1
|
Li Z, Sun B, Xiao D, Liu H, Wang Z, Liu Y, Zheng Z, Wang P, Dai Y, Huang B, Cheng H. Mesostructure-Specific Configuration of *CO Adsorption for Selective CO 2 Electroreduction to C 2+ Products. Angew Chem Int Ed Engl 2025; 64:e202413832. [PMID: 39221719 DOI: 10.1002/anie.202413832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The multi-carbon (C2+) alcohols produced by electrochemical CO2 reduction, such as ethanol and n-propanol, are considered as indispensable liquid energy carriers. In most C-C coupling cases, however, the concomitant gaseous C2H4 product results in the low selectivity of C2+ alcohols. Here, we report rational construction of mesostructured CuO electrocatalysts, specifically mesoporous CuO (m-CuO) and cylindrical CuO (c-CuO), enables selective distribution of C2+ products. The m-CuO and c-CuO show similar selectivity towards total C2+ products (≥76 %), but the corresponding predominant products are C2+ alcohols (55 %) and C2H4 (52 %), respectively. The ordered mesostructure not only induces the surface hydrophobicity, but selectively tailors the adsorption configuration of *CO intermediate: m-CuO prefers bridged adsorption, whereas c-CuO favors top adsorption as revealed by in situ spectroscopies. Computational calculations unravel that bridged *CO adsorbate is prone to deep protonation into *OCH3 intermediate, thus accelerating the coupling of *CO and *OCH3 intermediates to generate C2+ alcohols; by contrast, top *CO adsorbate is apt to undergo conventional C-C coupling process to produce C2H4. This work illustrates selective C2+ products distribution via mesostructure manipulation, and paves a new path into the design of efficient electrocatalysts with tunable adsorption configuration of key intermediates for targeted products.
Collapse
Affiliation(s)
- Zaiqi Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Bin Sun
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Hongli Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Ying Dai
- School of Physics, Shandong University, 250100, Jinan, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| |
Collapse
|
2
|
Fu P, Zhang Y, Wang S, Ye X, Wu Y, Yu M, Zhu S, Lee HJ, Zhang D. INSPIRE: Single-beam probed complementary vibrational bioimaging. SCIENCE ADVANCES 2024; 10:eadm7687. [PMID: 39661668 PMCID: PMC11633736 DOI: 10.1126/sciadv.adm7687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/19/2024] [Indexed: 12/13/2024]
Abstract
Molecular spectroscopy provides intrinsic contrast for in situ chemical imaging, linking the physiochemical properties of biomolecules to the functions of living systems. While stimulated Raman imaging has found successes in deciphering biological machinery, many vibrational modes are Raman inactive or weak, limiting the broader impact of the technique. It can potentially be mitigated by the spectral complementarity from infrared (IR) spectroscopy. However, the vastly different optical windows make it challenging to develop such a platform. Here, we introduce in situ pump-probe IR and Raman excitation (INSPIRE) microscopy, a nascent cross-modality spectroscopic imaging approach by encoding the ultrafast Raman and the IR photothermal relaxation into a single probe beam for simultaneous detection. INSPIRE inherits the merits of complementary modalities and demonstrates high-content molecular imaging of chemicals, cells, tissues, and organisms. Furthermore, INSPIRE applies to label-free and molecular tag imaging, offering possibilities for optical sensing and imaging in biomedicine and materials science.
Collapse
Affiliation(s)
- Pengcheng Fu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yongqing Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Siming Wang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yunhong Wu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Shiyao Zhu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
- State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Zhang Z, Luo Y, Hu X, Li Z, Wu Y, Wei W, Wang Y, Gu XK, Xu J, Ding M. Enhancing carbon enrichment by metal-organic cage to improve the electrocatalytic carbon dioxide reduction performance of silver-based catalyst. J Colloid Interface Sci 2024; 683:468-476. [PMID: 39700556 DOI: 10.1016/j.jcis.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2) into value-added chemicals provide an alternative technology for achieving carbon neutrality. Limited mass transfer of CO2 in aqueous electrolyte and unsatisfied catalytic activity are the major determinants that inhibit the CO2 conversion at industrial current density level. Herein, an electroreduction-generated metallic Ag atomic clusters supported on metal organic cage (Ag AC/MOC) electrocatalyst is reported to improve the enrichment of inorganic carbon species over catalytic sites for efficient CO2 electroreduction. In-situ infrared spectroscopy and density functional theory studies reveal that the Ag AC/MOC induces the CO2-concentrating in the metal organic cage via a spontaneous ionization of the accumulated CO2, which dramatically enhances the coverage of inorganic carbon species for accelerated kinetic of CO2 conversion. The highly dispersed Ag atomic clusters further reduce the activation energy of CO2 and promote the protonation of CO2 to form carboxyl species, enabling high selectivity toward CO. Hence, the Ag AC/MOC achieves a high CO faradaic efficiency of 97.0 %, while the highest CO partial current reaches 231.6 mA cm-2, which is significantly higher than that of metallic Ag electrocatalyst. This work demonstrates a deep insight into high-performance electrocatalyst design in view of CO2 transfer and catalytic activity.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yao Luo
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xuli Hu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Zhenyao Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yushan Wu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Wei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Wang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Junchen Xu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingyue Ding
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China; Academy of Advanced Interdisciplinary Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Nicolas J, Baidoun R, Kim D. Unveiling the interfacial liquid in electrochemical reactions. Natl Sci Rev 2024; 11:nwae318. [PMID: 39554239 PMCID: PMC11562831 DOI: 10.1093/nsr/nwae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 11/19/2024] Open
Abstract
Adapting novel experimental techniques to address key knowledge gaps about the structure and properties of the interfacial liquid (IL) will enhance our understanding of its influence on electrochemical reactions, particularly in mediating species transport, charge transfer, and intermediate stability.
Collapse
Affiliation(s)
- Joseph Nicolas
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, USA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, USA
| | - Dohyung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, USA
| |
Collapse
|
5
|
Yu F, Shu M, Zhang G, Yu Q, Wang H. Enhancing CO 2 Electroreduction Precision to Ethylene and Ethanol: The Role of Additional Boron Catalytic Sites in Cu-Based Tandem Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410118. [PMID: 39429207 PMCID: PMC11633483 DOI: 10.1002/advs.202410118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 10/22/2024]
Abstract
The electrocatalytic conversion of carbon dioxide (CO2) into valuable multicarbon (C2+) compounds offers a promising approach to mitigate CO2 emissions and harness renewable energy. However, achieving precise selectivity for specific C2+ products, such as ethylene and ethanol, remains a formidable challenge. This study shows that incorporating elemental boron (B) into copper (Cu) catalysts provides additional adsorption sites for *CO intermediates, enhancing the selectivity of desirable C2+ products. Additionally, using a nickel single-atom catalyst (Ni-SAC) as a *CO source increases local *CO concentration and reduces the hydrogen evolution reaction. In situ experiments and density functional theory (DFT) calculations reveal that surface-bound boron units adsorb and convert *CO more efficiently, promoting ethylene production, while boron within the bulk phase of copper influences charge transfer, facilitating ethanol generation. In a neutral electrolyte, the bias current density for ethylene production using the B-O-Cu2@Ni-SAC0.05 hybrid catalyst exceeded 300 mA cm-2, and that for ethanol production with B-O-Cu5@Ni-SAC0.2 surpassed 250 mA cm-2. This study underscores that elemental doping in Cu-based catalysts not only alters charge and crystalline phase arrangements at Cu sites but also provides additional reduction sites for coupling reactions, enabling the efficient synthesis of distinct C2+ products.
Collapse
Affiliation(s)
- Fuqing Yu
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Minxing Shu
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Guangyao Zhang
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Qiming Yu
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Hongming Wang
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials ChemistryNanchang UniversityNanchang330031China
| |
Collapse
|
6
|
Yan Y, Liu K, Yang C, Chen Y, Lv X, Hu C, Zhang L, Zheng G. Electrokinetic Analysis-Driven Promotion of Electrocatalytic CO Reduction to n-Propanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406345. [PMID: 39358961 DOI: 10.1002/smll.202406345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
The electrocatalytic carbon dioxide or carbon monoxide reduction reaction (CO2RR or CORR) features a sustainable method for reducing carbon emissions and producing value-added chemicals. However, the generation of C3 products with higher energy density and market values, such as n-propanol, remains highly challenging, which is attributed to the unclear formation mechanism of C3+ versus C2 products. In this work, by the Tafel slope analysis, electrolyte pH correlation exploration, and the kinetic analysis of CO partial pressure fitting, it is identified that both n-propanol and C2 products share the same rate-determining step, which is the coupling of two C1 intermediates via the derivation of the Butler-Volmer equation. In addition, inspired by the mechanistic study, it is proposed that a high OH─ concentration and a water-limited environment are beneficial for promoting the subsequent *C2-*C1 coupling to n-propanol. At 5.0 m [OH-], the partial current density of producing n-propanol (jn-propanol) reached 45 mA cm-2, which is 35 and 1.3 times higher than that at 0.01 m [OH-] and 1.0 m [OH-], respectively. This study provides a comprehensive kinetic analysis of n-propanol production and suggests opportunities for designing new catalytic systems for promoting the C3 production.
Collapse
Affiliation(s)
- Yaqin Yan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Kunhao Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Cejun Hu
- School of Materials Science and Engineering, Fuzhou University, Fujian, 350108, China
| | - Lijuan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
7
|
He X, Lin L, Li X, Zhu M, Zhang Q, Xie S, Mei B, Sun F, Jiang Z, Cheng J, Wang Y. Roles of copper(I) in water-promoted CO 2 electrolysis to multi-carbon compounds. Nat Commun 2024; 15:9923. [PMID: 39548110 PMCID: PMC11568296 DOI: 10.1038/s41467-024-54282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
The membrane electrode assembly (MEA) is promising for practical applications of the electrocatalytic CO2 reduction reaction (CO2RR) to multi-carbon (C2+) compounds. Water management is crucial in the MEA electrolyser without catholyte, but few studies have clarified whether the co-feeding water in cathode can enhance C2+ formation. Here, we report our discovery of pivotal roles of a suitable nanocomposite electrocatalyst with abundant Cu2O-Cu0 interfaces in accomplishing water-promoting effect on C2+ formation, achieving a current density of 1.0 A cm-2 and a 19% single-pass C2+ yield at 80% C2+ Faradaic efficiency in MEA. The operando characterizations confirm the co-existence of Cu+ with Cu0 during CO2RR at ampere-level current densities. Our studies reveal that Cu+ works for water activation and aids C‒C coupling by enhancing formations of adsorbed CO and CHO species. This work offers a strategy to boost CO2RR to C2+ compounds in industrial-relevant MEA by combining water management and electrocatalyst design.
Collapse
Affiliation(s)
- Xiaoyang He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangying Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minzhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China.
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
8
|
Betts K, Jiang Y, Frailey M, Yohannes K, Feng Z. Potential-Dependent ATR-SEIRAS and EQCM-D Analysis of Interphase Formation in Zinc Battery Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63026-63038. [PMID: 39492667 DOI: 10.1021/acsami.4c15318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
With the heightening interest in bivalent battery technology, there arises a necessity for a thorough investigation into zinc-ion battery (ZIB) electrolytes, accommodating their chemical attributes and potential-dependent structural dynamics. While the phenomenon of in situ solid electrolyte interphase formation is extensively documented in lithium-ion batteries, its analogous occurrences in ZIBs remain limited. Herein is a comparative study of three zinc electrolytes of interest: ZnSO4, ZnOTF, and Zn(TFSI)2/LiTFSI hybrid water-in-salt electrolyte. Additionally, the impact of an acetonitrile additive is scrutinized, with a comparative assessment of the interfacial behavior in aqueous solutions. Utilizing ATR-SEIRAS, potential-dependent alterations in the composition of the electrolyte/electrode interface were monitored, while EQCM-D facilitated a comprehensive understanding of variations in the mass and structural properties of the adsorbed layer. Aqueous ZnSO4 demonstrated the accumulation of porous Zn4SO4(OH)6·xH2O at negative potentials, leading to a mass of 1.47 μg cm-2 after five cycles. Bisulfate formation was observed at positive potentials. SEIRAS measurements for ZnOTF demonstrated reorientation and surface adsorption of CF3SO3- to favor CF3 at the surface for positive potentials, and acetonitrile showed increased stability for the electrode at negative potentials. The additive was also reported to lead to the accumulation of a substantial passivation layer with viscoelastic properties. The zinc water-in-salt showed exceptional surface stability at negative potentials and a widened potential window. A thin rigid zinc SEI layer is reported with a mass of 0.7 μg cm-2. The compositional intricacies of these surface structures are discussed in relation to their solvent conditions. This investigation not only sheds light on the initial charge/discharge cycles in ZIBs but also underscores their pivotal role in instigating enduring transformations that can significantly influence their long-term cycling performance.
Collapse
Affiliation(s)
- Katherine Betts
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Yuhan Jiang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Michael Frailey
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Kidus Yohannes
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Zhange Feng
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| |
Collapse
|
9
|
Ma H, Ibáñez-Alé E, You F, López N, Yeo BS. Electrochemical Formation of C 2+ Products Steered by Bridge-Bonded *CO Confined by *OH Domains. J Am Chem Soc 2024; 146:30183-30193. [PMID: 39468916 PMCID: PMC11544614 DOI: 10.1021/jacs.4c08755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
During the electrochemical CO2 reduction reaction (eCO2RR) on copper catalysts, linear-bonded CO (*COL) is commonly regarded as the key intermediate for the CO-CO coupling step, which leads to the formation of multicarbon products. In this work, we unveil the significant role of bridge-bonded *CO (*COB) as an active species. By combining in situ Raman spectroscopy, gas and liquid chromatography, and density functional theory (DFT) simulations, we show that adsorbed *OH domains displace *COL to *COB. The electroreduction of a 12CO+13CO2 cofeed demonstrates that *COB distinctly favors the production of acetate and 1-propanol, while *COL favors ethylene and ethanol formation. This work enhances our understanding of the mechanistic intricacies of eCO(2)RR and suggests new directions for designing operational conditions by modifying the competitive adsorption of surface species, thereby steering the reaction toward specific multicarbon products.
Collapse
Affiliation(s)
- Haibin Ma
- Department
of Chemistry, Faculty of Science, National
University of Singapore, Singapore 117543, Singapore
| | - Enric Ibáñez-Alé
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
- Universitat
Rovira i Virgili, Avinguda Catalunya, 35, 43002 Tarragona, Spain
| | - Futian You
- Department
of Chemistry, Faculty of Science, National
University of Singapore, Singapore 117543, Singapore
| | - Núria López
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Boon Siang Yeo
- Department
of Chemistry, Faculty of Science, National
University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
10
|
Kuzume A, Kume S. Spectrometric monitoring of CO 2 electrolysis on a molecularly modified copper surface. Chem Commun (Camb) 2024; 60:12662-12676. [PMID: 39308315 DOI: 10.1039/d4cc03973d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Since copper has been extensively studied due to its unique ability to reduce carbon dioxide to hydrocarbons and alcohols, it tends to yield a mixture of products. Among various efforts to improve the selectivity and efficiency of this catalysis, the introduction of organic molecules and polymers on the copper/electrolyte interface has proven to be an effective and promising way to improve surface activity, considering the variation and precise designability of organic structures. The role of surface molecular modifiers, however, is not as simple as that in homogeneous catalysts, and an understanding of a wide scale of interactions from the atomic scale to the whole electrode structure is required. This feature article classifies those different scale interactions caused by organic modifiers on copper catalysts, together with the experimental support by in situ vibrational spectroscopy which directly observes surface species and events. Based on these recent understandings, novel fabrication methods of organic structures on copper catalysts are also discussed.
Collapse
Affiliation(s)
- Akiyoshi Kuzume
- Clean Energy Research Center, Yamanashi University, Kofu, 400-8510, Japan.
| | - Shoko Kume
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| |
Collapse
|
11
|
Hu X, Xu J, Gao Y, Li Z, Shen J, Wei W, Hu Y, Wu Y, Wang Y, Ding M. Establishing Non-Stoichiometric Ti 4O 7 Assisted Asymmetrical C-C Coupling for Highly Energy-Efficient Electroreduction of Carbon Monoxide. Angew Chem Int Ed Engl 2024:e202414416. [PMID: 39435844 DOI: 10.1002/anie.202414416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Exploring an appropriate support material for Cu-based electrocatalyst is conducive for stably producing multi-carbon chemicals from electroreduction of carbon monoxide. However, the insufficient metal-support adaptability and low conductivity of the support would hinder the C-C coupling capacity and energy efficiency. Herein, non-stoichiometric Ti4O7 was incorporated into Cu electrocatalysts (Cu-Ti4O7), and served as a highly conductive and stable support for highly energy-efficient electrochemical conversion of CO. The abundant oxygen vacancies originated from ordered lattice defects in Ti4O7 facilitate the water dissociation and the CO adsorption to accelerate the hydrogenation to *COH. The highly adaptable metal-support interface of Cu-Ti4O7 enables a direct asymmetrical C-C coupling between *CO on Cu and *COH on Ti4O7, which significantly lowers the reaction energy barrier for C2+ products formation. Additionally, the excellent electroconductivity of Ti4O7 benefits the reaction charge transfer through robust Cu/Ti4O7 interface for minimizing the energy loss. Thus, the optimized 20Cu-Ti4O7 catalyst exhibits an impressive selectivity of 96.4 % and ultrahigh energy efficiency of 45.1 % for multi-carbon products, along with a remarkable partial current density of 432.6 mA cm-2. Our study underscores a novel C-C coupling strategy between Cu and the support material, advancing the development of Cu-supported catalysts for highly efficient electroreduction of carbon monoxide.
Collapse
Affiliation(s)
- Xuli Hu
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Junchen Xu
- The Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Yunchen Gao
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Zhenyao Li
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Jun Shen
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Wei Wei
- The Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Yangshun Hu
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Yushan Wu
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Yao Wang
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
- Academy of Advanced Interdisciplinary Studies, Wuhan University, 430072, Wuhan, China
| |
Collapse
|
12
|
Ramadhany P, Luong Q, Zhang Z, Leverett J, Samorì P, Corrie S, Lovell E, Canbulat I, Daiyan R. State of Play of Critical Mineral-Based Catalysts for Electrochemical E-Refinery to Synthetic Fuels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405029. [PMID: 38838055 DOI: 10.1002/adma.202405029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.
Collapse
Affiliation(s)
- Putri Ramadhany
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quang Luong
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Ziling Zhang
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Josh Leverett
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Simon Corrie
- Chemical and Biological Engineering Department, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Clayton, VIC 3800, Australia
| | - Emma Lovell
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ismet Canbulat
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Zhang R, Hu W, Liu J, Xu K, Liu Y, Yao Y, Liu M, Zhang XG, Li H, He P, Huo S. Electrochemical Synthesis of Urea: Co-Reduction of Nitrite and Carbon Dioxide on Binuclear Cobalt Phthalocyanine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403285. [PMID: 39031789 DOI: 10.1002/smll.202403285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Indexed: 07/22/2024]
Abstract
Exploration of molecular catalysts with the atomic-level tunability of molecular structures offers promising avenues for developing high-performance catalysts for the electrochemical co-reduction reaction of carbon dioxide (CO2) and nitrite (NO2 -) into value-added urea. In this work, a binuclear cobalt phthalocyanine (biCoPc) catalyst is prepared through chemical synthesis and applied as a C─N coupling catalyst toward urea. Achieving a remarkable Faradaic efficiency of 47.4% for urea production at -0.5 V versus reversible hydrogen electrode (RHE), this biCoPc outperforms many known molecular catalysts in this specific application. Its unique planar macromolecular structure and the increased valence state of cobalt promote the adsorption of nitrogenous and carbonaceous species, a critical factor in facilitating the multi-electron C─N coupling. Combining highly sensitive in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) with density functional theory (DFT) calculations, the linear adsorbed CO (COL) and bridge adsorbed CO (COB) is captured on biCoPc catalyst during the co-reduction reaction. COB, a pivotal intermediate in the co-reduction from CO2 and nitrite to urea, is evidenced to be labile and may be attacked by nitrite, promoting urea production. This work demonstrates the importance of designing molecular catalysts for efficient co-reduction of CO2 and nitrite to urea.
Collapse
Affiliation(s)
- Rui Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Wenhui Hu
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Jingjing Liu
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Kaidi Xu
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Yi Liu
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Yahong Yao
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Minmin Liu
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Hong Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Peng He
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, ID, 46556, USA
| | - Shengjuan Huo
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Institute for Sustainable Energy, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
14
|
An P, Gao C, Zhu X, Wang B, Xuan Y, Liang Y, Xia S, Si W, Wang D, Peng Y, Li J. Phosphorus-Water Interaction Drives Active Center Evolution into the Water-Adaptive Structure in the High-Humidity NH 3-SCR Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16600-16610. [PMID: 39058552 DOI: 10.1021/acs.est.4c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The impact of water on catalyst activity remains inconclusive due to its dependence on the specific reaction environment. To maximize the exploitation of water's promoting effect, we employed ammonia selective catalytic reduction (NH3-SCR) as a probe reaction and proposed a phosphorus modification strategy for Cu-ZSM-5 catalysts. The objective of this approach was to construct water-adaptive microstructures through directional arrangement. To investigate the effect of phosphorus on the transformation of framework copper sites in humid environments, we conducted comprehensive characterizations and density functional theory calculation. Results reveal that water molecules cleave the oxygen bridges between phosphorus oxide and copper, leading to the formation of active isolated [Cu(OH)]+ groups and phosphate. The phosphate species weaken the interaction between exchanged Cu2+ groups and the zeolite framework, leading to the generation of highly migratory hydrated Cu2+ species. This work will potentially guide the rational design of water-adaptive catalysts for gas pollution abatement in a humid environment.
Collapse
Affiliation(s)
- Penghao An
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chuan Gao
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yue Xuan
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yanjie Liang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Sunwen Xia
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Zhang L, Iwata R, Lu Z, Wang X, Díaz-Marín CD, Zhong Y. Bridging Innovations of Phase Change Heat Transfer to Electrochemical Gas Evolution Reactions. Chem Rev 2024; 124:10052-10111. [PMID: 39194152 DOI: 10.1021/acs.chemrev.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change. Recent developments of liquid-vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid-vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.
Collapse
Affiliation(s)
- Lenan Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ryuichi Iwata
- Toyota Central R&D Laboratories, Inc, Nagakute City 480-1192, Japan
| | - Zhengmao Lu
- Institute of Mechanical Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Xuanjie Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Bai C, Fan S, Li X, Wang J, Duan J, Shi J, Mao Y, Chen G. Role of Interfacial Water Structure in the Electroreduction of NO over Cu 2O. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46384-46391. [PMID: 39179524 DOI: 10.1021/acsami.4c10027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The electrochemical nitric oxide reduction reaction (NORR), which utilizes water as the sole hydrogen source, has the potential to facilitate ammonia production while concurrently mitigating pollutants. However, limited research has been dedicated to characterizing the structure of interfacial water due to the challenges associated with probing this intricate system, impeding the development of more efficient catalysts for the NORR process. Herein, the Cu2O microcrystals with distinct exposed facets, including {100}, {110}, and {111}, are employed for the model catalysts to investigate interfacial water structure and intermediate species in the NORR process. The results from shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) indicated that the NORR performance in 0.1 M Na2SO4 (with heavy water as the solvent) was positively correlated to the proportion of hydrated Na+ ion water. In addition, a sequence of intermediates from the NORR, including *NOH, *NH, *NH2, and *NH3, was detected by employing a combination of multiple in situ characterization methods. Furthermore, in conjunction with experimental results and theoretical calculations, we revealed the potential reaction pathway of NORR. This study offers novel insights into the NORR mechanism and valuable guidance for the design of high-performance catalysts for ammonia production.
Collapse
Affiliation(s)
- Chunpeng Bai
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jun Duan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jugong Shi
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan Mao
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guohua Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, P. R China
| |
Collapse
|
17
|
Chen Y, Zhen C, Chen Y, Zhao H, Wang Y, Yue Z, Wang Q, Li J, Gu MD, Cheng Q, Yang H. Oxygen Functional Groups Regulate Cobalt-Porphyrin Molecular Electrocatalyst for Acidic H 2O 2 Electrosynthesis at Industrial-Level Current. Angew Chem Int Ed Engl 2024; 63:e202407163. [PMID: 38864252 DOI: 10.1002/anie.202407163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) based on proton exchange membrane (PEM) reactor represents a promising approach to industrial-level H2O2 production, while it is hampered by the lack of high-efficiency electrocatalysts in acidic medium. Herein, we present a strategy for the specific oxygen functional group (OFG) regulation to promote the H2O2 selectivity up to 92 % in acid on cobalt-porphyrin molecular assembled with reduced graphene oxide. In situ X-ray adsorption spectroscopy, in situ Raman spectroscopy and Kelvin probe force microscopy combined with theoretical calculation unravel that different OFGs exert distinctive regulation effects on the electronic structure of Co center through either remote (carboxyl and epoxy) or vicinal (hydroxyl) interaction manners, thus leading to the opposite influences on the promotion in 2e- ORR selectivity. As a consequence, the PEM electrolyzer integrated with the optimized catalyst can continuously and stably produce the high-concentration of ca. 7 wt % pure H2O2 aqueous solution at 400 mA cm-2 over 200 h with a cell voltage as low as ca. 2.1 V, suggesting the application potential in industrial-scale H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Yihe Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Yubin Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hao Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Yuda Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Zhouying Yue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Qiansen Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jun Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hui Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| |
Collapse
|
18
|
Li S, Shi L, Guo Y, Wang J, Liu D, Zhao S. Selective oxygen reduction reaction: mechanism understanding, catalyst design and practical application. Chem Sci 2024; 15:11188-11228. [PMID: 39055002 PMCID: PMC11268513 DOI: 10.1039/d4sc02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The oxygen reduction reaction (ORR) is a key component for many clean energy technologies and other industrial processes. However, the low selectivity and the sluggish reaction kinetics of ORR catalysts have hampered the energy conversion efficiency and real application of these new technologies mentioned before. Recently, tremendous efforts have been made in mechanism understanding, electrocatalyst development and system design. Here, a comprehensive and critical review is provided to present the recent advances in the field of the electrocatalytic ORR. The two-electron and four-electron transfer catalytic mechanisms and key evaluation parameters of the ORR are discussed first. Then, the up-to-date synthetic strategies and in situ characterization techniques for ORR electrocatalysts are systematically summarized. Lastly, a brief overview of various renewable energy conversion devices and systems involving the ORR, including fuel cells, metal-air batteries, production of hydrogen peroxide and other chemical synthesis processes, along with some challenges and opportunities, is presented.
Collapse
Affiliation(s)
- Shilong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
19
|
Zhang R, Zhang J, Wang S, Tan Z, Yang Y, Song Y, Li M, Zhao Y, Wang H, Han B, Duan R. Synthesis of n-Propanol from CO 2 Electroreduction on Bicontinuous Cu 2O/Cu Nanodomains. Angew Chem Int Ed Engl 2024; 63:e202405733. [PMID: 38719782 DOI: 10.1002/anie.202405733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 07/16/2024]
Abstract
n-propanol is an important pharmaceutical and pesticide intermediate. To produce n-propanol by electrochemical reduction of CO2 is a promising way, but is largely restricted by the very low selectivity and activity. How to promote the coupling of *C1 and *C2 intermediates to form the *C3 intermediate for n-propanol formation is challenging. Here, we propose the construction of bicontinuous structure of Cu2O/Cu electrocatalyst, which consists of ultra-small Cu2O nanodomains, Cu nanodomains and large amounts of grain boundaries between Cu2O and Cu nanodomains. The n-propanol current density is as high as 101.6 mA cm-2 at the applied potential of -1.1 V vs. reversible hydrogen electrode in flow cell, with the Faradaic efficiency up to 12.1 %. Moreover, the catalyst keeps relatively stable during electrochemical CO2 reduction process. Experimental studies and theoretical calculations reveal that the bicontinuous structure of Cu2O/Cu can facilitate the *CO formation, *CO-*CO coupling and *CO-*OCCO coupling for the final generation of n-propanol.
Collapse
Affiliation(s)
- Renjie Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhonghao Tan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiling Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingzhe Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Duan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190
| |
Collapse
|
20
|
Xue J, Dong X, Liu C, Li J, Dai Y, Xue W, Luo L, Ji Y, Zhang X, Li X, Jiang Q, Zheng T, Xiao J, Xia C. Turning copper into an efficient and stable CO evolution catalyst beyond noble metals. Nat Commun 2024; 15:5998. [PMID: 39013916 PMCID: PMC11252372 DOI: 10.1038/s41467-024-50436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Using renewable electricity to convert CO2 into CO offers a sustainable route to produce a versatile intermediate to synthesize various chemicals and fuels. For economic CO2-to-CO conversion at scale, however, there exists a trade-off between selectivity and activity, necessitating the delicate design of efficient catalysts to hit the sweet spot. We demonstrate here that copper co-alloyed with isolated antimony and palladium atoms can efficiently activate and convert CO2 molecules into CO. This trimetallic single-atom alloy catalyst (Cu92Sb5Pd3) achieves an outstanding CO selectivity of 100% (±1.5%) at -402 mA cm-2 and a high activity up to -1 A cm-2 in a neutral electrolyte, surpassing numerous state-of-the-art noble metal catalysts. Moreover, it exhibits long-term stability over 528 h at -100 mA cm-2 with an FECO above 95%. Operando spectroscopy and theoretical simulation provide explicit evidence for the charge redistribution between Sb/Pd additions and Cu base, demonstrating that Sb and Pd single atoms synergistically shift the electronic structure of Cu for CO production and suppress hydrogen evolution. Additionally, the collaborative interactions enhance the overall stability of the catalyst. These results showcase that Sb/Pd-doped Cu can steadily carry out efficient CO2 electrolysis under mild conditions, challenging the monopoly of noble metals in large-scale CO2-to-CO conversion.
Collapse
Affiliation(s)
- Jing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xue Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jiawei Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Weiqing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Laihao Luo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xiao Zhang
- Department of Mechanical Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| |
Collapse
|
21
|
Du ZY, Wang K, Xie YM, Zhao Y, Qian ZX, Li SB, Zheng QN, Tian JH, Rudnev AV, Zhang YJ, Zhang H, Li JF. In situ Raman reveals the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts. J Chem Phys 2024; 161:021101. [PMID: 38973762 DOI: 10.1063/5.0213850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.
Collapse
Affiliation(s)
- Zi-Yu Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Yi-Meng Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Yu Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Zheng-Xin Qian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Si-Bo Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Qing-Na Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Alexander V Rudnev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospekt 31, 119071 Moscow, Russia
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
22
|
Chen F, Li L, Cheng C, Yu Y, Zhao BH, Zhang B. Ethylene electrosynthesis from low-concentrated acetylene via concave-surface enriched reactant and improved mass transfer. Nat Commun 2024; 15:5914. [PMID: 39003284 PMCID: PMC11246534 DOI: 10.1038/s41467-024-50335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Electrocatalytic semihydrogenation of acetylene (C2H2) provides a facile and petroleum-independent strategy for ethylene (C2H4) production. However, the reliance on the preseparation and concentration of raw coal-derived C2H2 hinders its economic potential. Here, a concave surface is predicted to be beneficial for enriching C2H2 and optimizing its mass transfer kinetics, thus leading to a high partial pressure of C2H2 around active sites for the direct conversion of raw coal-derived C2H2. Then, a porous concave carbon-supported Cu nanoparticle (Cu-PCC) electrode is designed to enrich the C2H2 gas around the Cu sites. As a result, the as-prepared electrode enables a 91.7% C2H4 Faradaic efficiency and a 56.31% C2H2 single-pass conversion under a simulated raw coal-derived C2H2 atmosphere (~15%) at a partial current density of 0.42 A cm-2, greatly outperforming its counterpart without concave surface supports. The strengthened intermolecular π conjugation caused by the increased C2H2 coverage is revealed to result in the delocalization of π electrons in C2H2, consequently promoting C2H2 activation, suppressing hydrogen evolution competition and enhancing C2H4 selectivity.
Collapse
Affiliation(s)
- Fanpeng Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Li Li
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bo-Hang Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
23
|
Zhang YC, Zhang XL, Wu ZZ, Niu ZZ, Chi LP, Gao FY, Yang PP, Wang YH, Yu PC, Duanmu JW, Sun SP, Gao MR. Facet-switching of rate-determining step on copper in CO 2-to-ethylene electroreduction. Proc Natl Acad Sci U S A 2024; 121:e2400546121. [PMID: 38857407 PMCID: PMC11194607 DOI: 10.1073/pnas.2400546121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024] Open
Abstract
Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.
Collapse
Affiliation(s)
- Yu-Cai Zhang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Zhi-Zheng Wu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Li-Ping Chi
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Ye-Hua Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Peng-Cheng Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Jing-Wen Duanmu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Shu-Ping Sun
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Min-Rui Gao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
24
|
Huang X, Li Y, Xie S, Zhao Q, Zhang B, Zhang Z, Sheng H, Zhao J. The Tandem Nitrate and CO 2 Reduction for Urea Electrosynthesis: Role of Surface N-Intermediates in CO 2 Capture and Activation. Angew Chem Int Ed Engl 2024; 63:e202403980. [PMID: 38588065 DOI: 10.1002/anie.202403980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Electrochemical reduction of CO2 and nitrate offers a promising avenue to produce valuable chemicals through the using of greenhouse gas and nitrogen-containing wastewater. However, the generally proposed reaction pathway of concurrent CO2 and nitrate reduction for urea synthesis requires the catalysts to be both efficient in both CO2 and nitrate reduction, thus narrowing the selection range of suitable catalysts. Herein, we demonstrate a distinct mechanism in urea synthesis, a tandem NO3 - and CO2 reduction, in which the surface amino species generated by nitrate reduction play the role to capture free CO2 and subsequent initiate its activation. When using the TiO2 electrocatalyst derived from MIL-125-NH2, it intrinsically exhibits low activity in aqueous CO2 reduction, however, in the presence of both nitrate and CO2, this catalyst achieves an excellent urea yield rate of 43.37 mmol ⋅ g-1 ⋅ h-1 and a Faradaic efficiency of 48.88 % at -0.9 V vs. RHE in a flow cell. Even at a low CO2 level of 15 %, the Faradaic efficiency of urea synthesis remains robust at 42.33 %. The tandem reduction procedure was further confirmed by in situ spectroscopies and theoretical calculations. This research provides new insights into the selection and design of electrocatalysts for urea synthesis.
Collapse
Affiliation(s)
- Xingmiao Huang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yangfan Li
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Shijie Xie
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
| | - Qi Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Boyang Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zhiyong Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hua Sheng
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
25
|
Huang Q, Qin D, Xia Y. Seeing is believing: what is on the surface of silver nanocrystals suspended in their original reaction solution. Chem Sci 2024; 15:6321-6330. [PMID: 38699255 PMCID: PMC11062097 DOI: 10.1039/d4sc00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
Colloidal synthesis of inorganic nanocrystals always involves a multitude of ionic and molecular species. How the chemical species affect the evolution of nanocrystals remains a black box. As an essential ingredient in the polyol synthesis of Ag nanocubes, Cl- has been proposed to co-adsorb on the surface with poly(vinyl pyrrolidone) (PVP) to facilitate shape evolution. However, there is still no direct evidence to confirm the presence of Cl- on the surface of Ag nanocubes while they are suspended in the original reaction solution. By leveraging the high sensitivity of surface-enhanced Raman scattering, here we offer direct evidence, for the first time, by resolving the Ag-Cl vibrational peak at 240 cm-1. This characteristic peak disappears if the synthesis is conducted in the absence of Cl-. Instead, three peaks associated with CF3COO- (from the precursor to Ag) are observed. When the sample is diluted with ethylene glycol, all the peaks associated with CF3COO- decrease proportionally in intensity, implying the involvement of chemisorption and negligible desorption during dilution. The chemisorbed CF3COO- is readily replaced by Cl- due to their major difference in binding strength. The co-adsorbed Cl- forces the carbonyl group of PVP binding to the Ag surface to take a more perpendicular configuration, enhancing its peak intensity. Altogether, these findings shed new light on the roles played by various chemical species in a successful synthesis of Ag nanocubes.
Collapse
Affiliation(s)
- Qijia Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Dong Qin
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332 USA
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
| |
Collapse
|
26
|
Geng Q, Fan L, Chen H, Zhang C, Xu Z, Tian Y, Yu C, Kang L, Yamauchi Y, Li C, Jiang L. Revolutionizing CO 2 Electrolysis: Fluent Gas Transportation within Hydrophobic Porous Cu 2O. J Am Chem Soc 2024; 146:10599-10607. [PMID: 38567740 DOI: 10.1021/jacs.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The success of electrochemical CO2 reduction at high current densities hinges on precise interfacial transportation and the local concentration of gaseous CO2. However, the creation of efficient CO2 transportation channels remains an unexplored frontier. In this study, we design and synthesize hydrophobic porous Cu2O spheres with varying pore sizes to unveil the nanoporous channel's impact on gas transfer and triple-phase interfaces. The hydrophobic channels not only facilitate rapid CO2 transportation but also trap compressed CO2 bubbles to form abundant and stable triple-phase interfaces, which are crucial for high-current-density electrocatalysis. In CO2 electrolysis, in situ spectroscopy and density functional theory results reveal that atomic edges of concave surfaces promote C-C coupling via an energetically favorable OC-COH pathway, leading to overwhelming CO2-to-C2+ conversion. Leveraging optimal gas transportation and active site exposure, the hydrophobic porous Cu2O with a 240 nm pore size (P-Cu2O-240) stands out among all the samples and exhibits the best CO2-to-C2+ productivity with remarkable Faradaic efficiency and formation rate up to 75.3 ± 3.1% and 2518.2 ± 8.1 μmol h-1 cm-2, respectively. This study introduces a novel paradigm for efficient electrocatalysts that concurrently addresses active site design and gas-transfer challenges.
Collapse
Affiliation(s)
- Qinghong Geng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longlong Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huige Chen
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunhui Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhe Xu
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cunming Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Kang
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane 4072, QLD, Australia
| | - Cuiling Li
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
| |
Collapse
|
27
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
28
|
Li J, Wu D, Li J, Zhou Y, Yan Z, Liang J, Zhang QY, Xia XH. Ultrasensitive Plasmon-Enhanced Infrared Spectroelectrochemistry. Angew Chem Int Ed Engl 2024; 63:e202319246. [PMID: 38191762 DOI: 10.1002/anie.202319246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
IR spectroelectrochemistry (EC-IR) is a cutting-edge operando method for exploring electrochemical reaction mechanisms. However, detection of interfacial molecules is challenged by the limited sensitivity of existing EC-IR platforms due to the lack of high-enhancement substrates. Here, we propose an innovative plasmon-enhanced infrared spectroelectrochemistry (EC-PEIRS) platform to overcome this sensitivity limitation. Plasmonic antennae with ultrahigh IR signal enhancement are electrically connected via monolayer graphene while preserving optical path integrity, serving as both the electrode and IR substrate. The [Fe(CN)6 ]3- /[Fe(CN)6 ]4- redox reaction and electrochemical CO2 reduction reaction (CO2 RR) are investigated on the EC-PEIRS platform with a remarkable signal enhancement. Notably, the enhanced IR signals enable a reconstruction of the electrochemical curve of the redox reactions and unveil the CO2 RR mechanism. This study presents a promising technique for boosting the in-depth understanding of interfacial events across diverse applications.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhou
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 210017, China
| | - Zhendong Yan
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Jing Liang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qing-Ying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
29
|
Hou J, Xu B, Lu Q. Influence of electric double layer rigidity on CO adsorption and electroreduction rate. Nat Commun 2024; 15:1926. [PMID: 38431637 PMCID: PMC10908862 DOI: 10.1038/s41467-024-46318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Understanding the structure of the electric double layer (EDL) is critical for designing efficient electrocatalytic processes. However, the interplay between reactant adsorbates and the concentrated ionic species within the EDL remains an aspect that has yet to be fully explored. In the present study, we employ electrochemical CO reduction on Cu as a model reaction to reveal the significant impact of EDL structure on CO adsorption. By altering the sequence of applying negative potential and elevating CO pressure, we discern two distinct EDL structures with varying cation density and CO coverage. Our findings demonstrate that the EDL comprising densely packed cations substantially hinders CO adsorption on the Cu as opposed to the EDL containing less compact cations. These two different EDL structures remained stable over the course of our experiments, despite their identical initial and final conditions, suggesting an insurmountable kinetic barrier present in between. Moreover, we show that the size and identity of cations play decisive roles in determining the properties of the EDL in CO electroreduction on Cu. This study presents a refined adaptation of the classical Gouy-Chapman-Stern model and highlights its catalytic importance, which bridges the mechanistic gap between the EDL structure and cathodic reactions.
Collapse
Affiliation(s)
- Jiajie Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
30
|
Jiao Y, Pan Y, Yang M, Li Z, Yu J, Fu R, Man B, Zhang C, Zhao X. Micro-nano hierarchical urchin-like ZnO/Ag hollow sphere for SERS detection and photodegradation of antibiotics. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:307-318. [PMID: 39633674 PMCID: PMC11501311 DOI: 10.1515/nanoph-2023-0659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 12/07/2024]
Abstract
Hollow urchin-like substrates have been widely interested in the field of surface-enhanced Raman scattering (SERS) and photocatalysis. However, most reported studies are simple nanoscale urchin-like substrate with limited light trapping range and complicated preparation process. In this paper, a simple and effective controllable synthesis strategy based on micro-nano hierarchical urchin-like ZnO/Ag hollow spheres was prepared. Compared with the 2D structure and solid spheres, the 3D urchin-like ZnO/Ag hollow sphere has higher laser utilization and more exposed specific surface area due to its special hollow structure, which resulted in excellent SERS and photocatalytic performance, and successfully realize the detection and photodegradation of antibiotics. The limited of detection of metronidazole can reach as low as 10-9 M, and degradation rate achieve 89 % within 120 min. The experimental and theoretical results confirm that the ZnO/Ag hollow spheres can be used in the development of ZnO heterostructure for the detection and degradation of antibiotics, which open new avenues for the development of novel ZnO-based substrate in SERS sensing and catalytic application to address environmental challenges.
Collapse
Affiliation(s)
- Yang Jiao
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Yuanyuan Pan
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Moru Yang
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Zhen Li
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Rong Fu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng252000, China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| | - Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan250014, China
| |
Collapse
|
31
|
Fusco Z, Beck FJ. Advances in fundamentals and application of plasmon-assisted CO 2 photoreduction. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:387-417. [PMID: 39635649 PMCID: PMC11501834 DOI: 10.1515/nanoph-2023-0793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/23/2023] [Indexed: 12/07/2024]
Abstract
Artificial photosynthesis of hydrocarbons from carbon dioxide (CO2) has the potential to provide renewable fuels at the scale needed to meet global decarbonization targets. However, CO2 is a notoriously inert molecule and converting it to energy dense hydrocarbons is a complex, multistep process, which can proceed through several intermediates. Recently, the ability of plasmonic nanoparticles to steer the reaction down specific pathways and enhance both reaction rate and selectivity has garnered significant attention due to its potential for sustainable energy production and environmental mitigation. The plasmonic excitation of strong and confined optical near-fields, energetic hot carriers and localized heating can be harnessed to control or enhance chemical reaction pathways. However, despite many seminal contributions, the anticipated transformative impact of plasmonics in selective CO2 photocatalysis has yet to materialize in practical applications. This is due to the lack of a complete theoretical framework on the plasmonic action mechanisms, as well as the challenge of finding efficient materials with high scalability potential. In this review, we aim to provide a comprehensive and critical discussion on recent advancements in plasmon-enhanced CO2 photoreduction, highlighting emerging trends and challenges in this field. We delve into the fundamental principles of plasmonics, discussing the seminal works that led to ongoing debates on the reaction mechanism, and we introduce the most recent ab initio advances, which could help disentangle these effects. We then synthesize experimental advances and in situ measurements on plasmon CO2 photoreduction before concluding with our perspective and outlook on the field of plasmon-enhanced photocatalysis.
Collapse
Affiliation(s)
- Zelio Fusco
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT2601, Australia
| | - Fiona J. Beck
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT2601, Australia
| |
Collapse
|
32
|
Yang X, Rong C, Zhang L, Ye Z, Wei Z, Huang C, Zhang Q, Yuan Q, Zhai Y, Xuan FZ, Xu B, Zhang B, Yang X. Mechanistic insights into C-C coupling in electrochemical CO reduction using gold superlattices. Nat Commun 2024; 15:720. [PMID: 38267404 PMCID: PMC10808111 DOI: 10.1038/s41467-024-44923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Developing in situ/operando spectroscopic techniques with high sensitivity and reproducibility is of great importance for mechanistic investigations of surface-mediated electrochemical reactions. Herein, we report the fabrication of highly ordered rhombic gold nanocube superlattices (GNSs) as substrates for surface-enhanced infrared absorption spectroscopy (SEIRAS) with significantly enhanced SEIRA effect, which can be controlled by manipulating the randomness of GNSs. Finite difference time domain simulations reveal that the electromagnetic effect accounts for the significantly improved spectroscopic vibrations on the GNSs. In situ SEIRAS results show that the vibrations of CO on the Cu2O surfaces have been enhanced by 2.4 ± 0.5 and 18.0 ± 1.3 times using GNSs as substrates compared to those on traditional chemically deposited gold films in acidic and neutral electrolytes, respectively. Combined with isotopic labeling experiments, the reaction mechanisms for C-C coupling of CO electroreduction on Cu-based catalysts are revealed using the GNSs substrates.
Collapse
Affiliation(s)
- Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Li Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenkun Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiming Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Chengdi Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiao Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Qing Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
33
|
Yang T, Zhou D, Ye S, Li X, Li H, Feng Y, Jiang Z, Yang L, Ye K, Shen Y, Jiang S, Feng S, Zhang G, Huang Y, Wang S, Jiang J. Catalytic Structure Design by AI Generating with Spectroscopic Descriptors. J Am Chem Soc 2023. [PMID: 38019281 DOI: 10.1021/jacs.3c09299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Generative artificial intelligence has depicted a beautiful blueprint for on-demand design in chemical research. However, the few successful chemical generations have only been able to implement a few special property values because most chemical descriptors are mathematically discrete or discontinuously adjustable. Herein, we use spectroscopic descriptors with machine learning to establish a quantitative spectral structure-property relationship for adsorbed molecules on metal monatomic catalysts. Besides catalytic properties such as adsorption energy and charge transfer, the complete spatial relative coordinates of the adsorbed molecule were successfully inverted. The spectroscopic descriptors and prediction models are generalized, allowing them to be transferred to several different systems. Due to the continuous tunability of the spectroscopic descriptors, the design of catalytic structures with continuous adsorption states generated by AI in the catalytic process has been achieved. This work paves the way for using spectroscopy to enable real-time monitoring of the catalytic process and continuous customization of catalytic performance, which will lead to profound changes in catalytic research.
Collapse
Affiliation(s)
- Tongtong Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Donglai Zhou
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Ye
- School of Artificial Intelligence, Anhui University, Hefei, Anhui 230601, China
| | - Xiyu Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Huirong Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zifan Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Ke Ye
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yixi Shen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuo Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guozhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Song Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
34
|
Chang X, Xiong H, Lu Q, Xu B. Mechanistic Implications of Low CO Coverage on Cu in the Electrochemical CO and CO 2 Reduction Reactions. JACS AU 2023; 3:2948-2963. [PMID: 38034971 PMCID: PMC10685414 DOI: 10.1021/jacsau.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Electrochemical CO or CO2 reduction reactions (CO(2)RR), powered by renewable energy, represent one of the promising strategies for upgrading CO2 to valuable products. To design efficient and selective catalysts for the CO(2)RR, a comprehensive mechanistic understanding is necessary, including a comprehensive understanding of the reaction network and the identity of kinetically relevant steps. Surface-adsorbed CO (COad) is the most commonly reported reaction intermediate in the CO(2)RR, and its surface coverage (θCO) and binding energy are proposed to be key to the catalytic performance. Recent experimental evidence sugguests that θCO on Cu electrode at electrochemical conditions is quite low (∼0.05 monolayer), while relatively high θCO is often assumed in literature mechanistic discussion. This Perspective briefly summarizes existing efforts in determining θCO on Cu surfaces, analyzes mechanistic impacts of low θCO on the reaction pathway and catalytic performance, and discusses potential fruitful future directions in advancing our understanding of the Cu-catalyzed CO(2)RR.
Collapse
Affiliation(s)
- Xiaoxia Chang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Haocheng Xiong
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Lu
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bingjun Xu
- College
of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
35
|
Wu ZZ, Zhang XL, Yang PP, Niu ZZ, Gao FY, Zhang YC, Chi LP, Sun SP, DuanMu JW, Lu PG, Li YC, Gao MR. Gerhardtite as a Precursor to an Efficient CO-to-Acetate Electroreduction Catalyst. J Am Chem Soc 2023; 145:24338-24348. [PMID: 37880928 DOI: 10.1021/jacs.3c09255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Carbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C2+) chemicals, posing a grand challenge to achieve a single C2+ product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu2(OH)3NO3, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption. With increased *CO coverage on the defect-rich Cu, we report an acetate selectivity of 56 ± 2% (compared to 31 ± 1% for conventional Cu) and a partial current density of 222 ± 7 mA per square centimeter in CO electroreduction. When run at 400 mA per square centimeter for 40 h in a flow reactor, this catalyst produces 68.3 mmol of acetate throughout. This work highlights the value of a Cu-containing mineral phase in accessing suitable structures for improved selectivity to a single desired C2+ product.
Collapse
Affiliation(s)
- Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Cai Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Ping Sun
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Wen DuanMu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Gan Lu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Lee SY, Kim J, Bak G, Lee E, Kim D, Yoo S, Kim J, Yun H, Hwang YJ. Probing Cation Effects on *CO Intermediates from Electroreduction of CO 2 through Operando Raman Spectroscopy. J Am Chem Soc 2023; 145:23068-23075. [PMID: 37807716 DOI: 10.1021/jacs.3c05799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Cations in an electrolyte modulate microenvironments near the catalyst surface and affect product distribution from an electrochemical CO2 reduction reaction, and thus, their interaction with intermediate states has been tried to be probed. Herein, we directly observed the cation effect on *CO intermediates on the Cu(OH)2-derived catalyst in real time through operando surface-enhanced Raman spectroscopy at high overpotentials (-1.0 VRHE). Atop *CO peaks are composed of low-frequency binding *CO (*COLFB) and high-frequency binding *CO (*COHFB) because of their adsorption sites. These two *CO intermediates are found to have different sensitivities to the cation-induced field, and each *CO is proposed to be suitably stabilized for efficient C-C coupling. The proportions between *COHFB and *COLFB are dependent on the type of alkali cations, and the increases in the *COHFB ratio have a high correlation with selective C2H4 production under K+ and Cs+, indicating that *COHFB is the dominant and fast active species. In addition, as the hydrated cation size decreases, *COLFB is more sensitively red-shifted than *COHFB, which promotes C-C coupling and suppresses C1 products. Through time-resolved operando measurements, dynamic changes between the two *CO species are observed, showing the rapid initial adsorption of *COHFB and subsequently reaching a steady ratio between *COLFB and *COHFB.
Collapse
Affiliation(s)
- Si Young Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jimin Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Gwangsu Bak
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunchong Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dayeon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Suhwan Yoo
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyewon Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Yun Jeong Hwang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
37
|
Sarkar A, Dharmaraj VR, Yi CH, Iputera K, Huang SY, Chung RJ, Hu SF, Liu RS. Recent Advances in Rechargeable Metal-CO 2 Batteries with Nonaqueous Electrolytes. Chem Rev 2023; 123:9497-9564. [PMID: 37436918 DOI: 10.1021/acs.chemrev.3c00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.
Collapse
Affiliation(s)
- Ayan Sarkar
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | - Chia-Hui Yi
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kevin Iputera
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shang-Yang Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
38
|
Feng J, Zhang L, Liu S, Xu L, Ma X, Tan X, Wu L, Qian Q, Wu T, Zhang J, Sun X, Han B. Modulating adsorbed hydrogen drives electrochemical CO 2-to-C 2 products. Nat Commun 2023; 14:4615. [PMID: 37528069 PMCID: PMC10394046 DOI: 10.1038/s41467-023-40412-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
Electrocatalytic CO2 reduction is a typical reaction involving two reactants (CO2 and H2O). However, the role of H2O dissociation, which provides active *H species to multiple protonation steps, is usually overlooked. Herein, we construct a dual-active sites catalyst comprising atomic Cu sites and Cu nanoparticles supported on N-doped carbon matrix. Efficient electrosynthesis of multi-carbon products is achieved with Faradaic efficiency approaching 75.4% with a partial current density of 289.2 mA cm-2 at -0.6 V. Experimental and theoretical studies reveal that Cu nanoparticles facilitate the C-C coupling step through *CHO dimerization, while the atomic Cu sites boost H2O dissociation to form *H. The generated *H migrate to Cu nanoparticles and modulate the *H coverage on Cu NPs, and thus promote *CO-to-*CHO. The dual-active sites effect of Cu single-sites and Cu nanoparticles gives rise to the catalytic performance.
Collapse
Affiliation(s)
- Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Liang Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
39
|
Zhao Y, Ding Y, Li W, Liu C, Li Y, Zhao Z, Shan Y, Li F, Sun L, Li F. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu-W bimetallic C-N coupling sites. Nat Commun 2023; 14:4491. [PMID: 37495582 PMCID: PMC10372083 DOI: 10.1038/s41467-023-40273-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Electrocatalytic urea synthesis is an emerging alternative technology to the traditional energy-intensive industrial urea synthesis protocol. Novel strategies are urgently needed to promote the electrocatalytic C-N coupling process and inhibit the side reactions. Here, we report a CuWO4 catalyst with native bimetallic sites that achieves a high urea production rate (98.5 ± 3.2 μg h-1 mg-1cat) for the co-reduction of CO2 and NO3- with a high Faradaic efficiency (70.1 ± 2.4%) at -0.2 V versus the reversible hydrogen electrode. Mechanistic studies demonstrated that the combination of stable intermediates of *NO2 and *CO increases the probability of C-N coupling and reduces the potential barrier, resulting in high Faradaic efficiency and low overpotential. This study provides a new perspective on achieving efficient urea electrosynthesis by stabilizing the key reaction intermediates, which may guide the design of other electrochemical systems for high-value C-N bond-containing chemicals.
Collapse
Affiliation(s)
- Yilong Zhao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024, Hangzhou, China
| | - Wenlong Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024, Hangzhou, China
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Yingzheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Yu Shan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China.
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024, Hangzhou, China.
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden.
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China.
| |
Collapse
|
40
|
Lan J, Wei Z, Lu YR, Chen D, Zhao S, Chan TS, Tan Y. Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst. Nat Commun 2023; 14:2870. [PMID: 37208321 DOI: 10.1038/s41467-023-38603-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Conversion into high-value-added organic nitrogen compounds through electrochemical C-N coupling reactions under ambient conditions is regarded as a sustainable development strategy to achieve carbon neutrality and high-value utilization of harmful substances. Herein, we report an electrochemical process for selective synthesis of high-valued formamide from carbon monoxide and nitrite with a Ru1Cu single-atom alloy under ambient conditions, which achieves a high formamide selectivity with Faradaic efficiency of 45.65 ± 0.76% at -0.5 V vs. RHE. In situ X-ray absorption spectroscopy, coupled with in situ Raman spectroscopy and density functional theory calculations results reveal that the adjacent Ru-Cu dual active sites can spontaneously couple *CO and *NH2 intermediates to realize a critical C-N coupling reaction, enabling high-performance electrosynthesis of formamide. This work offers insight into the high-value formamide electrocatalysis through coupling CO and NO2- under ambient conditions, paving the way for the synthesis of more-sustainable and high-value chemical products.
Collapse
Affiliation(s)
- Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - DeChao Chen
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan.
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
41
|
Cao Y, Chen Z, Li P, Ozden A, Ou P, Ni W, Abed J, Shirzadi E, Zhang J, Sinton D, Ge J, Sargent EH. Surface hydroxide promotes CO 2 electrolysis to ethylene in acidic conditions. Nat Commun 2023; 14:2387. [PMID: 37185342 PMCID: PMC10130127 DOI: 10.1038/s41467-023-37898-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Performing CO2 reduction in acidic conditions enables high single-pass CO2 conversion efficiency. However, a faster kinetics of the hydrogen evolution reaction compared to CO2 reduction limits the selectivity toward multicarbon products. Prior studies have shown that adsorbed hydroxide on the Cu surface promotes CO2 reduction in neutral and alkaline conditions. We posited that limited adsorbed hydroxide species in acidic CO2 reduction could contribute to a low selectivity to multicarbon products. Here we report an electrodeposited Cu catalyst that suppresses hydrogen formation and promotes selective CO2 reduction in acidic conditions. Using in situ time-resolved Raman spectroscopy, we show that a high concentration of CO and OH on the catalyst surface promotes C-C coupling, a finding that we correlate with evidence of increased CO residence time. The optimized electrodeposited Cu catalyst achieves a 60% faradaic efficiency for ethylene and 90% for multicarbon products. When deployed in a slim flow cell, the catalyst attains a 20% energy efficiency to ethylene, and 30% to multicarbon products.
Collapse
Affiliation(s)
- Yufei Cao
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Zhu Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Peihao Li
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Weiyan Ni
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Erfan Shirzadi
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Jinqiang Zhang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, 518107, Shenzhen, China.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada.
| |
Collapse
|
42
|
Wang H, Li Y, Wang M, Chen S, Yao M, Chen J, Liao X, Zhang Y, Lu X, Matios E, Luo J, Zhang W, Feng Z, Dong J, Liu Y, Li W. Precursor-mediated in situ growth of hierarchical N-doped graphene nanofibers confining nickel single atoms for CO 2 electroreduction. Proc Natl Acad Sci U S A 2023; 120:e2219043120. [PMID: 36996112 PMCID: PMC10083610 DOI: 10.1073/pnas.2219043120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/14/2023] [Indexed: 03/31/2023] Open
Abstract
Despite the various strategies for achieving metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) with different microenvironments for electrochemical carbon dioxide reduction reaction (CO2RR), the synthesis-structure-performance correlation remains elusive due to the lack of well-controlled synthetic approaches. Here, we employed Ni nanoparticles as starting materials for the direct synthesis of nickel (Ni) SACs in one spot through harvesting the interaction between metallic Ni and N atoms in the precursor during the chemical vapor deposition growth of hierarchical N-doped graphene fibers. By combining with first-principle calculations, we found that the Ni-N configuration is closely correlated to the N contents in the precursor, in which the acetonitrile with a high N/C ratio favors the formation of Ni-N3, while the pyridine with a low N/C ratio is more likely to promote the evolution of Ni-N2. Moreover, we revealed that the presence of N favors the formation of H-terminated edge of sp2 carbon and consequently leads to the formation of graphene fibers consisting of vertically stacked graphene flakes, instead of the traditional growth of carbon nanotubes on Ni nanoparticles. With a high capability in balancing the *COOH formation and *CO desorption, the as-prepared hierarchical N-doped graphene nanofibers with Ni-N3 sites exhibit a superior CO2RR performance compared to that with Ni-N2 and Ni-N4 ones.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin300071, China
| | - Youzeng Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin300071, China
| | - Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR97331
| | - Shan Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin300071, China
| | - Meng Yao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin300071, China
| | - Jialei Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin300071, China
| | - Xuelong Liao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin300071, China
| | - Yiwen Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
| | - Xuan Lu
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
| | - Edward Matios
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
| | - Jianmin Luo
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
| | - Wei Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin300071, China
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR97331
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Weiyang Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
| |
Collapse
|
43
|
Xiong H, Sun Q, Chen K, Xu Y, Chang X, Lu Q, Xu B. Correlating the Experimentally Determined CO Adsorption Enthalpy with the Electrochemical CO Reduction Performance on Cu Surfaces. Angew Chem Int Ed Engl 2023; 62:e202218447. [PMID: 36655721 DOI: 10.1002/anie.202218447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
CO binding energy has been widely employed as a descriptor for effective catalysts in the electrochemical CO2 and CO reduction reactions (CO(2) RR), however, it has yet to be determined experimentally at electrochemical interfaces due to the lack of suitable techniques. In this work, we developed a method to determine the standard adsorption enthalpy of CO on Cu surfaces with quantitative surface enhanced infrared absorption spectroscopy. On dendritic Cu at -0.75 V vs. SHE, the standard adsorption enthalpy, entropy and Gibbs free energy were determined to 1.5±0.5 kJ mol-1 , ≈37.9±13.4 J/(mol K), and ≈-9.8±4.0 kJ mol-1 , respectively. Comparison of the standard adsorption enthalpy of oxide-derived Cu and dendritic Cu, as well as their CORR activities, suggests the presence of stronger binding sites on OD Cu, which could favor multicarbon products. The method developed in this work will help establish the correlation between the CO binding energy and the CO(2) RR activity.
Collapse
Affiliation(s)
- Haocheng Xiong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiwen Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kedang Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yifei Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
44
|
Zhang XD, Liu T, Liu C, Zheng DS, Huang JM, Liu QW, Yuan WW, Yin Y, Huang LR, Xu M, Li Y, Gu ZY. Asymmetric Low-Frequency Pulsed Strategy Enables Ultralong CO 2 Reduction Stability and Controllable Product Selectivity. J Am Chem Soc 2023; 145:2195-2206. [PMID: 36629383 DOI: 10.1021/jacs.2c09501] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Copper-based catalysts are widely explored in electrochemical CO2 reduction (CO2RR) because of their ability to convert CO2 into high-value-added multicarbon products. However, the poor stability and low selectivity limit the practical applications of these catalysts. Here, we proposed a simple and efficient asymmetric low-frequency pulsed strategy (ALPS) to significantly enhance the stability and the selectivity of the Cu-dimethylpyrazole complex Cu3(DMPz)3 catalyst in CO2RR. Under traditional potentiostatic conditions, Cu3(DMPz)3 exhibited poor CO2RR performance with the Faradaic efficiency (FE) of 34.5% for C2H4 and FE of 5.9% for CH4 as well as the low stability for less than 1 h. We optimized two distinguished ALPS methods toward CH4 and C2H4, correspondingly. The high selectivities of catalytic product CH4 (FECH4 = 80.3% and above 76.6% within 24 h) and C2H4 (FEC2H4 = 70.7% and above 66.8% within 24 h) can be obtained, respectively. The ultralong stability for 300 h (FECH4 > 60%) and 145 h (FEC2H4 > 50%) was also recorded with the ALPS method. Microscopy (HRTEM, SAED, and HAADF) measurements revealed that the ALPS method in situ generated and stabilized extremely dispersive and active Cu-based clusters (∼2.7 nm) from Cu3(DMPz)3. Meanwhile, ex situ spectroscopies (XPS, AES, and XANES) and in situ XANES indicated that this ALPS method modulated the Cu oxidation states, such as Cu(0 and I) with C2H4 selectivity and Cu(I and II) with CH4 selectivity. The mechanism under the ALPS methods was explored by in situ ATR-FTIR, in situ Raman, and DFT computation. The ALPS methods provide a new opportunity to boost the selectivity and stability of CO2RR.
Collapse
Affiliation(s)
- Xiang-Da Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tianyang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - De-Sheng Zheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian-Mei Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian-Wen Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei-Wen Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yue Yin
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Rui Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yafei Li
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
45
|
Wen C, Li R, Chang X, Li N. Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications. BIOSENSORS 2023; 13:128. [PMID: 36671963 PMCID: PMC9855937 DOI: 10.3390/bios13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs)-based optical nanoprobes for luminescence and surface-enhanced Raman spectroscopy (SERS) applications have been receiving tremendous attention. Every element in the MOF structure, including the metal nodes, the organic linkers, and the guest molecules, can be used as a source to build single/multi-emission signals for the intended analytical purposes. For SERS applications, the MOF can not only be used directly as a SERS substrate, but can also improve the stability and reproducibility of the metal-based substrates. Additionally, the porosity and large specific surface area give MOF a sieving effect and target molecule enrichment ability, both of which are helpful for improving detection selectivity and sensitivity. This mini-review summarizes the advances of MOF-based optical detection methods, including luminescence and SERS, and also provides perspectives on future efforts.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rongsheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Hou J, Chang X, Li J, Xu B, Lu Q. Correlating CO Coverage and CO Electroreduction on Cu via High-Pressure in Situ Spectroscopic and Reactivity Investigations. J Am Chem Soc 2022; 144:22202-22211. [PMID: 36404600 DOI: 10.1021/jacs.2c09956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The absolute coverage of CO has been a missing piece in the mechanistic puzzle of the CO reduction reaction (CORR) on Cu. For the first time, we revealed the upper bound of the CO coverage under electrocatalytic conditions to be 0.05 monolayer at atmospheric pressure and the saturation CO coverage to be ∼0.25 monolayer by conducting surface enhanced infrared spectroscopy at CO pressures up to 60 barg in a custom-designed spectroelectrochemical cell. CORR activities on Cu were also determined in the same pressure range. Calculated reaction orders of C2+ products with respect to adsorbed CO are substantially less than unity, clearly indicating that the coupling of adsorbed CO is not the rate-determining step leading to multicarbon products. The increase in CO coverage can reduce the C affinity on the Cu surface and favor the selectivity towards oxygenates, especially acetate, over ethylene. Uncommon products, including ethane, glycolaldehyde, and ethylene glycol, were detected in appreciable amounts, likely due to a new C-C coupling mechanism taking place at elevated CO pressures.
Collapse
Affiliation(s)
- Jiajie Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Jing Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
47
|
Chang X, He M, Lu Q, Xu B. Origin and effect of surface oxygen-containing species on electrochemical CO or CO2 reduction reactions. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Nguyen TN, Chen Z, Zeraati AS, Shiran HS, Sadaf SM, Kibria MG, Sargent EH, Dinh CT. Catalyst Regeneration via Chemical Oxidation Enables Long-Term Electrochemical Carbon Dioxide Reduction. J Am Chem Soc 2022; 144:13254-13265. [PMID: 35796714 DOI: 10.1021/jacs.2c04081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrochemical CO2 reduction (ECR) with industrially relevant current densities, high product selectivity, and long-term stability has been a long-sought goal. Unfortunately, copper (Cu) catalysts for producing valuable multicarbon (C2+) products undergo structural and morphological changes under ECR conditions, especially at high current densities, resulting in a rapid decrease in product selectivity. Herein, we report a catalyst regeneration strategy, one that employs an electrolysis method comprising alternating "on" and "off" operating regimes, to increase the operating stability of a Cu catalyst. We find that it increases operating lifetime many times, maintaining ethylene selectivity ≥40% for at least 200 h of electrolysis in neutral pH media at a current density of 150 mA cm-2 using a flow cell. We also demonstrate ECR to ethylene at a current density of 1 A cm-2 with ethylene selectivity ≥40% using a three-dimensional Cu gas diffusion electrode, finding that this system under these conditions is rendered stable for greater than 36 h. This work illustrates that Cu-based catalysts, once they have entered into the state conventionally considered to possess degraded catalytic activity, may be recovered to deliver high C2+ selectivity. We present evidence that the combination of short periods of electrolysis, which minimizes the morphological changes during "on" segments, with the progressive chemical oxidation of Cu atoms on the catalyst surface during "off" segments, united with the added effects of washing the accumulated salt and decreasing the catholyte temperature prolong together the catalyst's operating lifetime.
Collapse
Affiliation(s)
- Tu N Nguyen
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, ON, Canada.,Helen Scientific Research and Technological Development Co., Ltd, Ho Chi Minh City 700000, Vietnam
| | - Zhu Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 1A4, Ontario, Canada
| | - Ali Shayesteh Zeraati
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada T2N 1N4
| | - Hadi Shaker Shiran
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada T2N 1N4
| | - Sharif Md Sadaf
- Centre Energie, Matériaux et Télécommunications, Institut National de La Recherche Scientifique (INRS)-Université Du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada T2N 1N4
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 1A4, Ontario, Canada
| | - Cao-Thang Dinh
- Department of Chemical Engineering, Queen's University, Kingston K7L 3N6, ON, Canada
| |
Collapse
|