT). As a result, the essential metabolic and regulatory pathways and myogenic genes associated with skeletal muscle alter in response to acute and chronic exercise. Epigenetics is the study of the relationship between genetics and the environment. Exercise evokes signaling pathways that strongly alter myofiber metabolism and skeletal muscle physiological and contractile properties. Epigenetic modifications have recently come to light as essential regulators of exercise adaptations. Research has shown various epigenetic markers linked to PA and exercise. The most critical epigenetic alterations in gene transcription identified are DNA methylation and histone modifications, which are associated with the transcriptional response of skeletal muscle to exercise and facilitate the modification to exercise. Other changes in the epigenetic markers are starting to emerge as essential processes for gene transcription, including acetylation as a new epigenetic modification, mediated changes by methylation, phosphorylation, and micro-RNA (miRNA). This review briefly introduces PA and exercise and associated benefits, provides a summary of epigenetic modifications, and a fundamental review of skeletal muscle physiology. The objectives of this review are 1) to discuss exercise-induced adaptations related to epigenetics and 2) to examine the interaction between exercise metabolism and epigenetics.
Collapse
Affiliation(s)
- Gregg Mallett
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA.
| |
Collapse
|
2
|
Iijima H, Ambrosio F, Matsui Y. Network-based systematic dissection of exercise-induced inhibition of myosteatosis in older individuals. J Physiol 2025; 603:45-67. [PMID: 38099335 DOI: 10.1113/jp285349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/10/2023] [Indexed: 01/07/2025] Open
Abstract
Accumulated fat in skeletal muscle (i.e. myosteatosis), common in sedentary older individuals, compromises skeletal muscle health and function. A mechanistic understanding of how physical activity levels dictate fat accumulation represents a critical step towards establishment of therapies that promote healthy ageing. Using a network medicine paradigm that characterized the transcriptomic response of aged muscle to exercise versus immobilization protocols, this study explored the shared molecular cascade that regulates the fate of fibro-adipogenic progenitors (FAPs), the cell population primarily responsible for fat accumulation. Specifically, gene set enrichment analyses with network propagation revealed Pgc-1α as a functional hub of a large gene regulatory network underlying the regulation of FAPs by physical activity in aged muscle, but not in young counterparts. Integrated in silico and in situ approaches to induce Pgc-1α overexpression in aged muscle promoted mitochondrial fatty acid oxidation and inhibited FAP adipogenesis. These findings suggest that the Pgc-1α-mitochondrial fatty acid oxidation axis is a shared mechanism by which physical activity regulates age-related myosteatosis. The network medicine paradigm introduced provides mechanistic insight into exercise adaptation in elderly skeletal muscle and offers translational opportunities to advance exercise prescription for older populations. KEY POINTS: Fat accumulation is a quintessential feature of aged skeletal muscle. While increasing physical activity levels has been proposed as an effective strategy to reduce the fat in skeletal muscle (i.e. myosteatosis), the molecular cascade underlying these benefits has been poorly defined. This study implemented a series of network medicine approaches and uncovered Pgc-1α as a mechanistic driver of the regulation of fibro-adipogenic progenitors (FAPs) by physical activity. Integrated in silico and in situ approaches to induce Pgc-1α overexpression promoted mitochondrial fatty acid oxidation and inhibited FAP adipogenesis. Together, the findings of the current study suggest a novel hypothesis that physical activity reduces myosteatosis via upregulation of Pgc-1α-mediated mitochondrial fatty acid oxidation and subsequent inhibition of FAP adipogenesis.
Collapse
Affiliation(s)
- Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Biomedical and Health Informatics Unit, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Yusuke Matsui
- Biomedical and Health Informatics Unit, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Institute for Glyco-core Research, Tokai National Higher Education and Research System, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Paul S, Donath L, Hoppstädter J, Hecksteden A. Resistance but not endurance training suppresses glucocorticoid-induced leucine zipper (GILZ) expression in human skeletal muscle. Eur J Appl Physiol 2024:10.1007/s00421-024-05644-7. [PMID: 39499305 DOI: 10.1007/s00421-024-05644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE Within human skeletal muscle, statin treatment leads to elevated levels of the glucocorticoid-induced leucine zipper (GILZ). Further, GILZ mediates the muscle-related side effects of statins. Physical exercise leads to GILZ suppression, in a mechanosensitive manner. Given that statin treatment is rarely tolerated by habitually exercising individuals due to statin-associated muscle symptoms (SAMS), it appears that the opposing regulation of GILZ facilitates this detrimental interaction of two key measures of cardiovascular prevention, specifically for exercise modalities with high muscle strain. Similarly, opposing regulation of atrophy associated genes (atrogenes) may be a further mechanism. If confirmed, these results might have implications for the exercise prescription of statin-users. METHODS A systematic search of the Gene Expression Omnibus (GEO) repository for studies reporting the acute effects of either endurance (END), conventional resistance (RT), or eccentric resistance training (ECC) was conducted. GILZ, as well as the expression of pivotal atrogenes (e.g., muscle atrophy F-box, cathepsin L, etc.) were quantified. RESULTS 15 studies with 204 participants (22 females; 182 males) were included. RT resulted in the highest GILZ suppression, significantly differing from the expressional change after END ( - 0.46 ± 1.11 vs. - 0.07 ± 1.08), but not from ECC ( - 0.46 ± 1.11 vs. - 0.46 ± 0.95). Similar results were seen for various atrogenes. CONCLUSION Our results strengthen the assumption that mechanical loading can be considered a key mediator of exercise-induced changes in GILZ and atrogene expression.
Collapse
Affiliation(s)
- Sebastian Paul
- Department of Training Intervention Research, German Sport University Cologne, 50933, Cologne, Germany.
- Institute of Physiology, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Lars Donath
- Department of Training Intervention Research, German Sport University Cologne, 50933, Cologne, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Anne Hecksteden
- Institute of Sport Science, Universität of Innsbruck, 6020, Innsbruck, Austria
- Institute of Physiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Sun L, Luan J, Wang J, Li X, Zhang W, Ji X, Liu L, Wang R, Xu B. GEPREP: A comprehensive data atlas of RNA-seq-based gene expression profiles of exercise responses. JOURNAL OF SPORT AND HEALTH SCIENCE 2024:100992. [PMID: 39341494 DOI: 10.1016/j.jshs.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Physical activity can regulate and affect gene expression in multiple tissues and cells. Recently, with the development of next-generation sequencing, a large number of RNA-sequencing (RNA-seq)-based gene expression profiles about physical activity have been shared in public resources; however, they are poorly curated and underutilized. To tackle this problem, we developed a data atlas of such data through comprehensive data collection, curation, and organization. METHODS The data atlas, termed gene expression profiles of RNA-seq-based exercise responses (GEPREP), was built on a comprehensive collection of high-quality RNA-seq data on exercise responses. The metadata of each sample were manually curated. Data were uniformly processed and batch effects corrected. All the information was well organized in an easy-to-use website for free search, visualization, and download. RESULTS GEPREP now includes 69 RNA-seq datasets of pre- and post-exercise, comprising 26 human datasets (1120 samples) and 43 mouse datasets (1006 samples). Specifically, there were 977 (87.2 %) human samples of skeletal muscle and 143 (12.8 %) human samples of blood. There were also samples across 9 mice tissues with skeletal muscle (359, 35.7 %) and brain (280, 27.8 %) accounting for the main fractions. Metadata-including subject, exercise interventions, sampling sites, and post-processing methods-are also included. The metadata and gene expression profiles are freely accessible at http://www.geprep.org.cn/. CONCLUSION GEPREP is a comprehensive data atlas of RNA-seq-based gene expression profiles responding to exercise. With its reliable annotations and user-friendly interfaces, it has the potential to deepen our understanding of exercise physiology.
Collapse
Affiliation(s)
- Lei Sun
- School of Information Engineering, Yangzhou University, Yangzhou 225127, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Jinwen Luan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jinbiao Wang
- School of Information Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaoli Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wenqian Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaohui Ji
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Chen L, Liu L. Adipose thermogenic mechanisms by cold, exercise and intermittent fasting: Similarities, disparities and the application in treatment. Clin Nutr 2024; 43:2043-2056. [PMID: 39088961 DOI: 10.1016/j.clnu.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Given its nonnegligible role in metabolic homeostasis, adipose tissue has been the target for treating metabolic disorders such as obesity, diabetes and cardiovascular diseases. Besides its lipolytic function, adipose thermogenesis has gained increased interest due to the irreplaceable contribution to dissipating energy to restore equilibrium, and its therapeutic effects have been testified in various animal models. In this review, we will brief about the canonical cold-stimulated adipose thermogenic mechanisms, elucidate on the exercise- and intermittent fasting-induced adipose thermogenic mechanisms, with a focus on the similarities and disparities among these signaling pathways, in an effort to uncover the overlapped and specific targets that may yield potent therapeutic efficacy synergistically in improving metabolic health.
Collapse
Affiliation(s)
- Linshan Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Curovic I, Rhodes D, Alexander J, Harper DJ. Vertical Strength Transfer Phenomenon Between Upper Body and Lower Body Exercise: Systematic Scoping Review. Sports Med 2024; 54:2109-2139. [PMID: 38743172 PMCID: PMC11329601 DOI: 10.1007/s40279-024-02039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND There are a myriad of exercise variations in which upper body (UB) and lower body (LB) exercises have been intermittently used. However, it is still unclear how training of one body region (e.g. LB) affects adaptations in distant body areas (e.g. UB), and how different UB and LB exercise configurations could help facilitate physiological adaptations of either region; both referred to in this review as vertical strength transfer. OBJECTIVE We aimed to investigate the existence of the vertical strength transfer phenomenon as a response to various UB and LB exercise configurations and to identify potential mechanisms underpinning its occurrence. METHODS A systematic search using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) for Scoping Reviews protocol was conducted in February 2024 using four databases (Web of Science, MEDLINE, Scopus and CINAHL) to identify peer-reviewed articles that investigated the vertical strength transfer phenomenon. RESULTS Of the 5242 identified articles, 24 studies met the inclusion criteria. Findings suggest that the addition of UB strength training to LB endurance exercise may help preserve power-generating capacity for the leg muscle fibres. Furthermore, systemic endocrine responses to high-volume resistance exercise may beneficially modulate adaptations in precedingly or subsequently trained muscles from a different body region, augmenting their strength gains. Last, strength training for LB could result in improved strength of untrained UB, likely due to the increased central neural drive. CONCLUSIONS Vertical strength transfer existence is enabled by neurophysiological mechanisms. Future research should involve athletic populations, examining the potential of vertical strength transfer to facilitate athletic performance and preserve strength in injured extremities.
Collapse
Affiliation(s)
- Ivan Curovic
- Institute of Coaching and Performance, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK.
- , Jurija Gagarina 102/7, 11070, Belgrade, Serbia.
| | - David Rhodes
- Human Performance Department, Burnley Football Club, Burnley, UK
| | - Jill Alexander
- Institute of Coaching and Performance, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK
| | - Damian J Harper
- Institute of Coaching and Performance, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK
| |
Collapse
|
7
|
Lee MC, Hsu YJ, Chen MT, Kuo YW, Lin JH, Hsu YC, Huang YY, Li CM, Tsai SY, Hsia KC, Ho HH, Huang CC. Efficacy of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in Enhancing Explosive Strength and Endurance: A Randomized, Double-Blinded Clinical Trial. Nutrients 2024; 16:1921. [PMID: 38931275 PMCID: PMC11206817 DOI: 10.3390/nu16121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are posited to enhance exercise performance by influencing muscle protein synthesis, augmenting glycogen storage, and reducing inflammation. This double-blind study randomized 88 participants to receive a six-week intervention with either a placebo, Lactococcus lactis subsp. lactis LY-66, Lactobacillus plantarum PL-02, or a combination of both strains, combined with a structured exercise training program. We assessed changes in maximal oxygen consumption (VO2max), exercise performance, and gut microbiota composition before and after the intervention. Further analyses were conducted to evaluate the impact of probiotics on exercise-induced muscle damage (EIMD), muscle integrity, and inflammatory markers in the blood, 24 and 48 h post-intervention. The results demonstrated that all probiotic groups exhibited significant enhancements in exercise performance and attenuation of muscle strength decline post-exercise exhaustion (p < 0.05). Notably, PL-02 intake significantly increased muscle mass, whereas LY-66 and the combination therapy significantly reduced body fat percentage (p < 0.05). Analysis of intestinal microbiota revealed an increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66 (p < 0.05). Overall, the combination of exercise training and supplementation with PL-02, LY-66, and their combination improved muscle strength, explosiveness, and endurance performance, and had beneficial effects on body composition and gastrointestinal health, as evidenced by data obtained from non-athlete participants.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Mu-Tsung Chen
- Committee on General Studies, Shih Chien University, Taipei City 104, Taiwan;
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Yen-Yu Huang
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Ching-Min Li
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
8
|
Baumert P, Mäntyselkä S, Schönfelder M, Heiber M, Jacobs MJ, Swaminathan A, Minderis P, Dirmontas M, Kleigrewe K, Meng C, Gigl M, Ahmetov II, Venckunas T, Degens H, Ratkevicius A, Hulmi JJ, Wackerhage H. Skeletal muscle hypertrophy rewires glucose metabolism: An experimental investigation and systematic review. J Cachexia Sarcopenia Muscle 2024; 15:989-1002. [PMID: 38742477 PMCID: PMC11154753 DOI: 10.1002/jcsm.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Proliferating cancer cells shift their metabolism towards glycolysis, even in the presence of oxygen, to especially generate glycolytic intermediates as substrates for anabolic reactions. We hypothesize that a similar metabolic remodelling occurs during skeletal muscle hypertrophy. METHODS We used mass spectrometry in hypertrophying C2C12 myotubes in vitro and plantaris mouse muscle in vivo and assessed metabolomic changes and the incorporation of the [U-13C6]glucose tracer. We performed enzyme inhibition of the key serine synthesis pathway enzyme phosphoglycerate dehydrogenase (Phgdh) for further mechanistic analysis and conducted a systematic review to align any changes in metabolomics during muscle growth with published findings. Finally, the UK Biobank was used to link the findings to population level. RESULTS The metabolomics analysis in myotubes revealed insulin-like growth factor-1 (IGF-1)-induced altered metabolite concentrations in anabolic pathways such as pentose phosphate (ribose-5-phosphate/ribulose-5-phosphate: +40%; P = 0.01) and serine synthesis pathway (serine: -36.8%; P = 0.009). Like the hypertrophy stimulation with IGF-1 in myotubes in vitro, the concentration of the dipeptide l-carnosine was decreased by 26.6% (P = 0.001) during skeletal muscle growth in vivo. However, phosphorylated sugar (glucose-6-phosphate, fructose-6-phosphate or glucose-1-phosphate) decreased by 32.2% (P = 0.004) in the overloaded muscle in vivo while increasing in the IGF-1-stimulated myotubes in vitro. The systematic review revealed that 10 metabolites linked to muscle hypertrophy were directly associated with glycolysis and its interconnected anabolic pathways. We demonstrated that labelled carbon from [U-13C6]glucose is increasingly incorporated by ~13% (P = 0.001) into the non-essential amino acids in hypertrophying myotubes, which is accompanied by an increased depletion of media serine (P = 0.006). The inhibition of Phgdh suppressed muscle protein synthesis in growing myotubes by 58.1% (P < 0.001), highlighting the importance of the serine synthesis pathway for maintaining muscle size. Utilizing data from the UK Biobank (n = 450 243), we then discerned genetic variations linked to the serine synthesis pathway (PHGDH and PSPH) and to its downstream enzyme (SHMT1), revealing their association with appendicular lean mass in humans (P < 5.0e-8). CONCLUSIONS Understanding the mechanisms that regulate skeletal muscle mass will help in developing effective treatments for muscle weakness. Our results provide evidence for the metabolic rewiring of glycolytic intermediates into anabolic pathways during muscle growth, such as in serine synthesis.
Collapse
Affiliation(s)
- Philipp Baumert
- School of Medicine and HealthTechnical University of MunichMunichGermany
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention (OSMI)UMIT TIROL ‐ Private University for Health Sciences and Health TechnologyInnsbruckAustria
| | - Sakari Mäntyselkä
- Faculty of Sport and Health Sciences, NeuroMuscular Research CenterUniversity of JyväskyläJyväskyläFinland
| | - Martin Schönfelder
- School of Medicine and HealthTechnical University of MunichMunichGermany
| | - Marie Heiber
- School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Sport ScienceUniversity of the Bundeswehr MunichNeubibergGermany
| | - Mika Jos Jacobs
- School of Medicine and HealthTechnical University of MunichMunichGermany
| | - Anandini Swaminathan
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Petras Minderis
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Mantas Dirmontas
- Department of Health Promotion and RehabilitationLithuanian Sports UniversityKaunasLithuania
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass SpectrometryTechnical University of MunichMunichGermany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass SpectrometryTechnical University of MunichMunichGermany
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass SpectrometryTechnical University of MunichMunichGermany
| | - Ildus I. Ahmetov
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Tomas Venckunas
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Hans Degens
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
| | - Aivaras Ratkevicius
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
- Sports and Exercise Medicine CentreQueen Mary University of LondonLondonUK
| | - Juha J. Hulmi
- Faculty of Sport and Health Sciences, NeuroMuscular Research CenterUniversity of JyväskyläJyväskyläFinland
| | - Henning Wackerhage
- School of Medicine and HealthTechnical University of MunichMunichGermany
| |
Collapse
|
9
|
Chen CC, Huang YY, Hua-Zhang, Xia-Liu, Li XQ, Long YQ, Chen ZW, Jin T. Impact of resistance exercise on patients with chronic kidney disease. BMC Nephrol 2024; 25:115. [PMID: 38532316 PMCID: PMC10967118 DOI: 10.1186/s12882-024-03547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) has become an increasingly important public health disease with a high incidence rate and mortality. Although several studies have explored the effectiveness of resistance exercise in improving the prognosis of CKD patients, the number of studies is still limited and the results are still controversial. OBJECTIVES We conducted this meta-analysis of randomized controlled trials (RCT) studies to evaluate the effectiveness of resistance exercise on CKD patients. METHODS The PubMed, Embase, and Cochrane Library databases were searched from the inception date to October 2023. The meta-analysis was conducted to evaluate 12 main indicators, including glomerular filtration rate (GFR)(ml/(min•1.73m2)), C-reactive protein (CRP) (mg/L), serum creatinine (mg/dL), hemoglobin (g/dL), Glycosylated Hemoglobin, Type A1C (HBA1c) (%), high Density Lipoprotein (HDL) (mg/dL), low Density Lipoprotein (LDL) (mg/dL), 6-min walk(m), body mass index (BMI) (kg/m2), fat-free mass (kg), fat mass (kg), grip strength (kgf). RESULTS Sixteen RCT studies were included in this meta-analysis from 875 records. GFR exhibited no significant change in CKD patients treated with resistance exercise (WMD 1.82; 95%CI -0.59 to 4.23; P = 0.139). However, 6-min walk (WMD 89.93; 95%CI 50.12 to 129.74; P = 0.000), fat-free mass (WMD 6.53; 95%CI 1.14 to 11.93; P = 0.018) and grip strength (WMD 3.97; 95%CI 1.89 to 6.05; P = 0.000) were significantly improved with resistance exercise. The level of CRP (WMD - 2.46; 95%CI -4.21 to -0.72; P = 0.006) and HBA1c (WMD - 0.46; 95%CI -0.63 to -0.29; P = 0.000) dropped significantly after resistance exercise treatment. CONCLUSIONS Resistance exercise can improve physical function, metabolic condition, inflammatory response and cardiopulmonary function in CKD patients, specifically reflected in the increase of indicators fat-free mass, grip strength, 6-min walk, as well as the decrease of indicators HBA1c and CRP.
Collapse
Affiliation(s)
- Chong-Cheng Chen
- Department of Nephrology, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, P.R. China
| | - Yue-Yang Huang
- Department of Nephrology, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, P.R. China
| | - Hua-Zhang
- Department of Nephrology, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, P.R. China
| | - Xia-Liu
- Department of Nephrology, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, P.R. China
| | - Xue-Qin Li
- Department of Nephrology, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, P.R. China
| | - Yan-Qiong Long
- Department of Nephrology, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, P.R. China
| | - Zheng-Wen Chen
- West China School Of Medicine, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, P.R. China.
| | - Tao Jin
- West China School Of Medicine, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, P.R. China.
| |
Collapse
|
10
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
11
|
Han Y, Jia Q, Tian Y, Yan Y, He K, Zhao X. Multi-omics reveals changed energy metabolism of liver and muscle by caffeine after mice swimming. PeerJ 2024; 12:e16677. [PMID: 38188177 PMCID: PMC10771084 DOI: 10.7717/peerj.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, numerous studies have investigated the effects of caffeine on exercise, and provide convincing evidence for its ergogenic effects on exercise performance. However, the precise mechanisms underlying these ergogenic effects remain unclear. In this study, an exercise swimming model was conducted to investigate the effects of orally administered with caffeine before swimming on the alterations of proteome and energy metabolome of liver and muscle after swimming. We found proteins in liver, such as S100a8, S100a9, Gabpa, Igfbp1 and Sdc4, were significantly up-regulated, while Rbp4 and Tf decreased after swimming were further down-regulated in caffeine group. The glycolysis and pentose phosphate pathways in liver and muscle were both significantly down-regulated in caffeine group. The pyruvate carboxylase and amino acid levels in liver, including cysteine, serine and tyrosine, were markedly up-regulated in caffeine group, exhibiting a strong correlation with the increased pyruvic acid and oxaloacetate levels in muscle. Moreover, caffeine significantly decreased the lactate levels in both liver and muscle after swimming, potentially benefiting exercise performance.
Collapse
Affiliation(s)
- Yang Han
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Qian Jia
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yu Tian
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yan Yan
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Chiang CH, Lin YH, Kao YC, Weng SC, Chen CM, Liou YM. Mechanistic study of the Aldo-keto reductase family 1 member A1 in regulating mesenchymal stem cell fate decision toward adipogenesis and osteogenesis. Life Sci 2024; 336:122336. [PMID: 38092142 DOI: 10.1016/j.lfs.2023.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
AIMS Akr1A1 is a glycolytic enzyme catalyzing the reduction of aldehyde to alcohol. This study aims to delineate the role of Akr1A1 in regulating the adipo-osteogenic lineage differentiation of mesenchymal stem cells (MSCs). MAIN METHODS MSCs derived from human bone marrow and Wharton Jelly together with gain- and loss-of-function analysis as well as supplementation with the S-Nitrosoglutathione reductase (GSNOR) inhibitor N6022 were used to study the function of Akr1A1 in controlling MSC lineage differentiation into osteoblasts and adipocytes. KEY FINDINGS Akr1A1 expression, PKM2 activity, and lactate production were found to be decreased in osteoblast-committed MSCs, but PGC-1α increased to induce mitochondrial oxidative phosphorylation. Increased Akr1A1 inhibited the SIRT1-dependent pathway for decreasing the expressions of PGC-1α and TAZ but increasing PPAR γ in adipocyte-committed MSCs, hence promoting glycolysis in adipogenesis. In contrast, Akr1A1 expression, PKM2 activity and lactate production were all increased in adipocyte-differentiated cells with decreased PGC-1α for switching energy utilization to glycolytic metabolism. Reduced Akr1A1 expression in osteoblast-committed cells relieves its inhibition of SIRT1-mediated activation of PGC-1α and TAZ for facilitating osteogenesis and mitochondrial metabolism. SIGNIFICANCE Several metabolism-involved regulators including Akr1A1, SIRT1, PPARγ, PGC-1α and TAZ were differentially expressed in osteoblast- and adipocyte-committed MSCs. More importantly, Akr1A1 was identified as a new key regulator for controlling the MSC lineage commitment in favor of adipogenesis but detrimental to osteogenesis. Such information should be useful to develop perspective new therapeutic agents to reverse the adipo-osteogenic differentiation of BMSCs, in a way to increase in osteogenesis but decrease in adipogenesis.
Collapse
Affiliation(s)
- Chen Hao Chiang
- Department of Orthopaedics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Hui Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Cuieh Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuo-Chun Weng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Institute of Clinical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Center for Geriatrics and Gerontology, Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
13
|
Pataky MW, Kumar AP, Gaul DA, Moore SG, Dasari S, Robinson MM, Klaus KA, Kumar AA, Fernandez FM, Nair KS. Divergent Skeletal Muscle Metabolomic Signatures of Different Exercise Training Modes Independently Predict Cardiometabolic Risk Factors. Diabetes 2024; 73:23-37. [PMID: 37862464 PMCID: PMC10784655 DOI: 10.2337/db23-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
We investigated the link between enhancement of SI (by hyperinsulinemic-euglycemic clamp) and muscle metabolites after 12 weeks of aerobic (high-intensity interval training [HIIT]), resistance training (RT), or combined training (CT) exercise in 52 lean healthy individuals. Muscle RNA sequencing revealed a significant association between SI after both HIIT and RT and the branched-chain amino acid (BCAA) metabolic pathway. Concurrently with increased expression and activity of branched-chain ketoacid dehydrogenase enzyme, many muscle amino metabolites, including BCAAs, glutamate, phenylalanine, aspartate, asparagine, methionine, and γ-aminobutyric acid, increased with HIIT, supporting the substantial impact of HIIT on amino acid metabolism. Short-chain C3 and C5 acylcarnitines were reduced in muscle with all three training modes, but unlike RT, both HIIT and CT increased tricarboxylic acid metabolites and cardiolipins, supporting greater mitochondrial activity with aerobic training. Conversely, RT and CT increased more plasma membrane phospholipids than HIIT, suggesting a resistance exercise effect on cellular membrane protection against environmental damage. Sex and age contributed modestly to the exercise-induced changes in metabolites and their association with cardiometabolic parameters. Integrated transcriptomic and metabolomic analyses suggest various clusters of genes and metabolites are involved in distinct effects of HIIT, RT, and CT. These distinct metabolic signatures of different exercise modes independently link each type of exercise training to improved SI and cardiometabolic risk. ARTICLE HIGHLIGHTS We aimed to understand the link between skeletal muscle metabolites and cardiometabolic health after exercise training. Although aerobic, resistance, and combined exercise training each enhance muscle insulin sensitivity as well as other cardiometabolic parameters, they disparately alter amino and citric acid metabolites as well as the lipidome, linking these metabolomic changes independently to the improvement of cardiometabolic risks with each exercise training mode. These findings reveal an important layer of the unique exercise mode-dependent changes in muscle metabolism, which may eventually lead to more informed exercise prescription for improving SI.
Collapse
Affiliation(s)
- Mark W. Pataky
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | | | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR
| | | | - A. Aneesh Kumar
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Facundo M. Fernandez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
14
|
Sato K, Satoshi Y, Miyauchi Y, Sato F, Kon R, Ikarashi N, Chiba Y, Hosoe T, Sakai H. Downregulation of PGC-1α during cisplatin-induced muscle atrophy in murine skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166877. [PMID: 37673360 DOI: 10.1016/j.bbadis.2023.166877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
This study aimed to investigate the effects of cisplatin on adenosine triphosphate (ATP) levels, expressions of genes related to mitochondrial oxidative phosphorylation (OXPHOS), and the factors related to mitochondrial biosynthesis in skeletal muscle. Systemic cisplatin administration decreased skeletal muscle mass, skeletal muscle strength, and endurance. The mitochondrial DNA /nuclear DNA ratio was also reduced after treatment with cisplatin. Moreover, among the factors related to mitochondrial biogenesis and function, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was significantly downregulated in the cisplatin-treated group. Downregulation of PGC-1α in the skeletal muscle may contribute to muscle weakness during cisplatin-induced muscle atrophy.
Collapse
Affiliation(s)
- Ken Sato
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yoshida Satoshi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Fumiaki Sato
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan; Department of Bioregulatory Science, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan.
| |
Collapse
|
15
|
Ungvari Z, Fazekas-Pongor V, Csiszar A, Kunutsor SK. The multifaceted benefits of walking for healthy aging: from Blue Zones to molecular mechanisms. GeroScience 2023; 45:3211-3239. [PMID: 37495893 PMCID: PMC10643563 DOI: 10.1007/s11357-023-00873-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Physical activity, including walking, has numerous health benefits in older adults, supported by a plethora of observational and interventional studies. Walking decreases the risk or severity of various health outcomes such as cardiovascular and cerebrovascular diseases, type 2 diabetes mellitus, cognitive impairment and dementia, while also improving mental well-being, sleep, and longevity. Dose-response relationships for walking duration and intensity are established for adverse cardiovascular outcomes. Walking's favorable effects on cardiovascular risk factors are attributed to its impact on circulatory, cardiopulmonary, and immune function. Meeting current physical activity guidelines by walking briskly for 30 min per day for 5 days can reduce the risk of several age-associated diseases. Additionally, low-intensity physical exercise, including walking, exerts anti-aging effects and helps prevent age-related diseases, making it a powerful tool for promoting healthy aging. This is exemplified by the lifestyles of individuals in Blue Zones, regions of the world with the highest concentration of centenarians. Walking and other low-intensity physical activities contribute significantly to the longevity of individuals in these regions, with walking being an integral part of their daily lives. Thus, incorporating walking into daily routines and encouraging walking-based physical activity interventions can be an effective strategy for promoting healthy aging and improving health outcomes in all populations. The goal of this review is to provide an overview of the vast and consistent evidence supporting the health benefits of physical activity, with a specific focus on walking, and to discuss the impact of walking on various health outcomes, including the prevention of age-related diseases. Furthermore, this review will delve into the evidence on the impact of walking and low-intensity physical activity on specific molecular and cellular mechanisms of aging, providing insights into the underlying biological mechanisms through which walking exerts its beneficial anti-aging effects.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
| |
Collapse
|
16
|
Kim HJ, Jung DW, Williams DR. Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells 2023; 12:2608. [PMID: 37998343 PMCID: PMC10670210 DOI: 10.3390/cells12222608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Sarcopenia is a disease characterized by the progressive loss of skeletal muscle mass and function that occurs with aging. The progression of sarcopenia is correlated with the onset of physical disability, the inability to live independently, and increased mortality. Due to global increases in lifespan and demographic aging in developed countries, sarcopenia has become a major socioeconomic burden. Clinical therapies for sarcopenia are based on physical therapy and nutritional support, although these may suffer from low adherence and variable outcomes. There are currently no clinically approved drugs for sarcopenia. Consequently, there is a large amount of pre-clinical research focusing on discovering new candidate drugs and novel targets. In this review, recent progress in this research will be discussed, along with the challenges that may preclude successful translational research in the clinic. The types of drugs examined include mitochondria-targeting compounds, anti-diabetes agents, small molecules that target non-coding RNAs, protein therapeutics, natural products, and repositioning candidates. In light of the large number of drugs and targets being reported, it can be envisioned that clinically approved pharmaceuticals to prevent the progression or even mitigate sarcopenia may be within reach.
Collapse
Affiliation(s)
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| |
Collapse
|
17
|
Yang AJT, Mohammad A, Finch MS, Tsiani E, Spencer G, Necakov A, MacPherson REK. Influence of metabolic stress and metformin on synaptic protein profile in SH-SY5Y-derived neurons. Physiol Rep 2023; 11:10.14814/phy2.15852. [PMID: 38010200 PMCID: PMC10680579 DOI: 10.14814/phy2.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
Insulin resistance (IR) is associated with reductions in neuronal proteins often observed with Alzheimer's disease (AD), however, the mechanisms through which IR promotes neurodegeneration/AD pathogenesis are poorly understood. Metformin (MET), a potent activator of the metabolic regulator AMPK is used to treat IR but its effectiveness for AD is unclear. We have previously shown that chronic AMPK activation impairs neurite growth and protein synthesis in SH-SY5Y neurons, however, AMPK activation in IR was not explored. Therefore, we examined the effects of MET-driven AMPK activation with and without IR. Retinoic acid-differentiated SH-SY5Y neurons were treated with: (1) Ctl: 24 h vehicle followed by 24 h Vehicle; (2) HI: 100 nM insulin (24 h HI followed by 24 h HI); or (3) MET: 24 h vehicle followed by 24 h 2 mM metformin; (4) HI/MET: 24 h 100 nM insulin followed by 24 h 100 nM INS+2 mM MET. INS and INS/MET groups saw impairments in markers of insulin signaling (Akt S473, mTOR S2448, p70s6k T389, and IRS-1S636) demonstrating IR was not recovered with MET treatment. All treatment groups showed reductions in neuronal markers (post-synaptic marker HOMER1 mRNA content and synapse marker synaptophysin protein content). INS and MET treatments showed a reduction in the content of the mature neuronal marker NeuN that was prevented by INS/MET. Similarly, increases in cell size/area, neurite length/area observed with INS and MET, were prevented with INS/MET. These findings indicate that IR and MET impair neuronal markers through distinct pathways and suggest that MET is ineffective in treating IR-driven impairments in neurons.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Ahmad Mohammad
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Michael S. Finch
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Gaynor Spencer
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Aleksandar Necakov
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
18
|
Ruegsegger GN, Pataky MW, Simha S, Robinson MM, Klaus KA, Nair KS. High-intensity aerobic, but not resistance or combined, exercise training improves both cardiometabolic health and skeletal muscle mitochondrial dynamics. J Appl Physiol (1985) 2023; 135:763-774. [PMID: 37616334 PMCID: PMC10642518 DOI: 10.1152/japplphysiol.00405.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
This study investigated how different exercise training modalities influence skeletal muscle mitochondrial dynamics. Healthy [average body mass index (BMI): 25.8 kg/m2], sedentary younger and older participants underwent 12 wk of supervised high-intensity aerobic interval training (HIIT; n = 13), resistance training (RT; n = 14), or combined training (CT; n = 11). Mitochondrial structure was assessed using transmission electron microscopy (TEM). Regulators of mitochondrial fission and fusion, cardiorespiratory fitness (V̇o2peak), insulin sensitivity via a hyperinsulinemic-euglycemic clamp, and muscle mitochondrial respiration were assessed. TEM showed increased mitochondrial volume, number, and perimeter following HIIT (P < 0.01), increased mitochondrial number following CT (P < 0.05), and no change in mitochondrial abundance after RT. Increased mitochondrial volume associated with increased mitochondrial respiration and insulin sensitivity following HIIT (P < 0.05). Increased mitochondrial perimeter associated with increased mitochondrial respiration, insulin sensitivity, and V̇o2peak following HIIT (P < 0.05). No such relationships were observed following CT or RT. OPA1, a regulator of fusion, was increased following HIIT (P < 0.05), whereas FIS1, a regulator of fission, was decreased following HIIT and CT (P < 0.05). HIIT also increased the ratio of OPA1/FIS1 (P < 0.01), indicative of the balance between fission and fusion, which positively correlated with improvements in respiration, insulin sensitivity, and V̇o2peak (P < 0.05). In conclusion, HIIT induces a larger, more fused mitochondrial tubular network. Changes indicative of increased fusion following HIIT associate with improvements in mitochondrial respiration, insulin sensitivity, and V̇o2peak supporting the idea that enhanced mitochondrial fusion accompanies notable health benefits of HIIT.NEW & NOTEWORTHY We assessed the effects of 12 wk of supervised high-intensity interval training (HIIT), resistance training, and combined training (CT) on skeletal muscle mitochondrial abundance and markers of fission and fusion. HIIT increased mitochondrial area and size and promoted protein changes indicative of increased mitochondrial fusion, whereas lessor effects were observed after CT and no changes were observed after RT. Furthermore, increased mitochondrial area and size after HIIT associated with improved mitochondrial respiration, cardiorespiratory fitness, and insulin sensitivity.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
- Department of Health and Human Performance, University of Wisconsin-River Falls, River Falls, Wisconsin, United States
| | - Mark W Pataky
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - Suvyaktha Simha
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Katherine A Klaus
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
19
|
Dahleh MMM, Araujo SM, Bortolotto VC, Torres SP, Machado FR, Meichtry LB, Musachio EAS, Guerra GP, Prigol M. The implications of exercise in Drosophila melanogaster: insights into Akt/p38 MAPK/Nrf2 pathway associated with Hsp70 regulation in redox balance maintenance. J Comp Physiol B 2023; 193:479-493. [PMID: 37500966 DOI: 10.1007/s00360-023-01505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
This study investigated the potential effects of exercise on the responses of energy metabolism, redox balance maintenance, and apoptosis regulation in Drosophila melanogaster to shed more light on the mechanisms underlying the increased performance that this emerging exercise model provides. Three groups were evaluated for seven days: the control (no exercise or locomotor limitations), movement-limited flies (MLF) (no exercise, with locomotor limitations), and EXE (with exercise, no locomotor limitations). The EXE flies demonstrated greater endurance-like tolerance in the swimming test, associated with increased citrate synthase activity, lactate dehydrogenase activity and lactate levels, and metabolic markers in exercise. Notably, the EXE protocol regulated the Akt/p38 MAPK/Nrf2 pathway, which was associated with decreased Hsp70 activation, culminating in glutathione turnover regulation. Moreover, reducing the locomotion environment in the MLF group decreased endurance-like tolerance and did not alter citrate synthase activity, lactate dehydrogenase activity, or lactate levels. The MLF treatment promoted a pro-oxidant effect, altering the Akt/p38 MAPK/Nrf2 pathway and increasing Hsp70 levels, leading to a poorly-regulated glutathione system. Lastly, we demonstrated that exercise could modulate major metabolic responses in Drosophila melanogaster aerobic and anaerobic metabolism, associated with apoptosis and cellular redox balance maintenance in an emergent exercise model.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratory Human and Animal Bio Health, Federal University of Fronteira Sul, Realeza, PR, CEP 85770-000, Brazil
| | | | - Stéphanie Perreira Torres
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Franciéle Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui, RS, CEP 97650-000, Brazil.
| |
Collapse
|
20
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
21
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Dalle Carbonare L, Minoia A, Zouari S, Piritore FC, Vareschi A, Romanelli MG, Valenti MT. Crosstalk between Bone and Muscles during Physical Activity. Cells 2023; 12:2088. [PMID: 37626898 PMCID: PMC10453939 DOI: 10.3390/cells12162088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Bone-muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone-muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone-muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| |
Collapse
|
23
|
Rejeki PS, Pranoto A, Rahmanto I, Izzatunnisa N, Yosika GF, Hernaningsih Y, Wungu CDK, Halim S. The Positive Effect of Four-Week Combined Aerobic-Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports (Basel) 2023; 11:sports11040090. [PMID: 37104164 PMCID: PMC10145427 DOI: 10.3390/sports11040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Obesity is a metabolic disease that is caused by a lack of physical activity and is associated with an increased risk of chronic inflammation. A total of 40 obese adolescent females with an average age of 21.93 ± 1.35 years and average body mass index (BMI) of 30.81 ± 3.54 kg/m2 were enrolled in this study, randomized, and divided into four groups, i.e., control (CTL; n = 10), moderate intensity aerobic training (MAT; n = 10), moderate intensity resistance training (MRT; n = 10), and moderate intensity combined aerobic-resistance training (MCT; n = 10). The enzyme-linked immunosorbent assay (ELISA) kits method was used to analyze the adiponectin and leptin levels between pre-intervention and post-intervention. Statistical analysis was conducted using a paired sample t-test, while correlation analysis between variables used the Pearson product-moment correlation test. Research data showed that MAT, MRT, and MCT significantly increased adiponectin levels and decreased leptin levels compared to the CTL (p ≤ 0.05). The results of the correlation analysis of delta (∆) data showed that an increase in adiponectin levels was significantly negatively correlated with a decrease in body weight (BW) (r = -0.671, p ≤ 0.001), BMI (r = -0.665, p ≤ 0.001), and fat mass (FM) (r = -0.694, p ≤ 0.001) and positively correlated with an increase in skeletal muscle mass (SMM) (r = 0.693, p ≤ 0.001). Whereas, a decrease in leptin levels was significantly positively correlated with a decrease in BW (r = 0.744, p ≤ 0.001), BMI (r = 0.744, p ≤ 0.001), and FM (r = 0.718, p ≤ 0.001) and negatively correlated with an increase in SMM (r = -0.743, p ≤ 0.001). In summary, it can be concluded that our data show that adiponectin levels increased and leptin levels decreased after the intervention of aerobic, resistance, and combined aerobic-resistance training.
Collapse
Affiliation(s)
- Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Ilham Rahmanto
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Nabilah Izzatunnisa
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Ghana Firsta Yosika
- Study Program of Sports Coaching Education, Faculty of Teacher Training and Education Universitas Tanjungpura, Pontianak 78124, West Kalimantan, Indonesia
| | - Yetti Hernaningsih
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Biochemistry Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Shariff Halim
- Clinical Research Centre, Management and Science University, Shah Alam 40100, Selangor, Malaysia
| |
Collapse
|
24
|
Neto IVDS, Pinto AP, Muñoz VR, de Cássia Marqueti R, Pauli JR, Ropelle ER, Silva ASRD. Pleiotropic and multi-systemic actions of physical exercise on PGC-1α signaling during the aging process. Ageing Res Rev 2023; 87:101935. [PMID: 37062444 DOI: 10.1016/j.arr.2023.101935] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Physical training is a potent therapeutic approach for improving mitochondrial health through peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) signaling pathways. However, comprehensive information regarding the physical training impact on PGC-1α in the different physiological systems with advancing age is not fully understood. This review sheds light on the frontier-of-knowledge data regarding the chronic effects of exercise on the PGC-1α signaling pathways in rodents and humans. We address the molecular mechanisms involved in the different tissues, clarifying the precise biological action of PGC-1α, restricted to the aged cell type. Distinct exercise protocols (short and long-term) and modalities (aerobic and resistance exercise) increase the transcriptional and translational PGC-1α levels in adipose tissue, brain, heart, liver, and skeletal muscle in animal models, suggesting that this versatile molecule induces pleiotropic responses. However, PGC-1α function in some human tissues (adipose tissue, heart, and brain) remains challenging for further investigations. PGC-1α is not a simple transcriptional coactivator but supports a biochemical environment of mitochondrial dynamics, controlling physiological processes (primary metabolism, tissue remodeling, autophagy, inflammation, and redox balance). Acting as an adaptive mechanism, the long-term effects of PGC-1α following exercise may reflect the energy demand to coordinate multiple organs and contribute to cellular longevity.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rita de Cássia Marqueti
- Molecular Analysis Laboratory, Faculty of Ceilândia, Universidade de Brasília (UNB), Distrito Federal, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
25
|
Muñoz VR, Botezelli JD, Gaspar RC, da Rocha AL, Vieira RFL, Crisol BM, Braga RR, Severino MB, Nakandakari SCBR, Antunes GC, Brunetto SQ, Ramos CD, Velloso LA, Simabuco FM, de Moura LP, da Silva ASR, Ropelle ER, Cintra DE, Pauli JR. Effects of short-term endurance and strength exercise in the molecular regulation of skeletal muscle in hyperinsulinemic and hyperglycemic Slc2a4 +/- mice. Cell Mol Life Sci 2023; 80:122. [PMID: 37052684 PMCID: PMC11072257 DOI: 10.1007/s00018-023-04771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVE Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4+/-) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet. METHODS Slc2a4+/- mice were used, that performed 5 days of endurance or strength exercise training. Further analysis included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial function, and experiments with C2C12 cell line. RESULTS When Slc2a4+/- mice were submitted to the endurance or strength training protocol, improvements were observed in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improving skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle. CONCLUSIONS Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the Slc2a4+/- mouse model.
Collapse
Affiliation(s)
- Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| | - José Diego Botezelli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Alisson L da Rocha
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Barbara Moreira Crisol
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | | | - Gabriel Calheiros Antunes
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Sérgio Q Brunetto
- Biomedical Engineering Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Celso D Ramos
- Biomedical Engineering Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Radiology, University of Campinas, Campinas, São Paulo, 13084-970, Brazil
| | - Lício Augusto Velloso
- OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, 13084-970, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão, Preto Medical School, University of São Paulo (USP), School of Physical Education and Sport of Ribeirão Preto , Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- National Institute of Science and Technology of Obesity and Diabetes, University of Campinas (UNICAMP), Campinas , São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira,, São Paulo, Brazil
- OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
- OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- National Institute of Science and Technology of Obesity and Diabetes, University of Campinas (UNICAMP), Campinas , São Paulo, Brazil.
| |
Collapse
|
26
|
Malhan D, Yalçin M, Schoenrock B, Blottner D, Relógio A. Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent. NPJ Microgravity 2023; 9:30. [PMID: 37012297 PMCID: PMC10070655 DOI: 10.1038/s41526-023-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates cellular and molecular processes in mammals across all tissues including skeletal muscle, one of the largest organs in the human body. Dysregulated circadian rhythms are characteristic of aging and crewed spaceflight, associated with, for example, musculoskeletal atrophy. Molecular insights into spaceflight-related alterations of circadian regulation in skeletal muscle are still missing. Here, we investigated potential functional consequences of clock disruptions on skeletal muscle using published omics datasets obtained from spaceflights and other clock-altering, external (fasting and exercise), or internal (aging) conditions on Earth. Our analysis identified alterations of the clock network and skeletal muscle-associated pathways, as a result of spaceflight duration in mice, which resembles aging-related gene expression changes observed in humans on Earth (e.g., ATF4 downregulation, associated with muscle atrophy). Furthermore, according to our results, external factors such as exercise or fasting lead to molecular changes in the core-clock network, which may compensate for the circadian disruption observed during spaceflights. Thus, maintaining circadian functioning is crucial to ameliorate unphysiological alterations and musculoskeletal atrophy reported among astronauts.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Britt Schoenrock
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
- Neuromuscular System and Neuromuscular Signaling, Berlin Center of Space Medicine & Extreme Environments, Berlin, 10115, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|
27
|
Lei S, Li C, She Y, Zhou S, Shi H, Chen R. Roles of super enhancers and enhancer RNAs in skeletal muscle development and disease. Cell Cycle 2023; 22:495-505. [PMID: 36184878 PMCID: PMC9928468 DOI: 10.1080/15384101.2022.2129240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022] Open
Abstract
Skeletal muscle development is a multistep biological process regulated by a variety of myogenic regulatory factors, including MyoG, MyoD, Myf5, and Myf6 (also known as MRF4), as well as members of the FoxO subfamily. Differentiation and regeneration during skeletal muscle myogenesis contribute to the physiological function of muscles. Super enhancers (SEs) and enhancer RNAs (eRNAs) are involved in the regulation of development and diseases. Few studies have identified the roles of SEs and eRNAs in muscle development and pathophysiology. To develop approaches to enhance skeletal muscle mass and function, a more comprehensive understanding of the key processes underlying muscular diseases is needed. In this review, we summarize the roles of SEs and eRNAs in muscle development and disease through affecting of DNA methylation, FoxO subfamily, RAS-MEK signaling, chromatin modifications and accessibility, MyoD and cis regulating target genes. The summary could inform strategies to increase muscle mass and treat muscle-related diseases.
Collapse
Affiliation(s)
- Si Lei
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Cheng Li
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Yanling She
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Shanyao Zhou
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Huacai Shi
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| | - Rui Chen
- Guangdong Second Provincial General Hospital, Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangzhou, China
| |
Collapse
|
28
|
Vainshtein A, Slavin MB, Cheng AJ, Memme JM, Oliveira AN, Perry CGR, Abdul-Sater AA, Belcastro AN, Riddell MC, Triolo M, Haas TL, Roudier E, Hood DA. Scientific meeting report: International Biochemistry of Exercise 2022. J Appl Physiol (1985) 2022; 133:1381-1393. [PMID: 36356257 DOI: 10.1152/japplphysiol.00475.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exercise is one of the only nonpharmacological remedies known to counteract genetic and chronic diseases by enhancing health and improving life span. Although the many benefits of regular physical activity have been recognized for some time, the intricate and complex signaling systems triggered at the onset of exercise have only recently begun to be uncovered. Exercising muscles initiate a coordinated, multisystemic, metabolic rewiring, which is communicated to distant organs by various molecular mediators. The field of exercise research has been expanding beyond the musculoskeletal system, with interest from industry to provide realistic models and exercise mimetics that evoke a whole body rejuvenation response. The 18th International Biochemistry of Exercise conference took place in Toronto, Canada, from May 25 to May 28, 2022, with more than 400 attendees. Here, we provide an overview of the most cutting-edge exercise-related research presented by 66 speakers, focusing on new developments in topics ranging from molecular and cellular mechanisms of exercise adaptations to exercise therapy and management of disease and aging. We also describe how the manipulation of these signaling pathways can uncover therapeutic avenues for improving human health and quality of life.
Collapse
Affiliation(s)
| | - Mikhaela B Slavin
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Arthur J Cheng
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Jonathan M Memme
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Ashley N Oliveira
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Angelo N Belcastro
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Michael C Riddell
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Matthew Triolo
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Tara L Haas
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Emilie Roudier
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - David A Hood
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| |
Collapse
|